2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node
);
75 EXPORT_PER_CPU_SYMBOL(numa_node
);
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
85 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 * Array of node states.
92 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
93 [N_POSSIBLE
] = NODE_MASK_ALL
,
94 [N_ONLINE
] = { { [0] = 1UL } },
96 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
98 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY
] = { { [0] = 1UL } },
103 [N_CPU
] = { { [0] = 1UL } },
106 EXPORT_SYMBOL(node_states
);
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock
);
111 unsigned long totalram_pages __read_mostly
;
112 unsigned long totalreserve_pages __read_mostly
;
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
119 unsigned long dirty_balance_reserve __read_mostly
;
121 int percpu_pagelist_fraction
;
122 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
124 #ifdef CONFIG_PM_SLEEP
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
134 static gfp_t saved_gfp_mask
;
136 void pm_restore_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 if (saved_gfp_mask
) {
140 gfp_allowed_mask
= saved_gfp_mask
;
145 void pm_restrict_gfp_mask(void)
147 WARN_ON(!mutex_is_locked(&pm_mutex
));
148 WARN_ON(saved_gfp_mask
);
149 saved_gfp_mask
= gfp_allowed_mask
;
150 gfp_allowed_mask
&= ~GFP_IOFS
;
153 bool pm_suspended_storage(void)
155 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
159 #endif /* CONFIG_PM_SLEEP */
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly
;
165 static void __free_pages_ok(struct page
*page
, unsigned int order
);
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
178 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
185 #ifdef CONFIG_HIGHMEM
191 EXPORT_SYMBOL(totalram_pages
);
193 static char * const zone_names
[MAX_NR_ZONES
] = {
194 #ifdef CONFIG_ZONE_DMA
197 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 int min_free_kbytes
= 1024;
208 int user_min_free_kbytes
= -1;
210 static unsigned long __meminitdata nr_kernel_pages
;
211 static unsigned long __meminitdata nr_all_pages
;
212 static unsigned long __meminitdata dma_reserve
;
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __initdata required_kernelcore
;
218 static unsigned long __initdata required_movablecore
;
219 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 EXPORT_SYMBOL(movable_zone
);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
228 int nr_online_nodes __read_mostly
= 1;
229 EXPORT_SYMBOL(nr_node_ids
);
230 EXPORT_SYMBOL(nr_online_nodes
);
233 int page_group_by_mobility_disabled __read_mostly
;
235 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
&&
238 migratetype
< MIGRATE_PCPTYPES
))
239 migratetype
= MIGRATE_UNMOVABLE
;
241 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
242 PB_migrate
, PB_migrate_end
);
245 bool oom_killer_disabled __read_mostly
;
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
252 unsigned long pfn
= page_to_pfn(page
);
253 unsigned long sp
, start_pfn
;
256 seq
= zone_span_seqbegin(zone
);
257 start_pfn
= zone
->zone_start_pfn
;
258 sp
= zone
->spanned_pages
;
259 if (!zone_spans_pfn(zone
, pfn
))
261 } while (zone_span_seqretry(zone
, seq
));
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn
, start_pfn
, start_pfn
+ sp
);
270 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
272 if (!pfn_valid_within(page_to_pfn(page
)))
274 if (zone
!= page_zone(page
))
280 * Temporary debugging check for pages not lying within a given zone.
282 static int bad_range(struct zone
*zone
, struct page
*page
)
284 if (page_outside_zone_boundaries(zone
, page
))
286 if (!page_is_consistent(zone
, page
))
292 static inline int bad_range(struct zone
*zone
, struct page
*page
)
298 static void bad_page(struct page
*page
, const char *reason
,
299 unsigned long bad_flags
)
301 static unsigned long resume
;
302 static unsigned long nr_shown
;
303 static unsigned long nr_unshown
;
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page
)) {
307 page_mapcount_reset(page
); /* remove PageBuddy */
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
315 if (nr_shown
== 60) {
316 if (time_before(jiffies
, resume
)) {
322 "BUG: Bad page state: %lu messages suppressed\n",
329 resume
= jiffies
+ 60 * HZ
;
331 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
332 current
->comm
, page_to_pfn(page
));
333 dump_page_badflags(page
, reason
, bad_flags
);
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page
); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
344 * Higher-order pages are called "compound pages". They are structured thusly:
346 * The first PAGE_SIZE page is called the "head page".
348 * The remaining PAGE_SIZE pages are called "tail pages".
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
358 static void free_compound_page(struct page
*page
)
360 __free_pages_ok(page
, compound_order(page
));
363 void prep_compound_page(struct page
*page
, unsigned long order
)
366 int nr_pages
= 1 << order
;
368 set_compound_page_dtor(page
, free_compound_page
);
369 set_compound_order(page
, order
);
371 for (i
= 1; i
< nr_pages
; i
++) {
372 struct page
*p
= page
+ i
;
373 set_page_count(p
, 0);
374 p
->first_page
= page
;
375 /* Make sure p->first_page is always valid for PageTail() */
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page
*page
, unsigned long order
)
385 int nr_pages
= 1 << order
;
388 if (unlikely(compound_order(page
) != order
)) {
389 bad_page(page
, "wrong compound order", 0);
393 __ClearPageHead(page
);
395 for (i
= 1; i
< nr_pages
; i
++) {
396 struct page
*p
= page
+ i
;
398 if (unlikely(!PageTail(p
))) {
399 bad_page(page
, "PageTail not set", 0);
401 } else if (unlikely(p
->first_page
!= page
)) {
402 bad_page(page
, "first_page not consistent", 0);
411 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
416 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 * and __GFP_HIGHMEM from hard or soft interrupt context.
419 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
420 for (i
= 0; i
< (1 << order
); i
++)
421 clear_highpage(page
+ i
);
424 #ifdef CONFIG_DEBUG_PAGEALLOC
425 unsigned int _debug_guardpage_minorder
;
427 static int __init
debug_guardpage_minorder_setup(char *buf
)
431 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
432 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
435 _debug_guardpage_minorder
= res
;
436 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
439 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
441 static inline void set_page_guard_flag(struct page
*page
)
443 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
446 static inline void clear_page_guard_flag(struct page
*page
)
448 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
451 static inline void set_page_guard_flag(struct page
*page
) { }
452 static inline void clear_page_guard_flag(struct page
*page
) { }
455 static inline void set_page_order(struct page
*page
, int order
)
457 set_page_private(page
, order
);
458 __SetPageBuddy(page
);
461 static inline void rmv_page_order(struct page
*page
)
463 __ClearPageBuddy(page
);
464 set_page_private(page
, 0);
468 * Locate the struct page for both the matching buddy in our
469 * pair (buddy1) and the combined O(n+1) page they form (page).
471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
472 * the following equation:
474 * For example, if the starting buddy (buddy2) is #8 its order
476 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
478 * 2) Any buddy B will have an order O+1 parent P which
479 * satisfies the following equation:
482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
484 static inline unsigned long
485 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
487 return page_idx
^ (1 << order
);
491 * This function checks whether a page is free && is the buddy
492 * we can do coalesce a page and its buddy if
493 * (a) the buddy is not in a hole &&
494 * (b) the buddy is in the buddy system &&
495 * (c) a page and its buddy have the same order &&
496 * (d) a page and its buddy are in the same zone.
498 * For recording whether a page is in the buddy system, we set ->_mapcount
499 * PAGE_BUDDY_MAPCOUNT_VALUE.
500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501 * serialized by zone->lock.
503 * For recording page's order, we use page_private(page).
505 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
508 if (!pfn_valid_within(page_to_pfn(buddy
)))
511 if (page_zone_id(page
) != page_zone_id(buddy
))
514 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
515 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
519 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
520 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
527 * Freeing function for a buddy system allocator.
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
542 * So when we are allocating or freeing one, we can derive the state of the
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
545 * If a block is freed, and its buddy is also free, then this
546 * triggers coalescing into a block of larger size.
551 static inline void __free_one_page(struct page
*page
,
552 struct zone
*zone
, unsigned int order
,
555 unsigned long page_idx
;
556 unsigned long combined_idx
;
557 unsigned long uninitialized_var(buddy_idx
);
560 VM_BUG_ON(!zone_is_initialized(zone
));
562 if (unlikely(PageCompound(page
)))
563 if (unlikely(destroy_compound_page(page
, order
)))
566 VM_BUG_ON(migratetype
== -1);
568 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
570 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
571 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
573 while (order
< MAX_ORDER
-1) {
574 buddy_idx
= __find_buddy_index(page_idx
, order
);
575 buddy
= page
+ (buddy_idx
- page_idx
);
576 if (!page_is_buddy(page
, buddy
, order
))
579 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 * merge with it and move up one order.
582 if (page_is_guard(buddy
)) {
583 clear_page_guard_flag(buddy
);
584 set_page_private(page
, 0);
585 __mod_zone_freepage_state(zone
, 1 << order
,
588 list_del(&buddy
->lru
);
589 zone
->free_area
[order
].nr_free
--;
590 rmv_page_order(buddy
);
592 combined_idx
= buddy_idx
& page_idx
;
593 page
= page
+ (combined_idx
- page_idx
);
594 page_idx
= combined_idx
;
597 set_page_order(page
, order
);
600 * If this is not the largest possible page, check if the buddy
601 * of the next-highest order is free. If it is, it's possible
602 * that pages are being freed that will coalesce soon. In case,
603 * that is happening, add the free page to the tail of the list
604 * so it's less likely to be used soon and more likely to be merged
605 * as a higher order page
607 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
608 struct page
*higher_page
, *higher_buddy
;
609 combined_idx
= buddy_idx
& page_idx
;
610 higher_page
= page
+ (combined_idx
- page_idx
);
611 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
612 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
613 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
614 list_add_tail(&page
->lru
,
615 &zone
->free_area
[order
].free_list
[migratetype
]);
620 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
622 zone
->free_area
[order
].nr_free
++;
625 static inline int free_pages_check(struct page
*page
)
627 const char *bad_reason
= NULL
;
628 unsigned long bad_flags
= 0;
630 if (unlikely(page_mapcount(page
)))
631 bad_reason
= "nonzero mapcount";
632 if (unlikely(page
->mapping
!= NULL
))
633 bad_reason
= "non-NULL mapping";
634 if (unlikely(atomic_read(&page
->_count
) != 0))
635 bad_reason
= "nonzero _count";
636 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
637 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
640 if (unlikely(mem_cgroup_bad_page_check(page
)))
641 bad_reason
= "cgroup check failed";
642 if (unlikely(bad_reason
)) {
643 bad_page(page
, bad_reason
, bad_flags
);
646 page_cpupid_reset_last(page
);
647 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
648 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
653 * Frees a number of pages from the PCP lists
654 * Assumes all pages on list are in same zone, and of same order.
655 * count is the number of pages to free.
657 * If the zone was previously in an "all pages pinned" state then look to
658 * see if this freeing clears that state.
660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
661 * pinned" detection logic.
663 static void free_pcppages_bulk(struct zone
*zone
, int count
,
664 struct per_cpu_pages
*pcp
)
670 spin_lock(&zone
->lock
);
671 zone
->pages_scanned
= 0;
675 struct list_head
*list
;
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
686 if (++migratetype
== MIGRATE_PCPTYPES
)
688 list
= &pcp
->lists
[migratetype
];
689 } while (list_empty(list
));
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free
== MIGRATE_PCPTYPES
)
693 batch_free
= to_free
;
696 int mt
; /* migratetype of the to-be-freed page */
698 page
= list_entry(list
->prev
, struct page
, lru
);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page
->lru
);
701 mt
= get_freepage_migratetype(page
);
702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
703 __free_one_page(page
, zone
, 0, mt
);
704 trace_mm_page_pcpu_drain(page
, 0, mt
);
705 if (likely(!is_migrate_isolate_page(page
))) {
706 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
707 if (is_migrate_cma(mt
))
708 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
710 } while (--to_free
&& --batch_free
&& !list_empty(list
));
712 spin_unlock(&zone
->lock
);
715 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
718 spin_lock(&zone
->lock
);
719 zone
->pages_scanned
= 0;
721 __free_one_page(page
, zone
, order
, migratetype
);
722 if (unlikely(!is_migrate_isolate(migratetype
)))
723 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
724 spin_unlock(&zone
->lock
);
727 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
732 trace_mm_page_free(page
, order
);
733 kmemcheck_free_shadow(page
, order
);
736 page
->mapping
= NULL
;
737 for (i
= 0; i
< (1 << order
); i
++)
738 bad
+= free_pages_check(page
+ i
);
742 if (!PageHighMem(page
)) {
743 debug_check_no_locks_freed(page_address(page
),
745 debug_check_no_obj_freed(page_address(page
),
748 arch_free_page(page
, order
);
749 kernel_map_pages(page
, 1 << order
, 0);
754 static void __free_pages_ok(struct page
*page
, unsigned int order
)
759 if (!free_pages_prepare(page
, order
))
762 local_irq_save(flags
);
763 __count_vm_events(PGFREE
, 1 << order
);
764 migratetype
= get_pageblock_migratetype(page
);
765 set_freepage_migratetype(page
, migratetype
);
766 free_one_page(page_zone(page
), page
, order
, migratetype
);
767 local_irq_restore(flags
);
770 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
772 unsigned int nr_pages
= 1 << order
;
773 struct page
*p
= page
;
777 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
779 __ClearPageReserved(p
);
780 set_page_count(p
, 0);
782 __ClearPageReserved(p
);
783 set_page_count(p
, 0);
785 page_zone(page
)->managed_pages
+= nr_pages
;
786 set_page_refcounted(page
);
787 __free_pages(page
, order
);
791 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
792 void __init
init_cma_reserved_pageblock(struct page
*page
)
794 unsigned i
= pageblock_nr_pages
;
795 struct page
*p
= page
;
798 __ClearPageReserved(p
);
799 set_page_count(p
, 0);
802 set_page_refcounted(page
);
803 set_pageblock_migratetype(page
, MIGRATE_CMA
);
804 __free_pages(page
, pageblock_order
);
805 adjust_managed_page_count(page
, pageblock_nr_pages
);
810 * The order of subdivision here is critical for the IO subsystem.
811 * Please do not alter this order without good reasons and regression
812 * testing. Specifically, as large blocks of memory are subdivided,
813 * the order in which smaller blocks are delivered depends on the order
814 * they're subdivided in this function. This is the primary factor
815 * influencing the order in which pages are delivered to the IO
816 * subsystem according to empirical testing, and this is also justified
817 * by considering the behavior of a buddy system containing a single
818 * large block of memory acted on by a series of small allocations.
819 * This behavior is a critical factor in sglist merging's success.
823 static inline void expand(struct zone
*zone
, struct page
*page
,
824 int low
, int high
, struct free_area
*area
,
827 unsigned long size
= 1 << high
;
833 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
835 #ifdef CONFIG_DEBUG_PAGEALLOC
836 if (high
< debug_guardpage_minorder()) {
838 * Mark as guard pages (or page), that will allow to
839 * merge back to allocator when buddy will be freed.
840 * Corresponding page table entries will not be touched,
841 * pages will stay not present in virtual address space
843 INIT_LIST_HEAD(&page
[size
].lru
);
844 set_page_guard_flag(&page
[size
]);
845 set_page_private(&page
[size
], high
);
846 /* Guard pages are not available for any usage */
847 __mod_zone_freepage_state(zone
, -(1 << high
),
852 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
854 set_page_order(&page
[size
], high
);
859 * This page is about to be returned from the page allocator
861 static inline int check_new_page(struct page
*page
)
863 const char *bad_reason
= NULL
;
864 unsigned long bad_flags
= 0;
866 if (unlikely(page_mapcount(page
)))
867 bad_reason
= "nonzero mapcount";
868 if (unlikely(page
->mapping
!= NULL
))
869 bad_reason
= "non-NULL mapping";
870 if (unlikely(atomic_read(&page
->_count
) != 0))
871 bad_reason
= "nonzero _count";
872 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
873 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
876 if (unlikely(mem_cgroup_bad_page_check(page
)))
877 bad_reason
= "cgroup check failed";
878 if (unlikely(bad_reason
)) {
879 bad_page(page
, bad_reason
, bad_flags
);
885 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
889 for (i
= 0; i
< (1 << order
); i
++) {
890 struct page
*p
= page
+ i
;
891 if (unlikely(check_new_page(p
)))
895 set_page_private(page
, 0);
896 set_page_refcounted(page
);
898 arch_alloc_page(page
, order
);
899 kernel_map_pages(page
, 1 << order
, 1);
901 if (gfp_flags
& __GFP_ZERO
)
902 prep_zero_page(page
, order
, gfp_flags
);
904 if (order
&& (gfp_flags
& __GFP_COMP
))
905 prep_compound_page(page
, order
);
911 * Go through the free lists for the given migratetype and remove
912 * the smallest available page from the freelists
915 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
918 unsigned int current_order
;
919 struct free_area
*area
;
922 /* Find a page of the appropriate size in the preferred list */
923 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
924 area
= &(zone
->free_area
[current_order
]);
925 if (list_empty(&area
->free_list
[migratetype
]))
928 page
= list_entry(area
->free_list
[migratetype
].next
,
930 list_del(&page
->lru
);
931 rmv_page_order(page
);
933 expand(zone
, page
, order
, current_order
, area
, migratetype
);
942 * This array describes the order lists are fallen back to when
943 * the free lists for the desirable migrate type are depleted
945 static int fallbacks
[MIGRATE_TYPES
][4] = {
946 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
947 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
949 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
950 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
952 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
954 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
955 #ifdef CONFIG_MEMORY_ISOLATION
956 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
961 * Move the free pages in a range to the free lists of the requested type.
