1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 int sched_rr_timeslice
= RR_TIMESLICE
;
9 int sysctl_sched_rr_timeslice
= (MSEC_PER_SEC
/ HZ
) * RR_TIMESLICE
;
11 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
13 struct rt_bandwidth def_rt_bandwidth
;
15 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
17 struct rt_bandwidth
*rt_b
=
18 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
22 raw_spin_lock(&rt_b
->rt_runtime_lock
);
24 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
28 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
29 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
30 raw_spin_lock(&rt_b
->rt_runtime_lock
);
33 rt_b
->rt_period_active
= 0;
34 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
36 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
39 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
41 rt_b
->rt_period
= ns_to_ktime(period
);
42 rt_b
->rt_runtime
= runtime
;
44 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
46 hrtimer_init(&rt_b
->rt_period_timer
,
47 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
48 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
51 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
53 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
56 raw_spin_lock(&rt_b
->rt_runtime_lock
);
57 if (!rt_b
->rt_period_active
) {
58 rt_b
->rt_period_active
= 1;
60 * SCHED_DEADLINE updates the bandwidth, as a run away
61 * RT task with a DL task could hog a CPU. But DL does
62 * not reset the period. If a deadline task was running
63 * without an RT task running, it can cause RT tasks to
64 * throttle when they start up. Kick the timer right away
65 * to update the period.
67 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
68 hrtimer_start_expires(&rt_b
->rt_period_timer
, HRTIMER_MODE_ABS_PINNED
);
70 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
73 void init_rt_rq(struct rt_rq
*rt_rq
)
75 struct rt_prio_array
*array
;
78 array
= &rt_rq
->active
;
79 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
80 INIT_LIST_HEAD(array
->queue
+ i
);
81 __clear_bit(i
, array
->bitmap
);
83 /* delimiter for bitsearch: */
84 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
86 #if defined CONFIG_SMP
87 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
88 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
89 rt_rq
->rt_nr_migratory
= 0;
90 rt_rq
->overloaded
= 0;
91 plist_head_init(&rt_rq
->pushable_tasks
);
92 #endif /* CONFIG_SMP */
93 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq
->rt_throttled
= 0;
98 rt_rq
->rt_runtime
= 0;
99 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
102 #ifdef CONFIG_RT_GROUP_SCHED
103 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
105 hrtimer_cancel(&rt_b
->rt_period_timer
);
108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
110 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
112 #ifdef CONFIG_SCHED_DEBUG
113 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
115 return container_of(rt_se
, struct task_struct
, rt
);
118 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
123 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
128 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
130 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
135 void free_rt_sched_group(struct task_group
*tg
)
140 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
142 for_each_possible_cpu(i
) {
153 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
154 struct sched_rt_entity
*rt_se
, int cpu
,
155 struct sched_rt_entity
*parent
)
157 struct rq
*rq
= cpu_rq(cpu
);
159 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
160 rt_rq
->rt_nr_boosted
= 0;
164 tg
->rt_rq
[cpu
] = rt_rq
;
165 tg
->rt_se
[cpu
] = rt_se
;
171 rt_se
->rt_rq
= &rq
->rt
;
173 rt_se
->rt_rq
= parent
->my_q
;
176 rt_se
->parent
= parent
;
177 INIT_LIST_HEAD(&rt_se
->run_list
);
180 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
183 struct sched_rt_entity
*rt_se
;
186 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
189 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
193 init_rt_bandwidth(&tg
->rt_bandwidth
,
194 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
196 for_each_possible_cpu(i
) {
197 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
198 GFP_KERNEL
, cpu_to_node(i
));
202 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
203 GFP_KERNEL
, cpu_to_node(i
));
208 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
209 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
220 #else /* CONFIG_RT_GROUP_SCHED */
222 #define rt_entity_is_task(rt_se) (1)
224 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
226 return container_of(rt_se
, struct task_struct
, rt
);
229 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
231 return container_of(rt_rq
, struct rq
, rt
);
234 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
236 struct task_struct
*p
= rt_task_of(rt_se
);
241 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
243 struct rq
*rq
= rq_of_rt_se(rt_se
);
248 void free_rt_sched_group(struct task_group
*tg
) { }
250 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
254 #endif /* CONFIG_RT_GROUP_SCHED */
258 static void pull_rt_task(struct rq
*this_rq
);
260 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
262 /* Try to pull RT tasks here if we lower this rq's prio */
263 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
266 static inline int rt_overloaded(struct rq
*rq
)
268 return atomic_read(&rq
->rd
->rto_count
);
271 static inline void rt_set_overload(struct rq
*rq
)
276 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
278 * Make sure the mask is visible before we set
279 * the overload count. That is checked to determine
280 * if we should look at the mask. It would be a shame
281 * if we looked at the mask, but the mask was not
284 * Matched by the barrier in pull_rt_task().
287 atomic_inc(&rq
->rd
->rto_count
);
290 static inline void rt_clear_overload(struct rq
*rq
)
295 /* the order here really doesn't matter */
296 atomic_dec(&rq
->rd
->rto_count
);
297 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
300 static void update_rt_migration(struct rt_rq
*rt_rq
)
302 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
303 if (!rt_rq
->overloaded
) {
304 rt_set_overload(rq_of_rt_rq(rt_rq
));
305 rt_rq
->overloaded
= 1;
307 } else if (rt_rq
->overloaded
) {
308 rt_clear_overload(rq_of_rt_rq(rt_rq
));
309 rt_rq
->overloaded
= 0;
313 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
315 struct task_struct
*p
;
317 if (!rt_entity_is_task(rt_se
))
320 p
= rt_task_of(rt_se
);
321 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
323 rt_rq
->rt_nr_total
++;
324 if (p
->nr_cpus_allowed
> 1)
325 rt_rq
->rt_nr_migratory
++;
327 update_rt_migration(rt_rq
);
330 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
332 struct task_struct
*p
;
334 if (!rt_entity_is_task(rt_se
))
337 p
= rt_task_of(rt_se
);
338 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
340 rt_rq
->rt_nr_total
--;
341 if (p
->nr_cpus_allowed
> 1)
342 rt_rq
->rt_nr_migratory
--;
344 update_rt_migration(rt_rq
);
347 static inline int has_pushable_tasks(struct rq
*rq
)
349 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
352 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
353 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
355 static void push_rt_tasks(struct rq
*);
356 static void pull_rt_task(struct rq
*);
358 static inline void rt_queue_push_tasks(struct rq
*rq
)
360 if (!has_pushable_tasks(rq
))
363 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
366 static inline void rt_queue_pull_task(struct rq
*rq
)
368 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
371 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
373 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
374 plist_node_init(&p
->pushable_tasks
, p
->prio
);
375 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
377 /* Update the highest prio pushable task */
378 if (p
->prio
< rq
->rt
.highest_prio
.next
)
379 rq
->rt
