2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
36 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
38 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
39 #define NVMET_RDMA_MAX_INLINE_SGE 4
40 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
42 struct nvmet_rdma_cmd
{
43 struct ib_sge sge
[NVMET_RDMA_MAX_INLINE_SGE
+ 1];
46 struct scatterlist inline_sg
[NVMET_RDMA_MAX_INLINE_SGE
];
47 struct nvme_command
*nvme_cmd
;
48 struct nvmet_rdma_queue
*queue
;
52 NVMET_RDMA_REQ_INLINE_DATA
= (1 << 0),
53 NVMET_RDMA_REQ_INVALIDATE_RKEY
= (1 << 1),
56 struct nvmet_rdma_rsp
{
57 struct ib_sge send_sge
;
58 struct ib_cqe send_cqe
;
59 struct ib_send_wr send_wr
;
61 struct nvmet_rdma_cmd
*cmd
;
62 struct nvmet_rdma_queue
*queue
;
64 struct ib_cqe read_cqe
;
65 struct rdma_rw_ctx rw
;
74 struct list_head wait_list
;
75 struct list_head free_list
;
78 enum nvmet_rdma_queue_state
{
79 NVMET_RDMA_Q_CONNECTING
,
81 NVMET_RDMA_Q_DISCONNECTING
,
84 struct nvmet_rdma_queue
{
85 struct rdma_cm_id
*cm_id
;
86 struct nvmet_port
*port
;
89 struct nvmet_rdma_device
*dev
;
90 spinlock_t state_lock
;
91 enum nvmet_rdma_queue_state state
;
92 struct nvmet_cq nvme_cq
;
93 struct nvmet_sq nvme_sq
;
95 struct nvmet_rdma_rsp
*rsps
;
96 struct list_head free_rsps
;
98 struct nvmet_rdma_cmd
*cmds
;
100 struct work_struct release_work
;
101 struct list_head rsp_wait_list
;
102 struct list_head rsp_wr_wait_list
;
103 spinlock_t rsp_wr_wait_lock
;
110 struct list_head queue_list
;
113 struct nvmet_rdma_device
{
114 struct ib_device
*device
;
117 struct nvmet_rdma_cmd
*srq_cmds
;
120 struct list_head entry
;
121 int inline_data_size
;
122 int inline_page_count
;
125 static bool nvmet_rdma_use_srq
;
126 module_param_named(use_srq
, nvmet_rdma_use_srq
, bool, 0444);
127 MODULE_PARM_DESC(use_srq
, "Use shared receive queue.");
129 static DEFINE_IDA(nvmet_rdma_queue_ida
);
130 static LIST_HEAD(nvmet_rdma_queue_list
);
131 static DEFINE_MUTEX(nvmet_rdma_queue_mutex
);
133 static LIST_HEAD(device_list
);
134 static DEFINE_MUTEX(device_list_mutex
);
136 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
);
137 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
138 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
139 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
140 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
);
141 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
);
142 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device
*ndev
,
143 struct nvmet_rdma_rsp
*r
);
144 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device
*ndev
,
145 struct nvmet_rdma_rsp
*r
);
147 static const struct nvmet_fabrics_ops nvmet_rdma_ops
;
149 static int num_pages(int len
)
151 return 1 + (((len
- 1) & PAGE_MASK
) >> PAGE_SHIFT
);
154 /* XXX: really should move to a generic header sooner or later.. */
155 static inline u32
get_unaligned_le24(const u8
*p
)
157 return (u32
)p
[0] | (u32
)p
[1] << 8 | (u32
)p
[2] << 16;
160 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp
*rsp
)
162 return nvme_is_write(rsp
->req
.cmd
) &&
163 rsp
->req
.transfer_len
&&
164 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
167 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp
*rsp
)
169 return !nvme_is_write(rsp
->req
.cmd
) &&
170 rsp
->req
.transfer_len
&&
171 !rsp
->req
.rsp
->status
&&
172 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
175 static inline struct nvmet_rdma_rsp
*
176 nvmet_rdma_get_rsp(struct nvmet_rdma_queue
*queue
)
178 struct nvmet_rdma_rsp
*rsp
;
181 spin_lock_irqsave(&queue
->rsps_lock
, flags
);
182 rsp
= list_first_entry_or_null(&queue
->free_rsps
,
183 struct nvmet_rdma_rsp
, free_list
);
185 list_del(&rsp
->free_list
);
186 spin_unlock_irqrestore(&queue
->rsps_lock
, flags
);
188 if (unlikely(!rsp
)) {
191 rsp
= kzalloc(sizeof(*rsp
), GFP_KERNEL
);
194 ret
= nvmet_rdma_alloc_rsp(queue
->dev
, rsp
);
200 rsp
->allocated
= true;
207 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp
*rsp
)
211 if (unlikely(rsp
->allocated
)) {
212 nvmet_rdma_free_rsp(rsp
->queue
->dev
, rsp
);
217 spin_lock_irqsave(&rsp
->queue
->rsps_lock
, flags
);
218 list_add_tail(&rsp
->free_list
, &rsp
->queue
->free_rsps
);
219 spin_unlock_irqrestore(&rsp
->queue
->rsps_lock
, flags
);
222 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device
*ndev
,
223 struct nvmet_rdma_cmd
*c
)
225 struct scatterlist
*sg
;
229 if (!ndev
->inline_data_size
)
235 for (i
= 0; i
< ndev
->inline_page_count
; i
++, sg
++, sge
++) {
237 ib_dma_unmap_page(ndev
->device
, sge
->addr
,
238 sge
->length
, DMA_FROM_DEVICE
);
240 __free_page(sg_page(sg
));
244 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device
*ndev
,
245 struct nvmet_rdma_cmd
*c
)
247 struct scatterlist
*sg
;
253 if (!ndev
->inline_data_size
)
257 sg_init_table(sg
, ndev
->inline_page_count
);
259 len
= ndev
->inline_data_size
;
261 for (i
= 0; i
< ndev
->inline_page_count