962 * Note that start_page and end_pages are not aligned on a pageblock
963 * boundary. If alignment is required, use move_freepages_block()
965 int move_freepages(struct zone
*zone
,
966 struct page
*start_page
, struct page
*end_page
,
973 #ifndef CONFIG_HOLES_IN_ZONE
975 * page_zone is not safe to call in this context when
976 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
977 * anyway as we check zone boundaries in move_freepages_block().
978 * Remove at a later date when no bug reports exist related to
979 * grouping pages by mobility
981 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
984 for (page
= start_page
; page
<= end_page
;) {
985 /* Make sure we are not inadvertently changing nodes */
986 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
988 if (!pfn_valid_within(page_to_pfn(page
))) {
993 if (!PageBuddy(page
)) {
998 order
= page_order(page
);
999 list_move(&page
->lru
,
1000 &zone
->free_area
[order
].free_list
[migratetype
]);
1001 set_freepage_migratetype(page
, migratetype
);
1003 pages_moved
+= 1 << order
;
1009 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1012 unsigned long start_pfn
, end_pfn
;
1013 struct page
*start_page
, *end_page
;
1015 start_pfn
= page_to_pfn(page
);
1016 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1017 start_page
= pfn_to_page(start_pfn
);
1018 end_page
= start_page
+ pageblock_nr_pages
- 1;
1019 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1021 /* Do not cross zone boundaries */
1022 if (!zone_spans_pfn(zone
, start_pfn
))
1024 if (!zone_spans_pfn(zone
, end_pfn
))
1027 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1030 static void change_pageblock_range(struct page
*pageblock_page
,
1031 int start_order
, int migratetype
)
1033 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1035 while (nr_pageblocks
--) {
1036 set_pageblock_migratetype(pageblock_page
, migratetype
);
1037 pageblock_page
+= pageblock_nr_pages
;
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
1053 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1054 int start_type
, int fallback_type
)
1056 int current_order
= page_order(page
);
1059 * When borrowing from MIGRATE_CMA, we need to release the excess
1060 * buddy pages to CMA itself.
1062 if (is_migrate_cma(fallback_type
))
1063 return fallback_type
;
1065 /* Take ownership for orders >= pageblock_order */
1066 if (current_order
>= pageblock_order
) {
1067 change_pageblock_range(page
, current_order
, start_type
);
1071 if (current_order
>= pageblock_order
/ 2 ||
1072 start_type
== MIGRATE_RECLAIMABLE
||
1073 page_group_by_mobility_disabled
) {
1076 pages
= move_freepages_block(zone
, page
, start_type
);
1078 /* Claim the whole block if over half of it is free */
1079 if (pages
>= (1 << (pageblock_order
-1)) ||
1080 page_group_by_mobility_disabled
) {
1082 set_pageblock_migratetype(page
, start_type
);
1088 return fallback_type
;
1091 /* Remove an element from the buddy allocator from the fallback list */
1092 static inline struct page
*
1093 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1095 struct free_area
*area
;
1098 int migratetype
, new_type
, i
;
1100 /* Find the largest possible block of pages in the other list */
1101 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1104 migratetype
= fallbacks
[start_migratetype
][i
];
1106 /* MIGRATE_RESERVE handled later if necessary */
1107 if (migratetype
== MIGRATE_RESERVE
)
1110 area
= &(zone
->free_area
[current_order
]);
1111 if (list_empty(&area
->free_list
[migratetype
]))
1114 page
= list_entry(area
->free_list
[migratetype
].next
,
1118 new_type
= try_to_steal_freepages(zone
, page
,
1122 /* Remove the page from the freelists */
1123 list_del(&page
->lru
);
1124 rmv_page_order(page
);
1126 expand(zone
, page
, order
, current_order
, area
,
1129 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1130 start_migratetype
, migratetype
, new_type
);
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1143 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1149 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1151 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1152 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1155 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156 * is used because __rmqueue_smallest is an inline function
1157 * and we want just one call site
1160 migratetype
= MIGRATE_RESERVE
;
1165 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency. Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1174 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1175 unsigned long count
, struct list_head
*list
,
1176 int migratetype
, int cold
)
1178 int mt
= migratetype
, i
;
1180 spin_lock(&zone
->lock
);
1181 for (i
= 0; i
< count
; ++i
) {
1182 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1183 if (unlikely(page
== NULL
))
1187 * Split buddy pages returned by expand() are received here
1188 * in physical page order. The page is added to the callers and
1189 * list and the list head then moves forward. From the callers
1190 * perspective, the linked list is ordered by page number in
1191 * some conditions. This is useful for IO devices that can
1192 * merge IO requests if the physical pages are ordered
1195 if (likely(cold
== 0))
1196 list_add(&page
->lru
, list
);
1198 list_add_tail(&page
->lru
, list
);
1199 if (IS_ENABLED(CONFIG_CMA
)) {
1200 mt
= get_pageblock_migratetype(page
);
1201 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1204 set_freepage_migratetype(page
, mt
);
1206 if (is_migrate_cma(mt
))
1207 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1210 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1211 spin_unlock(&zone
->lock
);
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
1224 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1226 unsigned long flags
;
1228 unsigned long batch
;
1230 local_irq_save(flags
);
1231 batch
= ACCESS_ONCE(pcp
->batch
);
1232 if (pcp
->count
>= batch
)
1235 to_drain
= pcp
->count
;
1237 free_pcppages_bulk(zone
, to_drain
, pcp
);
1238 pcp
->count
-= to_drain
;
1240 local_irq_restore(flags
);
1245 * Drain pages of the indicated processor.
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1251 static void drain_pages(unsigned int cpu
)
1253 unsigned long flags
;
1256 for_each_populated_zone(zone
) {
1257 struct per_cpu_pageset
*pset
;
1258 struct per_cpu_pages
*pcp
;
1260 local_irq_save(flags
);
1261 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1265 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1268 local_irq_restore(flags
);
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1275 void drain_local_pages(void *arg
)
1277 drain_pages(smp_processor_id());
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
1289 void drain_all_pages(void)
1292 struct per_cpu_pageset
*pcp
;
1296 * Allocate in the BSS so we wont require allocation in
1297 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1299 static cpumask_t cpus_with_pcps
;
1302 * We don't care about racing with CPU hotplug event
1303 * as offline notification will cause the notified
1304 * cpu to drain that CPU pcps and on_each_cpu_mask
1305 * disables preemption as part of its processing
1307 for_each_online_cpu(cpu
) {
1308 bool has_pcps
= false;
1309 for_each_populated_zone(zone
) {
1310 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1311 if (pcp
->pcp
.count
) {
1317 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1319 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1321 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1324 #ifdef CONFIG_HIBERNATION
1326 void mark_free_pages(struct zone
*zone
)
1328 unsigned long pfn
, max_zone_pfn
;
1329 unsigned long flags
;
1331 struct list_head
*curr
;
1333 if (zone_is_empty(zone
))
1336 spin_lock_irqsave(&zone
->lock
, flags
);
1338 max_zone_pfn
= zone_end_pfn(zone
);
1339 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1340 if (pfn_valid(pfn
)) {
1341 struct page
*page
= pfn_to_page(pfn
);
1343 if (!swsusp_page_is_forbidden(page
))
1344 swsusp_unset_page_free(page
);
1347 for_each_migratetype_order(order
, t
) {
1348 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1351 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1352 for (i
= 0; i
< (1UL << order
); i
++)
1353 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1356 spin_unlock_irqrestore(&zone
->lock
, flags
);
1358 #endif /* CONFIG_PM */
1361 * Free a 0-order page
1362 * cold == 1 ? free a cold page : free a hot page
1364 void free_hot_cold_page(struct page
*page
, int cold
)
1366 struct zone
*zone
= page_zone(page
);
1367 struct per_cpu_pages
*pcp
;
1368 unsigned long flags
;
1371 if (!free_pages_prepare(page
, 0))
1374 migratetype
= get_pageblock_migratetype(page
);
1375 set_freepage_migratetype(page
, migratetype
);
1376 local_irq_save(flags
);
1377 __count_vm_event(PGFREE
);
1380 * We only track unmovable, reclaimable and movable on pcp lists.
1381 * Free ISOLATE pages back to the allocator because they are being
1382 * offlined but treat RESERVE as movable pages so we can get those
1383 * areas back if necessary. Otherwise, we may have to free
1384 * excessively into the page allocator
1386 if (migratetype
>= MIGRATE_PCPTYPES
) {
1387 if (unlikely(is_migrate_isolate(migratetype
))) {
1388 free_one_page(zone
, page
, 0, migratetype
);
1391 migratetype
= MIGRATE_MOVABLE
;
1394 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1396 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1398 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1400 if (pcp
->count
>= pcp
->high
) {
1401 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1402 free_pcppages_bulk(zone
, batch
, pcp
);
1403 pcp
->count
-= batch
;
1407 local_irq_restore(flags
);
1411 * Free a list of 0-order pages
1413 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1415 struct page
*page
, *next
;
1417 list_for_each_entry_safe(page
, next
, list
, lru
) {
1418 trace_mm_page_free_batched(page
, cold
);
1419 free_hot_cold_page(page
, cold
);
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1431 void split_page(struct page
*page
, unsigned int order
)
1435 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1436 VM_BUG_ON_PAGE(!page_count(page
), page
);
1438 #ifdef CONFIG_KMEMCHECK
1440 * Split shadow pages too, because free(page[0]) would
1441 * otherwise free the whole shadow.
1443 if (kmemcheck_page_is_tracked(page
))
1444 split_page(virt_to_page(page
[0].shadow
), order
);
1447 for (i
= 1; i
< (1 << order
); i
++)
1448 set_page_refcounted(page
+ i
);
1450 EXPORT_SYMBOL_GPL(split_page
);
1452 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1454 unsigned long watermark
;
1458 BUG_ON(!PageBuddy(page
));
1460 zone
= page_zone(page
);
1461 mt
= get_pageblock_migratetype(page
);
1463 if (!is_migrate_isolate(mt
)) {
1464 /* Obey watermarks as if the page was being allocated */
1465 watermark
= low_wmark_pages(zone
) + (1 << order
);
1466 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1469 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1472 /* Remove page from free list */
1473 list_del(&page
->lru
);
1474 zone
->free_area
[order
].nr_free
--;
1475 rmv_page_order(page
);
1477 /* Set the pageblock if the isolated page is at least a pageblock */
1478 if (order
>= pageblock_order
- 1) {
1479 struct page
*endpage
= page
+ (1 << order
) - 1;
1480 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1481 int mt
= get_pageblock_migratetype(page
);
1482 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1483 set_pageblock_migratetype(page
,
1488 return 1UL << order
;
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1501 int split_free_page(struct page
*page
)
1506 order
= page_order(page
);
1508 nr_pages
= __isolate_free_page(page
, order
);
1512 /* Split into individual pages */
1513 set_page_refcounted(page
);
1514 split_page(page
, order
);
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1520 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1524 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1525 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1528 unsigned long flags
;
1530 int cold
= !!(gfp_flags
& __GFP_COLD
);
1533 if (likely(order
== 0)) {
1534 struct per_cpu_pages
*pcp
;
1535 struct list_head
*list
;
1537 local_irq_save(flags
);
1538 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1539 list
= &pcp
->lists
[migratetype
];
1540 if (list_empty(list
)) {
1541 pcp
->count
+= rmqueue_bulk(zone
, 0,
1544 if (unlikely(list_empty(list
)))
1549 page
= list_entry(list
->prev
, struct page
, lru
);
1551 page
= list_entry(list
->next
, struct page
, lru
);
1553 list_del(&page
->lru
);
1556 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1558 * __GFP_NOFAIL is not to be used in new code.
1560 * All __GFP_NOFAIL callers should be fixed so that they
1561 * properly detect and handle allocation failures.
1563 * We most definitely don't want callers attempting to
1564 * allocate greater than order-1 page units with
1567 WARN_ON_ONCE(order
> 1);
1569 spin_lock_irqsave(&zone
->lock
, flags
);
1570 page
= __rmqueue(zone
, order
, migratetype
);
1571 spin_unlock(&zone
->lock
);
1574 __mod_zone_freepage_state(zone
, -(1 << order
),
1575 get_pageblock_migratetype(page
));
1578 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1580 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1581 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1582 local_irq_restore(flags
);
1584 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1585 if (prep_new_page(page
, order
, gfp_flags
))
1590 local_irq_restore(flags
);
1594 #ifdef CONFIG_FAIL_PAGE_ALLOC
1597 struct fault_attr attr
;
1599 u32 ignore_gfp_highmem
;
1600 u32 ignore_gfp_wait
;
1602 } fail_page_alloc
= {
1603 .attr
= FAULT_ATTR_INITIALIZER
,
1604 .ignore_gfp_wait
= 1,
1605 .ignore_gfp_highmem
= 1,
1609 static int __init
setup_fail_page_alloc(char *str
)
1611 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1613 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1615 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1617 if (order
< fail_page_alloc
.min_order
)
1619 if (gfp_mask
& __GFP_NOFAIL
)
1621 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1623 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1626 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1629 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1631 static int __init
fail_page_alloc_debugfs(void)
1633 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1636 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1637 &fail_page_alloc
.attr
);
1639 return PTR_ERR(dir
);
1641 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1642 &fail_page_alloc
.ignore_gfp_wait
))
1644 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1645 &fail_page_alloc
.ignore_gfp_highmem
))
1647 if (!debugfs_create_u32("min-order", mode
, dir
,
1648 &fail_page_alloc
.min_order
))
1653 debugfs_remove_recursive(dir
);
1658 late_initcall(fail_page_alloc_debugfs
);
1660 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1662 #else /* CONFIG_FAIL_PAGE_ALLOC */
1664 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1669 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1672 * Return true if free pages are above 'mark'. This takes into account the order
1673 * of the allocation.
1675 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1676 int classzone_idx
, int alloc_flags
, long free_pages
)
1678 /* free_pages my go negative - that's OK */
1680 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1684 free_pages
-= (1 << order
) - 1;
1685 if (alloc_flags
& ALLOC_HIGH
)
1687 if (alloc_flags
& ALLOC_HARDER
)
1690 /* If allocation can't use CMA areas don't use free CMA pages */
1691 if (!(alloc_flags
& ALLOC_CMA
))
1692 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1695 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1697 for (o
= 0; o
< order
; o
++) {
1698 /* At the next order, this order's pages become unavailable */
1699 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1701 /* Require fewer higher order pages to be free */
1704 if (free_pages
<= min
)
1710 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1711 int classzone_idx
, int alloc_flags
)
1713 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1714 zone_page_state(z
, NR_FREE_PAGES
));
1717 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1718 int classzone_idx
, int alloc_flags
)
1720 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1722 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1723 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1725 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1731 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full. See further
1734 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1735 * that have to skip over a lot of full or unallowed zones.
1737 * If the zonelist cache is present in the passed zonelist, then
1738 * returns a pointer to the allowed node mask (either the current
1739 * tasks mems_allowed, or node_states[N_MEMORY].)
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1752 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1754 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1755 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1757 zlc
= zonelist
->zlcache_ptr
;
1761 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1762 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1763 zlc
->last_full_zap
= jiffies
;
1766 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1767 &cpuset_current_mems_allowed
:
1768 &node_states
[N_MEMORY
];
1769 return allowednodes
;
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 * 1) Check that the zone isn't thought to be full (doesn't have its
1776 * bit set in the zonelist_cache fullzones BITMAP).
1777 * 2) Check that the zones node (obtained from the zonelist_cache
1778 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1794 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1795 nodemask_t
*allowednodes
)
1797 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1798 int i
; /* index of *z in zonelist zones */
1799 int n
; /* node that zone *z is on */
1801 zlc
= zonelist
->zlcache_ptr
;
1805 i
= z
- zonelist
->_zonerefs
;
1808 /* This zone is worth trying if it is allowed but not full */
1809 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1817 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1819 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1820 int i
; /* index of *z in zonelist zones */
1822 zlc
= zonelist
->zlcache_ptr
;
1826 i
= z
- zonelist
->_zonerefs
;
1828 set_bit(i
, zlc
->fullzones
);
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1835 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1837 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1839 zlc
= zonelist
->zlcache_ptr
;
1843 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1846 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1848 return local_zone
->node
== zone
->node
;
1851 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1853 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1856 static void __paginginit
init_zone_allows_reclaim(int nid
)
1860 for_each_node_state(i
, N_MEMORY
)
1861 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1862 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1864 zone_reclaim_mode
= 1;
1867 #else /* CONFIG_NUMA */
1869 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1874 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1875 nodemask_t
*allowednodes
)
1880 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1884 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1888 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1893 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1898 static inline void init_zone_allows_reclaim(int nid
)
1901 #endif /* CONFIG_NUMA */
1904 * get_page_from_freelist goes through the zonelist trying to allocate
1907 static struct page
*
1908 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1909 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1910 struct zone
*preferred_zone
, int migratetype
)
1913 struct page
*page
= NULL
;
1916 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1917 int zlc_active
= 0; /* set if using zonelist_cache */
1918 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1920 classzone_idx
= zone_idx(preferred_zone
);
1923 * Scan zonelist, looking for a zone with enough free.
1924 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1926 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1927 high_zoneidx
, nodemask
) {
1930 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1931 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1933 if ((alloc_flags
& ALLOC_CPUSET
) &&
1934 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1936 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1937 if (unlikely(alloc_flags
& ALLOC_NO_WATERMARKS
))
1940 * Distribute pages in proportion to the individual
1941 * zone size to ensure fair page aging. The zone a
1942 * page was allocated in should have no effect on the
1943 * time the page has in memory before being reclaimed.
1945 if (alloc_flags
& ALLOC_FAIR
) {
1946 if (!zone_local(preferred_zone
, zone
))
1948 if (zone_page_state(zone
, NR_ALLOC_BATCH
) <= 0)
1952 * When allocating a page cache page for writing, we
1953 * want to get it from a zone that is within its dirty
1954 * limit, such that no single zone holds more than its
1955 * proportional share of globally allowed dirty pages.