.highest_prio
.next
= p
->prio
;
382 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
384 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
386 /* Update the new highest prio pushable task */
387 if (has_pushable_tasks(rq
)) {
388 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
389 struct task_struct
, pushable_tasks
);
390 rq
->rt
.highest_prio
.next
= p
->prio
;
392 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
397 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
401 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
406 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
411 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
415 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
420 static inline void pull_rt_task(struct rq
*this_rq
)
424 static inline void rt_queue_push_tasks(struct rq
*rq
)
427 #endif /* CONFIG_SMP */
429 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
430 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
432 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
437 #ifdef CONFIG_RT_GROUP_SCHED
439 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
444 return rt_rq
->rt_runtime
;
447 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
449 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
452 typedef struct task_group
*rt_rq_iter_t
;
454 static inline struct task_group
*next_task_group(struct task_group
*tg
)
457 tg
= list_entry_rcu(tg
->list
.next
,
458 typeof(struct task_group
), list
);
459 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
461 if (&tg
->list
== &task_groups
)
467 #define for_each_rt_rq(rt_rq, iter, rq) \
468 for (iter = container_of(&task_groups, typeof(*iter), list); \
469 (iter = next_task_group(iter)) && \
470 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
472 #define for_each_sched_rt_entity(rt_se) \
473 for (; rt_se; rt_se = rt_se->parent)
475 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
480 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
481 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
483 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
485 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
486 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
487 struct sched_rt_entity
*rt_se
;
489 int cpu
= cpu_of(rq
);
491 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
493 if (rt_rq
->rt_nr_running
) {
495 enqueue_top_rt_rq(rt_rq
);
496 else if (!on_rt_rq(rt_se
))
497 enqueue_rt_entity(rt_se
, 0);
499 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
504 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
506 struct sched_rt_entity
*rt_se
;
507 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
509 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
512 dequeue_top_rt_rq(rt_rq
);
513 else if (on_rt_rq(rt_se
))
514 dequeue_rt_entity(rt_se
, 0);
517 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
519 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
522 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
524 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
525 struct task_struct
*p
;
528 return !!rt_rq
->rt_nr_boosted
;
530 p
= rt_task_of(rt_se
);
531 return p
->prio
!= p
->normal_prio
;
535 static inline const struct cpumask
*sched_rt_period_mask(void)
537 return this_rq()->rd
->span
;
540 static inline const struct cpumask
*sched_rt_period_mask(void)
542 return cpu_online_mask
;
547 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
549 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
552 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
554 return &rt_rq
->tg
->rt_bandwidth
;
557 #else /* !CONFIG_RT_GROUP_SCHED */
559 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
561 return rt_rq
->rt_runtime
;
564 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
566 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
569 typedef struct rt_rq
*rt_rq_iter_t
;
571 #define for_each_rt_rq(rt_rq, iter, rq) \
572 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
574 #define for_each_sched_rt_entity(rt_se) \
575 for (; rt_se; rt_se = NULL)
577 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
582 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
584 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
586 if (!rt_rq
->rt_nr_running
)
589 enqueue_top_rt_rq(rt_rq
);
593 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
595 dequeue_top_rt_rq(rt_rq
);
598 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
600 return rt_rq
->rt_throttled
;
603 static inline const struct cpumask
*sched_rt_period_mask(void)
605 return cpu_online_mask
;
609 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
611 return &cpu_rq(cpu
)->rt
;
614 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
616 return &def_rt_bandwidth
;
619 #endif /* CONFIG_RT_GROUP_SCHED */
621 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
623 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
625 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
626 rt_rq
->rt_time
< rt_b
->rt_runtime
);
631 * We ran out of runtime, see if we can borrow some from our neighbours.
633 static void do_balance_runtime(struct rt_rq
*rt_rq
)
635 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
636 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
640 weight
= cpumask_weight(rd
->span
);
642 raw_spin_lock(&rt_b
->rt_runtime_lock
);
643 rt_period
= ktime_to_ns(rt_b
->rt_period
);
644 for_each_cpu(i
, rd
->span
) {
645 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
651 raw_spin_lock(&iter
->rt_runtime_lock
);
653 * Either all rqs have inf runtime and there's nothing to steal
654 * or __disable_runtime() below sets a specific rq to inf to
655 * indicate its been disabled and disalow stealing.
657 if (iter
->rt_runtime
== RUNTIME_INF
)
661 * From runqueues with spare time, take 1/n part of their
662 * spare time, but no more than our period.
664 diff
= iter
->rt_runtime
- iter
->rt_time
;
666 diff
= div_u64((u64
)diff
, weight
);
667 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
668 diff
= rt_period
- rt_rq
->rt_runtime
;
669 iter
->rt_runtime
-= diff
;
670 rt_rq
->rt_runtime
+= diff
;
671 if (rt_rq
->rt_runtime
== rt_period
) {
672 raw_spin_unlock(&iter
->rt_runtime_lock
);
677 raw_spin_unlock(&iter
->rt_runtime_lock
);
679 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
683 * Ensure this RQ takes back all the runtime it lend to its neighbours.
685 static void __disable_runtime(struct rq
*rq
)
687 struct root_domain
*rd
= rq
->rd
;
691 if (unlikely(!scheduler_running
))
694 for_each_rt_rq(rt_rq
, iter
, rq
) {
695 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
699 raw_spin_lock(&rt_b
->rt_runtime_lock
);
700 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
702 * Either we're all inf and nobody needs to borrow, or we're
703 * already disabled and thus have nothing to do, or we have
704 * exactly the right amount of runtime to take out.
706 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
707 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
709 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
712 * Calculate the difference between what we started out with
713 * and what we current have, that's the amount of runtime
714 * we lend and now have to reclaim.
716 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
719 * Greedy reclaim, take back as much as we can.
721 for_each_cpu(i
, rd
->span
) {
722 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
726 * Can't reclaim from ourselves or disabled runqueues.
728 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
731 raw_spin_lock(&iter
->rt_runtime_lock
);
733 diff
= min_t(s64
, iter
->rt_runtime
, want
);
734 iter
->rt_runtime
-= diff
;
737 iter
->rt_runtime
-= want
;
740 raw_spin_unlock(&iter
->rt_runtime_lock
);
746 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
748 * We cannot be left wanting - that would mean some runtime
749 * leaked out of the system.
754 * Disable all the borrow logic by pretending we have inf
755 * runtime - in which case borrowing doesn't make sense.
