4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
28 #include <asm/firmware.h>
30 #include <asm/hvcall.h>
31 #include <asm/setup.h>
33 static int numa_enabled
= 1;
35 static char *cmdline __initdata
;
37 static int numa_debug
;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
40 int numa_cpu_lookup_table
[NR_CPUS
];
41 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
42 struct pglist_data
*node_data
[MAX_NUMNODES
];
44 EXPORT_SYMBOL(numa_cpu_lookup_table
);
45 EXPORT_SYMBOL(node_to_cpumask_map
);
46 EXPORT_SYMBOL(node_data
);
48 static int min_common_depth
;
49 static int n_mem_addr_cells
, n_mem_size_cells
;
50 static int form1_affinity
;
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth
;
54 static const unsigned int *distance_ref_points
;
55 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
61 * Note: cpumask_of_node() is not valid until after this is done.
63 static void __init
setup_node_to_cpumask_map(void)
65 unsigned int node
, num
= 0;
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids
== MAX_NUMNODES
) {
69 for_each_node_mask(node
, node_possible_map
)
71 nr_node_ids
= num
+ 1;
74 /* allocate the map */
75 for (node
= 0; node
< nr_node_ids
; node
++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
82 static int __cpuinit
fake_numa_create_new_node(unsigned long end_pfn
,
85 unsigned long long mem
;
87 static unsigned int fake_nid
;
88 static unsigned long long curr_boundary
;
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
104 mem
= memparse(p
, &p
);
108 if (mem
< curr_boundary
)
113 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
115 * Skip commas and spaces
117 while (*p
== ',' || *p
== ' ' || *p
== '\t')
123 dbg("created new fake_node with id %d\n", fake_nid
);
130 * get_node_active_region - Return active region containing pfn
131 * Active range returned is empty if none found.
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
135 static void __init
get_node_active_region(unsigned long pfn
,
136 struct node_active_region
*node_ar
)
138 unsigned long start_pfn
, end_pfn
;
141 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
142 if (pfn
>= start_pfn
&& pfn
< end_pfn
) {
144 node_ar
->start_pfn
= start_pfn
;
145 node_ar
->end_pfn
= end_pfn
;
151 static void map_cpu_to_node(int cpu
, int node
)
153 numa_cpu_lookup_table
[cpu
] = node
;
155 dbg("adding cpu %d to node %d\n", cpu
, node
);
157 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
158 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu
)
164 int node
= numa_cpu_lookup_table
[cpu
];
166 dbg("removing cpu %lu from node %d\n", cpu
, node
);
168 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
169 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
171 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
177 /* must hold reference to node during call */
178 static const int *of_get_associativity(struct device_node
*dev
)
180 return of_get_property(dev
, "ibm,associativity", NULL
);
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
188 static const u32
*of_get_usable_memory(struct device_node
*memory
)
192 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
193 if (!prop
|| len
< sizeof(unsigned int))
198 int __node_distance(int a
, int b
)
201 int distance
= LOCAL_DISTANCE
;
206 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
207 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
210 /* Double the distance for each NUMA level */
217 static void initialize_distance_lookup_table(int nid
,
218 const unsigned int *associativity
)
225 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
226 distance_lookup_table
[nid
][i
] =
227 associativity
[distance_ref_points
[i
]];
231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 static int associativity_to_nid(const unsigned int *associativity
)
238 if (min_common_depth
== -1)
241 if (associativity
[0] >= min_common_depth
)
242 nid
= associativity
[min_common_depth
];
244 /* POWER4 LPAR uses 0xffff as invalid node */
245 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
248 if (nid
> 0 && associativity
[0] >= distance_ref_points_depth
)
249 initialize_distance_lookup_table(nid
, associativity
);
255 /* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
258 static int of_node_to_nid_single(struct device_node
*device
)
261 const unsigned int *tmp
;
263 tmp
= of_get_associativity(device
);
265 nid
= associativity_to_nid(tmp
);
269 /* Walk the device tree upwards, looking for an associativity id */
270 int of_node_to_nid(struct device_node
*device
)
272 struct device_node
*tmp
;
277 nid
= of_node_to_nid_single(device
);
282 device
= of_get_parent(tmp
);
289 EXPORT_SYMBOL_GPL(of_node_to_nid
);
291 static int __init
find_min_common_depth(void)
294 struct device_node
*chosen
;
295 struct device_node
*root
;
298 if (firmware_has_feature(FW_FEATURE_OPAL
))
299 root
= of_find_node_by_path("/ibm,opal");
301 root
= of_find_node_by_path("/rtas");
303 root
= of_find_node_by_path("/");
306 * This property is a set of 32-bit integers, each representing
307 * an index into the ibm,associativity nodes.