; i
++, sg
++, sge
++) {
262 pg
= alloc_page(GFP_KERNEL
);
265 sg_assign_page(sg
, pg
);
266 sge
->addr
= ib_dma_map_page(ndev
->device
,
267 pg
, 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
268 if (ib_dma_mapping_error(ndev
->device
, sge
->addr
))
270 sge
->length
= min_t(int, len
, PAGE_SIZE
);
271 sge
->lkey
= ndev
->pd
->local_dma_lkey
;
277 for (; i
>= 0; i
--, sg
--, sge
--) {
279 ib_dma_unmap_page(ndev
->device
, sge
->addr
,
280 sge
->length
, DMA_FROM_DEVICE
);
282 __free_page(sg_page(sg
));
287 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device
*ndev
,
288 struct nvmet_rdma_cmd
*c
, bool admin
)
290 /* NVMe command / RDMA RECV */
291 c
->nvme_cmd
= kmalloc(sizeof(*c
->nvme_cmd
), GFP_KERNEL
);
295 c
->sge
[0].addr
= ib_dma_map_single(ndev
->device
, c
->nvme_cmd
,
296 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
297 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[0].addr
))
300 c
->sge
[0].length
= sizeof(*c
->nvme_cmd
);
301 c
->sge
[0].lkey
= ndev
->pd
->local_dma_lkey
;
303 if (!admin
&& nvmet_rdma_alloc_inline_pages(ndev
, c
))
306 c
->cqe
.done
= nvmet_rdma_recv_done
;
308 c
->wr
.wr_cqe
= &c
->cqe
;
309 c
->wr
.sg_list
= c
->sge
;
310 c
->wr
.num_sge
= admin
? 1 : ndev
->inline_page_count
+ 1;
315 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
316 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
324 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device
*ndev
,
325 struct nvmet_rdma_cmd
*c
, bool admin
)
328 nvmet_rdma_free_inline_pages(ndev
, c
);
329 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
330 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
334 static struct nvmet_rdma_cmd
*
335 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device
*ndev
,
336 int nr_cmds
, bool admin
)
338 struct nvmet_rdma_cmd
*cmds
;
339 int ret
= -EINVAL
, i
;
341 cmds
= kcalloc(nr_cmds
, sizeof(struct nvmet_rdma_cmd
), GFP_KERNEL
);
345 for (i
= 0; i
< nr_cmds
; i
++) {
346 ret
= nvmet_rdma_alloc_cmd(ndev
, cmds
+ i
, admin
);
355 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
361 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device
*ndev
,
362 struct nvmet_rdma_cmd
*cmds
, int nr_cmds
, bool admin
)
366 for (i
= 0; i
< nr_cmds
; i
++)
367 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
371 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device
*ndev
,
372 struct nvmet_rdma_rsp
*r
)
374 /* NVMe CQE / RDMA SEND */
375 r
->req
.rsp
= kmalloc(sizeof(*r
->req
.rsp
), GFP_KERNEL
);
379 r
->send_sge
.addr
= ib_dma_map_single(ndev
->device
, r
->req
.rsp
,
380 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
381 if (ib_dma_mapping_error(ndev
->device
, r
->send_sge
.addr
))
384 r
->send_sge
.length
= sizeof(*r
->req
.rsp
);
385 r
->send_sge
.lkey
= ndev
->pd
->local_dma_lkey
;
387 r
->send_cqe
.done
= nvmet_rdma_send_done
;
389 r
->send_wr
.wr_cqe
= &r
->send_cqe
;
390 r
->send_wr
.sg_list
= &r
->send_sge
;
391 r
->send_wr
.num_sge
= 1;
392 r
->send_wr
.send_flags
= IB_SEND_SIGNALED
;
394 /* Data In / RDMA READ */
395 r
->read_cqe
.done
= nvmet_rdma_read_data_done
;
404 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device
*ndev
,
405 struct nvmet_rdma_rsp
*r
)
407 ib_dma_unmap_single(ndev
->device
, r
->send_sge
.addr
,
408 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
413 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue
*queue
)
415 struct nvmet_rdma_device
*ndev
= queue
->dev
;
416 int nr_rsps
= queue
->recv_queue_size
* 2;
417 int ret
= -EINVAL
, i
;
419 queue
->rsps
= kcalloc(nr_rsps
, sizeof(struct nvmet_rdma_rsp
),
424 for (i
= 0; i
< nr_rsps
; i
++) {
425 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
427 ret
= nvmet_rdma_alloc_rsp(ndev
, rsp
);
431 list_add_tail(&rsp
->free_list
, &queue
->free_rsps
);
438 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
440 list_del(&rsp
->free_list
);
441 nvmet_rdma_free_rsp(ndev
, rsp
);
448 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue
*queue
)
450 struct nvmet_rdma_device
*ndev
= queue
->dev
;
451 int i
, nr_rsps
= queue
->recv_queue_size
* 2;
453 for (i
= 0; i
< nr_rsps
; i
++) {
454 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
456 list_del(&rsp
->free_list
);
457 nvmet_rdma_free_rsp(ndev
, rsp
);
462 static int nvmet_rdma_post_recv(struct nvmet_rdma_device
*ndev
,
463 struct nvmet_rdma_cmd
*cmd
)
467 ib_dma_sync_single_for_device(ndev
->device
,
468 cmd
->sge
[0].addr
, cmd
->sge
[0].length
,
472 ret
= ib_post_srq_recv(ndev
->srq
, &cmd
->wr
, NULL
);
474 ret
= ib_post_recv(cmd
->queue
->cm_id
->qp
, &cmd
->wr
, NULL
);
477 pr_err("post_recv cmd failed\n");
482 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue
*queue
)
484 spin_lock(&queue
->rsp_wr_wait_lock
);
485 while (!list_empty(&queue
->rsp_wr_wait_list
)) {
486 struct nvmet_rdma_rsp
*rsp
;
489 rsp
= list_entry(queue
->rsp_wr_wait_list
.next
,
490 struct nvmet_rdma_rsp