757 rt_rq
->rt_runtime
= RUNTIME_INF
;
758 rt_rq
->rt_throttled
= 0;
759 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
760 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
762 /* Make rt_rq available for pick_next_task() */
763 sched_rt_rq_enqueue(rt_rq
);
767 static void __enable_runtime(struct rq
*rq
)
772 if (unlikely(!scheduler_running
))
776 * Reset each runqueue's bandwidth settings
778 for_each_rt_rq(rt_rq
, iter
, rq
) {
779 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
781 raw_spin_lock(&rt_b
->rt_runtime_lock
);
782 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
783 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
785 rt_rq
->rt_throttled
= 0;
786 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
787 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
791 static void balance_runtime(struct rt_rq
*rt_rq
)
793 if (!sched_feat(RT_RUNTIME_SHARE
))
796 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
797 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
798 do_balance_runtime(rt_rq
);
799 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
802 #else /* !CONFIG_SMP */
803 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
804 #endif /* CONFIG_SMP */
806 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
808 int i
, idle
= 1, throttled
= 0;
809 const struct cpumask
*span
;
811 span
= sched_rt_period_mask();
812 #ifdef CONFIG_RT_GROUP_SCHED
814 * FIXME: isolated CPUs should really leave the root task group,
815 * whether they are isolcpus or were isolated via cpusets, lest
816 * the timer run on a CPU which does not service all runqueues,
817 * potentially leaving other CPUs indefinitely throttled. If
818 * isolation is really required, the user will turn the throttle
819 * off to kill the perturbations it causes anyway. Meanwhile,
820 * this maintains functionality for boot and/or troubleshooting.
822 if (rt_b
== &root_task_group
.rt_bandwidth
)
823 span
= cpu_online_mask
;
825 for_each_cpu(i
, span
) {
827 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
828 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
832 * When span == cpu_online_mask, taking each rq->lock
833 * can be time-consuming. Try to avoid it when possible.
835 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
836 skip
= !rt_rq
->rt_time
&& !rt_rq
->rt_nr_running
;
837 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
841 raw_spin_lock(&rq
->lock
);
844 if (rt_rq
->rt_time
) {
847 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
848 if (rt_rq
->rt_throttled
)
849 balance_runtime(rt_rq
);
850 runtime
= rt_rq
->rt_runtime
;
851 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
852 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
853 rt_rq
->rt_throttled
= 0;
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
863 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
864 rq_clock_cancel_skipupdate(rq
);
866 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
868 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
869 } else if (rt_rq
->rt_nr_running
) {
871 if (!rt_rq_throttled(rt_rq
))
874 if (rt_rq
->rt_throttled
)
878 sched_rt_rq_enqueue(rt_rq
);
879 raw_spin_unlock(&rq
->lock
);
882 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
888 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
890 #ifdef CONFIG_RT_GROUP_SCHED
891 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
894 return rt_rq
->highest_prio
.curr
;
897 return rt_task_of(rt_se
)->prio
;
900 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
902 u64 runtime
= sched_rt_runtime(rt_rq
);
904 if (rt_rq
->rt_throttled
)
905 return rt_rq_throttled(rt_rq
);
907 if (runtime
>= sched_rt_period(rt_rq
))
910 balance_runtime(rt_rq
);
911 runtime
= sched_rt_runtime(rt_rq
);
912 if (runtime
== RUNTIME_INF
)
915 if (rt_rq
->rt_time
> runtime
) {
916 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
922 if (likely(rt_b
->rt_runtime
)) {
923 rt_rq
->rt_throttled
= 1;
924 printk_deferred_once("sched: RT throttling activated\n");
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
934 if (rt_rq_throttled(rt_rq
)) {
935 sched_rt_rq_dequeue(rt_rq
);
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
947 static void update_curr_rt(struct rq
*rq
)
949 struct task_struct
*curr
= rq
->curr
;
950 struct sched_rt_entity
*rt_se
= &curr
->rt
;
954 if (curr
->sched_class
!= &rt_sched_class
)
957 now
= rq_clock_task(rq
);
958 delta_exec
= now
- curr
->se
.exec_start
;
959 if (unlikely((s64
)delta_exec
<= 0))
962 schedstat_set(curr
->se
.statistics
.exec_max
,
963 max(curr
->se
.statistics
.exec_max
, delta_exec
));
965 curr
->se
.sum_exec_runtime
+= delta_exec
;
966 account_group_exec_runtime(curr
, delta_exec
);
968 curr
->se
.exec_start
= now
;
969 cgroup_account_cputime(curr
, delta_exec
);
971 sched_rt_avg_update(rq
, delta_exec
);
973 if (!rt_bandwidth_enabled())
976 for_each_sched_rt_entity(rt_se
) {
977 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
979 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
980 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
981 rt_rq
->rt_time
+= delta_exec
;
982 if (sched_rt_runtime_exceeded(rt_rq
))
984 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
990 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
992 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
994 BUG_ON(&rq
->rt
!= rt_rq
);
996 if (!rt_rq
->rt_queued
)
999 BUG_ON(!rq
->nr_running
);
1001 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1002 rt_rq
->rt_queued
= 0;
1004 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1005 cpufreq_update_util(rq
, 0);
1009 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1011 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1013 BUG_ON(&rq
->rt
!= rt_rq
);
1015 if (rt_rq
->rt_queued
)
1017 if (rt_rq_throttled(rt_rq
) || !rt_rq
->rt_nr_running
)
1020 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1021 rt_rq
->rt_queued
= 1;
1023 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1024 cpufreq_update_util(rq
, 0);
1027 #if defined CONFIG_SMP
1030 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1032 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1034 #ifdef CONFIG_RT_GROUP_SCHED
1036 * Change rq's cpupri only if rt_rq is the top queue.
1038 if (&rq
->rt
!= rt_rq
)
1041 if (rq
->online
&& prio
< prev_prio
)
1042 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1046 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1048 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1050 #ifdef CONFIG_RT_GROUP_SCHED
1052 * Change rq's cpupri only if rt_rq is the top queue.
1054 if (&rq
->rt
!= rt_rq
)
1057 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1058 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1061 #else /* CONFIG_SMP */
1064 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1066 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1068 #endif /* CONFIG_SMP */
1070 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1072 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1074 int prev_prio
= rt_rq
->highest_prio
.curr
;
1076 if (prio
< prev_prio
)
1077 rt_rq
->highest_prio
.curr
= prio
;
1079 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1083 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1085 int prev_prio
= rt_rq
->highest_prio
.curr
;
1087 if (rt_rq
->rt_nr_running
) {
1089 WARN_ON(prio
< prev_prio
);
1092 * This may have been our highest task, and therefore
1093 * we may have some recomputation to do
1095 if (prio
== prev_prio
) {
1096 struct rt_prio_array
*array
= &rt_rq
->active
;
1098 rt_rq
->highest_prio
.curr
=
1099 sched_find_first_bit(array
->bitmap
);
1103 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1105 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1110 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1111 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1113 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1115 #ifdef CONFIG_RT_GROUP_SCHED
1118 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1120 if (rt_se_boosted(rt_se
))
1121 rt_rq
->rt_nr_boosted
++;
1124 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1128 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1130 if (rt_se_boosted(rt_se
))
1131 rt_rq
->rt_nr_boosted
--;
1133 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1136 #else /* CONFIG_RT_GROUP_SCHED */
1139 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1141 start_rt_bandwidth(&def_rt_bandwidth
);
1145 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1147 #endif /* CONFIG_RT_GROUP_SCHED */
1150 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1152 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1155 return group_rq
->rt_nr_running
;
1161 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1163 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1164 struct task_struct
*tsk
;
1167 return group_rq
->rr_nr_running
;
1169 tsk
= rt_task_of(rt_se
);
1171 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1175 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1177 int prio
= rt_se_prio(rt_se
);
1179 WARN_ON(!rt_prio(prio
));
1180 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1181 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1183 inc_rt_prio(rt_rq
, prio
);
1184 inc_rt_migration(rt_se
, rt_rq
);
1185 inc_rt_group(rt_se
, rt_rq
);
1189 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1191 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1192 WARN_ON(!rt_rq
->rt_nr_running
);
1193 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1194 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1196 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1197 dec_rt_migration(rt_se
, rt_rq
);
1198 dec_rt_group(rt_se
, rt_rq
);
1202 * Change rt_se->run_list location unless SAVE && !MOVE
1204 * assumes ENQUEUE/DEQUEUE flags match
1206 static inline bool move_entity(unsigned int flags
)
1208 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1214 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1216 list_del_init(&rt_se
->run_list
);
1218 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1219 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1224 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1226 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1227 struct rt_prio_array
*array
= &rt_rq
->active
;
1228 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1229 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1232 * Don't enqueue the group if its throttled, or when empty.