309 * With form 0 affinity the first integer is for an SMP configuration
310 * (should be all 0's) and the second is for a normal NUMA
311 * configuration. We have only one level of NUMA.
313 * With form 1 affinity the first integer is the most significant
314 * NUMA boundary and the following are progressively less significant
315 * boundaries. There can be more than one level of NUMA.
317 distance_ref_points
= of_get_property(root
,
318 "ibm,associativity-reference-points",
319 &distance_ref_points_depth
);
321 if (!distance_ref_points
) {
322 dbg("NUMA: ibm,associativity-reference-points not found.\n");
326 distance_ref_points_depth
/= sizeof(int);
328 #define VEC5_AFFINITY_BYTE 5
329 #define VEC5_AFFINITY 0x80
331 if (firmware_has_feature(FW_FEATURE_OPAL
))
334 chosen
= of_find_node_by_path("/chosen");
336 vec5
= of_get_property(chosen
,
337 "ibm,architecture-vec-5", NULL
);
338 if (vec5
&& (vec5
[VEC5_AFFINITY_BYTE
] &
340 dbg("Using form 1 affinity\n");
348 if (form1_affinity
) {
349 depth
= distance_ref_points
[0];
351 if (distance_ref_points_depth
< 2) {
352 printk(KERN_WARNING
"NUMA: "
353 "short ibm,associativity-reference-points\n");
357 depth
= distance_ref_points
[1];
361 * Warn and cap if the hardware supports more than
362 * MAX_DISTANCE_REF_POINTS domains.
364 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
365 printk(KERN_WARNING
"NUMA: distance array capped at "
366 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
367 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
378 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
380 struct device_node
*memory
= NULL
;
382 memory
= of_find_node_by_type(memory
, "memory");
384 panic("numa.c: No memory nodes found!");
386 *n_addr_cells
= of_n_addr_cells(memory
);
387 *n_size_cells
= of_n_size_cells(memory
);
391 static unsigned long read_n_cells(int n
, const unsigned int **buf
)
393 unsigned long result
= 0;
396 result
= (result
<< 32) | **buf
;
403 * Read the next memblock list entry from the ibm,dynamic-memory property
404 * and return the information in the provided of_drconf_cell structure.
406 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const u32
**cellp
)
410 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
413 drmem
->drc_index
= cp
[0];
414 drmem
->reserved
= cp
[1];
415 drmem
->aa_index
= cp
[2];
416 drmem
->flags
= cp
[3];
422 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
424 * The layout of the ibm,dynamic-memory property is a number N of memblock
425 * list entries followed by N memblock list entries. Each memblock list entry
426 * contains information as laid out in the of_drconf_cell struct above.
428 static int of_get_drconf_memory(struct device_node
*memory
, const u32
**dm
)
433 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
434 if (!prop
|| len
< sizeof(unsigned int))
439 /* Now that we know the number of entries, revalidate the size
440 * of the property read in to ensure we have everything
442 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
450 * Retrieve and validate the ibm,lmb-size property for drconf memory
451 * from the device tree.