, wait_list
);
491 list_del(&rsp
->wait_list
);
493 spin_unlock(&queue
->rsp_wr_wait_lock
);
494 ret
= nvmet_rdma_execute_command(rsp
);
495 spin_lock(&queue
->rsp_wr_wait_lock
);
498 list_add(&rsp
->wait_list
, &queue
->rsp_wr_wait_list
);
502 spin_unlock(&queue
->rsp_wr_wait_lock
);
506 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp
*rsp
)
508 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
510 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
513 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
514 queue
->cm_id
->port_num
, rsp
->req
.sg
,
515 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
518 if (rsp
->req
.sg
!= rsp
->cmd
->inline_sg
)
519 nvmet_req_free_sgl(&rsp
->req
);
521 if (unlikely(!list_empty_careful(&queue
->rsp_wr_wait_list
)))
522 nvmet_rdma_process_wr_wait_list(queue
);
524 nvmet_rdma_put_rsp(rsp
);
527 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue
*queue
)
529 if (queue
->nvme_sq
.ctrl
) {
530 nvmet_ctrl_fatal_error(queue
->nvme_sq
.ctrl
);
533 * we didn't setup the controller yet in case
534 * of admin connect error, just disconnect and
537 nvmet_rdma_queue_disconnect(queue
);
541 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
543 struct nvmet_rdma_rsp
*rsp
=
544 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, send_cqe
);
545 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
547 nvmet_rdma_release_rsp(rsp
);
549 if (unlikely(wc
->status
!= IB_WC_SUCCESS
&&
550 wc
->status
!= IB_WC_WR_FLUSH_ERR
)) {
551 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
552 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
553 nvmet_rdma_error_comp(queue
);
557 static void nvmet_rdma_queue_response(struct nvmet_req
*req
)
559 struct nvmet_rdma_rsp
*rsp
=
560 container_of(req
, struct nvmet_rdma_rsp
, req
);
561 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
562 struct ib_send_wr
*first_wr
;
564 if (rsp
->flags
& NVMET_RDMA_REQ_INVALIDATE_RKEY
) {
565 rsp
->send_wr
.opcode
= IB_WR_SEND_WITH_INV
;
566 rsp
->send_wr
.ex
.invalidate_rkey
= rsp
->invalidate_rkey
;
568 rsp
->send_wr
.opcode
= IB_WR_SEND
;
571 if (nvmet_rdma_need_data_out(rsp
))
572 first_wr
= rdma_rw_ctx_wrs(&rsp
->rw
, cm_id
->qp
,
573 cm_id
->port_num
, NULL
, &rsp
->send_wr
);
575 first_wr
= &rsp
->send_wr
;
577 nvmet_rdma_post_recv(rsp
->queue
->dev
, rsp
->cmd
);
579 ib_dma_sync_single_for_device(rsp
->queue
->dev
->device
,
580 rsp
->send_sge
.addr
, rsp
->send_sge
.length
,
583 if (unlikely(ib_post_send(cm_id
->qp
, first_wr
, NULL
))) {
584 pr_err("sending cmd response failed\n");
585 nvmet_rdma_release_rsp(rsp
);
589 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
591 struct nvmet_rdma_rsp
*rsp
=
592 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, read_cqe
);
593 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
595 WARN_ON(rsp
->n_rdma
<= 0);
596 atomic_add(rsp
->n_rdma
, &queue
->sq_wr_avail
);
597 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
598 queue
->cm_id
->port_num
, rsp
->req
.sg
,
599 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
602 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
603 nvmet_req_uninit(&rsp
->req
);
604 nvmet_rdma_release_rsp(rsp
);
605 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
606 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
607 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
608 nvmet_rdma_error_comp(queue
);
613 nvmet_req_execute(&rsp
->req
);
616 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp
*rsp
, u32 len
,
619 int sg_count
= num_pages(len
);
620 struct scatterlist
*sg
;
623 sg
= rsp
->cmd
->inline_sg
;
624 for (i
= 0; i
< sg_count
; i
++, sg
++) {
625 if (i
< sg_count
- 1)
630 sg
->length
= min_t(int, len
, PAGE_SIZE
- off
);
636 rsp
->req
.sg
= rsp
->cmd
->inline_sg
;
637 rsp
->req
.sg_cnt
= sg_count
;
640 static u16
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp
*rsp
)
642 struct nvme_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.sgl
;
643 u64 off
= le64_to_cpu(sgl
->addr
);
644 u32 len
= le32_to_cpu(sgl
->length
);
646 if (!nvme_is_write(rsp
->req
.cmd
)) {
648 offsetof(struct nvme_common_command
, opcode
);
649 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
652 if (off
+ len
> rsp
->queue
->dev
->inline_data_size
) {
653 pr_err("invalid inline data offset!\n");
654 return NVME_SC_SGL_INVALID_OFFSET
| NVME_SC_DNR
;
657 /* no data command? */
661 nvmet_rdma_use_inline_sg(rsp
, len
, off
);
662 rsp
->flags
|= NVMET_RDMA_REQ_INLINE_DATA
;
663 rsp
->req
.transfer_len
+= len
;
667 static u16
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp
*rsp
,
668 struct nvme_keyed_sgl_desc
*sgl
, bool invalidate
)
670 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
671 u64 addr
= le64_to_cpu(sgl
->addr
);
672 u32 key
= get_unaligned_le32(sgl
->key
);
675 rsp
->req
.transfer_len
= get_unaligned_le24(sgl
->length
);
677 /* no data command? */
678 if (!rsp
->req