1233 * The latter is a consequence of the former when a child group
1234 * get throttled and the current group doesn't have any other
1237 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1239 __delist_rt_entity(rt_se
, array
);
1243 if (move_entity(flags
)) {
1244 WARN_ON_ONCE(rt_se
->on_list
);
1245 if (flags
& ENQUEUE_HEAD
)
1246 list_add(&rt_se
->run_list
, queue
);
1248 list_add_tail(&rt_se
->run_list
, queue
);
1250 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1255 inc_rt_tasks(rt_se
, rt_rq
);
1258 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1260 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1261 struct rt_prio_array
*array
= &rt_rq
->active
;
1263 if (move_entity(flags
)) {
1264 WARN_ON_ONCE(!rt_se
->on_list
);
1265 __delist_rt_entity(rt_se
, array
);
1269 dec_rt_tasks(rt_se
, rt_rq
);
1273 * Because the prio of an upper entry depends on the lower
1274 * entries, we must remove entries top - down.
1276 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1278 struct sched_rt_entity
*back
= NULL
;
1280 for_each_sched_rt_entity(rt_se
) {
1285 dequeue_top_rt_rq(rt_rq_of_se(back
));
1287 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1288 if (on_rt_rq(rt_se
))
1289 __dequeue_rt_entity(rt_se
, flags
);
1293 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1295 struct rq
*rq
= rq_of_rt_se(rt_se
);
1297 dequeue_rt_stack(rt_se
, flags
);
1298 for_each_sched_rt_entity(rt_se
)
1299 __enqueue_rt_entity(rt_se
, flags
);
1300 enqueue_top_rt_rq(&rq
->rt
);
1303 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1305 struct rq
*rq
= rq_of_rt_se(rt_se
);
1307 dequeue_rt_stack(rt_se
, flags
);
1309 for_each_sched_rt_entity(rt_se
) {
1310 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1312 if (rt_rq
&& rt_rq
->rt_nr_running
)
1313 __enqueue_rt_entity(rt_se
, flags
);
1315 enqueue_top_rt_rq(&rq
->rt
);
1319 * Adding/removing a task to/from a priority array:
1322 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1324 struct sched_rt_entity
*rt_se
= &p
->rt
;
1326 if (flags
& ENQUEUE_WAKEUP
)
1329 enqueue_rt_entity(rt_se
, flags
);
1331 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1332 enqueue_pushable_task(rq
, p
);
1335 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1337 struct sched_rt_entity
*rt_se
= &p
->rt
;
1340 dequeue_rt_entity(rt_se
, flags
);
1342 dequeue_pushable_task(rq
, p
);
1346 * Put task to the head or the end of the run list without the overhead of
1347 * dequeue followed by enqueue.
1350 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1352 if (on_rt_rq(rt_se
)) {
1353 struct rt_prio_array
*array
= &rt_rq
->active
;
1354 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1357 list_move(&rt_se
->run_list
, queue
);
1359 list_move_tail(&rt_se
->run_list
, queue
);
1363 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1365 struct sched_rt_entity
*rt_se
= &p
->rt
;
1366 struct rt_rq
*rt_rq
;
1368 for_each_sched_rt_entity(rt_se
) {
1369 rt_rq
= rt_rq_of_se(rt_se
);
1370 requeue_rt_entity(rt_rq
, rt_se
, head
);
1374 static void yield_task_rt(struct rq
*rq
)
1376 requeue_task_rt(rq
, rq
->curr
, 0);
1380 static int find_lowest_rq(struct task_struct
*task
);
1383 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1385 struct task_struct
*curr
;
1388 /* For anything but wake ups, just return the task_cpu */
1389 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1395 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1398 * If the current task on @p's runqueue is an RT task, then
1399 * try to see if we can wake this RT task up on another
1400 * runqueue. Otherwise simply start this RT task
1401 * on its current runqueue.
1403 * We want to avoid overloading runqueues. If the woken
1404 * task is a higher priority, then it will stay on this CPU
1405 * and the lower prio task should be moved to another CPU.
1406 * Even though this will probably make the lower prio task
1407 * lose its cache, we do not want to bounce a higher task
1408 * around just because it gave up its CPU, perhaps for a
1411 * For equal prio tasks, we just let the scheduler sort it out.
1413 * Otherwise, just let it ride on the affined RQ and the
1414 * post-schedule router will push the preempted task away
1416 * This test is optimistic, if we get it wrong the load-balancer
1417 * will have to sort it out.
1419 if (curr
&& unlikely(rt_task(curr
)) &&
1420 (curr
->nr_cpus_allowed
< 2 ||
1421 curr
->prio
<= p
->prio
)) {
1422 int target
= find_lowest_rq(p
);
1425 * Don't bother moving it if the destination CPU is
1426 * not running a lower priority task.
1429 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1438 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1441 * Current can't be migrated, useless to reschedule,
1442 * let's hope p can move out.
1444 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1445 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1449 * p is migratable, so let's not schedule it and
1450 * see if it is pushed or pulled somewhere else.