453 static u64
of_get_lmb_size(struct device_node
*memory
)
458 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
459 if (!prop
|| len
< sizeof(unsigned int))
462 return read_n_cells(n_mem_size_cells
, &prop
);
465 struct assoc_arrays
{
472 * Retrieve and validate the list of associativity arrays for drconf
473 * memory from the ibm,associativity-lookup-arrays property of the
476 * The layout of the ibm,associativity-lookup-arrays property is a number N
477 * indicating the number of associativity arrays, followed by a number M
478 * indicating the size of each associativity array, followed by a list
479 * of N associativity arrays.
481 static int of_get_assoc_arrays(struct device_node
*memory
,
482 struct assoc_arrays
*aa
)
487 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
488 if (!prop
|| len
< 2 * sizeof(unsigned int))
491 aa
->n_arrays
= *prop
++;
492 aa
->array_sz
= *prop
++;
494 /* Now that we know the number of arrays and size of each array,
495 * revalidate the size of the property read in.
497 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
505 * This is like of_node_to_nid_single() for memory represented in the
506 * ibm,dynamic-reconfiguration-memory node.
508 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
509 struct assoc_arrays
*aa
)
512 int nid
= default_nid
;
515 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
516 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
517 drmem
->aa_index
< aa
->n_arrays
) {
518 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
519 nid
= aa
->arrays
[index
];
521 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
529 * Figure out to which domain a cpu belongs and stick it there.
530 * Return the id of the domain used.
532 static int __cpuinit
numa_setup_cpu(unsigned long lcpu
)
535 struct device_node
*cpu
= of_get_cpu_node(lcpu
, NULL
);
542 nid
= of_node_to_nid_single(cpu
);
544 if (nid
< 0 || !node_online(nid
))
545 nid
= first_online_node
;
547 map_cpu_to_node(lcpu
, nid
);
554 static int __cpuinit
cpu_numa_callback(struct notifier_block
*nfb
,
555 unsigned long action
,
558 unsigned long lcpu
= (unsigned long)hcpu
;
559 int ret
= NOTIFY_DONE
;
563 case CPU_UP_PREPARE_FROZEN
:
564 numa_setup_cpu(lcpu
);
567 #ifdef CONFIG_HOTPLUG_CPU
569 case CPU_DEAD_FROZEN
:
570 case CPU_UP_CANCELED
:
571 case CPU_UP_CANCELED_FROZEN
:
572 unmap_cpu_from_node(lcpu
);
581 * Check and possibly modify a memory region to enforce the memory limit.
583 * Returns the size the region should have to enforce the memory limit.
584 * This will either be the original value of size, a truncated value,
585 * or zero. If the returned value of size is 0 the region should be
586 * discarded as it lies wholly above the memory limit.
588 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
592 * We use memblock_end_of_DRAM() in here instead of memory_limit because
593 * we've already adjusted it for the limit and it takes care of
594 * having memory holes below the limit. Also, in the case of
595 * iommu_is_off, memory_limit is not set but is implicitly enforced.
598 if (start
+ size
<= memblock_end_of_DRAM())
601 if (start
>= memblock_end_of_DRAM())
604 return memblock_end_of_DRAM() - start
;
608 * Reads the counter for a given entry in
609 * linux,drconf-usable-memory property
611 static inline int __init
read_usm_ranges(const u32
**usm
)
614 * For each lmb in ibm,dynamic-memory a corresponding
615 * entry in linux,drconf-usable-memory property contains
616 * a counter followed by that many (base, size) duple.
617 * read the counter from linux,drconf-usable-memory
619 return read_n_cells(n_mem_size_cells
, usm
);
623 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
624 * node. This assumes n_mem_{addr,size}_cells have been set.