.transfer_len
)
681 ret
= nvmet_req_alloc_sgl(&rsp
->req
);
685 ret
= rdma_rw_ctx_init(&rsp
->rw
, cm_id
->qp
, cm_id
->port_num
,
686 rsp
->req
.sg
, rsp
->req
.sg_cnt
, 0, addr
, key
,
687 nvmet_data_dir(&rsp
->req
));
693 rsp
->invalidate_rkey
= key
;
694 rsp
->flags
|= NVMET_RDMA_REQ_INVALIDATE_RKEY
;
700 rsp
->req
.transfer_len
= 0;
701 return NVME_SC_INTERNAL
;
704 static u16
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp
*rsp
)
706 struct nvme_keyed_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.ksgl
;
708 switch (sgl
->type
>> 4) {
709 case NVME_SGL_FMT_DATA_DESC
:
710 switch (sgl
->type
& 0xf) {
711 case NVME_SGL_FMT_OFFSET
:
712 return nvmet_rdma_map_sgl_inline(rsp
);
714 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
716 offsetof(struct nvme_common_command
, dptr
);
717 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
719 case NVME_KEY_SGL_FMT_DATA_DESC
:
720 switch (sgl
->type
& 0xf) {
721 case NVME_SGL_FMT_ADDRESS
| NVME_SGL_FMT_INVALIDATE
:
722 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, true);
723 case NVME_SGL_FMT_ADDRESS
:
724 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, false);
726 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
728 offsetof(struct nvme_common_command
, dptr
);
729 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
732 pr_err("invalid SGL type: %#x\n", sgl
->type
);
733 rsp
->req
.error_loc
= offsetof(struct nvme_common_command
, dptr
);
734 return NVME_SC_SGL_INVALID_TYPE
| NVME_SC_DNR
;
738 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
)
740 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
742 if (unlikely(atomic_sub_return(1 + rsp
->n_rdma
,
743 &queue
->sq_wr_avail
) < 0)) {
744 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
745 1 + rsp
->n_rdma
, queue
->idx
,
746 queue
->nvme_sq
.ctrl
->cntlid
);
747 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
751 if (nvmet_rdma_need_data_in(rsp
)) {
752 if (rdma_rw_ctx_post(&rsp
->rw
, queue
->cm_id
->qp
,
753 queue
->cm_id
->port_num
, &rsp
->read_cqe
, NULL
))
754 nvmet_req_complete(&rsp
->req
, NVME_SC_DATA_XFER_ERROR
);
756 nvmet_req_execute(&rsp
->req
);
762 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue
*queue
,
763 struct nvmet_rdma_rsp
*cmd
)
767 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
768 cmd
->cmd
->sge
[0].addr
, cmd
->cmd
->sge
[0].length
,
770 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
771 cmd
->send_sge
.addr
, cmd
->send_sge
.length
,
774 cmd
->req
.p2p_client
= &queue
->dev
->device
->dev
;
776 if (!nvmet_req_init(&cmd
->req
, &queue
->nvme_cq
,
777 &queue
->nvme_sq
, &nvmet_rdma_ops
))
780 status
= nvmet_rdma_map_sgl(cmd
);
784 if (unlikely(!nvmet_rdma_execute_command(cmd
))) {
785 spin_lock(&queue
->rsp_wr_wait_lock
);
786 list_add_tail(&cmd
->wait_list
, &queue
->rsp_wr_wait_list
);
787 spin_unlock(&queue
->rsp_wr_wait_lock
);
793 nvmet_req_complete(&cmd
->req
, status
);
796 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
798 struct nvmet_rdma_cmd
*cmd
=
799 container_of(wc
->wr_cqe
, struct nvmet_rdma_cmd
, cqe
);
800 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
801 struct nvmet_rdma_rsp
*rsp
;
803 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
804 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
805 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
806 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
),
808 nvmet_rdma_error_comp(queue
);
813 if (unlikely(wc
->byte_len
< sizeof(struct nvme_command
))) {
814 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
815 nvmet_rdma_error_comp(queue
);
820 rsp
= nvmet_rdma_get_rsp(queue
);
821 if (unlikely(!rsp
)) {
823 * we get here only under memory pressure,
824 * silently drop and have the host retry
825 * as we can't even fail it.
827 nvmet_rdma_post_recv(queue
->dev
, cmd
);
833 rsp
->req
.cmd
= cmd
->nvme_cmd
;
834 rsp
->req
.port
= queue
->port
;
837 if (unlikely(queue
->state
!= NVMET_RDMA_Q_LIVE
)) {
840 spin_lock_irqsave(&queue
->state_lock
, flags
);
841 if (queue
->state
== NVMET_RDMA_Q_CONNECTING
)
842 list_add_tail(&rsp
->wait_list
, &queue
->rsp_wait_list
);
844 nvmet_rdma_put_rsp(rsp
);
845 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
849 nvmet_rdma_handle_command(queue
, rsp
);
852 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device
*ndev
)
857 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
858 ib_destroy_srq(ndev
->srq
);
861 static int nvmet_rdma_init_srq(struct nvmet_rdma_device
*ndev
)
863 struct ib_srq_init_attr srq_attr
= { NULL
, };
868 srq_size
= 4095; /* XXX: tune */
870 srq_attr
.attr
.max_wr
= srq_size
;
871 srq_attr
.attr
.max_sge
= 1 + ndev
->inline_page_count
;
872 srq_attr
.attr
.srq_limit
= 0;
873 srq_attr
.srq_type
= IB_SRQT_BASIC
;
874 srq
= ib_create_srq(ndev
->pd
, &srq_attr
);
877 * If SRQs aren't supported we just go ahead and use normal
878 * non-shared receive queues.