1452 if (p
->nr_cpus_allowed
!= 1
1453 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1457 * There appear to be other CPUs that can accept
1458 * the current task but none can run 'p', so lets reschedule
1459 * to try and push the current task away:
1461 requeue_task_rt(rq
, p
, 1);
1465 #endif /* CONFIG_SMP */
1468 * Preempt the current task with a newly woken task if needed:
1470 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1472 if (p
->prio
< rq
->curr
->prio
) {
1481 * - the newly woken task is of equal priority to the current task
1482 * - the newly woken task is non-migratable while current is migratable
1483 * - current will be preempted on the next reschedule
1485 * we should check to see if current can readily move to a different
1486 * cpu. If so, we will reschedule to allow the push logic to try
1487 * to move current somewhere else, making room for our non-migratable
1490 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1491 check_preempt_equal_prio(rq
, p
);
1495 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1496 struct rt_rq
*rt_rq
)
1498 struct rt_prio_array
*array
= &rt_rq
->active
;
1499 struct sched_rt_entity
*next
= NULL
;
1500 struct list_head
*queue
;
1503 idx
= sched_find_first_bit(array
->bitmap
);
1504 BUG_ON(idx
>= MAX_RT_PRIO
);
1506 queue
= array
->queue
+ idx
;
1507 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1512 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1514 struct sched_rt_entity
*rt_se
;
1515 struct task_struct
*p
;
1516 struct rt_rq
*rt_rq
= &rq
->rt
;
1519 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1521 rt_rq
= group_rt_rq(rt_se
);
1524 p
= rt_task_of(rt_se
);
1525 p
->se
.exec_start
= rq_clock_task(rq
);
1530 static struct task_struct
*
1531 pick_next_task_rt(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
1533 struct task_struct
*p
;
1534 struct rt_rq
*rt_rq
= &rq
->rt
;
1536 if (need_pull_rt_task(rq
, prev
)) {
1538 * This is OK, because current is on_cpu, which avoids it being
1539 * picked for load-balance and preemption/IRQs are still
1540 * disabled avoiding further scheduler activity on it and we're
1541 * being very careful to re-start the picking loop.
1543 rq_unpin_lock(rq
, rf
);
1545 rq_repin_lock(rq
, rf
);
1547 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1548 * means a dl or stop task can slip in, in which case we need
1549 * to re-start task selection.
1551 if (unlikely((rq
->stop
&& task_on_rq_queued(rq
->stop
)) ||
1552 rq
->dl
.dl_nr_running
))
1557 * We may dequeue prev's rt_rq in put_prev_task().
1558 * So, we update time before rt_nr_running check.
1560 if (prev
->sched_class
== &rt_sched_class
)
1563 if (!rt_rq
->rt_queued
)
1566 put_prev_task(rq
, prev
);
1568 p
= _pick_next_task_rt(rq
);
1570 /* The running task is never eligible for pushing */
1571 dequeue_pushable_task(rq
, p
);
1573 rt_queue_push_tasks(rq
);
1578 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1583 * The previous task needs to be made eligible for pushing
1584 * if it is still active
1586 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1587 enqueue_pushable_task(rq
, p
);
1592 /* Only try algorithms three times */
1593 #define RT_MAX_TRIES 3
1595 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1597 if (!task_running(rq
, p
) &&
1598 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1605 * Return the highest pushable rq's task, which is suitable to be executed
1606 * on the CPU, NULL otherwise
1608 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1610 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1611 struct task_struct
*p
;
1613 if (!has_pushable_tasks(rq
))
1616 plist_for_each_entry(p
, head
, pushable_tasks
) {
1617 if (pick_rt_task(rq
, p
, cpu
))
1624 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1626 static int find_lowest_rq(struct task_struct
*task
)
1628 struct sched_domain
*sd
;
1629 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1630 int this_cpu
= smp_processor_id();
1631 int cpu
= task_cpu(task
);
1633 /* Make sure the mask is initialized first */
1634 if (unlikely(!lowest_mask
))
1637 if (task
->nr_cpus_allowed
== 1)
1638 return -1; /* No other targets possible */
1640 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1641 return -1; /* No targets found */
1644 * At this point we have built a mask of CPUs representing the
1645 * lowest priority tasks in the system. Now we want to elect
1646 * the best one based on our affinity and topology.
1648 * We prioritize the last CPU that the task executed on since
1649 * it is most likely cache-hot in that location.
1651 if (cpumask_test_cpu(cpu
, lowest_mask
))
1655 * Otherwise, we consult the sched_domains span maps to figure
1656 * out which CPU is logically closest to our hot cache data.
1658 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1659 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1662 for_each_domain(cpu
, sd
) {
1663 if (sd
->flags
& SD_WAKE_AFFINE
) {
1667 * "this_cpu" is cheaper to preempt than a
1670 if (this_cpu
!= -1 &&
1671 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1676 best_cpu
= cpumask_first_and(lowest_mask
,
1677 sched_domain_span(sd
));
1678 if (best_cpu
< nr_cpu_ids
) {
1687 * And finally, if there were no matches within the domains
1688 * just give the caller *something* to work with from the compatible
1694 cpu
= cpumask_any(lowest_mask
);
1695 if (cpu
< nr_cpu_ids
)
1701 /* Will lock the rq it finds */
1702 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1704 struct rq
*lowest_rq
= NULL
;
1708 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1709 cpu
= find_lowest_rq(task
);
1711 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1714 lowest_rq
= cpu_rq(cpu
);
1716 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1718 * Target rq has tasks of equal or higher priority,
1719 * retrying does not release any lock and is unlikely
1720 * to yield a different result.
1726 /* if the prio of this runqueue changed, try again */
1727 if (double_lock_balance(rq
, lowest_rq
)) {
1729 * We had to unlock the run queue. In
1730 * the mean time, task could have
1731 * migrated already or had its affinity changed.
1732 * Also make sure that it wasn't scheduled on its rq.
1734 if (unlikely(task_rq(task
) != rq
||
1735 !cpumask_test_cpu(lowest_rq
->cpu
, &task
->cpus_allowed
) ||
1736 task_running(rq
, task
) ||
1738 !task_on_rq_queued(task
))) {
1740 double_unlock_balance(rq
, lowest_rq
);
1746 /* If this rq is still suitable use it. */
1747 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1751 double_unlock_balance(rq
, lowest_rq
);
1758 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1760 struct task_struct
*p
;
1762 if (!has_pushable_tasks(rq
))
1765 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1766 struct task_struct
, pushable_tasks
);
1768 BUG_ON(rq
->cpu
!= task_cpu(p
));
1769 BUG_ON(task_current(rq
, p
));
1770 BUG_ON(p
->nr_cpus_allowed
<= 1);
1772 BUG_ON(!task_on_rq_queued(p
));
1773 BUG_ON(!rt_task(p
));
1779 * If the current CPU has more than one RT task, see if the non
1780 * running task can migrate over to a CPU that is running a task
1781 * of lesser priority.
1783 static int push_rt_task(struct rq
*rq
)
1785 struct task_struct
*next_task
;
1786 struct rq
*lowest_rq
;
1789 if (!rq
->rt
.overloaded
)
1792 next_task
= pick_next_pushable_task(rq
);
1797 if (unlikely(next_task
== rq
->curr
)) {
1803 * It's possible that the next_task slipped in of
1804 * higher priority than current. If that's the case
1805 * just reschedule current.
1807 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1812 /* We might release rq lock */
1813 get_task_struct(next_task
);
1815 /* find_lock_lowest_rq locks the rq if found */
1816 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1818 struct task_struct
*task
;
1820 * find_lock_lowest_rq releases rq->lock
1821 * so it is possible that next_task has migrated.
1823 * We need to make sure that the task is still on the same
1824 * run-queue and is also still the next task eligible for
1827 task
= pick_next_pushable_task(rq
);
1828 if (task
== next_task
) {
1830 * The task hasn't migrated, and is still the next
1831 * eligible task, but we failed to find a run-queue
1832 * to push it to. Do not retry in this case, since
1833 * other CPUs will pull from us when ready.
1839 /* No more tasks, just exit */
1843 * Something has shifted, try again.
1845 put_task_struct(next_task
);
1850 deactivate_task(rq
, next_task
, 0);
1851 set_task_cpu(next_task
, lowest_rq
->cpu
);
1852 activate_task(lowest_rq
, next_task
, 0);
1855 resched_curr(lowest_rq
);
1857 double_unlock_balance(rq
, lowest_rq
);
1860 put_task_struct(next_task
);
1865 static void push_rt_tasks(struct rq
*rq
)
1867 /* push_rt_task will return true if it moved an RT */
1868 while (push_rt_task(rq
))
1872 #ifdef HAVE_RT_PUSH_IPI
1875 * When a high priority task schedules out from a CPU and a lower priority
1876 * task is scheduled in, a check is made to see if there's any RT tasks
1877 * on other CPUs that are waiting to run because a higher priority RT task
1878 * is currently running on its CPU. In this case, the CPU with multiple RT
1879 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1880 * up that may be able to run one of its non-running queued RT tasks.
1882 * All CPUs with overloaded RT tasks need to be notified as there is currently
1883 * no way to know which of these CPUs have the highest priority task waiting
1884 * to run. Instead of trying to take a spinlock on each of these CPUs,
1885 * which has shown to cause large latency when done on machines with many
1886 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1887 * RT tasks waiting to run.
1889 * Just sending an IPI to each of the CPUs is also an issue, as on large
1890 * count CPU machines, this can cause an IPI storm on a CPU, especially
1891 * if its the only CPU with multiple RT tasks queued, and a large number
1892 * of CPUs scheduling a lower priority task at the same time.
1894 * Each root domain has its own irq work function that can iterate over
1895 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1896 * tassk must be checked if there's one or many CPUs that are lowering
1897 * their priority, there's a single irq work iterator that will try to
1898 * push off RT tasks that are waiting to run.
1900 * When a CPU schedules a lower priority task, it will kick off the
1901 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1902 * As it only takes the first CPU that schedules a lower priority task
1903 * to start the process, the rto_start variable is incremented and if
1904 * the atomic result is one, then that CPU will try to take the rto_lock.
1905 * This prevents high contention on the lock as the process handles all
1906 * CPUs scheduling lower priority tasks.
1908 * All CPUs that are scheduling a lower priority task will increment the
1909 * rt_loop_next variable. This will make sure that the irq work iterator
1910 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1911 * priority task, even if the iterator is in the middle of a scan. Incrementing
1912 * the rt_loop_next will cause the iterator to perform another scan.
1915 static int rto_next_cpu(struct root_domain
*rd
)
1921 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1922 * rt_next_cpu() will simply return the first CPU found in
1925 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1926 * will return the next CPU found in the rto_mask.
1928 * If there are no more CPUs left in the rto_mask, then a check is made
1929 * against rto_loop and rto_loop_next. rto_loop is only updated with
1930 * the rto_lock held, but any CPU may increment the rto_loop_next
1931 * without any locking.
1935 /* When rto_cpu is -1 this acts like cpumask_first() */
1936 cpu
= cpumask_next(rd
->rto_cpu
, rd
->rto_mask
);
1940 if (cpu
< nr_cpu_ids
)
1946 * ACQUIRE ensures we see the @rto_mask changes
1947 * made prior to the @next value observed.
1949 * Matches WMB in rt_set_overload().
1951 next
= atomic_read_acquire(&rd
->rto_loop_next
);
1953 if (rd
->rto_loop
== next
)
1956 rd
->rto_loop
= next
;
1962 static inline bool rto_start_trylock(atomic_t
*v
)
1964 return !atomic_cmpxchg_acquire(v
, 0, 1);
1967 static inline void rto_start_unlock(atomic_t
*v
)
1969 atomic_set_release(v
, 0);
1972 static void tell_cpu_to_push(struct rq
*rq
)
1976 /* Keep the loop going if the IPI is currently active */
1977 atomic_inc(&rq
->rd
->rto_loop_next
);
1979 /* Only one CPU can initiate a loop at a time */
1980 if (!rto_start_trylock(&rq
->rd
->rto_loop_start
))
1983 raw_spin_lock(&rq
->rd
->rto_lock
);
1986 * The rto_cpu is updated under the lock, if it has a valid CPU
1987 * then the IPI is still running and will continue due to the
1988 * update to loop_next, and nothing needs to be done here.
1989 * Otherwise it is finishing up and an ipi needs to be sent.
1991 if (rq
->rd
->rto_cpu
< 0)
1992 cpu
= rto_next_cpu(rq
->rd
);
1994 raw_spin_unlock(&rq
->rd
->rto_lock
);
1996 rto_start_unlock(&rq
->rd
->rto_loop_start
);
1999 /* Make sure the rd does not get freed while pushing */
2000 sched_get_rd(rq
->rd
);
2001 irq_work_queue_on(&rq
->rd
->rto_push_work
, cpu
);
2005 /* Called from hardirq context */
2006 void rto_push_irq_work_func(struct irq_work
*work
)
2008 struct root_domain
*rd
=
2009 container_of(work
, struct root_domain
, rto_push_work
);
2016 * We do not need to grab the lock to check for has_pushable_tasks.
2017 * When it gets updated, a check is made if a push is possible.
2019 if (has_pushable_tasks(rq
)) {
2020 raw_spin_lock(&rq
->lock
);
2022 raw_spin_unlock(&rq
->lock
);
2025 raw_spin_lock(&rd
->rto_lock
);
2027 /* Pass the IPI to the next rt overloaded queue */
2028 cpu
= rto_next_cpu(rd
);
2030 raw_spin_unlock(&rd
->rto_lock
);
2037 /* Try the next RT overloaded CPU */
2038 irq_work_queue_on(&rd
->rto_push_work
, cpu
);
2040 #endif /* HAVE_RT_PUSH_IPI */
2042 static void pull_rt_task(struct rq
*this_rq
)
2044 int this_cpu
= this_rq
->cpu
, cpu
;
2045 bool resched
= false;
2046 struct task_struct
*p
;
2048 int rt_overload_count
= rt_overloaded(this_rq
);
2050 if (likely(!rt_overload_count
))
2054 * Match the barrier from rt_set_overloaded; this guarantees that if we
2055 * see overloaded we must also see the rto_mask bit.
2059 /* If we are the only overloaded CPU do nothing */
2060 if (rt_overload_count
== 1 &&
2061 cpumask_test_cpu(this_rq
->cpu
, this_rq
->rd
->rto_mask
))
2064 #ifdef HAVE_RT_PUSH_IPI
2065 if (sched_feat(RT_PUSH_IPI
)) {
2066 tell_cpu_to_push(this_rq
);
2071 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2072 if (this_cpu
== cpu
)
2075 src_rq
= cpu_rq(cpu
);
2078 * Don't bother taking the src_rq->lock if the next highest
2079 * task is known to be lower-priority than our current task.
2080 * This may look racy, but if this value is about to go
2081 * logically higher, the src_rq will push this task away.
2082 * And if its going logically lower, we do not care
2084 if (src_rq
->rt
.highest_prio
.next
>=
2085 this_rq
->rt
.highest_prio
.curr
)
2089 * We can potentially drop this_rq's lock in
2090 * double_lock_balance, and another CPU could
2093 double_lock_balance(this_rq
, src_rq
);
2096 * We can pull only a task, which is pushable
2097 * on its rq, and no others.
2099 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2102 * Do we have an RT task that preempts
2103 * the to-be-scheduled task?
2105 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2106 WARN_ON(p
== src_rq
->curr
);
2107 WARN_ON(!task_on_rq_queued(p
));
2110 * There's a chance that p is higher in priority
2111 * than what's currently running on its CPU.
2112 * This is just that p is wakeing up and hasn't
2113 * had a chance to schedule. We only pull
2114 * p if it is lower in priority than the
2115 * current task on the run queue
2117 if (p
->prio
< src_rq
->curr
->prio
)
2122 deactivate_task(src_rq
, p
, 0);
2123 set_task_cpu(p
, this_cpu
);
2124 activate_task(this_rq
, p
, 0);
2126 * We continue with the search, just in
2127 * case there's an even higher prio task
2128 * in another runqueue. (low likelihood
2133 double_unlock_balance(this_rq
, src_rq
);
2137 resched_curr(this_rq
);
2141 * If we are not running and we are not going to reschedule soon, we should
2142 * try to push tasks away now
2144 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2146 if (!task_running(rq
, p
) &&
2147 !test_tsk_need_resched(rq
->curr
) &&
2148 p
->nr_cpus_allowed
> 1 &&
2149 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2150 (rq
->curr
->nr_cpus_allowed
< 2 ||
2151 rq
->curr
->prio
<= p
->prio
))
2155 /* Assumes rq->lock is held */
2156 static void rq_online_rt(struct rq
*rq
)
2158 if (rq
->rt
.overloaded
)
2159 rt_set_overload(rq
);
2161 __enable_runtime(rq
);
2163 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2166 /* Assumes rq->lock is held */
2167 static void rq_offline_rt(struct rq
*rq
)
2169 if (rq
->rt
.overloaded
)
2170 rt_clear_overload(rq
);
2172 __disable_runtime(rq
);
2174 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2178 * When switch from the rt queue, we bring ourselves to a position
2179 * that we might want to pull RT tasks from other runqueues.
2181 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2184 * If there are other RT tasks then we will reschedule
2185 * and the scheduling of the other RT tasks will handle
2186 * the balancing. But if we are the last RT task
2187 * we may need to handle the pulling of RT tasks
2190 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2193 rt_queue_pull_task(rq
);
2196 void __init
init_sched_rt_class(void)
2200 for_each_possible_cpu(i
) {
2201 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2202 GFP_KERNEL
, cpu_to_node(i
));
2205 #endif /* CONFIG_SMP */
2208 * When switching a task to RT, we may overload the runqueue
2209 * with RT tasks. In this case we try to push them off to
2212 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2215 * If we are already running, then there's nothing
2216 * that needs to be done. But if we are not running
2217 * we may need to preempt the current running task.
2218 * If that current running task is also an RT task
2219 * then see if we can move to another run queue.
2221 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2223 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
)
2224 rt_queue_push_tasks(rq
);
2225 #endif /* CONFIG_SMP */
2226 if (p
->prio
< rq
->curr
->prio
&& cpu_online(cpu_of(rq
)))
2232 * Priority of the task has changed. This may cause
2233 * us to initiate a push or pull.
2236 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2238 if (!task_on_rq_queued(p
))
2241 if (rq
->curr
== p
) {
2244 * If our priority decreases while running, we
2245 * may need to pull tasks to this runqueue.
2247 if (oldprio
< p
->prio
)
2248 rt_queue_pull_task(rq
);
2251 * If there's a higher priority task waiting to run
2254 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2257 /* For UP simply resched on drop of prio */
2258 if (oldprio
< p
->prio
)
2260 #endif /* CONFIG_SMP */
2263 * This task is not running, but if it is
2264 * greater than the current running task
2267 if (p
->prio
< rq
->curr
->prio
)
2272 #ifdef CONFIG_POSIX_TIMERS
2273 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2275 unsigned long soft
, hard
;
2277 /* max may change after cur was read, this will be fixed next tick */
2278 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2279 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2281 if (soft
!= RLIM_INFINITY
) {
2284 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2286 p
->rt
.watchdog_stamp
= jiffies
;
2289 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2290 if (p
->rt
.timeout
> next
)
2291 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2295 static inline void watchdog(struct rq
*rq
, struct task_struct
*p
) { }
2299 * scheduler tick hitting a task of our scheduling class.
2301 * NOTE: This function can be called remotely by the tick offload that
2302 * goes along full dynticks. Therefore no local assumption can be made
2303 * and everything must be accessed through the @rq and @curr passed in
2306 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2308 struct sched_rt_entity
*rt_se
= &p
->rt
;
2315 * RR tasks need a special form of timeslice management.
2316 * FIFO tasks have no timeslices.
2318 if (p
->policy
!= SCHED_RR
)
2321 if (--p
->rt
.time_slice
)
2324 p
->rt
.time_slice
= sched_rr_timeslice
;
2327 * Requeue to the end of queue if we (and all of our ancestors) are not
2328 * the only element on the queue
2330 for_each_sched_rt_entity(rt_se
) {
2331 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2332 requeue_task_rt(rq
, p
, 0);
2339 static void set_curr_task_rt(struct rq
*rq
)
2341 struct task_struct
*p
= rq
->curr
;
2343 p
->se
.exec_start
= rq_clock_task(rq
);
2345 /* The running task is never eligible for pushing */
2346 dequeue_pushable_task(rq
, p
);
2349 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2352 * Time slice is 0 for SCHED_FIFO tasks
2354 if (task
->policy
== SCHED_RR
)
2355 return sched_rr_timeslice
;
2360 const struct sched_class rt_sched_class
= {
2361 .next
= &fair_sched_class
,
2362 .enqueue_task
= enqueue_task_rt
,
2363 .dequeue_task
= dequeue_task_rt
,
2364 .yield_task
= yield_task_rt
,
2366 .check_preempt_curr
= check_preempt_curr_rt
,
2368 .pick_next_task
= pick_next_task_rt
,
2369 .put_prev_task
= put_prev_task_rt
,
2372 .select_task_rq
= select_task_rq_rt
,
2374 .set_cpus_allowed
= set_cpus_allowed_common
,
2375 .rq_online
= rq_online_rt
,
2376 .rq_offline
= rq_offline_rt
,
2377 .task_woken
= task_woken_rt
,
2378 .switched_from
= switched_from_rt
,
2381 .set_curr_task
= set_curr_task_rt
,
2382 .task_tick
= task_tick_rt
,
2384 .get_rr_interval
= get_rr_interval_rt
,
2386 .prio_changed
= prio_changed_rt
,
2387 .switched_to
= switched_to_rt
,
2389 .update_curr
= update_curr_rt
,
2392 #ifdef CONFIG_RT_GROUP_SCHED
2394 * Ensure that the real time constraints are schedulable.
2396 static DEFINE_MUTEX(rt_constraints_mutex
);
2398 /* Must be called with tasklist_lock held */
2399 static inline int tg_has_rt_tasks(struct task_group
*tg
)
2401 struct task_struct
*g
, *p
;
2404 * Autogroups do not have RT tasks; see autogroup_create().
2406 if (task_group_is_autogroup(tg
))
2409 for_each_process_thread(g
, p
) {
2410 if (rt_task(p
) && task_group(p
) == tg
)
2417 struct rt_schedulable_data
{
2418 struct task_group
*tg
;
2423 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
2425 struct rt_schedulable_data
*d
= data
;
2426 struct task_group
*child
;
2427 unsigned long total
, sum
= 0;
2428 u64 period
, runtime
;
2430 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2431 runtime
= tg
->rt_bandwidth
.rt_runtime
;
2434 period
= d
->rt_period
;
2435 runtime
= d
->rt_runtime
;
2439 * Cannot have more runtime than the period.
2441 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
2445 * Ensure we don't starve existing RT tasks.
2447 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
2450 total
= to_ratio(period
, runtime
);
2453 * Nobody can have more than the global setting allows.
2455 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
2459 * The sum of our children's runtime should not exceed our own.
2461 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
2462 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
2463 runtime
= child
->rt_bandwidth
.rt_runtime
;
2465 if (child
== d
->tg
) {
2466 period
= d
->rt_period
;
2467 runtime
= d
->rt_runtime
;
2470 sum
+= to_ratio(period
, runtime
);
2479 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
2483 struct rt_schedulable_data data
= {
2485 .rt_period
= period
,
2486 .rt_runtime
= runtime
,
2490 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
2496 static int tg_set_rt_bandwidth(struct task_group
*tg
,
2497 u64 rt_period
, u64 rt_runtime
)
2502 * Disallowing the root group RT runtime is BAD, it would disallow the
2503 * kernel creating (and or operating) RT threads.
2505 if (tg
== &root_task_group
&& rt_runtime
== 0)
2508 /* No period doesn't make any sense. */
2512 mutex_lock(&rt_constraints_mutex
);
2513 read_lock(&tasklist_lock
);
2514 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
2518 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2519 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
2520 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
2522 for_each_possible_cpu(i
) {
2523 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
2525 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2526 rt_rq
->rt_runtime
= rt_runtime
;
2527 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2529 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2531 read_unlock(&tasklist_lock
);
2532 mutex_unlock(&rt_constraints_mutex
);
2537 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
2539 u64 rt_runtime
, rt_period
;
2541 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2542 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
2543 if (rt_runtime_us
< 0)
2544 rt_runtime
= RUNTIME_INF
;
2546 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2549 long sched_group_rt_runtime(struct task_group
*tg
)
2553 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
2556 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
2557 do_div(rt_runtime_us
, NSEC_PER_USEC
);
2558 return rt_runtime_us
;
2561 int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
2563 u64 rt_runtime
, rt_period
;
2565 rt_period
= rt_period_us
* NSEC_PER_USEC
;
2566 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
2568 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2571 long sched_group_rt_period(struct task_group
*tg
)
2575 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2576 do_div(rt_period_us
, NSEC_PER_USEC
);
2577 return rt_period_us
;
2580 static int sched_rt_global_constraints(void)
2584 mutex_lock(&rt_constraints_mutex
);
2585 read_lock(&tasklist_lock
);
2586 ret
= __rt_schedulable(NULL
, 0, 0);
2587 read_unlock(&tasklist_lock
);
2588 mutex_unlock(&rt_constraints_mutex
);
2593 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
2595 /* Don't accept realtime tasks when there is no way for them to run */
2596 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
2602 #else /* !CONFIG_RT_GROUP_SCHED */
2603 static int sched_rt_global_constraints(void)
2605 unsigned long flags
;
2608 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2609 for_each_possible_cpu(i
) {
2610 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
2612 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2613 rt_rq
->rt_runtime
= global_rt_runtime();
2614 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2616 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2620 #endif /* CONFIG_RT_GROUP_SCHED */
2622 static int sched_rt_global_validate(void)
2624 if (sysctl_sched_rt_period
<= 0)
2627 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
2628 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
2634 static void sched_rt_do_global(void)
2636 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
2637 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
2640 int sched_rt_handler(struct ctl_table
*table
, int write
,
2641 void __user
*buffer
, size_t *lenp
,
2644 int old_period
, old_runtime
;
2645 static DEFINE_MUTEX(mutex
);
2649 old_period
= sysctl_sched_rt_period
;
2650 old_runtime
= sysctl_sched_rt_runtime
;
2652 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2654 if (!ret
&& write
) {
2655 ret
= sched_rt_global_validate();
2659 ret
= sched_dl_global_validate();
2663 ret
= sched_rt_global_constraints();
2667 sched_rt_do_global();
2668 sched_dl_do_global();
2672 sysctl_sched_rt_period
= old_period
;
2673 sysctl_sched_rt_runtime
= old_runtime
;
2675 mutex_unlock(&mutex
);
2680 int sched_rr_handler(struct ctl_table
*table
, int write
,
2681 void __user
*buffer
, size_t *lenp
,
2685 static DEFINE_MUTEX(mutex
);
2688 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2690 * Make sure that internally we keep jiffies.
2691 * Also, writing zero resets the timeslice to default:
2693 if (!ret
&& write
) {
2694 sched_rr_timeslice
=
2695 sysctl_sched_rr_timeslice
<= 0 ? RR_TIMESLICE
:
2696 msecs_to_jiffies(sysctl_sched_rr_timeslice
);
2698 mutex_unlock(&mutex
);
2703 #ifdef CONFIG_SCHED_DEBUG
2704 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2706 void print_rt_stats(struct seq_file
*m
, int cpu
)
2709 struct rt_rq
*rt_rq
;
2712 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2713 print_rt_rq(m
, cpu
, rt_rq
);
2716 #endif /* CONFIG_SCHED_DEBUG */