gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / tools / lib / bpf / bpf_core_read.h
blob7009dc90e012a5851d2d382022e3754f62751b2d
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_CORE_READ_H__
3 #define __BPF_CORE_READ_H__
5 /*
6 * enum bpf_field_info_kind is passed as a second argument into
7 * __builtin_preserve_field_info() built-in to get a specific aspect of
8 * a field, captured as a first argument. __builtin_preserve_field_info(field,
9 * info_kind) returns __u32 integer and produces BTF field relocation, which
10 * is understood and processed by libbpf during BPF object loading. See
11 * selftests/bpf for examples.
13 enum bpf_field_info_kind {
14 BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */
15 BPF_FIELD_BYTE_SIZE = 1,
16 BPF_FIELD_EXISTS = 2, /* field existence in target kernel */
17 BPF_FIELD_SIGNED = 3,
18 BPF_FIELD_LSHIFT_U64 = 4,
19 BPF_FIELD_RSHIFT_U64 = 5,
22 #define __CORE_RELO(src, field, info) \
23 __builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
25 #if __BYTE_ORDER == __LITTLE_ENDIAN
26 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
27 bpf_probe_read((void *)dst, \
28 __CORE_RELO(src, fld, BYTE_SIZE), \
29 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
30 #else
31 /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
32 * for big-endian we need to adjust destination pointer accordingly, based on
33 * field byte size
35 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
36 bpf_probe_read((void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
37 __CORE_RELO(src, fld, BYTE_SIZE), \
38 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
39 #endif
42 * Extract bitfield, identified by s->field, and return its value as u64.
43 * All this is done in relocatable manner, so bitfield changes such as
44 * signedness, bit size, offset changes, this will be handled automatically.
45 * This version of macro is using bpf_probe_read() to read underlying integer
46 * storage. Macro functions as an expression and its return type is
47 * bpf_probe_read()'s return value: 0, on success, <0 on error.
49 #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \
50 unsigned long long val = 0; \
52 __CORE_BITFIELD_PROBE_READ(&val, s, field); \
53 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
54 if (__CORE_RELO(s, field, SIGNED)) \
55 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
56 else \
57 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
58 val; \
62 * Extract bitfield, identified by s->field, and return its value as u64.
63 * This version of macro is using direct memory reads and should be used from
64 * BPF program types that support such functionality (e.g., typed raw
65 * tracepoints).
67 #define BPF_CORE_READ_BITFIELD(s, field) ({ \
68 const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
69 unsigned long long val; \
71 switch (__CORE_RELO(s, field, BYTE_SIZE)) { \
72 case 1: val = *(const unsigned char *)p; \
73 case 2: val = *(const unsigned short *)p; \
74 case 4: val = *(const unsigned int *)p; \
75 case 8: val = *(const unsigned long long *)p; \
76 } \
77 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
78 if (__CORE_RELO(s, field, SIGNED)) \
79 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
80 else \
81 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
82 val; \
86 * Convenience macro to check that field actually exists in target kernel's.
87 * Returns:
88 * 1, if matching field is present in target kernel;
89 * 0, if no matching field found.
91 #define bpf_core_field_exists(field) \
92 __builtin_preserve_field_info(field, BPF_FIELD_EXISTS)
95 * Convenience macro to get byte size of a field. Works for integers,
96 * struct/unions, pointers, arrays, and enums.
98 #define bpf_core_field_size(field) \
99 __builtin_preserve_field_info(field, BPF_FIELD_BYTE_SIZE)
102 * bpf_core_read() abstracts away bpf_probe_read() call and captures offset
103 * relocation for source address using __builtin_preserve_access_index()
104 * built-in, provided by Clang.
106 * __builtin_preserve_access_index() takes as an argument an expression of
107 * taking an address of a field within struct/union. It makes compiler emit
108 * a relocation, which records BTF type ID describing root struct/union and an
109 * accessor string which describes exact embedded field that was used to take
110 * an address. See detailed description of this relocation format and
111 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
113 * This relocation allows libbpf to adjust BPF instruction to use correct
114 * actual field offset, based on target kernel BTF type that matches original
115 * (local) BTF, used to record relocation.
117 #define bpf_core_read(dst, sz, src) \
118 bpf_probe_read(dst, sz, \
119 (const void *)__builtin_preserve_access_index(src))
122 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
123 * additionally emitting BPF CO-RE field relocation for specified source
124 * argument.