880 pr_info("SRQ requested but not supported.\n");
884 ndev
->srq_cmds
= nvmet_rdma_alloc_cmds(ndev
, srq_size
, false);
885 if (IS_ERR(ndev
->srq_cmds
)) {
886 ret
= PTR_ERR(ndev
->srq_cmds
);
887 goto out_destroy_srq
;
891 ndev
->srq_size
= srq_size
;
893 for (i
= 0; i
< srq_size
; i
++) {
894 ret
= nvmet_rdma_post_recv(ndev
, &ndev
->srq_cmds
[i
]);
902 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
908 static void nvmet_rdma_free_dev(struct kref
*ref
)
910 struct nvmet_rdma_device
*ndev
=
911 container_of(ref
, struct nvmet_rdma_device
, ref
);
913 mutex_lock(&device_list_mutex
);
914 list_del(&ndev
->entry
);
915 mutex_unlock(&device_list_mutex
);
917 nvmet_rdma_destroy_srq(ndev
);
918 ib_dealloc_pd(ndev
->pd
);
923 static struct nvmet_rdma_device
*
924 nvmet_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
926 struct nvmet_port
*port
= cm_id
->context
;
927 struct nvmet_rdma_device
*ndev
;
928 int inline_page_count
;
929 int inline_sge_count
;
932 mutex_lock(&device_list_mutex
);
933 list_for_each_entry(ndev
, &device_list
, entry
) {
934 if (ndev
->device
->node_guid
== cm_id
->device
->node_guid
&&
935 kref_get_unless_zero(&ndev
->ref
))
939 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
943 inline_page_count
= num_pages(port
->inline_data_size
);
944 inline_sge_count
= max(cm_id
->device
->attrs
.max_sge_rd
,
945 cm_id
->device
->attrs
.max_recv_sge
) - 1;
946 if (inline_page_count
> inline_sge_count
) {
947 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
948 port
->inline_data_size
, cm_id
->device
->name
,
949 inline_sge_count
* PAGE_SIZE
);
950 port
->inline_data_size
= inline_sge_count
* PAGE_SIZE
;
951 inline_page_count
= inline_sge_count
;
953 ndev
->inline_data_size
= port
->inline_data_size
;
954 ndev
->inline_page_count
= inline_page_count
;
955 ndev
->device
= cm_id
->device
;
956 kref_init(&ndev
->ref
);
958 ndev
->pd
= ib_alloc_pd(ndev
->device
, 0);
959 if (IS_ERR(ndev
->pd
))
962 if (nvmet_rdma_use_srq
) {
963 ret
= nvmet_rdma_init_srq(ndev
);
968 list_add(&ndev
->entry
, &device_list
);
970 mutex_unlock(&device_list_mutex
);
971 pr_debug("added %s.\n", ndev
->device
->name
);
975 ib_dealloc_pd(ndev
->pd
);
979 mutex_unlock(&device_list_mutex
);
983 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue
*queue
)
985 struct ib_qp_init_attr qp_attr
;
986 struct nvmet_rdma_device
*ndev
= queue
->dev
;
987 int comp_vector
, nr_cqe
, ret
, i
;
990 * Spread the io queues across completion vectors,
991 * but still keep all admin queues on vector 0.
993 comp_vector
= !queue
->host_qid
? 0 :
994 queue
->idx
% ndev
->device
->num_comp_vectors
;
997 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
999 nr_cqe
= queue
->recv_queue_size
+ 2 * queue
->send_queue_size
;
1001 queue
->cq
= ib_alloc_cq(ndev
->device
, queue
,
1002 nr_cqe
+ 1, comp_vector
,
1004 if (IS_ERR(queue
->cq
)) {
1005 ret
= PTR_ERR(queue
->cq
);
1006 pr_err("failed to create CQ cqe= %d ret= %d\n",
1011 memset(&qp_attr
, 0, sizeof(qp_attr
));
1012 qp_attr
.qp_context
= queue
;
1013 qp_attr
.event_handler
= nvmet_rdma_qp_event
;
1014 qp_attr
.send_cq
= queue
->cq
;
1015 qp_attr
.recv_cq
= queue
->cq
;
1016 qp_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
1017 qp_attr
.qp_type
= IB_QPT_RC
;
1019 qp_attr
.cap
.max_send_wr
= queue
->send_queue_size
+ 1;
1020 qp_attr
.cap
.max_rdma_ctxs
= queue
->send_queue_size
;
1021 qp_attr
.cap
.max_send_sge
= max(ndev
->device
->attrs
.max_sge_rd
,
1022 ndev
->device
->attrs
.max_send_sge
);
1025 qp_attr
.srq
= ndev
->srq
;
1028 qp_attr
.cap
.max_recv_wr
= 1 + queue
->recv_queue_size
;
1029 qp_attr
.cap
.max_recv_sge
= 1 + ndev
->inline_page_count
;
1032 ret
= rdma_create_qp(queue
->cm_id
, ndev
->pd
, &qp_attr
);
1034 pr_err("failed to create_qp ret= %d\n", ret
);
1035 goto err_destroy_cq
;
1038 atomic_set(&queue
->sq_wr_avail
, qp_attr
.cap
.max_send_wr
);
1040 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1041 __func__
, queue
->cq
->cqe
, qp_attr
.cap
.max_send_sge
,
1042 qp_attr
.cap
.max_send_wr
, queue
->cm_id
);
1045 for (i
= 0; i
< queue
->recv_queue_size
; i
++) {
1046 queue
->cmds
[i
].queue
= queue
;
1047 ret
= nvmet_rdma_post_recv(ndev
, &queue
->cmds
[i
]);
1049 goto err_destroy_qp
;
1057 rdma_destroy_qp(queue
->cm_id
);
1059 ib_free_cq(queue
->cq
);
1063 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue
*queue
)
1065 struct ib_qp
*qp
= queue
->cm_id
->qp
;
1068 rdma_destroy_id(queue
->cm_id
);
1070 ib_free_cq(queue
->cq
);
1073 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue
*queue
)
1075 pr_debug("freeing queue %d\n", queue
->idx
);
1077 nvmet_sq_destroy(&queue
->nvme_sq
);
1079 nvmet_rdma_destroy_queue_ib(queue
);
1080 if (!queue
->dev
->srq
) {
1081 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1082 queue
->recv_queue_size
,
1085 nvmet_rdma_free_rsps(queue
);
1086 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1090 static void nvmet_rdma_release_queue_work(struct work_struct
*w
)
1092 struct nvmet_rdma_queue
*queue
=
1093 container_of(w
, struct nvmet_rdma_queue
, release_work
);
1094 struct nvmet_rdma_device
*dev
= queue
->dev
;
1096 nvmet_rdma_free_queue(queue
);
1098 kref_put(&dev
->ref
, nvmet_rdma_free_dev
);
1102 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param
*conn
,
1103 struct nvmet_rdma_queue
*queue
)
1105 struct nvme_rdma_cm_req
*req
;
1107 req
= (struct nvme_rdma_cm_req
*)conn
->private_data
;
1108 if (!req
|| conn
->private_data_len
== 0)
1109 return NVME_RDMA_CM_INVALID_LEN
;
1111 if (le16_to_cpu(req
->recfmt
) != NVME_RDMA_CM_FMT_1_0
)
1112 return NVME_RDMA_CM_INVALID_RECFMT
;
1114 queue
->host_qid
= le16_to_cpu(req
->qid
);
1117 * req->hsqsize corresponds to our recv queue size plus 1
1118 * req->hrqsize corresponds to our send queue size
1120 queue
->recv_queue_size
= le16_to_cpu(req
->hsqsize
) + 1;
1121 queue
->send_queue_size
= le16_to_cpu(req
->hrqsize
);
1123 if (!queue
->host_qid
&& queue
->recv_queue_size
> NVME_AQ_DEPTH
)
1124 return NVME_RDMA_CM_INVALID_HSQSIZE
;
1126 /* XXX: Should we enforce some kind of max for IO queues? */
1131 static int nvmet_rdma_cm_reject(struct rdma_cm_id
*cm_id
,
1132 enum nvme_rdma_cm_status status
)
1134 struct nvme_rdma_cm_rej rej
;
1136 pr_debug("rejecting connect request: status %d (%s)\n",
1137 status
, nvme_rdma_cm_msg(status
));
1139 rej
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1140 rej
.sts
= cpu_to_le16(status
);
1142 return rdma_reject(cm_id
, (void *)&rej
, sizeof(rej
));
1145 static struct nvmet_rdma_queue
*
1146 nvmet_rdma_alloc_queue(struct nvmet_rdma_device
*ndev
,
1147 struct rdma_cm_id
*cm_id
,
1148 struct rdma_cm_event
*event
)
1150 struct nvmet_rdma_queue
*queue
;
1153 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
1155 ret
= NVME_RDMA_CM_NO_RSC
;
1159 ret
= nvmet_sq_init(&queue
->nvme_sq
);
1161 ret
= NVME_RDMA_CM_NO_RSC
;
1162 goto out_free_queue
;
1165 ret
= nvmet_rdma_parse_cm_connect_req(&event
->param
.conn
, queue
);
1167 goto out_destroy_sq
;
1170 * Schedules the actual release because calling rdma_destroy_id from
1171 * inside a CM callback would trigger a deadlock. (great API design..)