1956 * The dirty limits take into account the zone's
1957 * lowmem reserves and high watermark so that kswapd
1958 * should be able to balance it without having to
1959 * write pages from its LRU list.
1961 * This may look like it could increase pressure on
1962 * lower zones by failing allocations in higher zones
1963 * before they are full. But the pages that do spill
1964 * over are limited as the lower zones are protected
1965 * by this very same mechanism. It should not become
1966 * a practical burden to them.
1968 * XXX: For now, allow allocations to potentially
1969 * exceed the per-zone dirty limit in the slowpath
1970 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1971 * which is important when on a NUMA setup the allowed
1972 * zones are together not big enough to reach the
1973 * global limit. The proper fix for these situations
1974 * will require awareness of zones in the
1975 * dirty-throttling and the flusher threads.
1977 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1978 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1979 goto this_zone_full
;
1981 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1982 if (!zone_watermark_ok(zone
, order
, mark
,
1983 classzone_idx
, alloc_flags
)) {
1986 if (IS_ENABLED(CONFIG_NUMA
) &&
1987 !did_zlc_setup
&& nr_online_nodes
> 1) {
1989 * we do zlc_setup if there are multiple nodes
1990 * and before considering the first zone allowed
1993 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1998 if (zone_reclaim_mode
== 0 ||
1999 !zone_allows_reclaim(preferred_zone
, zone
))
2000 goto this_zone_full
;
2003 * As we may have just activated ZLC, check if the first
2004 * eligible zone has failed zone_reclaim recently.
2006 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2007 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2010 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2012 case ZONE_RECLAIM_NOSCAN
:
2015 case ZONE_RECLAIM_FULL
:
2016 /* scanned but unreclaimable */
2019 /* did we reclaim enough */
2020 if (zone_watermark_ok(zone
, order
, mark
,
2021 classzone_idx
, alloc_flags
))
2025 * Failed to reclaim enough to meet watermark.
2026 * Only mark the zone full if checking the min
2027 * watermark or if we failed to reclaim just
2028 * 1<<order pages or else the page allocator
2029 * fastpath will prematurely mark zones full
2030 * when the watermark is between the low and
2033 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2034 ret
== ZONE_RECLAIM_SOME
)
2035 goto this_zone_full
;
2042 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2043 gfp_mask
, migratetype
);
2047 if (IS_ENABLED(CONFIG_NUMA
))
2048 zlc_mark_zone_full(zonelist
, z
);
2051 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
2052 /* Disable zlc cache for second zonelist scan */
2059 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2060 * necessary to allocate the page. The expectation is
2061 * that the caller is taking steps that will free more
2062 * memory. The caller should avoid the page being used
2063 * for !PFMEMALLOC purposes.
2065 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2071 * Large machines with many possible nodes should not always dump per-node
2072 * meminfo in irq context.
2074 static inline bool should_suppress_show_mem(void)
2079 ret
= in_interrupt();
2084 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2085 DEFAULT_RATELIMIT_INTERVAL
,
2086 DEFAULT_RATELIMIT_BURST
);
2088 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2090 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2092 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2093 debug_guardpage_minorder() > 0)
2097 * This documents exceptions given to allocations in certain
2098 * contexts that are allowed to allocate outside current's set
2101 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2102 if (test_thread_flag(TIF_MEMDIE
) ||
2103 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2104 filter
&= ~SHOW_MEM_FILTER_NODES
;
2105 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2106 filter
&= ~SHOW_MEM_FILTER_NODES
;
2109 struct va_format vaf
;
2112 va_start(args
, fmt
);
2117 pr_warn("%pV", &vaf
);
2122 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123 current
->comm
, order
, gfp_mask
);
2126 if (!should_suppress_show_mem())
2131 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2132 unsigned long did_some_progress
,
2133 unsigned long pages_reclaimed
)
2135 /* Do not loop if specifically requested */
2136 if (gfp_mask
& __GFP_NORETRY
)
2139 /* Always retry if specifically requested */
2140 if (gfp_mask
& __GFP_NOFAIL
)
2144 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145 * making forward progress without invoking OOM. Suspend also disables
2146 * storage devices so kswapd will not help. Bail if we are suspending.
2148 if (!did_some_progress
&& pm_suspended_storage())
2152 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153 * means __GFP_NOFAIL, but that may not be true in other
2156 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2160 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161 * specified, then we retry until we no longer reclaim any pages
2162 * (above), or we've reclaimed an order of pages at least as
2163 * large as the allocation's order. In both cases, if the
2164 * allocation still fails, we stop retrying.
2166 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2172 static inline struct page
*
2173 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2174 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2175 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2180 /* Acquire the OOM killer lock for the zones in zonelist */
2181 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2182 schedule_timeout_uninterruptible(1);
2187 * Go through the zonelist yet one more time, keep very high watermark
2188 * here, this is only to catch a parallel oom killing, we must fail if
2189 * we're still under heavy pressure.
2191 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2192 order
, zonelist
, high_zoneidx
,
2193 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2194 preferred_zone
, migratetype
);
2198 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2199 /* The OOM killer will not help higher order allocs */
2200 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2202 /* The OOM killer does not needlessly kill tasks for lowmem */
2203 if (high_zoneidx
< ZONE_NORMAL
)
2206 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208 * The caller should handle page allocation failure by itself if
2209 * it specifies __GFP_THISNODE.
2210 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2212 if (gfp_mask
& __GFP_THISNODE
)
2215 /* Exhausted what can be done so it's blamo time */
2216 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2219 clear_zonelist_oom(zonelist
, gfp_mask
);
2223 #ifdef CONFIG_COMPACTION
2224 /* Try memory compaction for high-order allocations before reclaim */
2225 static struct page
*
2226 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2227 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2228 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2229 int migratetype
, bool sync_migration
,
2230 bool *contended_compaction
, bool *deferred_compaction
,
2231 unsigned long *did_some_progress
)
2236 if (compaction_deferred(preferred_zone
, order
)) {
2237 *deferred_compaction
= true;
2241 current
->flags
|= PF_MEMALLOC
;
2242 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2243 nodemask
, sync_migration
,
2244 contended_compaction
);
2245 current
->flags
&= ~PF_MEMALLOC
;
2247 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2250 /* Page migration frees to the PCP lists but we want merging */
2251 drain_pages(get_cpu());
2254 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2255 order
, zonelist
, high_zoneidx
,
2256 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2257 preferred_zone
, migratetype
);
2259 preferred_zone
->compact_blockskip_flush
= false;
2260 compaction_defer_reset(preferred_zone
, order
, true);
2261 count_vm_event(COMPACTSUCCESS
);
2266 * It's bad if compaction run occurs and fails.
2267 * The most likely reason is that pages exist,
2268 * but not enough to satisfy watermarks.
2270 count_vm_event(COMPACTFAIL
);
2273 * As async compaction considers a subset of pageblocks, only
2274 * defer if the failure was a sync compaction failure.
2277 defer_compaction(preferred_zone
, order
);
2285 static inline struct page
*
2286 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2287 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2288 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2289 int migratetype
, bool sync_migration
,
2290 bool *contended_compaction
, bool *deferred_compaction
,
2291 unsigned long *did_some_progress
)
2295 #endif /* CONFIG_COMPACTION */
2297 /* Perform direct synchronous page reclaim */
2299 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2300 nodemask_t
*nodemask
)
2302 struct reclaim_state reclaim_state
;
2307 /* We now go into synchronous reclaim */
2308 cpuset_memory_pressure_bump();
2309 current
->flags
|= PF_MEMALLOC
;
2310 lockdep_set_current_reclaim_state(gfp_mask
);
2311 reclaim_state
.reclaimed_slab
= 0;
2312 current
->reclaim_state
= &reclaim_state
;
2314 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2316 current
->reclaim_state
= NULL
;
2317 lockdep_clear_current_reclaim_state();
2318 current
->flags
&= ~PF_MEMALLOC
;
2325 /* The really slow allocator path where we enter direct reclaim */
2326 static inline struct page
*
2327 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2328 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2329 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2330 int migratetype
, unsigned long *did_some_progress
)
2332 struct page
*page
= NULL
;
2333 bool drained
= false;
2335 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2337 if (unlikely(!(*did_some_progress
)))
2340 /* After successful reclaim, reconsider all zones for allocation */
2341 if (IS_ENABLED(CONFIG_NUMA
))
2342 zlc_clear_zones_full(zonelist
);
2345 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2346 zonelist
, high_zoneidx
,
2347 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2348 preferred_zone
, migratetype
);
2351 * If an allocation failed after direct reclaim, it could be because
2352 * pages are pinned on the per-cpu lists. Drain them and try again
2354 if (!page
&& !drained
) {
2364 * This is called in the allocator slow-path if the allocation request is of
2365 * sufficient urgency to ignore watermarks and take other desperate measures
2367 static inline struct page
*
2368 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2369 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2370 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2376 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2377 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2378 preferred_zone
, migratetype
);
2380 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2381 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2382 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2387 static void reset_alloc_batches(struct zonelist
*zonelist
,
2388 enum zone_type high_zoneidx
,
2389 struct zone
*preferred_zone
)
2394 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
2396 * Only reset the batches of zones that were actually
2397 * considered in the fairness pass, we don't want to
2398 * trash fairness information for zones that are not
2399 * actually part of this zonelist's round-robin cycle.
2401 if (!zone_local(preferred_zone
, zone
))
2403 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2404 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2405 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2409 static void wake_all_kswapds(unsigned int order
,
2410 struct zonelist
*zonelist
,
2411 enum zone_type high_zoneidx
,
2412 struct zone
*preferred_zone
)
2417 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2418 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2422 gfp_to_alloc_flags(gfp_t gfp_mask
)
2424 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2425 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2427 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2428 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2431 * The caller may dip into page reserves a bit more if the caller
2432 * cannot run direct reclaim, or if the caller has realtime scheduling
2433 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2434 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2436 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2440 * Not worth trying to allocate harder for
2441 * __GFP_NOMEMALLOC even if it can't schedule.
2443 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2444 alloc_flags
|= ALLOC_HARDER
;
2446 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2447 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2449 alloc_flags
&= ~ALLOC_CPUSET
;
2450 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2451 alloc_flags
|= ALLOC_HARDER
;
2453 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2454 if (gfp_mask
& __GFP_MEMALLOC
)
2455 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2456 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2457 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2458 else if (!in_interrupt() &&
2459 ((current
->flags
& PF_MEMALLOC
) ||
2460 unlikely(test_thread_flag(TIF_MEMDIE
))))
2461 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2464 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2465 alloc_flags
|= ALLOC_CMA
;
2470 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2472 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2475 static inline struct page
*
2476 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2477 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2478 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2481 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2482 struct page
*page
= NULL
;
2484 unsigned long pages_reclaimed
= 0;
2485 unsigned long did_some_progress
;
2486 bool sync_migration
= false;
2487 bool deferred_compaction
= false;
2488 bool contended_compaction
= false;
2491 * In the slowpath, we sanity check order to avoid ever trying to
2492 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2493 * be using allocators in order of preference for an area that is
2496 if (order
>= MAX_ORDER
) {
2497 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2502 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2503 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2504 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2505 * using a larger set of nodes after it has established that the
2506 * allowed per node queues are empty and that nodes are
2509 if (IS_ENABLED(CONFIG_NUMA
) &&
2510 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2514 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2515 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2518 * OK, we're below the kswapd watermark and have kicked background
2519 * reclaim. Now things get more complex, so set up alloc_flags according
2520 * to how we want to proceed.
2522 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2525 * Find the true preferred zone if the allocation is unconstrained by
2528 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2529 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2533 /* This is the last chance, in general, before the goto nopage. */
2534 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2535 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2536 preferred_zone
, migratetype
);
2540 /* Allocate without watermarks if the context allows */
2541 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2543 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2544 * the allocation is high priority and these type of
2545 * allocations are system rather than user orientated
2547 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2549 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2550 zonelist
, high_zoneidx
, nodemask
,
2551 preferred_zone
, migratetype
);
2557 /* Atomic allocations - we can't balance anything */
2560 * All existing users of the deprecated __GFP_NOFAIL are
2561 * blockable, so warn of any new users that actually allow this
2562 * type of allocation to fail.
2564 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2568 /* Avoid recursion of direct reclaim */
2569 if (current
->flags
& PF_MEMALLOC
)
2572 /* Avoid allocations with no watermarks from looping endlessly */
2573 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2577 * Try direct compaction. The first pass is asynchronous. Subsequent
2578 * attempts after direct reclaim are synchronous
2580 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2581 zonelist
, high_zoneidx
,
2583 alloc_flags
, preferred_zone
,
2584 migratetype
, sync_migration
,
2585 &contended_compaction
,
2586 &deferred_compaction
,
2587 &did_some_progress
);
2590 sync_migration
= true;
2593 * If compaction is deferred for high-order allocations, it is because
2594 * sync compaction recently failed. In this is the case and the caller
2595 * requested a movable allocation that does not heavily disrupt the
2596 * system then fail the allocation instead of entering direct reclaim.
2598 if ((deferred_compaction
|| contended_compaction
) &&
2599 (gfp_mask
& __GFP_NO_KSWAPD
))
2602 /* Try direct reclaim and then allocating */
2603 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2604 zonelist
, high_zoneidx
,
2606 alloc_flags
, preferred_zone
,
2607 migratetype
, &did_some_progress
);
2612 * If we failed to make any progress reclaiming, then we are
2613 * running out of options and have to consider going OOM
2615 if (!did_some_progress
) {
2616 if (oom_gfp_allowed(gfp_mask
)) {
2617 if (oom_killer_disabled
)
2619 /* Coredumps can quickly deplete all memory reserves */
2620 if ((current
->flags
& PF_DUMPCORE
) &&
2621 !(gfp_mask
& __GFP_NOFAIL
))
2623 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2624 zonelist
, high_zoneidx
,
2625 nodemask
, preferred_zone
,
2630 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2632 * The oom killer is not called for high-order
2633 * allocations that may fail, so if no progress
2634 * is being made, there are no other options and
2635 * retrying is unlikely to help.
2637 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2640 * The oom killer is not called for lowmem
2641 * allocations to prevent needlessly killing
2644 if (high_zoneidx
< ZONE_NORMAL
)
2652 /* Check if we should retry the allocation */
2653 pages_reclaimed
+= did_some_progress
;
2654 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2656 /* Wait for some write requests to complete then retry */
2657 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2661 * High-order allocations do not necessarily loop after
2662 * direct reclaim and reclaim/compaction depends on compaction
2663 * being called after reclaim so call directly if necessary
2665 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2666 zonelist
, high_zoneidx
,
2668 alloc_flags
, preferred_zone
,
2669 migratetype
, sync_migration
,
2670 &contended_compaction
,
2671 &deferred_compaction
,
2672 &did_some_progress
);
2678 warn_alloc_failed(gfp_mask
, order
, NULL
);
2681 if (kmemcheck_enabled
)
2682 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2688 * This is the 'heart' of the zoned buddy allocator.
2691 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2692 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2694 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2695 struct zone
*preferred_zone
;
2696 struct page
*page
= NULL
;
2697 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2698 unsigned int cpuset_mems_cookie
;
2699 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2700 struct mem_cgroup
*memcg
= NULL
;
2702 gfp_mask
&= gfp_allowed_mask
;
2704 lockdep_trace_alloc(gfp_mask
);
2706 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2708 if (should_fail_alloc_page(gfp_mask
, order
))
2712 * Check the zones suitable for the gfp_mask contain at least one
2713 * valid zone. It's possible to have an empty zonelist as a result
2714 * of GFP_THISNODE and a memoryless node
2716 if (unlikely(!zonelist
->_zonerefs
->zone
))
2720 * Will only have any effect when __GFP_KMEMCG is set. This is
2721 * verified in the (always inline) callee
2723 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2727 cpuset_mems_cookie
= read_mems_allowed_begin();
2729 /* The preferred zone is used for statistics later */
2730 first_zones_zonelist(zonelist
, high_zoneidx
,
2731 nodemask
? : &cpuset_current_mems_allowed
,
2733 if (!preferred_zone
)
2737 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2738 alloc_flags
|= ALLOC_CMA
;
2741 /* First allocation attempt */
2742 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2743 zonelist
, high_zoneidx
, alloc_flags
,
2744 preferred_zone
, migratetype
);
2745 if (unlikely(!page
)) {
2747 * The first pass makes sure allocations are spread
2748 * fairly within the local node. However, the local
2749 * node might have free pages left after the fairness
2750 * batches are exhausted, and remote zones haven't
2751 * even been considered yet. Try once more without
2752 * fairness, and include remote zones now, before
2753 * entering the slowpath and waking kswapd: prefer
2754 * spilling to a remote zone over swapping locally.
2756 if (alloc_flags
& ALLOC_FAIR
) {
2757 reset_alloc_batches(zonelist
, high_zoneidx
,
2759 alloc_flags
&= ~ALLOC_FAIR
;
2763 * Runtime PM, block IO and its error handling path
2764 * can deadlock because I/O on the device might not
2767 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2768 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2769 zonelist
, high_zoneidx
, nodemask
,
2770 preferred_zone
, migratetype
);
2773 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2777 * When updating a task's mems_allowed, it is possible to race with
2778 * parallel threads in such a way that an allocation can fail while
2779 * the mask is being updated. If a page allocation is about to fail,
2780 * check if the cpuset changed during allocation and if so, retry.
2782 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2785 memcg_kmem_commit_charge(page
, memcg
, order
);
2789 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2792 * Common helper functions.
2794 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2799 * __get_free_pages() returns a 32-bit address, which cannot represent
2802 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2804 page
= alloc_pages(gfp_mask
, order
);
2807 return (unsigned long) page_address(page
);
2809 EXPORT_SYMBOL(__get_free_pages
);
2811 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2813 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2815 EXPORT_SYMBOL(get_zeroed_page
);
2817 void __free_pages(struct page
*page
, unsigned int order
)
2819 if (put_page_testzero(page
)) {
2821 free_hot_cold_page(page
, 0);
2823 __free_pages_ok(page
, order
);
2827 EXPORT_SYMBOL(__free_pages
);
2829 void free_pages(unsigned long addr
, unsigned int order
)
2832 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2833 __free_pages(virt_to_page((void *)addr
), order
);
2837 EXPORT_SYMBOL(free_pages
);
2840 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2841 * pages allocated with __GFP_KMEMCG.
2843 * Those pages are accounted to a particular memcg, embedded in the
2844 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2845 * for that information only to find out that it is NULL for users who have no
2846 * interest in that whatsoever, we provide these functions.
2848 * The caller knows better which flags it relies on.
2850 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2852 memcg_kmem_uncharge_pages(page
, order
);
2853 __free_pages(page
, order
);
2856 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2859 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2860 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2864 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2867 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2868 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2870 split_page(virt_to_page((void *)addr
), order
);
2871 while (used
< alloc_end
) {
2876 return (void *)addr
;
2880 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2881 * @size: the number of bytes to allocate
2882 * @gfp_mask: GFP flags for the allocation
2884 * This function is similar to alloc_pages(), except that it allocates the
2885 * minimum number of pages to satisfy the request. alloc_pages() can only
2886 * allocate memory in power-of-two pages.
2888 * This function is also limited by MAX_ORDER.
2890 * Memory allocated by this function must be released by free_pages_exact().
2892 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2894 unsigned int order
= get_order(size
);
2897 addr
= __get_free_pages(gfp_mask
, order
);
2898 return make_alloc_exact(addr
, order
, size
);
2900 EXPORT_SYMBOL(alloc_pages_exact
);
2903 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2905 * @nid: the preferred node ID where memory should be allocated
2906 * @size: the number of bytes to allocate
2907 * @gfp_mask: GFP flags for the allocation
2909 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2911 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2914 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2916 unsigned order
= get_order(size
);
2917 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2920 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2922 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2925 * free_pages_exact - release memory allocated via alloc_pages_exact()
2926 * @virt: the value returned by alloc_pages_exact.
2927 * @size: size of allocation, same value as passed to alloc_pages_exact().
2929 * Release the memory allocated by a previous call to alloc_pages_exact.
2931 void free_pages_exact(void *virt
, size_t size
)
2933 unsigned long addr
= (unsigned long)virt
;
2934 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2936 while (addr
< end
) {
2941 EXPORT_SYMBOL(free_pages_exact
);
2944 * nr_free_zone_pages - count number of pages beyond high watermark
2945 * @offset: The zone index of the highest zone
2947 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2948 * high watermark within all zones at or below a given zone index. For each
2949 * zone, the number of pages is calculated as:
2950 * managed_pages - high_pages
2952 static unsigned long nr_free_zone_pages(int offset
)
2957 /* Just pick one node, since fallback list is circular */
2958 unsigned long sum
= 0;
2960 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2962 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2963 unsigned long size
= zone
->managed_pages
;
2964 unsigned long high
= high_wmark_pages(zone
);
2973 * nr_free_buffer_pages - count number of pages beyond high watermark
2975 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2976 * watermark within ZONE_DMA and ZONE_NORMAL.
2978 unsigned long nr_free_buffer_pages(void)
2980 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2982 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2985 * nr_free_pagecache_pages - count number of pages beyond high watermark
2987 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2988 * high watermark within all zones.
2990 unsigned long nr_free_pagecache_pages(void)
2992 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2995 static inline void show_node(struct zone
*zone
)
2997 if (IS_ENABLED(CONFIG_NUMA
))
2998 printk("Node %d ", zone_to_nid(zone
));
3001 void si_meminfo(struct sysinfo
*val
)
3003 val
->totalram
= totalram_pages
;
3005 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3006 val
->bufferram
= nr_blockdev_pages();
3007 val
->totalhigh
= totalhigh_pages
;
3008 val
->freehigh
= nr_free_highpages();
3009 val
->mem_unit
= PAGE_SIZE
;
3012 EXPORT_SYMBOL(si_meminfo
);
3015 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3017 int zone_type
; /* needs to be signed */
3018 unsigned long managed_pages
= 0;
3019 pg_data_t
*pgdat
= NODE_DATA(nid
);
3021 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3022 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3023 val
->totalram
= managed_pages
;
3024 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3025 #ifdef CONFIG_HIGHMEM
3026 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3027 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3033 val
->mem_unit
= PAGE_SIZE
;
3038 * Determine whether the node should be displayed or not, depending on whether
3039 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3041 bool skip_free_areas_node(unsigned int flags
, int nid
)
3044 unsigned int cpuset_mems_cookie
;
3046 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3050 cpuset_mems_cookie
= read_mems_allowed_begin();
3051 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3052 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3057 #define K(x) ((x) << (PAGE_SHIFT-10))
3059 static void show_migration_types(unsigned char type
)
3061 static const char types
[MIGRATE_TYPES
] = {
3062 [MIGRATE_UNMOVABLE
] = 'U',
3063 [MIGRATE_RECLAIMABLE
] = 'E',
3064 [MIGRATE_MOVABLE
] = 'M',
3065 [MIGRATE_RESERVE
] = 'R',
3067 [MIGRATE_CMA
] = 'C',
3069 #ifdef CONFIG_MEMORY_ISOLATION
3070 [MIGRATE_ISOLATE
] = 'I',
3073 char tmp
[MIGRATE_TYPES
+ 1];
3077 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3078 if (type
& (1 << i
))
3083 printk("(%s) ", tmp
);
3087 * Show free area list (used inside shift_scroll-lock stuff)
3088 * We also calculate the percentage fragmentation. We do this by counting the
3089 * memory on each free list with the exception of the first item on the list.
3090 * Suppresses nodes that are not allowed by current's cpuset if
3091 * SHOW_MEM_FILTER_NODES is passed.
3093 void show_free_areas(unsigned int filter
)
3098 for_each_populated_zone(zone
) {
3099 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3102 printk("%s per-cpu:\n", zone
->name
);
3104 for_each_online_cpu(cpu
) {
3105 struct per_cpu_pageset
*pageset
;
3107 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3109 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3110 cpu
, pageset
->pcp
.high
,
3111 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3115 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3116 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3118 " dirty:%lu writeback:%lu unstable:%lu\n"
3119 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3120 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3122 global_page_state(NR_ACTIVE_ANON
),
3123 global_page_state(NR_INACTIVE_ANON
),
3124 global_page_state(NR_ISOLATED_ANON
),
3125 global_page_state(NR_ACTIVE_FILE
),
3126 global_page_state(NR_INACTIVE_FILE
),
3127 global_page_state(NR_ISOLATED_FILE
),
3128 global_page_state(NR_UNEVICTABLE
),
3129 global_page_state(NR_FILE_DIRTY
),
3130 global_page_state(NR_WRITEBACK
),
3131 global_page_state(NR_UNSTABLE_NFS
),
3132 global_page_state(NR_FREE_PAGES
),
3133 global_page_state(NR_SLAB_RECLAIMABLE
),
3134 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3135 global_page_state(NR_FILE_MAPPED
),
3136 global_page_state(NR_SHMEM
),
3137 global_page_state(NR_PAGETABLE
),
3138 global_page_state(NR_BOUNCE
),
3139 global_page_state(NR_FREE_CMA_PAGES
));
3141 for_each_populated_zone(zone
) {
3144 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3152 " active_anon:%lukB"
3153 " inactive_anon:%lukB"
3154 " active_file:%lukB"
3155 " inactive_file:%lukB"
3156 " unevictable:%lukB"
3157 " isolated(anon):%lukB"
3158 " isolated(file):%lukB"
3166 " slab_reclaimable:%lukB"
3167 " slab_unreclaimable:%lukB"
3168 " kernel_stack:%lukB"
3173 " writeback_tmp:%lukB"
3174 " pages_scanned:%lu"
3175 " all_unreclaimable? %s"
3178 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3179 K(min_wmark_pages(zone
)),
3180 K(low_wmark_pages(zone
)),
3181 K(high_wmark_pages(zone
)),
3182 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3183 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3184 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3185 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3186 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3187 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3188 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3189 K(zone
->present_pages
),
3190 K(zone
->managed_pages
),
3191 K(zone_page_state(zone
, NR_MLOCK
)),
3192 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3193 K(zone_page_state(zone
, NR_WRITEBACK
)),
3194 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3195 K(zone_page_state(zone
, NR_SHMEM
)),
3196 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3197 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3198 zone_page_state(zone
, NR_KERNEL_STACK
) *
3200 K(zone_page_state(zone
, NR_PAGETABLE
)),
3201 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3202 K(zone_page_state(zone
, NR_BOUNCE
)),
3203 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3204 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3205 zone
->pages_scanned
,
3206 (!zone_reclaimable(zone
) ? "yes" : "no")
3208 printk("lowmem_reserve[]:");
3209 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3210 printk(" %lu", zone
->lowmem_reserve
[i
]);
3214 for_each_populated_zone(zone
) {
3215 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3216 unsigned char types
[MAX_ORDER
];
3218 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3221 printk("%s: ", zone
->name
);
3223 spin_lock_irqsave(&zone
->lock
, flags
);
3224 for (order
= 0; order
< MAX_ORDER
; order
++) {
3225 struct free_area
*area
= &zone
->free_area
[order
];
3228 nr
[order
] = area
->nr_free
;
3229 total
+= nr
[order
] << order
;
3232 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3233 if (!list_empty(&area
->free_list
[type
]))
3234 types
[order
] |= 1 << type
;
3237 spin_unlock_irqrestore(&zone
->lock
, flags
);
3238 for (order
= 0; order
< MAX_ORDER
; order
++) {
3239 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3241 show_migration_types(types
[order
]);
3243 printk("= %lukB\n", K(total
));
3246 hugetlb_show_meminfo();
3248 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3250 show_swap_cache_info();
3253 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3255 zoneref
->zone
= zone
;
3256 zoneref
->zone_idx
= zone_idx(zone
);
3260 * Builds allocation fallback zone lists.
3262 * Add all populated zones of a node to the zonelist.
3264 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3268 enum zone_type zone_type
= MAX_NR_ZONES
;
3272 zone
= pgdat
->node_zones
+ zone_type
;
3273 if (populated_zone(zone
)) {
3274 zoneref_set_zone(zone
,
3275 &zonelist
->_zonerefs
[nr_zones
++]);
3276 check_highest_zone(zone_type
);
3278 } while (zone_type
);
3286 * 0 = automatic detection of better ordering.
3287 * 1 = order by ([node] distance, -zonetype)
3288 * 2 = order by (-zonetype, [node] distance)
3290 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3291 * the same zonelist. So only NUMA can configure this param.
3293 #define ZONELIST_ORDER_DEFAULT 0
3294 #define ZONELIST_ORDER_NODE 1
3295 #define ZONELIST_ORDER_ZONE 2
3297 /* zonelist order in the kernel.
3298 * set_zonelist_order() will set this to NODE or ZONE.
3300 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3301 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3305 /* The value user specified ....changed by config */
3306 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3307 /* string for sysctl */
3308 #define NUMA_ZONELIST_ORDER_LEN 16
3309 char numa_zonelist_order
[16] = "default";
3312 * interface for configure zonelist ordering.
3313 * command line option "numa_zonelist_order"
3314 * = "[dD]efault - default, automatic configuration.
3315 * = "[nN]ode - order by node locality, then by zone within node
3316 * = "[zZ]one - order by zone, then by locality within zone
3319 static int __parse_numa_zonelist_order(char *s
)
3321 if (*s
== 'd' || *s
== 'D') {
3322 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3323 } else if (*s
== 'n' || *s
== 'N') {
3324 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3325 } else if (*s
== 'z' || *s
== 'Z') {
3326 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3329 "Ignoring invalid numa_zonelist_order value: "
3336 static __init
int setup_numa_zonelist_order(char *s
)
3343 ret
= __parse_numa_zonelist_order(s
);
3345 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3349 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3352 * sysctl handler for numa_zonelist_order
3354 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3355 void __user
*buffer
, size_t *length
,
3358 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3360 static DEFINE_MUTEX(zl_order_mutex
);
3362 mutex_lock(&zl_order_mutex
);
3364 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3368 strcpy(saved_string
, (char *)table
->data
);
3370 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3374 int oldval
= user_zonelist_order
;
3376 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3379 * bogus value. restore saved string
3381 strncpy((char *)table
->data
, saved_string
,
3382 NUMA_ZONELIST_ORDER_LEN
);
3383 user_zonelist_order
= oldval
;
3384 } else if (oldval
!= user_zonelist_order
) {
3385 mutex_lock(&zonelists_mutex
);
3386 build_all_zonelists(NULL
, NULL
);
3387 mutex_unlock(&zonelists_mutex
);
3391 mutex_unlock(&zl_order_mutex
);
3396 #define MAX_NODE_LOAD (nr_online_nodes)
3397 static int node_load
[MAX_NUMNODES
];
3400 * find_next_best_node - find the next node that should appear in a given node's fallback list
3401 * @node: node whose fallback list we're appending
3402 * @used_node_mask: nodemask_t of already used nodes
3404 * We use a number of factors to determine which is the next node that should
3405 * appear on a given node's fallback list. The node should not have appeared
3406 * already in @node's fallback list, and it should be the next closest node
3407 * according to the distance array (which contains arbitrary distance values
3408 * from each node to each node in the system), and should also prefer nodes
3409 * with no CPUs, since presumably they'll have very little allocation pressure
3410 * on them otherwise.
3411 * It returns -1 if no node is found.
3413 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3416 int min_val
= INT_MAX
;
3417 int best_node
= NUMA_NO_NODE
;
3418 const struct cpumask
*tmp
= cpumask_of_node(0);
3420 /* Use the local node if we haven't already */
3421 if (!node_isset(node
, *used_node_mask
)) {
3422 node_set(node
, *used_node_mask
);
3426 for_each_node_state(n
, N_MEMORY
) {
3428 /* Don't want a node to appear more than once */
3429 if (node_isset(n
, *used_node_mask
))
3432 /* Use the distance array to find the distance */
3433 val
= node_distance(node
, n
);
3435 /* Penalize nodes under us ("prefer the next node") */
3438 /* Give preference to headless and unused nodes */
3439 tmp
= cpumask_of_node(n
);
3440 if (!cpumask_empty(tmp
))
3441 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3443 /* Slight preference for less loaded node */
3444 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3445 val
+= node_load
[n
];
3447 if (val
< min_val
) {
3454 node_set(best_node
, *used_node_mask
);
3461 * Build zonelists ordered by node and zones within node.
3462 * This results in maximum locality--normal zone overflows into local
3463 * DMA zone, if any--but risks exhausting DMA zone.
3465 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3468 struct zonelist
*zonelist
;
3470 zonelist
= &pgdat
->node_zonelists
[0];
3471 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3473 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3474 zonelist
->_zonerefs
[j
].zone
= NULL
;
3475 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3479 * Build gfp_thisnode zonelists
3481 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3484 struct zonelist
*zonelist
;
3486 zonelist
= &pgdat
->node_zonelists
[1];
3487 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3488 zonelist
->_zonerefs
[j
].zone
= NULL
;
3489 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3493 * Build zonelists ordered by zone and nodes within zones.
3494 * This results in conserving DMA zone[s] until all Normal memory is
3495 * exhausted, but results in overflowing to remote node while memory
3496 * may still exist in local DMA zone.
3498 static int node_order
[MAX_NUMNODES
];
3500 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3503 int zone_type
; /* needs to be signed */
3505 struct zonelist
*zonelist
;
3507 zonelist
= &pgdat
->node_zonelists
[0];
3509 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3510 for (j
= 0; j
< nr_nodes
; j
++) {
3511 node
= node_order
[j
];
3512 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3513 if (populated_zone(z
)) {
3515 &zonelist
->_zonerefs
[pos
++]);
3516 check_highest_zone(zone_type
);
3520 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3521 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3524 static int default_zonelist_order(void)
3527 unsigned long low_kmem_size
, total_size
;
3531 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3532 * If they are really small and used heavily, the system can fall
3533 * into OOM very easily.
3534 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3536 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3539 for_each_online_node(nid
) {
3540 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3541 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3542 if (populated_zone(z
)) {
3543 if (zone_type
< ZONE_NORMAL
)
3544 low_kmem_size
+= z
->managed_pages
;
3545 total_size
+= z
->managed_pages
;
3546 } else if (zone_type
== ZONE_NORMAL
) {
3548 * If any node has only lowmem, then node order
3549 * is preferred to allow kernel allocations
3550 * locally; otherwise, they can easily infringe
3551 * on other nodes when there is an abundance of
3552 * lowmem available to allocate from.
3554 return ZONELIST_ORDER_NODE
;
3558 if (!low_kmem_size
|| /* there are no DMA area. */
3559 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3560 return ZONELIST_ORDER_NODE
;
3562 * look into each node's config.
3563 * If there is a node whose DMA/DMA32 memory is very big area on
3564 * local memory, NODE_ORDER may be suitable.