626 static void __init
parse_drconf_memory(struct device_node
*memory
)
628 const u32
*uninitialized_var(dm
), *usm
;
629 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
630 unsigned long lmb_size
, base
, size
, sz
;
632 struct assoc_arrays aa
= { .arrays
= NULL
};
634 n
= of_get_drconf_memory(memory
, &dm
);
638 lmb_size
= of_get_lmb_size(memory
);
642 rc
= of_get_assoc_arrays(memory
, &aa
);
646 /* check if this is a kexec/kdump kernel */
647 usm
= of_get_usable_memory(memory
);
651 for (; n
!= 0; --n
) {
652 struct of_drconf_cell drmem
;
654 read_drconf_cell(&drmem
, &dm
);
656 /* skip this block if the reserved bit is set in flags (0x80)
657 or if the block is not assigned to this partition (0x8) */
658 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
659 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
662 base
= drmem
.base_addr
;
666 if (is_kexec_kdump
) {
667 ranges
= read_usm_ranges(&usm
);
668 if (!ranges
) /* there are no (base, size) duple */
672 if (is_kexec_kdump
) {
673 base
= read_n_cells(n_mem_addr_cells
, &usm
);
674 size
= read_n_cells(n_mem_size_cells
, &usm
);
676 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
677 fake_numa_create_new_node(
678 ((base
+ size
) >> PAGE_SHIFT
),
680 node_set_online(nid
);
681 sz
= numa_enforce_memory_limit(base
, size
);
683 memblock_set_node(base
, sz
, nid
);
688 static int __init
parse_numa_properties(void)
690 struct device_node
*memory
;
694 if (numa_enabled
== 0) {
695 printk(KERN_WARNING
"NUMA disabled by user\n");
699 min_common_depth
= find_min_common_depth();
701 if (min_common_depth
< 0)
702 return min_common_depth
;
704 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
707 * Even though we connect cpus to numa domains later in SMP
708 * init, we need to know the node ids now. This is because
709 * each node to be onlined must have NODE_DATA etc backing it.
711 for_each_present_cpu(i
) {
712 struct device_node
*cpu
;
715 cpu
= of_get_cpu_node(i
, NULL
);
717 nid
= of_node_to_nid_single(cpu
);
721 * Don't fall back to default_nid yet -- we will plug
722 * cpus into nodes once the memory scan has discovered
727 node_set_online(nid
);
730 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
732 for_each_node_by_type(memory
, "memory") {
737 const unsigned int *memcell_buf
;
740 memcell_buf
= of_get_property(memory
,
741 "linux,usable-memory", &len
);
742 if (!memcell_buf
|| len
<= 0)
743 memcell_buf
= of_get_property(memory
, "reg", &len
);
744 if (!memcell_buf
|| len
<= 0)
748 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
750 /* these are order-sensitive, and modify the buffer pointer */
751 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
752 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
755 * Assumption: either all memory nodes or none will
756 * have associativity properties. If none, then
757 * everything goes to default_nid.
759 nid
= of_node_to_nid_single(memory
);
763 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
764 node_set_online(nid
);
766 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
773 memblock_set_node(start
, size
, nid
);
780 * Now do the same thing for each MEMBLOCK listed in the
781 * ibm,dynamic-memory property in the
782 * ibm,dynamic-reconfiguration-memory node.
784 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
786 parse_drconf_memory(memory
);
791 static void __init
setup_nonnuma(void)
793 unsigned long top_of_ram
= memblock_end_of_DRAM();
794 unsigned long total_ram
= memblock_phys_mem_size();
795 unsigned long start_pfn
, end_pfn
;
796 unsigned int nid
= 0;
797 struct memblock_region
*reg
;
799 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
800 top_of_ram
, total_ram
);
801 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
802 (top_of_ram
- total_ram
) >> 20);
804 for_each_memblock(memory
, reg
) {
805 start_pfn
= memblock_region_memory_base_pfn(reg
);
806 end_pfn
= memblock_region_memory_end_pfn(reg
);
808 fake_numa_create_new_node(end_pfn
, &nid
);
809 memblock_set_node(PFN_PHYS(start_pfn
),
810 PFN_PHYS(end_pfn
- start_pfn
), nid
);
811 node_set_online(nid
);
815 void __init
dump_numa_cpu_topology(void)
818 unsigned int cpu
, count
;
820 if (min_common_depth
== -1 || !numa_enabled
)
823 for_each_online_node(node
) {
824 printk(KERN_DEBUG
"Node %d CPUs:", node
);
828 * If we used a CPU iterator here we would miss printing
829 * the holes in the cpumap.