126 #define bpf_core_read_str(dst, sz, src) \
127 bpf_probe_read_str(dst, sz, \
128 (const void *)__builtin_preserve_access_index(src))
130 #define ___concat(a, b) a ## b
131 #define ___apply(fn, n) ___concat(fn, n)
132 #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
135 * return number of provided arguments; used for switch-based variadic macro
136 * definitions (see ___last, ___arrow, etc below)
138 #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
140 * return 0 if no arguments are passed, N - otherwise; used for
141 * recursively-defined macros to specify termination (0) case, and generic
142 * (N) case (e.g., ___read_ptrs, ___core_read)
144 #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
146 #define ___last1(x) x
147 #define ___last2(a, x) x
148 #define ___last3(a, b, x) x
149 #define ___last4(a, b, c, x) x
150 #define ___last5(a, b, c, d, x) x
151 #define ___last6(a, b, c, d, e, x) x
152 #define ___last7(a, b, c, d, e, f, x) x
153 #define ___last8(a, b, c, d, e, f, g, x) x
154 #define ___last9(a, b, c, d, e, f, g, h, x) x
155 #define ___last10(a, b, c, d, e, f, g, h, i, x) x
156 #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
158 #define ___nolast2(a, _) a
159 #define ___nolast3(a, b, _) a, b
160 #define ___nolast4(a, b, c, _) a, b, c
161 #define ___nolast5(a, b, c, d, _) a, b, c, d
162 #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
163 #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
164 #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
165 #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
166 #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
167 #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
169 #define ___arrow1(a) a
170 #define ___arrow2(a, b) a->b
171 #define ___arrow3(a, b, c) a->b->c
172 #define ___arrow4(a, b, c, d) a->b->c->d
173 #define ___arrow5(a, b, c, d, e) a->b->c->d->e
174 #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
175 #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
176 #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
177 #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
178 #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
179 #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
181 #define ___type(...) typeof(___arrow(__VA_ARGS__))
183 #define ___read(read_fn, dst, src_type, src, accessor) \
184 read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
186 /* "recursively" read a sequence of inner pointers using local __t var */
187 #define ___rd_first(src, a) ___read(bpf_core_read, &__t, ___type(src), src, a);
188 #define ___rd_last(...) \
189 ___read(bpf_core_read, &__t, \
190 ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
191 #define ___rd_p1(...) const void *__t; ___rd_first(__VA_ARGS__)
192 #define ___rd_p2(...) ___rd_p1(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
193 #define ___rd_p3(...) ___rd_p2(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
194 #define ___rd_p4(...) ___rd_p3(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
195 #define ___rd_p5(...) ___rd_p4(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
196 #define ___rd_p6(...) ___rd_p5(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
197 #define ___rd_p7(...) ___rd_p6(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
198 #define ___rd_p8(...) ___rd_p7(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
199 #define ___rd_p9(...) ___rd_p8(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
200 #define ___read_ptrs(src, ...) \
201 ___apply(___rd_p, ___narg(__VA_ARGS__))(src, __VA_ARGS__)
203 #define ___core_read0(fn, dst, src, a) \
204 ___read(fn, dst, ___type(src), src, a);
205 #define ___core_readN(fn, dst, src, ...) \
206 ___read_ptrs(src, ___nolast(__VA_ARGS__)) \
207 ___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \
208 ___last(__VA_ARGS__));
209 #define ___core_read(fn, dst, src, a, ...) \
210 ___apply(___core_read, ___empty(__VA_ARGS__))(fn, dst, \
211 src, a, ##__VA_ARGS__)
214 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
215 * BPF_CORE_READ(), in which final field is read into user-provided storage.
216 * See BPF_CORE_READ() below for more details on general usage.
218 #define BPF_CORE_READ_INTO(dst, src, a, ...) \
219 ({ \
220 ___core_read(bpf_core_read, dst, src, a, ##__VA_ARGS__) \
224 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
225 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
226 * corresponding error code) bpf_core_read_str() for final string read.
228 #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) \
229 ({ \
230 ___core_read(bpf_core_read_str, dst, src, a, ##__VA_ARGS__) \
234 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
235 * when there are few pointer chasing steps.
236 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
237 * int x = s->a.b.c->d.e->f->g;
238 * can be succinctly achieved using BPF_CORE_READ as:
239 * int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
241 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
242 * CO-RE relocatable bpf_probe_read() wrapper) calls, logically equivalent to:
243 * 1. const void *__t = s->a.b.c;
244 * 2. __t = __t->d.e;
245 * 3. __t = __t->f;
246 * 4. return __t->g;
248 * Equivalence is logical, because there is a heavy type casting/preservation
249 * involved, as well as all the reads are happening through bpf_probe_read()
250 * calls using __builtin_preserve_access_index() to emit CO-RE relocations.
252 * N.B. Only up to 9 "field accessors" are supported, which should be more
253 * than enough for any practical purpose.
255 #define BPF_CORE_READ(src, a, ...) \
256 ({ \
257 ___type(src, a, ##__VA_ARGS__) __r; \
258 BPF_CORE_READ_INTO(&__r, src, a, ##__VA_ARGS__); \
259 __r; \
262 #endif