3566 average_size
= total_size
/
3567 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3568 for_each_online_node(nid
) {
3571 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3572 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3573 if (populated_zone(z
)) {
3574 if (zone_type
< ZONE_NORMAL
)
3575 low_kmem_size
+= z
->present_pages
;
3576 total_size
+= z
->present_pages
;
3579 if (low_kmem_size
&&
3580 total_size
> average_size
&& /* ignore small node */
3581 low_kmem_size
> total_size
* 70/100)
3582 return ZONELIST_ORDER_NODE
;
3584 return ZONELIST_ORDER_ZONE
;
3587 static void set_zonelist_order(void)
3589 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3590 current_zonelist_order
= default_zonelist_order();
3592 current_zonelist_order
= user_zonelist_order
;
3595 static void build_zonelists(pg_data_t
*pgdat
)
3599 nodemask_t used_mask
;
3600 int local_node
, prev_node
;
3601 struct zonelist
*zonelist
;
3602 int order
= current_zonelist_order
;
3604 /* initialize zonelists */
3605 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3606 zonelist
= pgdat
->node_zonelists
+ i
;
3607 zonelist
->_zonerefs
[0].zone
= NULL
;
3608 zonelist
->_zonerefs
[0].zone_idx
= 0;
3611 /* NUMA-aware ordering of nodes */
3612 local_node
= pgdat
->node_id
;
3613 load
= nr_online_nodes
;
3614 prev_node
= local_node
;
3615 nodes_clear(used_mask
);
3617 memset(node_order
, 0, sizeof(node_order
));
3620 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3622 * We don't want to pressure a particular node.
3623 * So adding penalty to the first node in same
3624 * distance group to make it round-robin.
3626 if (node_distance(local_node
, node
) !=
3627 node_distance(local_node
, prev_node
))
3628 node_load
[node
] = load
;
3632 if (order
== ZONELIST_ORDER_NODE
)
3633 build_zonelists_in_node_order(pgdat
, node
);
3635 node_order
[j
++] = node
; /* remember order */
3638 if (order
== ZONELIST_ORDER_ZONE
) {
3639 /* calculate node order -- i.e., DMA last! */
3640 build_zonelists_in_zone_order(pgdat
, j
);
3643 build_thisnode_zonelists(pgdat
);
3646 /* Construct the zonelist performance cache - see further mmzone.h */
3647 static void build_zonelist_cache(pg_data_t
*pgdat
)
3649 struct zonelist
*zonelist
;
3650 struct zonelist_cache
*zlc
;
3653 zonelist
= &pgdat
->node_zonelists
[0];
3654 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3655 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3656 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3657 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3660 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3662 * Return node id of node used for "local" allocations.
3663 * I.e., first node id of first zone in arg node's generic zonelist.
3664 * Used for initializing percpu 'numa_mem', which is used primarily
3665 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3667 int local_memory_node(int node
)
3671 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3672 gfp_zone(GFP_KERNEL
),
3679 #else /* CONFIG_NUMA */
3681 static void set_zonelist_order(void)
3683 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3686 static void build_zonelists(pg_data_t
*pgdat
)
3688 int node
, local_node
;
3690 struct zonelist
*zonelist
;
3692 local_node
= pgdat
->node_id
;
3694 zonelist
= &pgdat
->node_zonelists
[0];
3695 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3698 * Now we build the zonelist so that it contains the zones
3699 * of all the other nodes.
3700 * We don't want to pressure a particular node, so when
3701 * building the zones for node N, we make sure that the
3702 * zones coming right after the local ones are those from
3703 * node N+1 (modulo N)
3705 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3706 if (!node_online(node
))
3708 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3710 for (node
= 0; node
< local_node
; node
++) {
3711 if (!node_online(node
))
3713 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3716 zonelist
->_zonerefs
[j
].zone
= NULL
;
3717 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3720 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3721 static void build_zonelist_cache(pg_data_t
*pgdat
)
3723 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3726 #endif /* CONFIG_NUMA */
3729 * Boot pageset table. One per cpu which is going to be used for all
3730 * zones and all nodes. The parameters will be set in such a way
3731 * that an item put on a list will immediately be handed over to
3732 * the buddy list. This is safe since pageset manipulation is done
3733 * with interrupts disabled.
3735 * The boot_pagesets must be kept even after bootup is complete for
3736 * unused processors and/or zones. They do play a role for bootstrapping
3737 * hotplugged processors.
3739 * zoneinfo_show() and maybe other functions do
3740 * not check if the processor is online before following the pageset pointer.
3741 * Other parts of the kernel may not check if the zone is available.
3743 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3744 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3745 static void setup_zone_pageset(struct zone
*zone
);
3748 * Global mutex to protect against size modification of zonelists
3749 * as well as to serialize pageset setup for the new populated zone.
3751 DEFINE_MUTEX(zonelists_mutex
);
3753 /* return values int ....just for stop_machine() */
3754 static int __build_all_zonelists(void *data
)
3758 pg_data_t
*self
= data
;
3761 memset(node_load
, 0, sizeof(node_load
));
3764 if (self
&& !node_online(self
->node_id
)) {
3765 build_zonelists(self
);
3766 build_zonelist_cache(self
);
3769 for_each_online_node(nid
) {
3770 pg_data_t
*pgdat
= NODE_DATA(nid
);
3772 build_zonelists(pgdat
);
3773 build_zonelist_cache(pgdat
);
3777 * Initialize the boot_pagesets that are going to be used
3778 * for bootstrapping processors. The real pagesets for
3779 * each zone will be allocated later when the per cpu
3780 * allocator is available.
3782 * boot_pagesets are used also for bootstrapping offline
3783 * cpus if the system is already booted because the pagesets
3784 * are needed to initialize allocators on a specific cpu too.
3785 * F.e. the percpu allocator needs the page allocator which
3786 * needs the percpu allocator in order to allocate its pagesets
3787 * (a chicken-egg dilemma).
3789 for_each_possible_cpu(cpu
) {
3790 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3792 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3794 * We now know the "local memory node" for each node--
3795 * i.e., the node of the first zone in the generic zonelist.
3796 * Set up numa_mem percpu variable for on-line cpus. During
3797 * boot, only the boot cpu should be on-line; we'll init the
3798 * secondary cpus' numa_mem as they come on-line. During
3799 * node/memory hotplug, we'll fixup all on-line cpus.
3801 if (cpu_online(cpu
))
3802 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3810 * Called with zonelists_mutex held always
3811 * unless system_state == SYSTEM_BOOTING.
3813 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3815 set_zonelist_order();
3817 if (system_state
== SYSTEM_BOOTING
) {
3818 __build_all_zonelists(NULL
);
3819 mminit_verify_zonelist();
3820 cpuset_init_current_mems_allowed();
3822 #ifdef CONFIG_MEMORY_HOTPLUG
3824 setup_zone_pageset(zone
);
3826 /* we have to stop all cpus to guarantee there is no user
3828 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3829 /* cpuset refresh routine should be here */
3831 vm_total_pages
= nr_free_pagecache_pages();
3833 * Disable grouping by mobility if the number of pages in the
3834 * system is too low to allow the mechanism to work. It would be
3835 * more accurate, but expensive to check per-zone. This check is
3836 * made on memory-hotadd so a system can start with mobility
3837 * disabled and enable it later
3839 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3840 page_group_by_mobility_disabled
= 1;
3842 page_group_by_mobility_disabled
= 0;
3844 printk("Built %i zonelists in %s order, mobility grouping %s. "
3845 "Total pages: %ld\n",
3847 zonelist_order_name
[current_zonelist_order
],
3848 page_group_by_mobility_disabled
? "off" : "on",
3851 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3856 * Helper functions to size the waitqueue hash table.
3857 * Essentially these want to choose hash table sizes sufficiently
3858 * large so that collisions trying to wait on pages are rare.
3859 * But in fact, the number of active page waitqueues on typical
3860 * systems is ridiculously low, less than 200. So this is even
3861 * conservative, even though it seems large.
3863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3864 * waitqueues, i.e. the size of the waitq table given the number of pages.
3866 #define PAGES_PER_WAITQUEUE 256
3868 #ifndef CONFIG_MEMORY_HOTPLUG
3869 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3871 unsigned long size
= 1;
3873 pages
/= PAGES_PER_WAITQUEUE
;
3875 while (size
< pages
)
3879 * Once we have dozens or even hundreds of threads sleeping
3880 * on IO we've got bigger problems than wait queue collision.
3881 * Limit the size of the wait table to a reasonable size.
3883 size
= min(size
, 4096UL);
3885 return max(size
, 4UL);
3889 * A zone's size might be changed by hot-add, so it is not possible to determine
3890 * a suitable size for its wait_table. So we use the maximum size now.
3892 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3894 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3895 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3896 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3899 * or more by the traditional way. (See above). It equals:
3901 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3902 * ia64(16K page size) : = ( 8G + 4M)byte.
3903 * powerpc (64K page size) : = (32G +16M)byte.
3905 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3912 * This is an integer logarithm so that shifts can be used later
3913 * to extract the more random high bits from the multiplicative
3914 * hash function before the remainder is taken.
3916 static inline unsigned long wait_table_bits(unsigned long size
)
3922 * Check if a pageblock contains reserved pages
3924 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3928 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3929 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3936 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3937 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3938 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3939 * higher will lead to a bigger reserve which will get freed as contiguous
3940 * blocks as reclaim kicks in
3942 static void setup_zone_migrate_reserve(struct zone
*zone
)
3944 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3946 unsigned long block_migratetype
;
3951 * Get the start pfn, end pfn and the number of blocks to reserve
3952 * We have to be careful to be aligned to pageblock_nr_pages to
3953 * make sure that we always check pfn_valid for the first page in
3956 start_pfn
= zone
->zone_start_pfn
;
3957 end_pfn
= zone_end_pfn(zone
);
3958 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3959 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3963 * Reserve blocks are generally in place to help high-order atomic
3964 * allocations that are short-lived. A min_free_kbytes value that
3965 * would result in more than 2 reserve blocks for atomic allocations
3966 * is assumed to be in place to help anti-fragmentation for the
3967 * future allocation of hugepages at runtime.
3969 reserve
= min(2, reserve
);
3970 old_reserve
= zone
->nr_migrate_reserve_block
;
3972 /* When memory hot-add, we almost always need to do nothing */
3973 if (reserve
== old_reserve
)
3975 zone
->nr_migrate_reserve_block
= reserve
;
3977 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3978 if (!pfn_valid(pfn
))
3980 page
= pfn_to_page(pfn
);
3982 /* Watch out for overlapping nodes */
3983 if (page_to_nid(page
) != zone_to_nid(zone
))
3986 block_migratetype
= get_pageblock_migratetype(page
);
3988 /* Only test what is necessary when the reserves are not met */
3991 * Blocks with reserved pages will never free, skip
3994 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3995 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3998 /* If this block is reserved, account for it */
3999 if (block_migratetype
== MIGRATE_RESERVE
) {
4004 /* Suitable for reserving if this block is movable */
4005 if (block_migratetype
== MIGRATE_MOVABLE
) {
4006 set_pageblock_migratetype(page
,
4008 move_freepages_block(zone
, page
,
4013 } else if (!old_reserve
) {
4015 * At boot time we don't need to scan the whole zone
4016 * for turning off MIGRATE_RESERVE.
4022 * If the reserve is met and this is a previous reserved block,
4025 if (block_migratetype
== MIGRATE_RESERVE
) {
4026 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4027 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4033 * Initially all pages are reserved - free ones are freed
4034 * up by free_all_bootmem() once the early boot process is
4035 * done. Non-atomic initialization, single-pass.
4037 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4038 unsigned long start_pfn
, enum memmap_context context
)
4041 unsigned long end_pfn
= start_pfn
+ size
;
4045 if (highest_memmap_pfn
< end_pfn
- 1)
4046 highest_memmap_pfn
= end_pfn
- 1;
4048 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4049 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4051 * There can be holes in boot-time mem_map[]s
4052 * handed to this function. They do not
4053 * exist on hotplugged memory.
4055 if (context
== MEMMAP_EARLY
) {
4056 if (!early_pfn_valid(pfn
))
4058 if (!early_pfn_in_nid(pfn
, nid
))
4061 page
= pfn_to_page(pfn
);
4062 set_page_links(page
, zone
, nid
, pfn
);
4063 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4064 init_page_count(page
);
4065 page_mapcount_reset(page
);
4066 page_cpupid_reset_last(page
);
4067 SetPageReserved(page
);
4069 * Mark the block movable so that blocks are reserved for
4070 * movable at startup. This will force kernel allocations
4071 * to reserve their blocks rather than leaking throughout
4072 * the address space during boot when many long-lived
4073 * kernel allocations are made. Later some blocks near
4074 * the start are marked MIGRATE_RESERVE by
4075 * setup_zone_migrate_reserve()
4077 * bitmap is created for zone's valid pfn range. but memmap
4078 * can be created for invalid pages (for alignment)
4079 * check here not to call set_pageblock_migratetype() against
4082 if ((z
->zone_start_pfn
<= pfn
)
4083 && (pfn
< zone_end_pfn(z
))
4084 && !(pfn
& (pageblock_nr_pages
- 1)))
4085 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4087 INIT_LIST_HEAD(&page
->lru
);
4088 #ifdef WANT_PAGE_VIRTUAL
4089 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4090 if (!is_highmem_idx(zone
))
4091 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4096 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4099 for_each_migratetype_order(order
, t
) {
4100 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4101 zone
->free_area
[order
].nr_free
= 0;
4105 #ifndef __HAVE_ARCH_MEMMAP_INIT
4106 #define memmap_init(size, nid, zone, start_pfn) \
4107 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4110 static int __meminit
zone_batchsize(struct zone
*zone
)
4116 * The per-cpu-pages pools are set to around 1000th of the
4117 * size of the zone. But no more than 1/2 of a meg.
4119 * OK, so we don't know how big the cache is. So guess.
4121 batch
= zone
->managed_pages
/ 1024;
4122 if (batch
* PAGE_SIZE
> 512 * 1024)
4123 batch
= (512 * 1024) / PAGE_SIZE
;
4124 batch
/= 4; /* We effectively *= 4 below */
4129 * Clamp the batch to a 2^n - 1 value. Having a power
4130 * of 2 value was found to be more likely to have
4131 * suboptimal cache aliasing properties in some cases.
4133 * For example if 2 tasks are alternately allocating
4134 * batches of pages, one task can end up with a lot
4135 * of pages of one half of the possible page colors
4136 * and the other with pages of the other colors.
4138 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4143 /* The deferral and batching of frees should be suppressed under NOMMU
4146 * The problem is that NOMMU needs to be able to allocate large chunks
4147 * of contiguous memory as there's no hardware page translation to
4148 * assemble apparent contiguous memory from discontiguous pages.
4150 * Queueing large contiguous runs of pages for batching, however,
4151 * causes the pages to actually be freed in smaller chunks. As there
4152 * can be a significant delay between the individual batches being
4153 * recycled, this leads to the once large chunks of space being
4154 * fragmented and becoming unavailable for high-order allocations.
4161 * pcp->high and pcp->batch values are related and dependent on one another:
4162 * ->batch must never be higher then ->high.
4163 * The following function updates them in a safe manner without read side
4166 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4167 * those fields changing asynchronously (acording the the above rule).
4169 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4170 * outside of boot time (or some other assurance that no concurrent updaters
4173 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4174 unsigned long batch
)
4176 /* start with a fail safe value for batch */
4180 /* Update high, then batch, in order */
4187 /* a companion to pageset_set_high() */
4188 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4190 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4193 static void pageset_init(struct per_cpu_pageset
*p
)
4195 struct per_cpu_pages
*pcp
;
4198 memset(p
, 0, sizeof(*p
));
4202 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4203 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4206 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4209 pageset_set_batch(p
, batch
);
4213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4214 * to the value high for the pageset p.
4216 static void pageset_set_high(struct per_cpu_pageset
*p
,
4219 unsigned long batch
= max(1UL, high
/ 4);
4220 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4221 batch
= PAGE_SHIFT
* 8;
4223 pageset_update(&p
->pcp
, high
, batch
);
4226 static void __meminit
pageset_set_high_and_batch(struct zone
*zone
,
4227 struct per_cpu_pageset
*pcp
)
4229 if (percpu_pagelist_fraction
)
4230 pageset_set_high(pcp
,
4231 (zone
->managed_pages
/
4232 percpu_pagelist_fraction
));
4234 pageset_set_batch(pcp
, zone_batchsize(zone
));
4237 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4239 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4242 pageset_set_high_and_batch(zone
, pcp
);
4245 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4248 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4249 for_each_possible_cpu(cpu
)
4250 zone_pageset_init(zone
, cpu
);
4254 * Allocate per cpu pagesets and initialize them.
4255 * Before this call only boot pagesets were available.
4257 void __init
setup_per_cpu_pageset(void)
4261 for_each_populated_zone(zone
)
4262 setup_zone_pageset(zone
);
4265 static noinline __init_refok
4266 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4272 * The per-page waitqueue mechanism uses hashed waitqueues
4275 zone
->wait_table_hash_nr_entries
=
4276 wait_table_hash_nr_entries(zone_size_pages
);
4277 zone
->wait_table_bits
=
4278 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4279 alloc_size
= zone
->wait_table_hash_nr_entries
4280 * sizeof(wait_queue_head_t
);
4282 if (!slab_is_available()) {
4283 zone
->wait_table
= (wait_queue_head_t
*)
4284 memblock_virt_alloc_node_nopanic(
4285 alloc_size
, zone
->zone_pgdat
->node_id
);
4288 * This case means that a zone whose size was 0 gets new memory
4289 * via memory hot-add.
4290 * But it may be the case that a new node was hot-added. In
4291 * this case vmalloc() will not be able to use this new node's
4292 * memory - this wait_table must be initialized to use this new
4293 * node itself as well.
4294 * To use this new node's memory, further consideration will be
4297 zone
->wait_table
= vmalloc(alloc_size
);
4299 if (!zone
->wait_table
)
4302 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4303 init_waitqueue_head(zone
->wait_table
+ i
);
4308 static __meminit
void zone_pcp_init(struct zone
*zone
)
4311 * per cpu subsystem is not up at this point. The following code
4312 * relies on the ability of the linker to provide the
4313 * offset of a (static) per cpu variable into the per cpu area.
4315 zone
->pageset
= &boot_pageset
;
4317 if (populated_zone(zone
))
4318 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4319 zone
->name
, zone
->present_pages
,
4320 zone_batchsize(zone
));
4323 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4324 unsigned long zone_start_pfn
,
4326 enum memmap_context context
)
4328 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4330 ret
= zone_wait_table_init(zone
, size
);
4333 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4335 zone
->zone_start_pfn
= zone_start_pfn
;
4337 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4338 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4340 (unsigned long)zone_idx(zone
),
4341 zone_start_pfn
, (zone_start_pfn
+ size
));
4343 zone_init_free_lists(zone
);
4348 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4349 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4351 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4352 * Architectures may implement their own version but if add_active_range()
4353 * was used and there are no special requirements, this is a convenient
4356 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4358 unsigned long start_pfn
, end_pfn
;
4361 * NOTE: The following SMP-unsafe globals are only used early in boot
4362 * when the kernel is running single-threaded.
4364 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4365 static int __meminitdata last_nid
;
4367 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4370 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4372 last_start_pfn
= start_pfn
;
4373 last_end_pfn
= end_pfn
;
4379 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4381 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4385 nid
= __early_pfn_to_nid(pfn
);
4388 /* just returns 0 */
4392 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4393 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4397 nid
= __early_pfn_to_nid(pfn
);
4398 if (nid
>= 0 && nid
!= node
)
4405 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4406 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4407 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4409 * If an architecture guarantees that all ranges registered with
4410 * add_active_ranges() contain no holes and may be freed, this
4411 * this function may be used instead of calling memblock_free_early_nid()
4414 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4416 unsigned long start_pfn
, end_pfn
;
4419 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4420 start_pfn
= min(start_pfn
, max_low_pfn
);
4421 end_pfn
= min(end_pfn
, max_low_pfn
);
4423 if (start_pfn
< end_pfn
)
4424 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4425 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4431 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4432 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4434 * If an architecture guarantees that all ranges registered with
4435 * add_active_ranges() contain no holes and may be freed, this
4436 * function may be used instead of calling memory_present() manually.
4438 void __init
sparse_memory_present_with_active_regions(int nid
)
4440 unsigned long start_pfn
, end_pfn
;
4443 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4444 memory_present(this_nid
, start_pfn
, end_pfn
);
4448 * get_pfn_range_for_nid - Return the start and end page frames for a node
4449 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4450 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4451 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4453 * It returns the start and end page frame of a node based on information
4454 * provided by an arch calling add_active_range(). If called for a node
4455 * with no available memory, a warning is printed and the start and end
4458 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4459 unsigned long *start_pfn
, unsigned long *end_pfn
)
4461 unsigned long this_start_pfn
, this_end_pfn
;
4467 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4468 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4469 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4472 if (*start_pfn
== -1UL)
4477 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4478 * assumption is made that zones within a node are ordered in monotonic
4479 * increasing memory addresses so that the "highest" populated zone is used
4481 static void __init
find_usable_zone_for_movable(void)
4484 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4485 if (zone_index
== ZONE_MOVABLE
)
4488 if (arch_zone_highest_possible_pfn
[zone_index
] >
4489 arch_zone_lowest_possible_pfn
[zone_index
])
4493 VM_BUG_ON(zone_index
== -1);
4494 movable_zone
= zone_index
;
4498 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4499 * because it is sized independent of architecture. Unlike the other zones,
4500 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4501 * in each node depending on the size of each node and how evenly kernelcore
4502 * is distributed. This helper function adjusts the zone ranges
4503 * provided by the architecture for a given node by using the end of the
4504 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4505 * zones within a node are in order of monotonic increases memory addresses
4507 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4508 unsigned long zone_type
,
4509 unsigned long node_start_pfn
,
4510 unsigned long node_end_pfn
,
4511 unsigned long *zone_start_pfn
,
4512 unsigned long *zone_end_pfn
)
4514 /* Only adjust if ZONE_MOVABLE is on this node */
4515 if (zone_movable_pfn
[nid
]) {
4516 /* Size ZONE_MOVABLE */
4517 if (zone_type
== ZONE_MOVABLE
) {
4518 *zone_start_pfn
= zone_movable_pfn
[nid
];
4519 *zone_end_pfn
= min(node_end_pfn
,
4520 arch_zone_highest_possible_pfn
[movable_zone
]);
4522 /* Adjust for ZONE_MOVABLE starting within this range */
4523 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4524 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4525 *zone_end_pfn
= zone_movable_pfn
[nid
];
4527 /* Check if this whole range is within ZONE_MOVABLE */
4528 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4529 *zone_start_pfn
= *zone_end_pfn
;
4534 * Return the number of pages a zone spans in a node, including holes
4535 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4537 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4538 unsigned long zone_type
,
4539 unsigned long node_start_pfn
,
4540 unsigned long node_end_pfn
,
4541 unsigned long *ignored
)
4543 unsigned long zone_start_pfn
, zone_end_pfn
;
4545 /* Get the start and end of the zone */
4546 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4547 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4548 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4549 node_start_pfn
, node_end_pfn
,
4550 &zone_start_pfn
, &zone_end_pfn
);
4552 /* Check that this node has pages within the zone's required range */
4553 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4556 /* Move the zone boundaries inside the node if necessary */
4557 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4558 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4560 /* Return the spanned pages */
4561 return zone_end_pfn
- zone_start_pfn
;
4565 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4566 * then all holes in the requested range will be accounted for.
4568 unsigned long __meminit
__absent_pages_in_range(int nid
,
4569 unsigned long range_start_pfn
,
4570 unsigned long range_end_pfn
)
4572 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4573 unsigned long start_pfn
, end_pfn
;
4576 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4577 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4578 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4579 nr_absent
-= end_pfn
- start_pfn
;
4585 * absent_pages_in_range - Return number of page frames in holes within a range
4586 * @start_pfn: The start PFN to start searching for holes
4587 * @end_pfn: The end PFN to stop searching for holes
4589 * It returns the number of pages frames in memory holes within a range.
4591 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4592 unsigned long end_pfn
)
4594 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4597 /* Return the number of page frames in holes in a zone on a node */
4598 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4599 unsigned long zone_type
,
4600 unsigned long node_start_pfn
,
4601 unsigned long node_end_pfn
,
4602 unsigned long *ignored
)
4604 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4605 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4606 unsigned long zone_start_pfn
, zone_end_pfn
;
4608 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4609 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4611 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4612 node_start_pfn
, node_end_pfn
,
4613 &zone_start_pfn
, &zone_end_pfn
);
4614 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4617 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4619 unsigned long zone_type
,
4620 unsigned long node_start_pfn
,
4621 unsigned long node_end_pfn
,
4622 unsigned long *zones_size
)
4624 return zones_size
[zone_type
];
4627 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4628 unsigned long zone_type
,
4629 unsigned long node_start_pfn
,
4630 unsigned long node_end_pfn
,
4631 unsigned long *zholes_size
)
4636 return zholes_size
[zone_type
];
4639 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4641 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4642 unsigned long node_start_pfn
,
4643 unsigned long node_end_pfn
,
4644 unsigned long *zones_size
,
4645 unsigned long *zholes_size
)
4647 unsigned long realtotalpages
, totalpages
= 0;
4650 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4651 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4655 pgdat
->node_spanned_pages
= totalpages
;
4657 realtotalpages
= totalpages
;
4658 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4660 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4661 node_start_pfn
, node_end_pfn
,
4663 pgdat
->node_present_pages
= realtotalpages
;
4664 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4668 #ifndef CONFIG_SPARSEMEM
4670 * Calculate the size of the zone->blockflags rounded to an unsigned long
4671 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4672 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4673 * round what is now in bits to nearest long in bits, then return it in
4676 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4678 unsigned long usemapsize
;
4680 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4681 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4682 usemapsize
= usemapsize
>> pageblock_order
;
4683 usemapsize
*= NR_PAGEBLOCK_BITS
;
4684 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4686 return usemapsize
/ 8;
4689 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4691 unsigned long zone_start_pfn
,
4692 unsigned long zonesize
)
4694 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4695 zone
->pageblock_flags
= NULL
;
4697 zone
->pageblock_flags
=
4698 memblock_virt_alloc_node_nopanic(usemapsize
,
4702 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4703 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4704 #endif /* CONFIG_SPARSEMEM */
4706 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4708 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4709 void __paginginit
set_pageblock_order(void)
4713 /* Check that pageblock_nr_pages has not already been setup */
4714 if (pageblock_order
)
4717 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4718 order
= HUGETLB_PAGE_ORDER
;
4720 order
= MAX_ORDER
- 1;
4723 * Assume the largest contiguous order of interest is a huge page.
4724 * This value may be variable depending on boot parameters on IA64 and
4727 pageblock_order
= order
;
4729 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4732 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4733 * is unused as pageblock_order is set at compile-time. See
4734 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4737 void __paginginit
set_pageblock_order(void)
4741 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4743 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4744 unsigned long present_pages
)
4746 unsigned long pages
= spanned_pages
;
4749 * Provide a more accurate estimation if there are holes within
4750 * the zone and SPARSEMEM is in use. If there are holes within the
4751 * zone, each populated memory region may cost us one or two extra
4752 * memmap pages due to alignment because memmap pages for each
4753 * populated regions may not naturally algined on page boundary.
4754 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4756 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4757 IS_ENABLED(CONFIG_SPARSEMEM
))
4758 pages
= present_pages
;
4760 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4764 * Set up the zone data structures:
4765 * - mark all pages reserved
4766 * - mark all memory queues empty
4767 * - clear the memory bitmaps
4769 * NOTE: pgdat should get zeroed by caller.
4771 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4772 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4773 unsigned long *zones_size
, unsigned long *zholes_size
)
4776 int nid
= pgdat
->node_id
;
4777 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4780 pgdat_resize_init(pgdat
);
4781 #ifdef CONFIG_NUMA_BALANCING
4782 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4783 pgdat
->numabalancing_migrate_nr_pages
= 0;
4784 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4786 init_waitqueue_head(&pgdat
->kswapd_wait
);
4787 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4788 pgdat_page_cgroup_init(pgdat
);
4790 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4791 struct zone
*zone
= pgdat
->node_zones
+ j
;
4792 unsigned long size
, realsize
, freesize
, memmap_pages
;
4794 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4795 node_end_pfn
, zones_size
);
4796 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4802 * Adjust freesize so that it accounts for how much memory
4803 * is used by this zone for memmap. This affects the watermark
4804 * and per-cpu initialisations
4806 memmap_pages
= calc_memmap_size(size
, realsize
);
4807 if (freesize
>= memmap_pages
) {
4808 freesize
-= memmap_pages
;
4811 " %s zone: %lu pages used for memmap\n",
4812 zone_names
[j
], memmap_pages
);
4815 " %s zone: %lu pages exceeds freesize %lu\n",
4816 zone_names
[j
], memmap_pages
, freesize
);
4818 /* Account for reserved pages */
4819 if (j
== 0 && freesize
> dma_reserve
) {
4820 freesize
-= dma_reserve
;
4821 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4822 zone_names
[0], dma_reserve
);
4825 if (!is_highmem_idx(j
))
4826 nr_kernel_pages
+= freesize
;
4827 /* Charge for highmem memmap if there are enough kernel pages */
4828 else if (nr_kernel_pages
> memmap_pages
* 2)
4829 nr_kernel_pages
-= memmap_pages
;
4830 nr_all_pages
+= freesize
;
4832 zone
->spanned_pages
= size
;
4833 zone
->present_pages
= realsize
;
4835 * Set an approximate value for lowmem here, it will be adjusted
4836 * when the bootmem allocator frees pages into the buddy system.
4837 * And all highmem pages will be managed by the buddy system.
4839 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4842 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4844 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4846 zone
->name
= zone_names
[j
];
4847 spin_lock_init(&zone
->lock
);
4848 spin_lock_init(&zone
->lru_lock
);
4849 zone_seqlock_init(zone
);
4850 zone
->zone_pgdat
= pgdat
;
4851 zone_pcp_init(zone
);
4853 /* For bootup, initialized properly in watermark setup */
4854 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4856 lruvec_init(&zone
->lruvec
);
4860 set_pageblock_order();
4861 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4862 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4863 size
, MEMMAP_EARLY
);
4865 memmap_init(size
, nid
, j
, zone_start_pfn
);
4866 zone_start_pfn
+= size
;
4870 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4872 /* Skip empty nodes */
4873 if (!pgdat
->node_spanned_pages
)
4876 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4877 /* ia64 gets its own node_mem_map, before this, without bootmem */
4878 if (!pgdat
->node_mem_map
) {
4879 unsigned long size
, start
, end
;
4883 * The zone's endpoints aren't required to be MAX_ORDER
4884 * aligned but the node_mem_map endpoints must be in order
4885 * for the buddy allocator to function correctly.
4887 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4888 end
= pgdat_end_pfn(pgdat
);
4889 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4890 size
= (end
- start
) * sizeof(struct page
);
4891 map
= alloc_remap(pgdat
->node_id
, size
);
4893 map
= memblock_virt_alloc_node_nopanic(size
,
4895 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4897 #ifndef CONFIG_NEED_MULTIPLE_NODES
4899 * With no DISCONTIG, the global mem_map is just set as node 0's
4901 if (pgdat
== NODE_DATA(0)) {
4902 mem_map
= NODE_DATA(0)->node_mem_map
;
4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4905 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4906 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4909 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4912 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4913 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4915 pg_data_t
*pgdat
= NODE_DATA(nid
);
4916 unsigned long start_pfn
= 0;
4917 unsigned long end_pfn
= 0;
4919 /* pg_data_t should be reset to zero when it's allocated */
4920 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4922 pgdat
->node_id
= nid
;
4923 pgdat
->node_start_pfn
= node_start_pfn
;
4924 if (node_state(nid
, N_MEMORY
))
4925 init_zone_allows_reclaim(nid
);
4926 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4927 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4929 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4930 zones_size
, zholes_size
);
4932 alloc_node_mem_map(pgdat
);
4933 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4934 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4935 nid
, (unsigned long)pgdat
,
4936 (unsigned long)pgdat
->node_mem_map
);
4939 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4940 zones_size
, zholes_size
);
4943 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4945 #if MAX_NUMNODES > 1
4947 * Figure out the number of possible node ids.
4949 void __init
setup_nr_node_ids(void)
4952 unsigned int highest
= 0;
4954 for_each_node_mask(node
, node_possible_map
)
4956 nr_node_ids
= highest
+ 1;
4961 * node_map_pfn_alignment - determine the maximum internode alignment
4963 * This function should be called after node map is populated and sorted.
4964 * It calculates the maximum power of two alignment which can distinguish
4967 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4968 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4969 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4970 * shifted, 1GiB is enough and this function will indicate so.
4972 * This is used to test whether pfn -> nid mapping of the chosen memory
4973 * model has fine enough granularity to avoid incorrect mapping for the
4974 * populated node map.
4976 * Returns the determined alignment in pfn's. 0 if there is no alignment
4977 * requirement (single node).
4979 unsigned long __init
node_map_pfn_alignment(void)
4981 unsigned long accl_mask
= 0, last_end
= 0;
4982 unsigned long start
, end
, mask
;
4986 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4987 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4994 * Start with a mask granular enough to pin-point to the
4995 * start pfn and tick off bits one-by-one until it becomes
4996 * too coarse to separate the current node from the last.
4998 mask
= ~((1 << __ffs(start
)) - 1);
4999 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5002 /* accumulate all internode masks */
5006 /* convert mask to number of pages */
5007 return ~accl_mask
+ 1;
5010 /* Find the lowest pfn for a node */
5011 static unsigned long __init
find_min_pfn_for_node(int nid
)
5013 unsigned long min_pfn
= ULONG_MAX
;
5014 unsigned long start_pfn
;
5017 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5018 min_pfn
= min(min_pfn
, start_pfn
);
5020 if (min_pfn
== ULONG_MAX
) {
5022 "Could not find start_pfn for node %d\n", nid
);
5030 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5032 * It returns the minimum PFN based on information provided via
5033 * add_active_range().
5035 unsigned long __init
find_min_pfn_with_active_regions(void)
5037 return find_min_pfn_for_node(MAX_NUMNODES
);
5041 * early_calculate_totalpages()
5042 * Sum pages in active regions for movable zone.
5043 * Populate N_MEMORY for calculating usable_nodes.
5045 static unsigned long __init
early_calculate_totalpages(void)
5047 unsigned long totalpages
= 0;
5048 unsigned long start_pfn
, end_pfn
;
5051 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5052 unsigned long pages
= end_pfn
- start_pfn
;
5054 totalpages
+= pages
;
5056 node_set_state(nid
, N_MEMORY
);
5062 * Find the PFN the Movable zone begins in each node. Kernel memory
5063 * is spread evenly between nodes as long as the nodes have enough
5064 * memory. When they don't, some nodes will have more kernelcore than
5067 static void __init
find_zone_movable_pfns_for_nodes(void)
5070 unsigned long usable_startpfn
;
5071 unsigned long kernelcore_node
, kernelcore_remaining
;
5072 /* save the state before borrow the nodemask */
5073 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5074 unsigned long totalpages
= early_calculate_totalpages();
5075 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5076 struct memblock_region
*r
;
5078 /* Need to find movable_zone earlier when movable_node is specified. */
5079 find_usable_zone_for_movable();
5082 * If movable_node is specified, ignore kernelcore and movablecore
5085 if (movable_node_is_enabled()) {
5086 for_each_memblock(memory
, r
) {
5087 if (!memblock_is_hotpluggable(r
))
5092 usable_startpfn
= PFN_DOWN(r
->base
);
5093 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5094 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5102 * If movablecore=nn[KMG] was specified, calculate what size of
5103 * kernelcore that corresponds so that memory usable for
5104 * any allocation type is evenly spread. If both kernelcore
5105 * and movablecore are specified, then the value of kernelcore
5106 * will be used for required_kernelcore if it's greater than
5107 * what movablecore would have allowed.
5109 if (required_movablecore
) {
5110 unsigned long corepages
;
5113 * Round-up so that ZONE_MOVABLE is at least as large as what
5114 * was requested by the user
5116 required_movablecore
=
5117 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5118 corepages
= totalpages
- required_movablecore
;
5120 required_kernelcore
= max(required_kernelcore
, corepages
);
5123 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5124 if (!required_kernelcore
)
5127 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5128 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5131 /* Spread kernelcore memory as evenly as possible throughout nodes */
5132 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5133 for_each_node_state(nid
, N_MEMORY
) {
5134 unsigned long start_pfn
, end_pfn
;
5137 * Recalculate kernelcore_node if the division per node
5138 * now exceeds what is necessary to satisfy the requested
5139 * amount of memory for the kernel
5141 if (required_kernelcore
< kernelcore_node
)
5142 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5145 * As the map is walked, we track how much memory is usable
5146 * by the kernel using kernelcore_remaining. When it is
5147 * 0, the rest of the node is usable by ZONE_MOVABLE
5149 kernelcore_remaining
= kernelcore_node
;
5151 /* Go through each range of PFNs within this node */
5152 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5153 unsigned long size_pages
;
5155 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5156 if (start_pfn
>= end_pfn
)
5159 /* Account for what is only usable for kernelcore */
5160 if (start_pfn
< usable_startpfn
) {
5161 unsigned long kernel_pages
;
5162 kernel_pages
= min(end_pfn
, usable_startpfn
)
5165 kernelcore_remaining
-= min(kernel_pages
,
5166 kernelcore_remaining
);
5167 required_kernelcore
-= min(kernel_pages
,
5168 required_kernelcore
);
5170 /* Continue if range is now fully accounted */
5171 if (end_pfn
<= usable_startpfn
) {
5174 * Push zone_movable_pfn to the end so
5175 * that if we have to rebalance
5176 * kernelcore across nodes, we will
5177 * not double account here
5179 zone_movable_pfn
[nid
] = end_pfn
;
5182 start_pfn
= usable_startpfn
;
5186 * The usable PFN range for ZONE_MOVABLE is from
5187 * start_pfn->end_pfn. Calculate size_pages as the
5188 * number of pages used as kernelcore
5190 size_pages
= end_pfn
- start_pfn
;
5191 if (size_pages
> kernelcore_remaining
)
5192 size_pages
= kernelcore_remaining
;
5193 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5196 * Some kernelcore has been met, update counts and
5197 * break if the kernelcore for this node has been
5200 required_kernelcore
-= min(required_kernelcore
,
5202 kernelcore_remaining
-= size_pages
;
5203 if (!kernelcore_remaining
)
5209 * If there is still required_kernelcore, we do another pass with one
5210 * less node in the count. This will push zone_movable_pfn[nid] further
5211 * along on the nodes that still have memory until kernelcore is
5215 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5219 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5220 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5221 zone_movable_pfn
[nid
] =
5222 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5225 /* restore the node_state */
5226 node_states
[N_MEMORY
] = saved_node_state
;
5229 /* Any regular or high memory on that node ? */
5230 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5232 enum zone_type zone_type
;
5234 if (N_MEMORY
== N_NORMAL_MEMORY
)
5237 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5238 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5239 if (populated_zone(zone
)) {
5240 node_set_state(nid
, N_HIGH_MEMORY
);
5241 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5242 zone_type
<= ZONE_NORMAL
)
5243 node_set_state(nid
, N_NORMAL_MEMORY
);
5250 * free_area_init_nodes - Initialise all pg_data_t and zone data
5251 * @max_zone_pfn: an array of max PFNs for each zone
5253 * This will call free_area_init_node() for each active node in the system.
5254 * Using the page ranges provided by add_active_range(), the size of each
5255 * zone in each node and their holes is calculated. If the maximum PFN
5256 * between two adjacent zones match, it is assumed that the zone is empty.
5257 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5258 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5259 * starts where the previous one ended. For example, ZONE_DMA32 starts
5260 * at arch_max_dma_pfn.
5262 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5264 unsigned long start_pfn
, end_pfn
;
5267 /* Record where the zone boundaries are */
5268 memset(arch_zone_lowest_possible_pfn
, 0,
5269 sizeof(arch_zone_lowest_possible_pfn
));
5270 memset(arch_zone_highest_possible_pfn
, 0,
5271 sizeof(arch_zone_highest_possible_pfn
));
5272 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5273 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5274 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5275 if (i
== ZONE_MOVABLE
)
5277 arch_zone_lowest_possible_pfn
[i
] =
5278 arch_zone_highest_possible_pfn
[i
-1];
5279 arch_zone_highest_possible_pfn
[i
] =
5280 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5282 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5283 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5285 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5286 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5287 find_zone_movable_pfns_for_nodes();
5289 /* Print out the zone ranges */
5290 printk("Zone ranges:\n");
5291 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5292 if (i
== ZONE_MOVABLE
)
5294 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5295 if (arch_zone_lowest_possible_pfn
[i
] ==
5296 arch_zone_highest_possible_pfn
[i
])
5297 printk(KERN_CONT
"empty\n");
5299 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5300 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5301 (arch_zone_highest_possible_pfn
[i
]
5302 << PAGE_SHIFT
) - 1);
5305 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5306 printk("Movable zone start for each node\n");
5307 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5308 if (zone_movable_pfn
[i
])
5309 printk(" Node %d: %#010lx\n", i
,
5310 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5313 /* Print out the early node map */
5314 printk("Early memory node ranges\n");
5315 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5316 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5317 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5319 /* Initialise every node */
5320 mminit_verify_pageflags_layout();
5321 setup_nr_node_ids();
5322 for_each_online_node(nid
) {
5323 pg_data_t
*pgdat
= NODE_DATA(nid
);
5324 free_area_init_node(nid
, NULL
,
5325 find_min_pfn_for_node(nid
), NULL
);
5327 /* Any memory on that node */
5328 if (pgdat
->node_present_pages
)
5329 node_set_state(nid
, N_MEMORY
);
5330 check_for_memory(pgdat
, nid
);
5334 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5336 unsigned long long coremem
;
5340 coremem
= memparse(p
, &p
);
5341 *core
= coremem
>> PAGE_SHIFT
;
5343 /* Paranoid check that UL is enough for the coremem value */
5344 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5350 * kernelcore=size sets the amount of memory for use for allocations that
5351 * cannot be reclaimed or migrated.
5353 static int __init
cmdline_parse_kernelcore(char *p
)
5355 return cmdline_parse_core(p
, &required_kernelcore
);
5359 * movablecore=size sets the amount of memory for use for allocations that
5360 * can be reclaimed or migrated.
5362 static int __init
cmdline_parse_movablecore(char *p
)
5364 return cmdline_parse_core(p
, &required_movablecore
);
5367 early_param("kernelcore", cmdline_parse_kernelcore
);
5368 early_param("movablecore", cmdline_parse_movablecore
);
5370 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5372 void adjust_managed_page_count(struct page
*page
, long count
)
5374 spin_lock(&managed_page_count_lock
);
5375 page_zone(page
)->managed_pages
+= count
;
5376 totalram_pages
+= count
;
5377 #ifdef CONFIG_HIGHMEM
5378 if (PageHighMem(page
))
5379 totalhigh_pages
+= count
;
5381 spin_unlock(&managed_page_count_lock
);
5383 EXPORT_SYMBOL(adjust_managed_page_count
);
5385 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5388 unsigned long pages
= 0;
5390 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5391 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5392 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5393 if ((unsigned int)poison
<= 0xFF)
5394 memset(pos
, poison
, PAGE_SIZE
);
5395 free_reserved_page(virt_to_page(pos
));
5399 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5400 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5404 EXPORT_SYMBOL(free_reserved_area
);
5406 #ifdef CONFIG_HIGHMEM
5407 void free_highmem_page(struct page
*page
)
5409 __free_reserved_page(page
);
5411 page_zone(page
)->managed_pages
++;
5417 void __init
mem_init_print_info(const char *str
)
5419 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5420 unsigned long init_code_size
, init_data_size
;
5422 physpages
= get_num_physpages();
5423 codesize
= _etext
- _stext
;
5424 datasize
= _edata
- _sdata
;
5425 rosize
= __end_rodata
- __start_rodata
;
5426 bss_size
= __bss_stop
- __bss_start
;
5427 init_data_size
= __init_end
- __init_begin
;
5428 init_code_size
= _einittext
- _sinittext
;
5431 * Detect special cases and adjust section sizes accordingly:
5432 * 1) .init.* may be embedded into .data sections
5433 * 2) .init.text.* may be out of [__init_begin, __init_end],
5434 * please refer to arch/tile/kernel/vmlinux.lds.S.
5435 * 3) .rodata.* may be embedded into .text or .data sections.
5437 #define adj_init_size(start, end, size, pos, adj) \
5439 if (start <= pos && pos < end && size > adj) \
5443 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5444 _sinittext
, init_code_size
);
5445 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5446 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5447 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5448 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5450 #undef adj_init_size
5452 printk("Memory: %luK/%luK available "
5453 "(%luK kernel code, %luK rwdata, %luK rodata, "
5454 "%luK init, %luK bss, %luK reserved"
5455 #ifdef CONFIG_HIGHMEM
5459 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5460 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5461 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5462 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5463 #ifdef CONFIG_HIGHMEM
5464 totalhigh_pages
<< (PAGE_SHIFT
-10),
5466 str
? ", " : "", str
? str
: "");
5470 * set_dma_reserve - set the specified number of pages reserved in the first zone
5471 * @new_dma_reserve: The number of pages to mark reserved
5473 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5474 * In the DMA zone, a significant percentage may be consumed by kernel image
5475 * and other unfreeable allocations which can skew the watermarks badly. This
5476 * function may optionally be used to account for unfreeable pages in the
5477 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5478 * smaller per-cpu batchsize.
5480 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5482 dma_reserve
= new_dma_reserve
;
5485 void __init
free_area_init(unsigned long *zones_size
)
5487 free_area_init_node(0, zones_size
,
5488 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5491 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5492 unsigned long action
, void *hcpu
)
5494 int cpu
= (unsigned long)hcpu
;
5496 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5497 lru_add_drain_cpu(cpu
);
5501 * Spill the event counters of the dead processor
5502 * into the current processors event counters.
5503 * This artificially elevates the count of the current
5506 vm_events_fold_cpu(cpu
);
5509 * Zero the differential counters of the dead processor
5510 * so that the vm statistics are consistent.
5512 * This is only okay since the processor is dead and cannot
5513 * race with what we are doing.
5515 cpu_vm_stats_fold(cpu
);
5520 void __init
page_alloc_init(void)
5522 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5526 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5527 * or min_free_kbytes changes.
5529 static void calculate_totalreserve_pages(void)
5531 struct pglist_data
*pgdat
;
5532 unsigned long reserve_pages
= 0;
5533 enum zone_type i
, j
;
5535 for_each_online_pgdat(pgdat
) {
5536 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5537 struct zone
*zone
= pgdat
->node_zones
+ i
;
5538 unsigned long max
= 0;
5540 /* Find valid and maximum lowmem_reserve in the zone */
5541 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5542 if (zone
->lowmem_reserve
[j
] > max
)
5543 max
= zone
->lowmem_reserve
[j
];
5546 /* we treat the high watermark as reserved pages. */
5547 max
+= high_wmark_pages(zone
);
5549 if (max
> zone
->managed_pages
)
5550 max
= zone
->managed_pages
;
5551 reserve_pages
+= max
;
5553 * Lowmem reserves are not available to
5554 * GFP_HIGHUSER page cache allocations and
5555 * kswapd tries to balance zones to their high
5556 * watermark. As a result, neither should be
5557 * regarded as dirtyable memory, to prevent a
5558 * situation where reclaim has to clean pages
5559 * in order to balance the zones.
5561 zone
->dirty_balance_reserve
= max
;
5564 dirty_balance_reserve
= reserve_pages
;
5565 totalreserve_pages
= reserve_pages
;
5569 * setup_per_zone_lowmem_reserve - called whenever
5570 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5571 * has a correct pages reserved value, so an adequate number of
5572 * pages are left in the zone after a successful __alloc_pages().
5574 static void setup_per_zone_lowmem_reserve(void)
5576 struct pglist_data
*pgdat
;
5577 enum zone_type j
, idx
;
5579 for_each_online_pgdat(pgdat
) {
5580 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5581 struct zone
*zone
= pgdat
->node_zones
+ j
;
5582 unsigned long managed_pages
= zone
->managed_pages
;
5584 zone
->lowmem_reserve
[j
] = 0;
5588 struct zone
*lower_zone
;
5592 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5593 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5595 lower_zone
= pgdat
->node_zones
+ idx
;
5596 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5597 sysctl_lowmem_reserve_ratio
[idx
];
5598 managed_pages
+= lower_zone
->managed_pages
;
5603 /* update totalreserve_pages */
5604 calculate_totalreserve_pages();
5607 static void __setup_per_zone_wmarks(void)
5609 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5610 unsigned long lowmem_pages
= 0;
5612 unsigned long flags
;
5614 /* Calculate total number of !ZONE_HIGHMEM pages */
5615 for_each_zone(zone
) {
5616 if (!is_highmem(zone
))
5617 lowmem_pages
+= zone
->managed_pages
;
5620 for_each_zone(zone
) {
5623 spin_lock_irqsave(&zone
->lock
, flags
);
5624 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5625 do_div(tmp
, lowmem_pages
);
5626 if (is_highmem(zone
)) {
5628 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5629 * need highmem pages, so cap pages_min to a small
5632 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5633 * deltas controls asynch page reclaim, and so should
5634 * not be capped for highmem.
5636 unsigned long min_pages
;
5638 min_pages
= zone
->managed_pages
/ 1024;
5639 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5640 zone
->watermark
[WMARK_MIN
] = min_pages
;
5643 * If it's a lowmem zone, reserve a number of pages
5644 * proportionate to the zone's size.
5646 zone
->watermark
[WMARK_MIN
] = tmp
;
5649 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5650 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5652 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5653 high_wmark_pages(zone
) -
5654 low_wmark_pages(zone
) -
5655 zone_page_state(zone
, NR_ALLOC_BATCH
));
5657 setup_zone_migrate_reserve(zone
);
5658 spin_unlock_irqrestore(&zone
->lock
, flags
);
5661 /* update totalreserve_pages */
5662 calculate_totalreserve_pages();
5666 * setup_per_zone_wmarks - called when min_free_kbytes changes
5667 * or when memory is hot-{added|removed}
5669 * Ensures that the watermark[min,low,high] values for each zone are set
5670 * correctly with respect to min_free_kbytes.
5672 void setup_per_zone_wmarks(void)
5674 mutex_lock(&zonelists_mutex
);
5675 __setup_per_zone_wmarks();
5676 mutex_unlock(&zonelists_mutex
);
5680 * The inactive anon list should be small enough that the VM never has to
5681 * do too much work, but large enough that each inactive page has a chance
5682 * to be referenced again before it is swapped out.
5684 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5685 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5686 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5687 * the anonymous pages are kept on the inactive list.
5690 * memory ratio inactive anon
5691 * -------------------------------------
5700 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5702 unsigned int gb
, ratio
;
5704 /* Zone size in gigabytes */
5705 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5707 ratio
= int_sqrt(10 * gb
);
5711 zone
->inactive_ratio
= ratio
;
5714 static void __meminit
setup_per_zone_inactive_ratio(void)
5719 calculate_zone_inactive_ratio(zone
);
5723 * Initialise min_free_kbytes.
5725 * For small machines we want it small (128k min). For large machines
5726 * we want it large (64MB max). But it is not linear, because network
5727 * bandwidth does not increase linearly with machine size. We use
5729 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5730 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5746 int __meminit
init_per_zone_wmark_min(void)
5748 unsigned long lowmem_kbytes
;
5749 int new_min_free_kbytes
;
5751 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5752 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5754 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5755 min_free_kbytes
= new_min_free_kbytes
;
5756 if (min_free_kbytes
< 128)
5757 min_free_kbytes
= 128;
5758 if (min_free_kbytes
> 65536)
5759 min_free_kbytes
= 65536;
5761 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5762 new_min_free_kbytes
, user_min_free_kbytes
);
5764 setup_per_zone_wmarks();
5765 refresh_zone_stat_thresholds();
5766 setup_per_zone_lowmem_reserve();
5767 setup_per_zone_inactive_ratio();
5770 module_init(init_per_zone_wmark_min
)
5773 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5774 * that we can call two helper functions whenever min_free_kbytes
5777 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5778 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5782 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5787 user_min_free_kbytes
= min_free_kbytes
;
5788 setup_per_zone_wmarks();
5794 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5795 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5800 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5805 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5806 sysctl_min_unmapped_ratio
) / 100;
5810 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5811 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5816 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5821 zone
->min_slab_pages
= (zone
->managed_pages
*
5822 sysctl_min_slab_ratio
) / 100;
5828 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5829 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5830 * whenever sysctl_lowmem_reserve_ratio changes.
5832 * The reserve ratio obviously has absolutely no relation with the
5833 * minimum watermarks. The lowmem reserve ratio can only make sense
5834 * if in function of the boot time zone sizes.
5836 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5837 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5839 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5840 setup_per_zone_lowmem_reserve();
5845 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5846 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5847 * pagelist can have before it gets flushed back to buddy allocator.
5849 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5850 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5856 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5857 if (!write
|| (ret
< 0))
5860 mutex_lock(&pcp_batch_high_lock
);
5861 for_each_populated_zone(zone
) {
5863 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5864 for_each_possible_cpu(cpu
)
5865 pageset_set_high(per_cpu_ptr(zone
->pageset
, cpu
),
5868 mutex_unlock(&pcp_batch_high_lock
);
5872 int hashdist
= HASHDIST_DEFAULT
;
5875 static int __init
set_hashdist(char *str
)
5879 hashdist
= simple_strtoul(str
, &str
, 0);
5882 __setup("hashdist=", set_hashdist
);
5886 * allocate a large system hash table from bootmem
5887 * - it is assumed that the hash table must contain an exact power-of-2
5888 * quantity of entries
5889 * - limit is the number of hash buckets, not the total allocation size
5891 void *__init
alloc_large_system_hash(const char *tablename
,
5892 unsigned long bucketsize
,
5893 unsigned long numentries
,
5896 unsigned int *_hash_shift
,
5897 unsigned int *_hash_mask
,
5898 unsigned long low_limit
,
5899 unsigned long high_limit
)
5901 unsigned long long max
= high_limit
;
5902 unsigned long log2qty
, size
;
5905 /* allow the kernel cmdline to have a say */
5907 /* round applicable memory size up to nearest megabyte */
5908 numentries
= nr_kernel_pages
;
5910 /* It isn't necessary when PAGE_SIZE >= 1MB */
5911 if (PAGE_SHIFT
< 20)
5912 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5914 /* limit to 1 bucket per 2^scale bytes of low memory */
5915 if (scale
> PAGE_SHIFT
)
5916 numentries
>>= (scale
- PAGE_SHIFT
);
5918 numentries
<<= (PAGE_SHIFT
- scale
);
5920 /* Make sure we've got at least a 0-order allocation.. */
5921 if (unlikely(flags
& HASH_SMALL
)) {
5922 /* Makes no sense without HASH_EARLY */
5923 WARN_ON(!(flags
& HASH_EARLY
));
5924 if (!(numentries
>> *_hash_shift
)) {
5925 numentries
= 1UL << *_hash_shift
;
5926 BUG_ON(!numentries
);
5928 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5929 numentries
= PAGE_SIZE
/ bucketsize
;
5931 numentries
= roundup_pow_of_two(numentries
);
5933 /* limit allocation size to 1/16 total memory by default */
5935 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5936 do_div(max
, bucketsize
);
5938 max
= min(max
, 0x80000000ULL
);
5940 if (numentries
< low_limit
)
5941 numentries
= low_limit
;
5942 if (numentries
> max
)
5945 log2qty
= ilog2(numentries
);
5948 size
= bucketsize
<< log2qty
;
5949 if (flags
& HASH_EARLY
)
5950 table
= memblock_virt_alloc_nopanic(size
, 0);
5952 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5955 * If bucketsize is not a power-of-two, we may free
5956 * some pages at the end of hash table which
5957 * alloc_pages_exact() automatically does
5959 if (get_order(size
) < MAX_ORDER
) {
5960 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5961 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5964 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5967 panic("Failed to allocate %s hash table\n", tablename
);
5969 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5972 ilog2(size
) - PAGE_SHIFT
,
5976 *_hash_shift
= log2qty
;
5978 *_hash_mask
= (1 << log2qty
) - 1;
5983 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5984 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5987 #ifdef CONFIG_SPARSEMEM
5988 return __pfn_to_section(pfn
)->pageblock_flags
;
5990 return zone
->pageblock_flags
;
5991 #endif /* CONFIG_SPARSEMEM */
5994 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5996 #ifdef CONFIG_SPARSEMEM
5997 pfn
&= (PAGES_PER_SECTION
-1);
5998 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6000 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6001 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6002 #endif /* CONFIG_SPARSEMEM */
6006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6007 * @page: The page within the block of interest
6008 * @start_bitidx: The first bit of interest to retrieve
6009 * @end_bitidx: The last bit of interest
6010 * returns pageblock_bits flags
6012 unsigned long get_pageblock_flags_group(struct page
*page
,
6013 int start_bitidx
, int end_bitidx
)
6016 unsigned long *bitmap
;
6017 unsigned long pfn
, bitidx
;
6018 unsigned long flags
= 0;
6019 unsigned long value
= 1;
6021 zone
= page_zone(page
);
6022 pfn
= page_to_pfn(page
);
6023 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6024 bitidx
= pfn_to_bitidx(zone
, pfn
);
6026 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
6027 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
6034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6035 * @page: The page within the block of interest
6036 * @start_bitidx: The first bit of interest
6037 * @end_bitidx: The last bit of interest
6038 * @flags: The flags to set
6040 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
6041 int start_bitidx
, int end_bitidx
)
6044 unsigned long *bitmap
;
6045 unsigned long pfn
, bitidx
;
6046 unsigned long value
= 1;
6048 zone
= page_zone(page
);
6049 pfn
= page_to_pfn(page
);
6050 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6051 bitidx
= pfn_to_bitidx(zone
, pfn
);
6052 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6054 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
6056 __set_bit(bitidx
+ start_bitidx
, bitmap
);
6058 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
6062 * This function checks whether pageblock includes unmovable pages or not.
6063 * If @count is not zero, it is okay to include less @count unmovable pages
6065 * PageLRU check without isolation or lru_lock could race so that
6066 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6067 * expect this function should be exact.
6069 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6070 bool skip_hwpoisoned_pages
)
6072 unsigned long pfn
, iter
, found
;
6076 * For avoiding noise data, lru_add_drain_all() should be called
6077 * If ZONE_MOVABLE, the zone never contains unmovable pages
6079 if (zone_idx(zone
) == ZONE_MOVABLE
)
6081 mt
= get_pageblock_migratetype(page
);
6082 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6085 pfn
= page_to_pfn(page
);
6086 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6087 unsigned long check
= pfn
+ iter
;
6089 if (!pfn_valid_within(check
))
6092 page
= pfn_to_page(check
);
6095 * Hugepages are not in LRU lists, but they're movable.
6096 * We need not scan over tail pages bacause we don't
6097 * handle each tail page individually in migration.
6099 if (PageHuge(page
)) {
6100 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6105 * We can't use page_count without pin a page
6106 * because another CPU can free compound page.
6107 * This check already skips compound tails of THP
6108 * because their page->_count is zero at all time.
6110 if (!atomic_read(&page
->_count
)) {
6111 if (PageBuddy(page
))
6112 iter
+= (1 << page_order(page
)) - 1;
6117 * The HWPoisoned page may be not in buddy system, and
6118 * page_count() is not 0.
6120 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6126 * If there are RECLAIMABLE pages, we need to check it.
6127 * But now, memory offline itself doesn't call shrink_slab()
6128 * and it still to be fixed.
6131 * If the page is not RAM, page_count()should be 0.
6132 * we don't need more check. This is an _used_ not-movable page.
6134 * The problematic thing here is PG_reserved pages. PG_reserved
6135 * is set to both of a memory hole page and a _used_ kernel
6144 bool is_pageblock_removable_nolock(struct page
*page
)
6150 * We have to be careful here because we are iterating over memory
6151 * sections which are not zone aware so we might end up outside of
6152 * the zone but still within the section.
6153 * We have to take care about the node as well. If the node is offline
6154 * its NODE_DATA will be NULL - see page_zone.
6156 if (!node_online(page_to_nid(page
)))
6159 zone
= page_zone(page
);
6160 pfn
= page_to_pfn(page
);
6161 if (!zone_spans_pfn(zone
, pfn
))
6164 return !has_unmovable_pages(zone
, page
, 0, true);
6169 static unsigned long pfn_max_align_down(unsigned long pfn
)
6171 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6172 pageblock_nr_pages
) - 1);
6175 static unsigned long pfn_max_align_up(unsigned long pfn
)
6177 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6178 pageblock_nr_pages
));
6181 /* [start, end) must belong to a single zone. */
6182 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6183 unsigned long start
, unsigned long end
)
6185 /* This function is based on compact_zone() from compaction.c. */
6186 unsigned long nr_reclaimed
;
6187 unsigned long pfn
= start
;
6188 unsigned int tries
= 0;
6193 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6194 if (fatal_signal_pending(current
)) {
6199 if (list_empty(&cc
->migratepages
)) {
6200 cc
->nr_migratepages
= 0;
6201 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6208 } else if (++tries
== 5) {
6209 ret
= ret
< 0 ? ret
: -EBUSY
;
6213 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6215 cc
->nr_migratepages
-= nr_reclaimed
;
6217 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6218 0, MIGRATE_SYNC
, MR_CMA
);
6221 putback_movable_pages(&cc
->migratepages
);
6228 * alloc_contig_range() -- tries to allocate given range of pages
6229 * @start: start PFN to allocate
6230 * @end: one-past-the-last PFN to allocate
6231 * @migratetype: migratetype of the underlaying pageblocks (either
6232 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6233 * in range must have the same migratetype and it must
6234 * be either of the two.
6236 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6237 * aligned, however it's the caller's responsibility to guarantee that
6238 * we are the only thread that changes migrate type of pageblocks the
6241 * The PFN range must belong to a single zone.
6243 * Returns zero on success or negative error code. On success all
6244 * pages which PFN is in [start, end) are allocated for the caller and
6245 * need to be freed with free_contig_range().
6247 int alloc_contig_range(unsigned long start
, unsigned long end
,
6248 unsigned migratetype
)
6250 unsigned long outer_start
, outer_end
;
6253 struct compact_control cc
= {
6254 .nr_migratepages
= 0,
6256 .zone
= page_zone(pfn_to_page(start
)),
6258 .ignore_skip_hint
= true,
6260 INIT_LIST_HEAD(&cc
.migratepages
);
6263 * What we do here is we mark all pageblocks in range as
6264 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6265 * have different sizes, and due to the way page allocator
6266 * work, we align the range to biggest of the two pages so
6267 * that page allocator won't try to merge buddies from
6268 * different pageblocks and change MIGRATE_ISOLATE to some
6269 * other migration type.
6271 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6272 * migrate the pages from an unaligned range (ie. pages that
6273 * we are interested in). This will put all the pages in
6274 * range back to page allocator as MIGRATE_ISOLATE.
6276 * When this is done, we take the pages in range from page
6277 * allocator removing them from the buddy system. This way
6278 * page allocator will never consider using them.
6280 * This lets us mark the pageblocks back as
6281 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6282 * aligned range but not in the unaligned, original range are
6283 * put back to page allocator so that buddy can use them.
6286 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6287 pfn_max_align_up(end
), migratetype
,
6292 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6297 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6298 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6299 * more, all pages in [start, end) are free in page allocator.
6300 * What we are going to do is to allocate all pages from
6301 * [start, end) (that is remove them from page allocator).
6303 * The only problem is that pages at the beginning and at the
6304 * end of interesting range may be not aligned with pages that
6305 * page allocator holds, ie. they can be part of higher order
6306 * pages. Because of this, we reserve the bigger range and
6307 * once this is done free the pages we are not interested in.
6309 * We don't have to hold zone->lock here because the pages are
6310 * isolated thus they won't get removed from buddy.
6313 lru_add_drain_all();
6317 outer_start
= start
;
6318 while (!PageBuddy(pfn_to_page(outer_start
))) {
6319 if (++order
>= MAX_ORDER
) {
6323 outer_start
&= ~0UL << order
;
6326 /* Make sure the range is really isolated. */
6327 if (test_pages_isolated(outer_start
, end
, false)) {
6328 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6335 /* Grab isolated pages from freelists. */
6336 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6342 /* Free head and tail (if any) */
6343 if (start
!= outer_start
)
6344 free_contig_range(outer_start
, start
- outer_start
);
6345 if (end
!= outer_end
)
6346 free_contig_range(end
, outer_end
- end
);
6349 undo_isolate_page_range(pfn_max_align_down(start
),
6350 pfn_max_align_up(end
), migratetype
);
6354 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6356 unsigned int count
= 0;
6358 for (; nr_pages
--; pfn
++) {
6359 struct page
*page
= pfn_to_page(pfn
);
6361 count
+= page_count(page
) != 1;
6364 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6368 #ifdef CONFIG_MEMORY_HOTPLUG
6370 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6371 * page high values need to be recalulated.
6373 void __meminit
zone_pcp_update(struct zone
*zone
)
6376 mutex_lock(&pcp_batch_high_lock
);
6377 for_each_possible_cpu(cpu
)
6378 pageset_set_high_and_batch(zone
,
6379 per_cpu_ptr(zone
->pageset
, cpu
));
6380 mutex_unlock(&pcp_batch_high_lock
);
6384 void zone_pcp_reset(struct zone
*zone
)
6386 unsigned long flags
;
6388 struct per_cpu_pageset
*pset
;
6390 /* avoid races with drain_pages() */
6391 local_irq_save(flags
);
6392 if (zone
->pageset
!= &boot_pageset
) {
6393 for_each_online_cpu(cpu
) {
6394 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6395 drain_zonestat(zone
, pset
);
6397 free_percpu(zone
->pageset
);
6398 zone
->pageset
= &boot_pageset
;
6400 local_irq_restore(flags
);
6403 #ifdef CONFIG_MEMORY_HOTREMOVE
6405 * All pages in the range must be isolated before calling this.
6408 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6414 unsigned long flags
;
6415 /* find the first valid pfn */
6416 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6421 zone
= page_zone(pfn_to_page(pfn
));
6422 spin_lock_irqsave(&zone
->lock
, flags
);
6424 while (pfn
< end_pfn
) {
6425 if (!pfn_valid(pfn
)) {
6429 page
= pfn_to_page(pfn
);
6431 * The HWPoisoned page may be not in buddy system, and
6432 * page_count() is not 0.
6434 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6436 SetPageReserved(page
);
6440 BUG_ON(page_count(page
));
6441 BUG_ON(!PageBuddy(page
));
6442 order
= page_order(page
);
6443 #ifdef CONFIG_DEBUG_VM
6444 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6445 pfn
, 1 << order
, end_pfn
);
6447 list_del(&page
->lru
);
6448 rmv_page_order(page
);
6449 zone
->free_area
[order
].nr_free
--;
6450 for (i
= 0; i
< (1 << order
); i
++)
6451 SetPageReserved((page
+i
));
6452 pfn
+= (1 << order
);
6454 spin_unlock_irqrestore(&zone
->lock
, flags
);
6458 #ifdef CONFIG_MEMORY_FAILURE
6459 bool is_free_buddy_page(struct page
*page
)
6461 struct zone
*zone
= page_zone(page
);
6462 unsigned long pfn
= page_to_pfn(page
);
6463 unsigned long flags
;
6466 spin_lock_irqsave(&zone
->lock
, flags
);
6467 for (order
= 0; order
< MAX_ORDER
; order
++) {
6468 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6470 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6473 spin_unlock_irqrestore(&zone
->lock
, flags
);
6475 return order
< MAX_ORDER
;
6479 static const struct trace_print_flags pageflag_names
[] = {
6480 {1UL << PG_locked
, "locked" },
6481 {1UL << PG_error
, "error" },
6482 {1UL << PG_referenced
, "referenced" },
6483 {1UL << PG_uptodate
, "uptodate" },
6484 {1UL << PG_dirty
, "dirty" },
6485 {1UL << PG_lru
, "lru" },
6486 {1UL << PG_active
, "active" },
6487 {1UL << PG_slab
, "slab" },
6488 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6489 {1UL << PG_arch_1
, "arch_1" },
6490 {1UL << PG_reserved
, "reserved" },
6491 {1UL << PG_private
, "private" },
6492 {1UL << PG_private_2
, "private_2" },
6493 {1UL << PG_writeback
, "writeback" },
6494 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6495 {1UL << PG_head
, "head" },
6496 {1UL << PG_tail
, "tail" },
6498 {1UL << PG_compound
, "compound" },
6500 {1UL << PG_swapcache
, "swapcache" },
6501 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6502 {1UL << PG_reclaim
, "reclaim" },
6503 {1UL << PG_swapbacked
, "swapbacked" },
6504 {1UL << PG_unevictable
, "unevictable" },
6506 {1UL << PG_mlocked
, "mlocked" },
6508 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6509 {1UL << PG_uncached
, "uncached" },
6511 #ifdef CONFIG_MEMORY_FAILURE
6512 {1UL << PG_hwpoison
, "hwpoison" },
6514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6515 {1UL << PG_compound_lock
, "compound_lock" },
6519 static void dump_page_flags(unsigned long flags
)
6521 const char *delim
= "";
6525 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6527 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6529 /* remove zone id */
6530 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6532 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6534 mask
= pageflag_names
[i
].mask
;
6535 if ((flags
& mask
) != mask
)
6539 printk("%s%s", delim
, pageflag_names
[i
].name
);
6543 /* check for left over flags */
6545 printk("%s%#lx", delim
, flags
);
6550 void dump_page_badflags(struct page
*page
, const char *reason
,
6551 unsigned long badflags
)
6554 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6555 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6556 page
->mapping
, page
->index
);
6557 dump_page_flags(page
->flags
);
6559 pr_alert("page dumped because: %s\n", reason
);
6560 if (page
->flags
& badflags
) {
6561 pr_alert("bad because of flags:\n");
6562 dump_page_flags(page
->flags
& badflags
);
6564 mem_cgroup_print_bad_page(page
);
6567 void dump_page(struct page
*page
, const char *reason
)
6569 dump_page_badflags(page
, reason
, 0);
6571 EXPORT_SYMBOL(dump_page
);