1173 INIT_WORK(&queue
->release_work
, nvmet_rdma_release_queue_work
);
1175 queue
->cm_id
= cm_id
;
1177 spin_lock_init(&queue
->state_lock
);
1178 queue
->state
= NVMET_RDMA_Q_CONNECTING
;
1179 INIT_LIST_HEAD(&queue
->rsp_wait_list
);
1180 INIT_LIST_HEAD(&queue
->rsp_wr_wait_list
);
1181 spin_lock_init(&queue
->rsp_wr_wait_lock
);
1182 INIT_LIST_HEAD(&queue
->free_rsps
);
1183 spin_lock_init(&queue
->rsps_lock
);
1184 INIT_LIST_HEAD(&queue
->queue_list
);
1186 queue
->idx
= ida_simple_get(&nvmet_rdma_queue_ida
, 0, 0, GFP_KERNEL
);
1187 if (queue
->idx
< 0) {
1188 ret
= NVME_RDMA_CM_NO_RSC
;
1189 goto out_destroy_sq
;
1192 ret
= nvmet_rdma_alloc_rsps(queue
);
1194 ret
= NVME_RDMA_CM_NO_RSC
;
1195 goto out_ida_remove
;
1199 queue
->cmds
= nvmet_rdma_alloc_cmds(ndev
,
1200 queue
->recv_queue_size
,
1202 if (IS_ERR(queue
->cmds
)) {
1203 ret
= NVME_RDMA_CM_NO_RSC
;
1204 goto out_free_responses
;
1208 ret
= nvmet_rdma_create_queue_ib(queue
);
1210 pr_err("%s: creating RDMA queue failed (%d).\n",
1212 ret
= NVME_RDMA_CM_NO_RSC
;
1220 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1221 queue
->recv_queue_size
,
1225 nvmet_rdma_free_rsps(queue
);
1227 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1229 nvmet_sq_destroy(&queue
->nvme_sq
);
1233 nvmet_rdma_cm_reject(cm_id
, ret
);
1237 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
)
1239 struct nvmet_rdma_queue
*queue
= priv
;
1241 switch (event
->event
) {
1242 case IB_EVENT_COMM_EST
:
1243 rdma_notify(queue
->cm_id
, event
->event
);
1246 pr_err("received IB QP event: %s (%d)\n",
1247 ib_event_msg(event
->event
), event
->event
);
1252 static int nvmet_rdma_cm_accept(struct rdma_cm_id
*cm_id
,
1253 struct nvmet_rdma_queue
*queue
,
1254 struct rdma_conn_param
*p
)
1256 struct rdma_conn_param param
= { };
1257 struct nvme_rdma_cm_rep priv
= { };
1260 param
.rnr_retry_count
= 7;
1261 param
.flow_control
= 1;
1262 param
.initiator_depth
= min_t(u8
, p
->initiator_depth
,
1263 queue
->dev
->device
->attrs
.max_qp_init_rd_atom
);
1264 param
.private_data
= &priv
;
1265 param
.private_data_len
= sizeof(priv
);
1266 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1267 priv
.crqsize
= cpu_to_le16(queue
->recv_queue_size
);
1269 ret
= rdma_accept(cm_id
, ¶m
);
1271 pr_err("rdma_accept failed (error code = %d)\n", ret
);
1276 static int nvmet_rdma_queue_connect(struct rdma_cm_id
*cm_id
,
1277 struct rdma_cm_event
*event
)
1279 struct nvmet_rdma_device
*ndev
;
1280 struct nvmet_rdma_queue
*queue
;
1283 ndev
= nvmet_rdma_find_get_device(cm_id
);
1285 nvmet_rdma_cm_reject(cm_id
, NVME_RDMA_CM_NO_RSC
);
1286 return -ECONNREFUSED
;
1289 queue
= nvmet_rdma_alloc_queue(ndev
, cm_id
, event
);
1294 queue
->port
= cm_id
->context
;
1296 if (queue
->host_qid
== 0) {
1297 /* Let inflight controller teardown complete */
1298 flush_scheduled_work();
1301 ret
= nvmet_rdma_cm_accept(cm_id
, queue
, &event
->param
.conn
);
1303 schedule_work(&queue
->release_work
);
1304 /* Destroying rdma_cm id is not needed here */
1308 mutex_lock(&nvmet_rdma_queue_mutex
);
1309 list_add_tail(&queue
->queue_list
, &nvmet_rdma_queue_list
);
1310 mutex_unlock(&nvmet_rdma_queue_mutex
);
1315 kref_put(&ndev
->ref
, nvmet_rdma_free_dev
);
1320 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue
*queue
)
1322 unsigned long flags
;
1324 spin_lock_irqsave(&queue
->state_lock
, flags
);
1325 if (queue
->state
!= NVMET_RDMA_Q_CONNECTING
) {
1326 pr_warn("trying to establish a connected queue\n");
1329 queue
->state
= NVMET_RDMA_Q_LIVE
;
1331 while (!list_empty(&queue
->rsp_wait_list
)) {
1332 struct nvmet_rdma_rsp
*cmd
;
1334 cmd
= list_first_entry(&queue
->rsp_wait_list
,
1335 struct nvmet_rdma_rsp
, wait_list
);
1336 list_del(&cmd
->wait_list
);
1338 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1339 nvmet_rdma_handle_command(queue
, cmd
);
1340 spin_lock_irqsave(&queue
->state_lock
, flags
);
1344 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1347 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1349 bool disconnect
= false;
1350 unsigned long flags
;
1352 pr_debug("cm_id= %p queue->state= %d\n", queue
->cm_id
, queue
->state
);
1354 spin_lock_irqsave(&queue
->state_lock
, flags
);
1355 switch (queue
->state
