2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
26 #include <asm/pgtable.h>
27 #include <asm/openprom.h>
28 #include <asm/oplib.h>
29 #include <asm/uaccess.h>
32 #include <asm/sections.h>
33 #include <asm/mmu_context.h>
35 int show_unhandled_signals
= 1;
37 static inline __kprobes
int notify_page_fault(struct pt_regs
*regs
)
41 /* kprobe_running() needs smp_processor_id() */
42 if (kprobes_built_in() && !user_mode(regs
)) {
44 if (kprobe_running() && kprobe_fault_handler(regs
, 0))
51 static void __kprobes
unhandled_fault(unsigned long address
,
52 struct task_struct
*tsk
,
55 if ((unsigned long) address
< PAGE_SIZE
) {
56 printk(KERN_ALERT
"Unable to handle kernel NULL "
57 "pointer dereference\n");
59 printk(KERN_ALERT
"Unable to handle kernel paging request "
60 "at virtual address %016lx\n", (unsigned long)address
);
62 printk(KERN_ALERT
"tsk->{mm,active_mm}->context = %016lx\n",
64 CTX_HWBITS(tsk
->mm
->context
) :
65 CTX_HWBITS(tsk
->active_mm
->context
)));
66 printk(KERN_ALERT
"tsk->{mm,active_mm}->pgd = %016lx\n",
67 (tsk
->mm
? (unsigned long) tsk
->mm
->pgd
:
68 (unsigned long) tsk
->active_mm
->pgd
));
69 die_if_kernel("Oops", regs
);
72 static void __kprobes
bad_kernel_pc(struct pt_regs
*regs
, unsigned long vaddr
)
74 printk(KERN_CRIT
"OOPS: Bogus kernel PC [%016lx] in fault handler\n",
76 printk(KERN_CRIT
"OOPS: RPC [%016lx]\n", regs
->u_regs
[15]);
77 printk("OOPS: RPC <%pS>\n", (void *) regs
->u_regs
[15]);
78 printk(KERN_CRIT
"OOPS: Fault was to vaddr[%lx]\n", vaddr
);
80 unhandled_fault(regs
->tpc
, current
, regs
);
84 * We now make sure that mmap_sem is held in all paths that call
85 * this. Additionally, to prevent kswapd from ripping ptes from
86 * under us, raise interrupts around the time that we look at the
87 * pte, kswapd will have to wait to get his smp ipi response from
88 * us. vmtruncate likewise. This saves us having to get pte lock.
90 static unsigned int get_user_insn(unsigned long tpc
)
92 pgd_t
*pgdp
= pgd_offset(current
->mm
, tpc
);
102 pudp
= pud_offset(pgdp
, tpc
);
105 pmdp
= pmd_offset(pudp
, tpc
);
109 /* This disables preemption for us as well. */
110 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
111 __asm__
__volatile__("wrpr %0, %1, %%pstate"
112 : : "r" (pstate
), "i" (PSTATE_IE
));
113 ptep
= pte_offset_map(pmdp
, tpc
);
115 if (!pte_present(pte
))
118 pa
= (pte_pfn(pte
) << PAGE_SHIFT
);
119 pa
+= (tpc
& ~PAGE_MASK
);
121 /* Use phys bypass so we don't pollute dtlb/dcache. */
122 __asm__
__volatile__("lduwa [%1] %2, %0"
124 : "r" (pa
), "i" (ASI_PHYS_USE_EC
));
128 __asm__
__volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate
));
134 show_signal_msg(struct pt_regs
*regs
, int sig
, int code
,
135 unsigned long address
, struct task_struct
*tsk
)
137 if (!unhandled_signal(tsk
, sig
))
140 if (!printk_ratelimit())
143 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
144 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
145 tsk
->comm
, task_pid_nr(tsk
), address
,
146 (void *)regs
->tpc
, (void *)regs
->u_regs
[UREG_I7
],
147 (void *)regs
->u_regs
[UREG_FP
], code
);
149 print_vma_addr(KERN_CONT
" in ", regs
->tpc
);
151 printk(KERN_CONT
"\n");
154 static void do_fault_siginfo(int code
, int sig
, struct pt_regs
*regs
,
155 unsigned int insn
, int fault_code
)
163 if (fault_code
& FAULT_CODE_ITLB
)
166 addr
= compute_effective_address(regs
, insn
, 0);
167 info
.si_addr
= (void __user
*) addr
;
170 if (unlikely(show_unhandled_signals
))
171 show_signal_msg(regs
, sig
, code
, addr
, current
);
173 force_sig_info(sig
, &info
, current
);
176 extern int handle_ldf_stq(u32
, struct pt_regs
*);
177 extern int handle_ld_nf(u32
, struct pt_regs
*);
179 static unsigned int get_fault_insn(struct pt_regs
*regs
, unsigned int insn
)
182 if (!regs
->tpc
|| (regs
->tpc
& 0x3))
184 if (regs
->tstate
& TSTATE_PRIV
) {
185 insn
= *(unsigned int *) regs
->tpc
;
187 insn
= get_user_insn(regs
->tpc
);
193 static void __kprobes
do_kernel_fault(struct pt_regs
*regs
, int si_code
,
194 int fault_code
, unsigned int insn
,
195 unsigned long address
)
197 unsigned char asi
= ASI_P
;
199 if ((!insn
) && (regs
->tstate
& TSTATE_PRIV
))
202 /* If user insn could be read (thus insn is zero), that
203 * is fine. We will just gun down the process with a signal
207 if (!(fault_code
& (FAULT_CODE_WRITE
|FAULT_CODE_ITLB
)) &&
208 (insn
& 0xc0800000) == 0xc0800000) {
210 asi
= (regs
->tstate
>> 24);
213 if ((asi
& 0xf2) == 0x82) {
214 if (insn
& 0x1000000) {
215 handle_ldf_stq(insn
, regs
);
217 /* This was a non-faulting load. Just clear the
218 * destination register(s) and continue with the next
221 handle_ld_nf(insn
, regs
);
227 /* Is this in ex_table? */
228 if (regs
->tstate
& TSTATE_PRIV
) {
229 const struct exception_table_entry
*entry
;
231 entry
= search_exception_tables(regs
->tpc
);
233 regs
->tpc
= entry
->fixup
;
234 regs
->tnpc
= regs
->tpc
+ 4;
238 /* The si_code was set to make clear whether
239 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
241 do_fault_siginfo(si_code
, SIGSEGV
, regs
, insn
, fault_code
);
246 unhandled_fault (address
, current
, regs
);
249 static void noinline __kprobes
bogus_32bit_fault_tpc(struct pt_regs
*regs
)
254 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process reports "
255 "64-bit TPC [%lx]\n",
256 current
->comm
, current
->pid
,
261 static void noinline __kprobes
bogus_32bit_fault_address(struct pt_regs
*regs
,
267 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process "
268 "reports 64-bit fault address [%lx]\n",
269 current
->comm
, current
->pid
, addr
);
273 asmlinkage
void __kprobes
do_sparc64_fault(struct pt_regs
*regs
)
275 struct mm_struct
*mm
= current
->mm
;
276 struct vm_area_struct
*vma
;
277 unsigned int insn
= 0;
278 int si_code
, fault_code
, fault
;
279 unsigned long address
, mm_rss
;
280 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
282 fault_code
= get_thread_fault_code();
284 if (notify_page_fault(regs
))
287 si_code
= SEGV_MAPERR
;
288 address
= current_thread_info()->fault_address
;
290 if ((fault_code
& FAULT_CODE_ITLB
) &&
291 (fault_code
& FAULT_CODE_DTLB
))
294 if (test_thread_flag(TIF_32BIT
)) {
295 if (!(regs
->tstate
& TSTATE_PRIV
)) {
296 if (unlikely((regs
->tpc
>> 32) != 0)) {
297 bogus_32bit_fault_tpc(regs
);
301 if (unlikely((address
>> 32) != 0)) {
302 bogus_32bit_fault_address(regs
, address
);
307 if (regs
->tstate
& TSTATE_PRIV
) {
308 unsigned long tpc
= regs
->tpc
;
310 /* Sanity check the PC. */
311 if ((tpc
>= KERNBASE
&& tpc
< (unsigned long) __init_end
) ||
312 (tpc
>= MODULES_VADDR
&& tpc
< MODULES_END
)) {
313 /* Valid, no problems... */
315 bad_kernel_pc(regs
, address
);
321 * If we're in an interrupt or have no user
322 * context, we must not take the fault..
324 if (in_atomic() || !mm
)
327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
329 if (!down_read_trylock(&mm
->mmap_sem
)) {
330 if ((regs
->tstate
& TSTATE_PRIV
) &&
331 !search_exception_tables(regs
->tpc
)) {
332 insn
= get_fault_insn(regs
, insn
);
333 goto handle_kernel_fault
;
337 down_read(&mm
->mmap_sem
);
340 vma
= find_vma(mm
, address
);
344 /* Pure DTLB misses do not tell us whether the fault causing
345 * load/store/atomic was a write or not, it only says that there
346 * was no match. So in such a case we (carefully) read the
347 * instruction to try and figure this out. It's an optimization
348 * so it's ok if we can't do this.
350 * Special hack, window spill/fill knows the exact fault type.
353 (FAULT_CODE_DTLB
| FAULT_CODE_WRITE
| FAULT_CODE_WINFIXUP
)) == FAULT_CODE_DTLB
) &&
354 (vma
->vm_flags
& VM_WRITE
) != 0) {
355 insn
= get_fault_insn(regs
, 0);
358 /* All loads, stores and atomics have bits 30 and 31 both set
359 * in the instruction. Bit 21 is set in all stores, but we
360 * have to avoid prefetches which also have bit 21 set.
362 if ((insn
& 0xc0200000) == 0xc0200000 &&
363 (insn
& 0x01780000) != 0x01680000) {
364 /* Don't bother updating thread struct value,
365 * because update_mmu_cache only cares which tlb
366 * the access came from.
368 fault_code
|= FAULT_CODE_WRITE
;
373 if (vma
->vm_start
<= address
)
375 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
377 if (!(fault_code
& FAULT_CODE_WRITE
)) {
378 /* Non-faulting loads shouldn't expand stack. */
379 insn
= get_fault_insn(regs
, insn
);
380 if ((insn
& 0xc0800000) == 0xc0800000) {
384 asi
= (regs
->tstate
>> 24);
387 if ((asi
& 0xf2) == 0x82)
391 if (expand_stack(vma
, address
))
394 * Ok, we have a good vm_area for this memory access, so
398 si_code
= SEGV_ACCERR
;
400 /* If we took a ITLB miss on a non-executable page, catch
403 if ((fault_code
& FAULT_CODE_ITLB
) && !(vma
->vm_flags
& VM_EXEC
)) {
404 BUG_ON(address
!= regs
->tpc
);
405 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
409 if (fault_code
& FAULT_CODE_WRITE
) {
410 if (!(vma
->vm_flags
& VM_WRITE
))
413 /* Spitfire has an icache which does not snoop
414 * processor stores. Later processors do...
416 if (tlb_type
== spitfire
&&
417 (vma
->vm_flags
& VM_EXEC
) != 0 &&
418 vma
->vm_file
!= NULL
)
419 set_thread_fault_code(fault_code
|
420 FAULT_CODE_BLKCOMMIT
);
422 /* Allow reads even for write-only mappings */
423 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
)))
427 flags
|= ((fault_code
& FAULT_CODE_WRITE
) ? FAULT_FLAG_WRITE
: 0);
428 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
430 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
433 if (unlikely(fault
& VM_FAULT_ERROR
)) {
434 if (fault
& VM_FAULT_OOM
)
436 else if (fault
& VM_FAULT_SIGBUS
)
441 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
442 if (fault
& VM_FAULT_MAJOR
) {
444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
,
448 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
,
451 if (fault
& VM_FAULT_RETRY
) {
452 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
453 flags
|= FAULT_FLAG_TRIED
;
455 /* No need to up_read(&mm->mmap_sem) as we would
456 * have already released it in __lock_page_or_retry
463 up_read(&mm
->mmap_sem
);
465 mm_rss
= get_mm_rss(mm
);
466 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
467 mm_rss
-= (mm
->context
.huge_pte_count
* (HPAGE_SIZE
/ PAGE_SIZE
));
469 if (unlikely(mm_rss
>
470 mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_rss_limit
))
471 tsb_grow(mm
, MM_TSB_BASE
, mm_rss
);
472 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
473 mm_rss
= mm
->context
.huge_pte_count
;
474 if (unlikely(mm_rss
>
475 mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_rss_limit
))
476 tsb_grow(mm
, MM_TSB_HUGE
, mm_rss
);
481 * Something tried to access memory that isn't in our memory map..
482 * Fix it, but check if it's kernel or user first..
485 insn
= get_fault_insn(regs
, insn
);
486 up_read(&mm
->mmap_sem
);
489 do_kernel_fault(regs
, si_code
, fault_code
, insn
, address
);
493 * We ran out of memory, or some other thing happened to us that made
494 * us unable to handle the page fault gracefully.
497 insn
= get_fault_insn(regs
, insn
);
498 up_read(&mm
->mmap_sem
);
499 if (!(regs
->tstate
& TSTATE_PRIV
)) {
500 pagefault_out_of_memory();
503 goto handle_kernel_fault
;
506 insn
= get_fault_insn(regs
, 0);
507 goto handle_kernel_fault
;
510 insn
= get_fault_insn(regs
, insn
);
511 up_read(&mm
->mmap_sem
);
514 * Send a sigbus, regardless of whether we were in kernel
517 do_fault_siginfo(BUS_ADRERR
, SIGBUS
, regs
, insn
, fault_code
);
519 /* Kernel mode? Handle exceptions or die */
520 if (regs
->tstate
& TSTATE_PRIV
)
521 goto handle_kernel_fault
;