831 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
832 if (cpumask_test_cpu(cpu
,
833 node_to_cpumask_map
[node
])) {
839 printk("-%u", cpu
- 1);
845 printk("-%u", nr_cpu_ids
- 1);
850 static void __init
dump_numa_memory_topology(void)
855 if (min_common_depth
== -1 || !numa_enabled
)
858 for_each_online_node(node
) {
861 printk(KERN_DEBUG
"Node %d Memory:", node
);
865 for (i
= 0; i
< memblock_end_of_DRAM();
866 i
+= (1 << SECTION_SIZE_BITS
)) {
867 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
885 * Allocate some memory, satisfying the memblock or bootmem allocator where
886 * required. nid is the preferred node and end is the physical address of
887 * the highest address in the node.
889 * Returns the virtual address of the memory.
891 static void __init
*careful_zallocation(int nid
, unsigned long size
,
893 unsigned long end_pfn
)
897 unsigned long ret_paddr
;
899 ret_paddr
= __memblock_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
901 /* retry over all memory */
903 ret_paddr
= __memblock_alloc_base(size
, align
, memblock_end_of_DRAM());
906 panic("numa.c: cannot allocate %lu bytes for node %d",
909 ret
= __va(ret_paddr
);
912 * We initialize the nodes in numeric order: 0, 1, 2...
913 * and hand over control from the MEMBLOCK allocator to the
914 * bootmem allocator. If this function is called for
915 * node 5, then we know that all nodes <5 are using the
916 * bootmem allocator instead of the MEMBLOCK allocator.
918 * So, check the nid from which this allocation came
919 * and double check to see if we need to use bootmem
920 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
921 * since it would be useless.
923 new_nid
= early_pfn_to_nid(ret_paddr
>> PAGE_SHIFT
);
925 ret
= __alloc_bootmem_node(NODE_DATA(new_nid
),
928 dbg("alloc_bootmem %p %lx\n", ret
, size
);
931 memset(ret
, 0, size
);
935 static struct notifier_block __cpuinitdata ppc64_numa_nb
= {
936 .notifier_call
= cpu_numa_callback
,
937 .priority
= 1 /* Must run before sched domains notifier. */
940 static void __init
mark_reserved_regions_for_nid(int nid
)
942 struct pglist_data
*node
= NODE_DATA(nid
);
943 struct memblock_region
*reg
;
945 for_each_memblock(reserved
, reg
) {
946 unsigned long physbase
= reg
->base
;
947 unsigned long size
= reg
->size
;
948 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
949 unsigned long end_pfn
= PFN_UP(physbase
+ size
);
950 struct node_active_region node_ar
;
951 unsigned long node_end_pfn
= node
->node_start_pfn
+
952 node
->node_spanned_pages
;
955 * Check to make sure that this memblock.reserved area is
956 * within the bounds of the node that we care about.
957 * Checking the nid of the start and end points is not
958 * sufficient because the reserved area could span the
961 if (end_pfn
<= node
->node_start_pfn
||
962 start_pfn
>= node_end_pfn
)
965 get_node_active_region(start_pfn
, &node_ar
);
966 while (start_pfn
< end_pfn
&&
967 node_ar
.start_pfn
< node_ar
.end_pfn
) {
968 unsigned long reserve_size
= size
;
970 * if reserved region extends past active region
971 * then trim size to active region
973 if (end_pfn
> node_ar
.end_pfn
)
974 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
977 * Only worry about *this* node, others may not
978 * yet have valid NODE_DATA().
980 if (node_ar
.nid
== nid
) {
981 dbg("reserve_bootmem %lx %lx nid=%d\n",
982 physbase
, reserve_size
, node_ar
.nid
);
983 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
984 physbase
, reserve_size
,
988 * if reserved region is contained in the active region
991 if (end_pfn
<= node_ar
.end_pfn
)
995 * reserved region extends past the active region
996 * get next active region that contains this
999 start_pfn
= node_ar
.end_pfn
;
1000 physbase
= start_pfn
<< PAGE_SHIFT
;
1001 size
= size
- reserve_size
;
1002 get_node_active_region(start_pfn
, &node_ar
);
1008 void __init
do_init_bootmem(void)
1013 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1014 max_pfn
= max_low_pfn
;
1016 if (parse_numa_properties())
1019 dump_numa_memory_topology();
1021 for_each_online_node(nid
) {
1022 unsigned long start_pfn
, end_pfn
;
1023 void *bootmem_vaddr
;
1024 unsigned long bootmap_pages
;
1026 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1029 * Allocate the node structure node local if possible
1031 * Be careful moving this around, as it relies on all
1032 * previous nodes' bootmem to be initialized and have
1033 * all reserved areas marked.
1035 NODE_DATA(nid
) = careful_zallocation(nid
,
1036 sizeof(struct pglist_data
),
1037 SMP_CACHE_BYTES
, end_pfn
);
1039 dbg("node %d\n", nid
);
1040 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
1042 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
1043 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
1044 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
1046 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
1049 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
1050 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
1052 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
1053 bootmem_vaddr
= careful_zallocation(nid
,
1054 bootmap_pages
<< PAGE_SHIFT
,
1055 PAGE_SIZE
, end_pfn
);
1057 dbg("bootmap_vaddr = %p\n", bootmem_vaddr
);
1059 init_bootmem_node(NODE_DATA(nid
),
1060 __pa(bootmem_vaddr
) >> PAGE_SHIFT
,
1061 start_pfn
, end_pfn
);
1063 free_bootmem_with_active_regions(nid
, end_pfn
);
1065 * Be very careful about moving this around. Future
1066 * calls to careful_zallocation() depend on this getting
1069 mark_reserved_regions_for_nid(nid
);
1070 sparse_memory_present_with_active_regions(nid
);
1073 init_bootmem_done
= 1;
1076 * Now bootmem is initialised we can create the node to cpumask
1077 * lookup tables and setup the cpu callback to populate them.
1079 setup_node_to_cpumask_map();
1081 register_cpu_notifier(&ppc64_numa_nb
);
1082 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
1083 (void *)(unsigned long)boot_cpuid
);
1086 void __init
paging_init(void)
1088 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1089 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1090 max_zone_pfns
[ZONE_DMA
] = memblock_end_of_DRAM() >> PAGE_SHIFT
;
1091 free_area_init_nodes(max_zone_pfns
);
1094 static int __init
early_numa(char *p
)
1099 if (strstr(p
, "off"))
1102 if (strstr(p
, "debug"))
1105 p
= strstr(p
, "fake=");
1107 cmdline
= p
+ strlen("fake=");
1111 early_param("numa", early_numa
);
1113 #ifdef CONFIG_MEMORY_HOTPLUG
1115 * Find the node associated with a hot added memory section for
1116 * memory represented in the device tree by the property
1117 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1119 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1120 unsigned long scn_addr
)
1123 unsigned int drconf_cell_cnt
, rc
;
1124 unsigned long lmb_size
;
1125 struct assoc_arrays aa
;
1128 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1129 if (!drconf_cell_cnt
)
1132 lmb_size
= of_get_lmb_size(memory
);
1136 rc
= of_get_assoc_arrays(memory
, &aa
);
1140 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1141 struct of_drconf_cell drmem
;
1143 read_drconf_cell(&drmem
, &dm
);
1145 /* skip this block if it is reserved or not assigned to
1147 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1148 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1151 if ((scn_addr
< drmem
.base_addr
)
1152 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1155 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1163 * Find the node associated with a hot added memory section for memory
1164 * represented in the device tree as a node (i.e. memory@XXXX) for
1167 int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1169 struct device_node
*memory
;
1172 for_each_node_by_type(memory
, "memory") {
1173 unsigned long start
, size
;
1175 const unsigned int *memcell_buf
;
1178 memcell_buf
= of_get_property(memory
, "reg", &len
);
1179 if (!memcell_buf
|| len
<= 0)
1182 /* ranges in cell */
1183 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1186 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1187 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1189 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1192 nid
= of_node_to_nid_single(memory
);
1200 of_node_put(memory
);
1206 * Find the node associated with a hot added memory section. Section
1207 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1208 * sections are fully contained within a single MEMBLOCK.
1210 int hot_add_scn_to_nid(unsigned long scn_addr
)
1212 struct device_node
*memory
= NULL
;
1215 if (!numa_enabled
|| (min_common_depth
< 0))
1216 return first_online_node
;
1218 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1220 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1221 of_node_put(memory
);
1223 nid
= hot_add_node_scn_to_nid(scn_addr
);
1226 if (nid
< 0 || !node_online(nid
))
1227 nid
= first_online_node
;
1229 if (NODE_DATA(nid
)->node_spanned_pages
)
1232 for_each_online_node(nid
) {
1233 if (NODE_DATA(nid
)->node_spanned_pages
) {
1243 static u64
hot_add_drconf_memory_max(void)
1245 struct device_node
*memory
= NULL
;
1246 unsigned int drconf_cell_cnt
= 0;
1250 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1252 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1253 lmb_size
= of_get_lmb_size(memory
);
1254 of_node_put(memory
);
1256 return lmb_size
* drconf_cell_cnt
;
1260 * memory_hotplug_max - return max address of memory that may be added
1262 * This is currently only used on systems that support drconfig memory
1265 u64
memory_hotplug_max(void)
1267 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1269 #endif /* CONFIG_MEMORY_HOTPLUG */
1271 /* Virtual Processor Home Node (VPHN) support */
1272 #ifdef CONFIG_PPC_SPLPAR
1273 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1274 static cpumask_t cpu_associativity_changes_mask
;
1275 static int vphn_enabled
;
1276 static void set_topology_timer(void);
1279 * Store the current values of the associativity change counters in the
1282 static void setup_cpu_associativity_change_counters(void)
1286 /* The VPHN feature supports a maximum of 8 reference points */
1287 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1289 for_each_possible_cpu(cpu
) {
1291 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1292 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1294 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1295 counts
[i
] = hypervisor_counts
[i
];
1300 * The hypervisor maintains a set of 8 associativity change counters in
1301 * the VPA of each cpu that correspond to the associativity levels in the
1302 * ibm,associativity-reference-points property. When an associativity
1303 * level changes, the corresponding counter is incremented.
1305 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1306 * node associativity levels have changed.
1308 * Returns the number of cpus with unhandled associativity changes.
1310 static int update_cpu_associativity_changes_mask(void)
1312 int cpu
, nr_cpus
= 0;
1313 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1315 cpumask_clear(changes
);
1317 for_each_possible_cpu(cpu
) {
1319 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1320 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1322 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1323 if (hypervisor_counts
[i
] != counts
[i
]) {
1324 counts
[i
] = hypervisor_counts
[i
];
1329 cpumask_set_cpu(cpu
, changes
);
1338 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1339 * the complete property we have to add the length in the first cell.
1341 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1344 * Convert the associativity domain numbers returned from the hypervisor
1345 * to the sequence they would appear in the ibm,associativity property.
1347 static int vphn_unpack_associativity(const long *packed
, unsigned int *unpacked
)
1349 int i
, nr_assoc_doms
= 0;
1350 const u16
*field
= (const u16
*) packed
;
1352 #define VPHN_FIELD_UNUSED (0xffff)
1353 #define VPHN_FIELD_MSB (0x8000)
1354 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1356 for (i
= 1; i
< VPHN_ASSOC_BUFSIZE
; i
++) {
1357 if (*field
== VPHN_FIELD_UNUSED
) {
1358 /* All significant fields processed, and remaining
1359 * fields contain the reserved value of all 1's.
1362 unpacked
[i
] = *((u32
*)field
);
1364 } else if (*field
& VPHN_FIELD_MSB
) {
1365 /* Data is in the lower 15 bits of this field */
1366 unpacked
[i
] = *field
& VPHN_FIELD_MASK
;
1370 /* Data is in the lower 15 bits of this field
1371 * concatenated with the next 16 bit field
1373 unpacked
[i
] = *((u32
*)field
);
1379 /* The first cell contains the length of the property */
1380 unpacked
[0] = nr_assoc_doms
;
1382 return nr_assoc_doms
;
1386 * Retrieve the new associativity information for a virtual processor's
1389 static long hcall_vphn(unsigned long cpu
, unsigned int *associativity
)
1392 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1394 int hwcpu
= get_hard_smp_processor_id(cpu
);
1396 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1397 vphn_unpack_associativity(retbuf
, associativity
);
1402 static long vphn_get_associativity(unsigned long cpu
,
1403 unsigned int *associativity
)
1407 rc
= hcall_vphn(cpu
, associativity
);
1412 "VPHN is not supported. Disabling polling...\n");
1413 stop_topology_update();
1417 "hcall_vphn() experienced a hardware fault "
1418 "preventing VPHN. Disabling polling...\n");
1419 stop_topology_update();
1426 * Update the node maps and sysfs entries for each cpu whose home node
1427 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1429 int arch_update_cpu_topology(void)
1431 int cpu
, nid
, old_nid
, changed
= 0;
1432 unsigned int associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1435 for_each_cpu(cpu
,&cpu_associativity_changes_mask
) {
1436 vphn_get_associativity(cpu
, associativity
);
1437 nid
= associativity_to_nid(associativity
);
1439 if (nid
< 0 || !node_online(nid
))
1440 nid
= first_online_node
;
1442 old_nid
= numa_cpu_lookup_table
[cpu
];
1444 /* Disable hotplug while we update the cpu
1448 unregister_cpu_under_node(cpu
, old_nid
);
1449 unmap_cpu_from_node(cpu
);
1450 map_cpu_to_node(cpu
, nid
);
1451 register_cpu_under_node(cpu
, nid
);
1454 dev
= get_cpu_device(cpu
);
1456 kobject_uevent(&dev
->kobj
, KOBJ_CHANGE
);
1463 static void topology_work_fn(struct work_struct
*work
)
1465 rebuild_sched_domains();
1467 static DECLARE_WORK(topology_work
, topology_work_fn
);
1469 void topology_schedule_update(void)
1471 schedule_work(&topology_work
);
1474 static void topology_timer_fn(unsigned long ignored
)
1478 if (update_cpu_associativity_changes_mask() > 0)
1479 topology_schedule_update();
1480 set_topology_timer();
1482 static struct timer_list topology_timer
=
1483 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1485 static void set_topology_timer(void)
1487 topology_timer
.data
= 0;
1488 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1489 add_timer(&topology_timer
);
1493 * Start polling for VPHN associativity changes.
1495 int start_topology_update(void)
1499 /* Disabled until races with load balancing are fixed */
1500 if (0 && firmware_has_feature(FW_FEATURE_VPHN
) &&
1501 get_lppaca()->shared_proc
) {
1503 setup_cpu_associativity_change_counters();
1504 init_timer_deferrable(&topology_timer
);
1505 set_topology_timer();
1511 __initcall(start_topology_update
);
1514 * Disable polling for VPHN associativity changes.
1516 int stop_topology_update(void)
1519 return del_timer_sync(&topology_timer
);
1521 #endif /* CONFIG_PPC_SPLPAR */