) {
1356 case NVMET_RDMA_Q_CONNECTING
:
1357 case NVMET_RDMA_Q_LIVE
:
1358 queue
->state
= NVMET_RDMA_Q_DISCONNECTING
;
1361 case NVMET_RDMA_Q_DISCONNECTING
:
1364 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1367 rdma_disconnect(queue
->cm_id
);
1368 schedule_work(&queue
->release_work
);
1372 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1374 bool disconnect
= false;
1376 mutex_lock(&nvmet_rdma_queue_mutex
);
1377 if (!list_empty(&queue
->queue_list
)) {
1378 list_del_init(&queue
->queue_list
);
1381 mutex_unlock(&nvmet_rdma_queue_mutex
);
1384 __nvmet_rdma_queue_disconnect(queue
);
1387 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id
*cm_id
,
1388 struct nvmet_rdma_queue
*queue
)
1390 WARN_ON_ONCE(queue
->state
!= NVMET_RDMA_Q_CONNECTING
);
1392 mutex_lock(&nvmet_rdma_queue_mutex
);
1393 if (!list_empty(&queue
->queue_list
))
1394 list_del_init(&queue
->queue_list
);
1395 mutex_unlock(&nvmet_rdma_queue_mutex
);
1397 pr_err("failed to connect queue %d\n", queue
->idx
);
1398 schedule_work(&queue
->release_work
);
1402 * nvme_rdma_device_removal() - Handle RDMA device removal
1403 * @cm_id: rdma_cm id, used for nvmet port
1404 * @queue: nvmet rdma queue (cm id qp_context)
1406 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1407 * to unplug. Note that this event can be generated on a normal
1408 * queue cm_id and/or a device bound listener cm_id (where in this
1409 * case queue will be null).
1411 * We registered an ib_client to handle device removal for queues,
1412 * so we only need to handle the listening port cm_ids. In this case
1413 * we nullify the priv to prevent double cm_id destruction and destroying
1414 * the cm_id implicitely by returning a non-zero rc to the callout.
1416 static int nvmet_rdma_device_removal(struct rdma_cm_id
*cm_id
,
1417 struct nvmet_rdma_queue
*queue
)
1419 struct nvmet_port
*port
;
1423 * This is a queue cm_id. we have registered
1424 * an ib_client to handle queues removal
1425 * so don't interfear and just return.
1430 port
= cm_id
->context
;
1433 * This is a listener cm_id. Make sure that
1434 * future remove_port won't invoke a double
1435 * cm_id destroy. use atomic xchg to make sure
1436 * we don't compete with remove_port.
1438 if (xchg(&port
->priv
, NULL
) != cm_id
)
1442 * We need to return 1 so that the core will destroy
1443 * it's own ID. What a great API design..
1448 static int nvmet_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1449 struct rdma_cm_event
*event
)
1451 struct nvmet_rdma_queue
*queue
= NULL
;
1455 queue
= cm_id
->qp
->qp_context
;
1457 pr_debug("%s (%d): status %d id %p\n",
1458 rdma_event_msg(event
->event
), event
->event
,
1459 event
->status
, cm_id
);
1461 switch (event
->event
) {
1462 case RDMA_CM_EVENT_CONNECT_REQUEST
:
1463 ret
= nvmet_rdma_queue_connect(cm_id
, event
);
1465 case RDMA_CM_EVENT_ESTABLISHED
:
1466 nvmet_rdma_queue_established(queue
);
1468 case RDMA_CM_EVENT_ADDR_CHANGE
:
1469 case RDMA_CM_EVENT_DISCONNECTED
:
1470 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1471 nvmet_rdma_queue_disconnect(queue
);
1473 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1474 ret
= nvmet_rdma_device_removal(cm_id
, queue
);
1476 case RDMA_CM_EVENT_REJECTED
:
1477 pr_debug("Connection rejected: %s\n",
1478 rdma_reject_msg(cm_id
, event
->status
));
1480 case RDMA_CM_EVENT_UNREACHABLE
:
1481 case RDMA_CM_EVENT_CONNECT_ERROR
:
1482 nvmet_rdma_queue_connect_fail(cm_id
, queue
);
1485 pr_err("received unrecognized RDMA CM event %d\n",
1493 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1495 struct nvmet_rdma_queue
*queue
;
1498 mutex_lock(&nvmet_rdma_queue_mutex
);
1499 list_for_each_entry(queue
, &nvmet_rdma_queue_list
, queue_list
) {
1500 if (queue
->nvme_sq
.ctrl
== ctrl
) {
1501 list_del_init(&queue
->queue_list
);
1502 mutex_unlock(&nvmet_rdma_queue_mutex
);
1504 __nvmet_rdma_queue_disconnect(queue
);
1508 mutex_unlock(&nvmet_rdma_queue_mutex
);
1511 static int nvmet_rdma_add_port(struct nvmet_port
*port
)
1513 struct rdma_cm_id
*cm_id
;
1514 struct sockaddr_storage addr
= { };
1515 __kernel_sa_family_t af
;
1518 switch (port
->disc_addr
.adrfam
) {
1519 case NVMF_ADDR_FAMILY_IP4
:
1522 case NVMF_ADDR_FAMILY_IP6
:
1526 pr_err("address family %d not supported\n",
1527 port
->disc_addr
.adrfam
);
1531 if (port
->inline_data_size
< 0) {
1532 port
->inline_data_size
= NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE
;
1533 } else if (port
->inline_data_size
> NVMET_RDMA_MAX_INLINE_DATA_SIZE
) {
1534 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1535 port
->inline_data_size
,
1536 NVMET_RDMA_MAX_INLINE_DATA_SIZE
);
1537 port
->inline_data_size
= NVMET_RDMA_MAX_INLINE_DATA_SIZE
;
1540 ret
= inet_pton_with_scope(&init_net
, af
, port
->disc_addr
.traddr
,
1541 port
->disc_addr
.trsvcid
, &addr
);
1543 pr_err("malformed ip/port passed: %s:%s\n",
1544 port
->disc_addr
.traddr
, port
->disc_addr
.trsvcid
);
1548 cm_id
= rdma_create_id(&init_net
, nvmet_rdma_cm_handler
, port
,
1549 RDMA_PS_TCP
, IB_QPT_RC
);
1550 if (IS_ERR(cm_id
)) {
1551 pr_err("CM ID creation failed\n");
1552 return PTR_ERR(cm_id
);
1556 * Allow both IPv4 and IPv6 sockets to bind a single port
1559 ret
= rdma_set_afonly(cm_id
, 1);
1561 pr_err("rdma_set_afonly failed (%d)\n", ret
);
1562 goto out_destroy_id
;
1565 ret
= rdma_bind_addr(cm_id
, (struct sockaddr
*)&addr
);
1567 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1568 (struct sockaddr
*)&addr
, ret
);
1569 goto out_destroy_id
;
1572 ret
= rdma_listen(cm_id
, 128);
1574 pr_err("listening to %pISpcs failed (%d)\n",
1575 (struct sockaddr
*)&addr
, ret
);
1576 goto out_destroy_id
;
1579 pr_info("enabling port %d (%pISpcs)\n",
1580 le16_to_cpu(port
->disc_addr
.portid
), (struct sockaddr
*)&addr
);
1585 rdma_destroy_id(cm_id
);
1589 static void nvmet_rdma_remove_port(struct nvmet_port
*port
)
1591 struct rdma_cm_id
*cm_id
= xchg(&port
->priv
, NULL
);
1594 rdma_destroy_id(cm_id
);
1597 static void nvmet_rdma_disc_port_addr(struct nvmet_req
*req
,
1598 struct nvmet_port
*port
, char *traddr
)
1600 struct rdma_cm_id
*cm_id
= port
->priv
;
1602 if (inet_addr_is_any((struct sockaddr
*)&cm_id
->route
.addr
.src_addr
)) {
1603 struct nvmet_rdma_rsp
*rsp
=
1604 container_of(req
, struct nvmet_rdma_rsp
, req
);
1605 struct rdma_cm_id
*req_cm_id
= rsp
->queue
->cm_id
;
1606 struct sockaddr
*addr
= (void *)&req_cm_id
->route
.addr
.src_addr
;
1608 sprintf(traddr
, "%pISc", addr
);
1610 memcpy(traddr
, port
->disc_addr
.traddr
, NVMF_TRADDR_SIZE
);
1614 static const struct nvmet_fabrics_ops nvmet_rdma_ops
= {
1615 .owner
= THIS_MODULE
,
1616 .type
= NVMF_TRTYPE_RDMA
,
1618 .has_keyed_sgls
= 1,
1619 .add_port
= nvmet_rdma_add_port
,
1620 .remove_port
= nvmet_rdma_remove_port
,
1621 .queue_response
= nvmet_rdma_queue_response
,
1622 .delete_ctrl
= nvmet_rdma_delete_ctrl
,
1623 .disc_traddr
= nvmet_rdma_disc_port_addr
,
1626 static void nvmet_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
1628 struct nvmet_rdma_queue
*queue
, *tmp
;
1629 struct nvmet_rdma_device
*ndev
;
1632 mutex_lock(&device_list_mutex
);
1633 list_for_each_entry(ndev
, &device_list
, entry
) {
1634 if (ndev
->device
== ib_device
) {
1639 mutex_unlock(&device_list_mutex
);
1645 * IB Device that is used by nvmet controllers is being removed,
1646 * delete all queues using this device.
1648 mutex_lock(&nvmet_rdma_queue_mutex
);
1649 list_for_each_entry_safe(queue
, tmp
, &nvmet_rdma_queue_list
,
1651 if (queue
->dev
->device
!= ib_device
)
1654 pr_info("Removing queue %d\n", queue
->idx
);
1655 list_del_init(&queue
->queue_list
);
1656 __nvmet_rdma_queue_disconnect(queue
);
1658 mutex_unlock(&nvmet_rdma_queue_mutex
);
1660 flush_scheduled_work();
1663 static struct ib_client nvmet_rdma_ib_client
= {
1664 .name
= "nvmet_rdma",
1665 .remove
= nvmet_rdma_remove_one
1668 static int __init
nvmet_rdma_init(void)
1672 ret
= ib_register_client(&nvmet_rdma_ib_client
);
1676 ret
= nvmet_register_transport(&nvmet_rdma_ops
);
1683 ib_unregister_client(&nvmet_rdma_ib_client
);
1687 static void __exit
nvmet_rdma_exit(void)
1689 nvmet_unregister_transport(&nvmet_rdma_ops
);
1690 ib_unregister_client(&nvmet_rdma_ib_client
);
1691 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list
));
1692 ida_destroy(&nvmet_rdma_queue_ida
);
1695 module_init(nvmet_rdma_init
);
1696 module_exit(nvmet_rdma_exit
);
1698 MODULE_LICENSE("GPL v2");
1699 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */