xfs: add full xfs_dqblk verifier
[linux/fpc-iii.git] / kernel / sched / rt.c
blob7aef6b4e885a5e058ce75bdbc4f5bf756a2783b2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
8 int sched_rr_timeslice = RR_TIMESLICE;
9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 struct rt_bandwidth def_rt_bandwidth;
15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 struct rt_bandwidth *rt_b =
18 container_of(timer, struct rt_bandwidth, rt_period_timer);
19 int idle = 0;
20 int overrun;
22 raw_spin_lock(&rt_b->rt_runtime_lock);
23 for (;;) {
24 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
25 if (!overrun)
26 break;
28 raw_spin_unlock(&rt_b->rt_runtime_lock);
29 idle = do_sched_rt_period_timer(rt_b, overrun);
30 raw_spin_lock(&rt_b->rt_runtime_lock);
32 if (idle)
33 rt_b->rt_period_active = 0;
34 raw_spin_unlock(&rt_b->rt_runtime_lock);
36 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
41 rt_b->rt_period = ns_to_ktime(period);
42 rt_b->rt_runtime = runtime;
44 raw_spin_lock_init(&rt_b->rt_runtime_lock);
46 hrtimer_init(&rt_b->rt_period_timer,
47 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
48 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
53 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
54 return;
56 raw_spin_lock(&rt_b->rt_runtime_lock);
57 if (!rt_b->rt_period_active) {
58 rt_b->rt_period_active = 1;
60 * SCHED_DEADLINE updates the bandwidth, as a run away
61 * RT task with a DL task could hog a CPU. But DL does
62 * not reset the period. If a deadline task was running
63 * without an RT task running, it can cause RT tasks to
64 * throttle when they start up. Kick the timer right away
65 * to update the period.
67 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
68 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
70 raw_spin_unlock(&rt_b->rt_runtime_lock);
73 void init_rt_rq(struct rt_rq *rt_rq)
75 struct rt_prio_array *array;
76 int i;
78 array = &rt_rq->active;
79 for (i = 0; i < MAX_RT_PRIO; i++) {
80 INIT_LIST_HEAD(array->queue + i);
81 __clear_bit(i, array->bitmap);
83 /* delimiter for bitsearch: */
84 __set_bit(MAX_RT_PRIO, array->bitmap);
86 #if defined CONFIG_SMP
87 rt_rq->highest_prio.curr = MAX_RT_PRIO;
88 rt_rq->highest_prio.next = MAX_RT_PRIO;
89 rt_rq->rt_nr_migratory = 0;
90 rt_rq->overloaded = 0;
91 plist_head_init(&rt_rq->pushable_tasks);
92 #endif /* CONFIG_SMP */
93 /* We start is dequeued state, because no RT tasks are queued */
94 rt_rq->rt_queued = 0;
96 rt_rq->rt_time = 0;
97 rt_rq->rt_throttled = 0;
98 rt_rq->rt_runtime = 0;
99 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
102 #ifdef CONFIG_RT_GROUP_SCHED
103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
105 hrtimer_cancel(&rt_b->rt_period_timer);
108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
112 #ifdef CONFIG_SCHED_DEBUG
113 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
114 #endif
115 return container_of(rt_se, struct task_struct, rt);
118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
120 return rt_rq->rq;
123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
125 return rt_se->rt_rq;
128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
130 struct rt_rq *rt_rq = rt_se->rt_rq;
132 return rt_rq->rq;
135 void free_rt_sched_group(struct task_group *tg)
137 int i;
139 if (tg->rt_se)
140 destroy_rt_bandwidth(&tg->rt_bandwidth);
142 for_each_possible_cpu(i) {
143 if (tg->rt_rq)
144 kfree(tg->rt_rq[i]);
145 if (tg->rt_se)
146 kfree(tg->rt_se[i]);
149 kfree(tg->rt_rq);
150 kfree(tg->rt_se);
153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
154 struct sched_rt_entity *rt_se, int cpu,
155 struct sched_rt_entity *parent)
157 struct rq *rq = cpu_rq(cpu);
159 rt_rq->highest_prio.curr = MAX_RT_PRIO;
160 rt_rq->rt_nr_boosted = 0;
161 rt_rq->rq = rq;
162 rt_rq->tg = tg;
164 tg->rt_rq[cpu] = rt_rq;
165 tg->rt_se[cpu] = rt_se;
167 if (!rt_se)
168 return;
170 if (!parent)
171 rt_se->rt_rq = &rq->rt;
172 else
173 rt_se->rt_rq = parent->my_q;
175 rt_se->my_q = rt_rq;
176 rt_se->parent = parent;
177 INIT_LIST_HEAD(&rt_se->run_list);
180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
182 struct rt_rq *rt_rq;
183 struct sched_rt_entity *rt_se;
184 int i;
186 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
187 if (!tg->rt_rq)
188 goto err;
189 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
190 if (!tg->rt_se)
191 goto err;
193 init_rt_bandwidth(&tg->rt_bandwidth,
194 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
196 for_each_possible_cpu(i) {
197 rt_rq = kzalloc_node(sizeof(struct rt_rq),
198 GFP_KERNEL, cpu_to_node(i));
199 if (!rt_rq)
200 goto err;
202 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_se)
205 goto err_free_rq;
207 init_rt_rq(rt_rq);
208 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
209 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
212 return 1;
214 err_free_rq:
215 kfree(rt_rq);
216 err:
217 return 0;
220 #else /* CONFIG_RT_GROUP_SCHED */
222 #define rt_entity_is_task(rt_se) (1)
224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
226 return container_of(rt_se, struct task_struct, rt);
229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
231 return container_of(rt_rq, struct rq, rt);
234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
236 struct task_struct *p = rt_task_of(rt_se);
238 return task_rq(p);
241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
243 struct rq *rq = rq_of_rt_se(rt_se);
245 return &rq->rt;
248 void free_rt_sched_group(struct task_group *tg) { }
250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
252 return 1;
254 #endif /* CONFIG_RT_GROUP_SCHED */
256 #ifdef CONFIG_SMP
258 static void pull_rt_task(struct rq *this_rq);
260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
262 /* Try to pull RT tasks here if we lower this rq's prio */
263 return rq->rt.highest_prio.curr > prev->prio;
266 static inline int rt_overloaded(struct rq *rq)
268 return atomic_read(&rq->rd->rto_count);
271 static inline void rt_set_overload(struct rq *rq)
273 if (!rq->online)
274 return;
276 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
278 * Make sure the mask is visible before we set
279 * the overload count. That is checked to determine
280 * if we should look at the mask. It would be a shame
281 * if we looked at the mask, but the mask was not
282 * updated yet.
284 * Matched by the barrier in pull_rt_task().
286 smp_wmb();
287 atomic_inc(&rq->rd->rto_count);
290 static inline void rt_clear_overload(struct rq *rq)
292 if (!rq->online)
293 return;
295 /* the order here really doesn't matter */
296 atomic_dec(&rq->rd->rto_count);
297 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
300 static void update_rt_migration(struct rt_rq *rt_rq)
302 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
303 if (!rt_rq->overloaded) {
304 rt_set_overload(rq_of_rt_rq(rt_rq));
305 rt_rq->overloaded = 1;
307 } else if (rt_rq->overloaded) {
308 rt_clear_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 0;
313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
315 struct task_struct *p;
317 if (!rt_entity_is_task(rt_se))
318 return;
320 p = rt_task_of(rt_se);
321 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
323 rt_rq->rt_nr_total++;
324 if (p->nr_cpus_allowed > 1)
325 rt_rq->rt_nr_migratory++;
327 update_rt_migration(rt_rq);
330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
332 struct task_struct *p;
334 if (!rt_entity_is_task(rt_se))
335 return;
337 p = rt_task_of(rt_se);
338 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
340 rt_rq->rt_nr_total--;
341 if (p->nr_cpus_allowed > 1)
342 rt_rq->rt_nr_migratory--;
344 update_rt_migration(rt_rq);
347 static inline int has_pushable_tasks(struct rq *rq)
349 return !plist_head_empty(&rq->rt.pushable_tasks);
352 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
355 static void push_rt_tasks(struct rq *);
356 static void pull_rt_task(struct rq *);
358 static inline void rt_queue_push_tasks(struct rq *rq)
360 if (!has_pushable_tasks(rq))
361 return;
363 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
366 static inline void rt_queue_pull_task(struct rq *rq)
368 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
373 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
374 plist_node_init(&p->pushable_tasks, p->prio);
375 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 /* Update the highest prio pushable task */
378 if (p->prio < rq->rt.highest_prio.next)
379 rq->rt.highest_prio.next = p->prio;
382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
386 /* Update the new highest prio pushable task */
387 if (has_pushable_tasks(rq)) {
388 p = plist_first_entry(&rq->rt.pushable_tasks,
389 struct task_struct, pushable_tasks);
390 rq->rt.highest_prio.next = p->prio;
391 } else
392 rq->rt.highest_prio.next = MAX_RT_PRIO;
395 #else
397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 static inline
406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 static inline
411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
417 return false;
420 static inline void pull_rt_task(struct rq *this_rq)
424 static inline void rt_queue_push_tasks(struct rq *rq)
427 #endif /* CONFIG_SMP */
429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
432 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
434 return rt_se->on_rq;
437 #ifdef CONFIG_RT_GROUP_SCHED
439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
441 if (!rt_rq->tg)
442 return RUNTIME_INF;
444 return rt_rq->rt_runtime;
447 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
449 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
452 typedef struct task_group *rt_rq_iter_t;
454 static inline struct task_group *next_task_group(struct task_group *tg)
456 do {
457 tg = list_entry_rcu(tg->list.next,
458 typeof(struct task_group), list);
459 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
461 if (&tg->list == &task_groups)
462 tg = NULL;
464 return tg;
467 #define for_each_rt_rq(rt_rq, iter, rq) \
468 for (iter = container_of(&task_groups, typeof(*iter), list); \
469 (iter = next_task_group(iter)) && \
470 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
472 #define for_each_sched_rt_entity(rt_se) \
473 for (; rt_se; rt_se = rt_se->parent)
475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
477 return rt_se->my_q;
480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
485 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
486 struct rq *rq = rq_of_rt_rq(rt_rq);
487 struct sched_rt_entity *rt_se;
489 int cpu = cpu_of(rq);
491 rt_se = rt_rq->tg->rt_se[cpu];
493 if (rt_rq->rt_nr_running) {
494 if (!rt_se)
495 enqueue_top_rt_rq(rt_rq);
496 else if (!on_rt_rq(rt_se))
497 enqueue_rt_entity(rt_se, 0);
499 if (rt_rq->highest_prio.curr < curr->prio)
500 resched_curr(rq);
504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
506 struct sched_rt_entity *rt_se;
507 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
509 rt_se = rt_rq->tg->rt_se[cpu];
511 if (!rt_se)
512 dequeue_top_rt_rq(rt_rq);
513 else if (on_rt_rq(rt_se))
514 dequeue_rt_entity(rt_se, 0);
517 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
519 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
522 static int rt_se_boosted(struct sched_rt_entity *rt_se)
524 struct rt_rq *rt_rq = group_rt_rq(rt_se);
525 struct task_struct *p;
527 if (rt_rq)
528 return !!rt_rq->rt_nr_boosted;
530 p = rt_task_of(rt_se);
531 return p->prio != p->normal_prio;
534 #ifdef CONFIG_SMP
535 static inline const struct cpumask *sched_rt_period_mask(void)
537 return this_rq()->rd->span;
539 #else
540 static inline const struct cpumask *sched_rt_period_mask(void)
542 return cpu_online_mask;
544 #endif
546 static inline
547 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
549 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
552 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
554 return &rt_rq->tg->rt_bandwidth;
557 #else /* !CONFIG_RT_GROUP_SCHED */
559 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
561 return rt_rq->rt_runtime;
564 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
566 return ktime_to_ns(def_rt_bandwidth.rt_period);
569 typedef struct rt_rq *rt_rq_iter_t;
571 #define for_each_rt_rq(rt_rq, iter, rq) \
572 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
574 #define for_each_sched_rt_entity(rt_se) \
575 for (; rt_se; rt_se = NULL)
577 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
579 return NULL;
582 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
584 struct rq *rq = rq_of_rt_rq(rt_rq);
586 if (!rt_rq->rt_nr_running)
587 return;
589 enqueue_top_rt_rq(rt_rq);
590 resched_curr(rq);
593 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
595 dequeue_top_rt_rq(rt_rq);
598 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
600 return rt_rq->rt_throttled;
603 static inline const struct cpumask *sched_rt_period_mask(void)
605 return cpu_online_mask;
608 static inline
609 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
611 return &cpu_rq(cpu)->rt;
614 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
616 return &def_rt_bandwidth;
619 #endif /* CONFIG_RT_GROUP_SCHED */
621 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
623 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
625 return (hrtimer_active(&rt_b->rt_period_timer) ||
626 rt_rq->rt_time < rt_b->rt_runtime);
629 #ifdef CONFIG_SMP
631 * We ran out of runtime, see if we can borrow some from our neighbours.
633 static void do_balance_runtime(struct rt_rq *rt_rq)
635 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
636 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
637 int i, weight;
638 u64 rt_period;
640 weight = cpumask_weight(rd->span);
642 raw_spin_lock(&rt_b->rt_runtime_lock);
643 rt_period = ktime_to_ns(rt_b->rt_period);
644 for_each_cpu(i, rd->span) {
645 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
646 s64 diff;
648 if (iter == rt_rq)
649 continue;
651 raw_spin_lock(&iter->rt_runtime_lock);
653 * Either all rqs have inf runtime and there's nothing to steal
654 * or __disable_runtime() below sets a specific rq to inf to
655 * indicate its been disabled and disalow stealing.
657 if (iter->rt_runtime == RUNTIME_INF)
658 goto next;
661 * From runqueues with spare time, take 1/n part of their
662 * spare time, but no more than our period.
664 diff = iter->rt_runtime - iter->rt_time;
665 if (diff > 0) {
666 diff = div_u64((u64)diff, weight);
667 if (rt_rq->rt_runtime + diff > rt_period)
668 diff = rt_period - rt_rq->rt_runtime;
669 iter->rt_runtime -= diff;
670 rt_rq->rt_runtime += diff;
671 if (rt_rq->rt_runtime == rt_period) {
672 raw_spin_unlock(&iter->rt_runtime_lock);
673 break;
676 next:
677 raw_spin_unlock(&iter->rt_runtime_lock);
679 raw_spin_unlock(&rt_b->rt_runtime_lock);
683 * Ensure this RQ takes back all the runtime it lend to its neighbours.
685 static void __disable_runtime(struct rq *rq)
687 struct root_domain *rd = rq->rd;
688 rt_rq_iter_t iter;
689 struct rt_rq *rt_rq;
691 if (unlikely(!scheduler_running))
692 return;
694 for_each_rt_rq(rt_rq, iter, rq) {
695 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
696 s64 want;
697 int i;
699 raw_spin_lock(&rt_b->rt_runtime_lock);
700 raw_spin_lock(&rt_rq->rt_runtime_lock);
702 * Either we're all inf and nobody needs to borrow, or we're
703 * already disabled and thus have nothing to do, or we have
704 * exactly the right amount of runtime to take out.
706 if (rt_rq->rt_runtime == RUNTIME_INF ||
707 rt_rq->rt_runtime == rt_b->rt_runtime)
708 goto balanced;
709 raw_spin_unlock(&rt_rq->rt_runtime_lock);
712 * Calculate the difference between what we started out with
713 * and what we current have, that's the amount of runtime
714 * we lend and now have to reclaim.
716 want = rt_b->rt_runtime - rt_rq->rt_runtime;
719 * Greedy reclaim, take back as much as we can.
721 for_each_cpu(i, rd->span) {
722 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
723 s64 diff;
726 * Can't reclaim from ourselves or disabled runqueues.
728 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
729 continue;
731 raw_spin_lock(&iter->rt_runtime_lock);
732 if (want > 0) {
733 diff = min_t(s64, iter->rt_runtime, want);
734 iter->rt_runtime -= diff;
735 want -= diff;
736 } else {
737 iter->rt_runtime -= want;
738 want -= want;
740 raw_spin_unlock(&iter->rt_runtime_lock);
742 if (!want)
743 break;
746 raw_spin_lock(&rt_rq->rt_runtime_lock);
748 * We cannot be left wanting - that would mean some runtime
749 * leaked out of the system.
751 BUG_ON(want);
752 balanced:
754 * Disable all the borrow logic by pretending we have inf
755 * runtime - in which case borrowing doesn't make sense.
757 rt_rq->rt_runtime = RUNTIME_INF;
758 rt_rq->rt_throttled = 0;
759 raw_spin_unlock(&rt_rq->rt_runtime_lock);
760 raw_spin_unlock(&rt_b->rt_runtime_lock);
762 /* Make rt_rq available for pick_next_task() */
763 sched_rt_rq_enqueue(rt_rq);
767 static void __enable_runtime(struct rq *rq)
769 rt_rq_iter_t iter;
770 struct rt_rq *rt_rq;
772 if (unlikely(!scheduler_running))
773 return;
776 * Reset each runqueue's bandwidth settings
778 for_each_rt_rq(rt_rq, iter, rq) {
779 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
781 raw_spin_lock(&rt_b->rt_runtime_lock);
782 raw_spin_lock(&rt_rq->rt_runtime_lock);
783 rt_rq->rt_runtime = rt_b->rt_runtime;
784 rt_rq->rt_time = 0;
785 rt_rq->rt_throttled = 0;
786 raw_spin_unlock(&rt_rq->rt_runtime_lock);
787 raw_spin_unlock(&rt_b->rt_runtime_lock);
791 static void balance_runtime(struct rt_rq *rt_rq)
793 if (!sched_feat(RT_RUNTIME_SHARE))
794 return;
796 if (rt_rq->rt_time > rt_rq->rt_runtime) {
797 raw_spin_unlock(&rt_rq->rt_runtime_lock);
798 do_balance_runtime(rt_rq);
799 raw_spin_lock(&rt_rq->rt_runtime_lock);
802 #else /* !CONFIG_SMP */
803 static inline void balance_runtime(struct rt_rq *rt_rq) {}
804 #endif /* CONFIG_SMP */
806 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
808 int i, idle = 1, throttled = 0;
809 const struct cpumask *span;
811 span = sched_rt_period_mask();
812 #ifdef CONFIG_RT_GROUP_SCHED
814 * FIXME: isolated CPUs should really leave the root task group,
815 * whether they are isolcpus or were isolated via cpusets, lest
816 * the timer run on a CPU which does not service all runqueues,
817 * potentially leaving other CPUs indefinitely throttled. If
818 * isolation is really required, the user will turn the throttle
819 * off to kill the perturbations it causes anyway. Meanwhile,
820 * this maintains functionality for boot and/or troubleshooting.
822 if (rt_b == &root_task_group.rt_bandwidth)
823 span = cpu_online_mask;
824 #endif
825 for_each_cpu(i, span) {
826 int enqueue = 0;
827 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
828 struct rq *rq = rq_of_rt_rq(rt_rq);
829 int skip;
832 * When span == cpu_online_mask, taking each rq->lock
833 * can be time-consuming. Try to avoid it when possible.
835 raw_spin_lock(&rt_rq->rt_runtime_lock);
836 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
837 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 if (skip)
839 continue;
841 raw_spin_lock(&rq->lock);
842 update_rq_clock(rq);
844 if (rt_rq->rt_time) {
845 u64 runtime;
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
848 if (rt_rq->rt_throttled)
849 balance_runtime(rt_rq);
850 runtime = rt_rq->rt_runtime;
851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 rt_rq->rt_throttled = 0;
854 enqueue = 1;
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
861 * 'runtime'.
863 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864 rq_clock_cancel_skipupdate(rq);
866 if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 idle = 0;
868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
869 } else if (rt_rq->rt_nr_running) {
870 idle = 0;
871 if (!rt_rq_throttled(rt_rq))
872 enqueue = 1;
874 if (rt_rq->rt_throttled)
875 throttled = 1;
877 if (enqueue)
878 sched_rt_rq_enqueue(rt_rq);
879 raw_spin_unlock(&rq->lock);
882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 return 1;
885 return idle;
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
890 #ifdef CONFIG_RT_GROUP_SCHED
891 struct rt_rq *rt_rq = group_rt_rq(rt_se);
893 if (rt_rq)
894 return rt_rq->highest_prio.curr;
895 #endif
897 return rt_task_of(rt_se)->prio;
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
902 u64 runtime = sched_rt_runtime(rt_rq);
904 if (rt_rq->rt_throttled)
905 return rt_rq_throttled(rt_rq);
907 if (runtime >= sched_rt_period(rt_rq))
908 return 0;
910 balance_runtime(rt_rq);
911 runtime = sched_rt_runtime(rt_rq);
912 if (runtime == RUNTIME_INF)
913 return 0;
915 if (rt_rq->rt_time > runtime) {
916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
922 if (likely(rt_b->rt_runtime)) {
923 rt_rq->rt_throttled = 1;
924 printk_deferred_once("sched: RT throttling activated\n");
925 } else {
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
929 * with exactly 0 ns.
931 rt_rq->rt_time = 0;
934 if (rt_rq_throttled(rt_rq)) {
935 sched_rt_rq_dequeue(rt_rq);
936 return 1;
940 return 0;
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
947 static void update_curr_rt(struct rq *rq)
949 struct task_struct *curr = rq->curr;
950 struct sched_rt_entity *rt_se = &curr->rt;
951 u64 delta_exec;
952 u64 now;
954 if (curr->sched_class != &rt_sched_class)
955 return;
957 now = rq_clock_task(rq);
958 delta_exec = now - curr->se.exec_start;
959 if (unlikely((s64)delta_exec <= 0))
960 return;
962 schedstat_set(curr->se.statistics.exec_max,
963 max(curr->se.statistics.exec_max, delta_exec));
965 curr->se.sum_exec_runtime += delta_exec;
966 account_group_exec_runtime(curr, delta_exec);
968 curr->se.exec_start = now;
969 cgroup_account_cputime(curr, delta_exec);
971 sched_rt_avg_update(rq, delta_exec);
973 if (!rt_bandwidth_enabled())
974 return;
976 for_each_sched_rt_entity(rt_se) {
977 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
979 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
980 raw_spin_lock(&rt_rq->rt_runtime_lock);
981 rt_rq->rt_time += delta_exec;
982 if (sched_rt_runtime_exceeded(rt_rq))
983 resched_curr(rq);
984 raw_spin_unlock(&rt_rq->rt_runtime_lock);
989 static void
990 dequeue_top_rt_rq(struct rt_rq *rt_rq)
992 struct rq *rq = rq_of_rt_rq(rt_rq);
994 BUG_ON(&rq->rt != rt_rq);
996 if (!rt_rq->rt_queued)
997 return;
999 BUG_ON(!rq->nr_running);
1001 sub_nr_running(rq, rt_rq->rt_nr_running);
1002 rt_rq->rt_queued = 0;
1004 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1005 cpufreq_update_util(rq, 0);
1008 static void
1009 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1011 struct rq *rq = rq_of_rt_rq(rt_rq);
1013 BUG_ON(&rq->rt != rt_rq);
1015 if (rt_rq->rt_queued)
1016 return;
1017 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1018 return;
1020 add_nr_running(rq, rt_rq->rt_nr_running);
1021 rt_rq->rt_queued = 1;
1023 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1024 cpufreq_update_util(rq, 0);
1027 #if defined CONFIG_SMP
1029 static void
1030 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1032 struct rq *rq = rq_of_rt_rq(rt_rq);
1034 #ifdef CONFIG_RT_GROUP_SCHED
1036 * Change rq's cpupri only if rt_rq is the top queue.
1038 if (&rq->rt != rt_rq)
1039 return;
1040 #endif
1041 if (rq->online && prio < prev_prio)
1042 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1045 static void
1046 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1048 struct rq *rq = rq_of_rt_rq(rt_rq);
1050 #ifdef CONFIG_RT_GROUP_SCHED
1052 * Change rq's cpupri only if rt_rq is the top queue.
1054 if (&rq->rt != rt_rq)
1055 return;
1056 #endif
1057 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1058 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1061 #else /* CONFIG_SMP */
1063 static inline
1064 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1065 static inline
1066 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1068 #endif /* CONFIG_SMP */
1070 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1071 static void
1072 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1074 int prev_prio = rt_rq->highest_prio.curr;
1076 if (prio < prev_prio)
1077 rt_rq->highest_prio.curr = prio;
1079 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1082 static void
1083 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1085 int prev_prio = rt_rq->highest_prio.curr;
1087 if (rt_rq->rt_nr_running) {
1089 WARN_ON(prio < prev_prio);
1092 * This may have been our highest task, and therefore
1093 * we may have some recomputation to do
1095 if (prio == prev_prio) {
1096 struct rt_prio_array *array = &rt_rq->active;
1098 rt_rq->highest_prio.curr =
1099 sched_find_first_bit(array->bitmap);
1102 } else
1103 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1105 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1108 #else
1110 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1111 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1113 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1115 #ifdef CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1120 if (rt_se_boosted(rt_se))
1121 rt_rq->rt_nr_boosted++;
1123 if (rt_rq->tg)
1124 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1127 static void
1128 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1130 if (rt_se_boosted(rt_se))
1131 rt_rq->rt_nr_boosted--;
1133 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1136 #else /* CONFIG_RT_GROUP_SCHED */
1138 static void
1139 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141 start_rt_bandwidth(&def_rt_bandwidth);
1144 static inline
1145 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1147 #endif /* CONFIG_RT_GROUP_SCHED */
1149 static inline
1150 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1152 struct rt_rq *group_rq = group_rt_rq(rt_se);
1154 if (group_rq)
1155 return group_rq->rt_nr_running;
1156 else
1157 return 1;
1160 static inline
1161 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1163 struct rt_rq *group_rq = group_rt_rq(rt_se);
1164 struct task_struct *tsk;
1166 if (group_rq)
1167 return group_rq->rr_nr_running;
1169 tsk = rt_task_of(rt_se);
1171 return (tsk->policy == SCHED_RR) ? 1 : 0;
1174 static inline
1175 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 int prio = rt_se_prio(rt_se);
1179 WARN_ON(!rt_prio(prio));
1180 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1181 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1183 inc_rt_prio(rt_rq, prio);
1184 inc_rt_migration(rt_se, rt_rq);
1185 inc_rt_group(rt_se, rt_rq);
1188 static inline
1189 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1191 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1192 WARN_ON(!rt_rq->rt_nr_running);
1193 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1194 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1196 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1197 dec_rt_migration(rt_se, rt_rq);
1198 dec_rt_group(rt_se, rt_rq);
1202 * Change rt_se->run_list location unless SAVE && !MOVE
1204 * assumes ENQUEUE/DEQUEUE flags match
1206 static inline bool move_entity(unsigned int flags)
1208 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1209 return false;
1211 return true;
1214 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1216 list_del_init(&rt_se->run_list);
1218 if (list_empty(array->queue + rt_se_prio(rt_se)))
1219 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1221 rt_se->on_list = 0;
1224 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1226 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1227 struct rt_prio_array *array = &rt_rq->active;
1228 struct rt_rq *group_rq = group_rt_rq(rt_se);
1229 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1232 * Don't enqueue the group if its throttled, or when empty.
1233 * The latter is a consequence of the former when a child group
1234 * get throttled and the current group doesn't have any other
1235 * active members.
1237 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1238 if (rt_se->on_list)
1239 __delist_rt_entity(rt_se, array);
1240 return;
1243 if (move_entity(flags)) {
1244 WARN_ON_ONCE(rt_se->on_list);
1245 if (flags & ENQUEUE_HEAD)
1246 list_add(&rt_se->run_list, queue);
1247 else
1248 list_add_tail(&rt_se->run_list, queue);
1250 __set_bit(rt_se_prio(rt_se), array->bitmap);
1251 rt_se->on_list = 1;
1253 rt_se->on_rq = 1;
1255 inc_rt_tasks(rt_se, rt_rq);
1258 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1260 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1261 struct rt_prio_array *array = &rt_rq->active;
1263 if (move_entity(flags)) {
1264 WARN_ON_ONCE(!rt_se->on_list);
1265 __delist_rt_entity(rt_se, array);
1267 rt_se->on_rq = 0;
1269 dec_rt_tasks(rt_se, rt_rq);
1273 * Because the prio of an upper entry depends on the lower
1274 * entries, we must remove entries top - down.
1276 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1278 struct sched_rt_entity *back = NULL;
1280 for_each_sched_rt_entity(rt_se) {
1281 rt_se->back = back;
1282 back = rt_se;
1285 dequeue_top_rt_rq(rt_rq_of_se(back));
1287 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1288 if (on_rt_rq(rt_se))
1289 __dequeue_rt_entity(rt_se, flags);
1293 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1295 struct rq *rq = rq_of_rt_se(rt_se);
1297 dequeue_rt_stack(rt_se, flags);
1298 for_each_sched_rt_entity(rt_se)
1299 __enqueue_rt_entity(rt_se, flags);
1300 enqueue_top_rt_rq(&rq->rt);
1303 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 struct rq *rq = rq_of_rt_se(rt_se);
1307 dequeue_rt_stack(rt_se, flags);
1309 for_each_sched_rt_entity(rt_se) {
1310 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1312 if (rt_rq && rt_rq->rt_nr_running)
1313 __enqueue_rt_entity(rt_se, flags);
1315 enqueue_top_rt_rq(&rq->rt);
1319 * Adding/removing a task to/from a priority array:
1321 static void
1322 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1324 struct sched_rt_entity *rt_se = &p->rt;
1326 if (flags & ENQUEUE_WAKEUP)
1327 rt_se->timeout = 0;
1329 enqueue_rt_entity(rt_se, flags);
1331 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1332 enqueue_pushable_task(rq, p);
1335 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1337 struct sched_rt_entity *rt_se = &p->rt;
1339 update_curr_rt(rq);
1340 dequeue_rt_entity(rt_se, flags);
1342 dequeue_pushable_task(rq, p);
1346 * Put task to the head or the end of the run list without the overhead of
1347 * dequeue followed by enqueue.
1349 static void
1350 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1352 if (on_rt_rq(rt_se)) {
1353 struct rt_prio_array *array = &rt_rq->active;
1354 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1356 if (head)
1357 list_move(&rt_se->run_list, queue);
1358 else
1359 list_move_tail(&rt_se->run_list, queue);
1363 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1365 struct sched_rt_entity *rt_se = &p->rt;
1366 struct rt_rq *rt_rq;
1368 for_each_sched_rt_entity(rt_se) {
1369 rt_rq = rt_rq_of_se(rt_se);
1370 requeue_rt_entity(rt_rq, rt_se, head);
1374 static void yield_task_rt(struct rq *rq)
1376 requeue_task_rt(rq, rq->curr, 0);
1379 #ifdef CONFIG_SMP
1380 static int find_lowest_rq(struct task_struct *task);
1382 static int
1383 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1385 struct task_struct *curr;
1386 struct rq *rq;
1388 /* For anything but wake ups, just return the task_cpu */
1389 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1390 goto out;
1392 rq = cpu_rq(cpu);
1394 rcu_read_lock();
1395 curr = READ_ONCE(rq->curr); /* unlocked access */
1398 * If the current task on @p's runqueue is an RT task, then
1399 * try to see if we can wake this RT task up on another
1400 * runqueue. Otherwise simply start this RT task
1401 * on its current runqueue.
1403 * We want to avoid overloading runqueues. If the woken
1404 * task is a higher priority, then it will stay on this CPU
1405 * and the lower prio task should be moved to another CPU.
1406 * Even though this will probably make the lower prio task
1407 * lose its cache, we do not want to bounce a higher task
1408 * around just because it gave up its CPU, perhaps for a
1409 * lock?
1411 * For equal prio tasks, we just let the scheduler sort it out.
1413 * Otherwise, just let it ride on the affined RQ and the
1414 * post-schedule router will push the preempted task away
1416 * This test is optimistic, if we get it wrong the load-balancer
1417 * will have to sort it out.
1419 if (curr && unlikely(rt_task(curr)) &&
1420 (curr->nr_cpus_allowed < 2 ||
1421 curr->prio <= p->prio)) {
1422 int target = find_lowest_rq(p);
1425 * Don't bother moving it if the destination CPU is
1426 * not running a lower priority task.
1428 if (target != -1 &&
1429 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1430 cpu = target;
1432 rcu_read_unlock();
1434 out:
1435 return cpu;
1438 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1441 * Current can't be migrated, useless to reschedule,
1442 * let's hope p can move out.
1444 if (rq->curr->nr_cpus_allowed == 1 ||
1445 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1446 return;
1449 * p is migratable, so let's not schedule it and
1450 * see if it is pushed or pulled somewhere else.
1452 if (p->nr_cpus_allowed != 1
1453 && cpupri_find(&rq->rd->cpupri, p, NULL))
1454 return;
1457 * There appear to be other CPUs that can accept
1458 * the current task but none can run 'p', so lets reschedule
1459 * to try and push the current task away:
1461 requeue_task_rt(rq, p, 1);
1462 resched_curr(rq);
1465 #endif /* CONFIG_SMP */
1468 * Preempt the current task with a newly woken task if needed:
1470 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1472 if (p->prio < rq->curr->prio) {
1473 resched_curr(rq);
1474 return;
1477 #ifdef CONFIG_SMP
1479 * If:
1481 * - the newly woken task is of equal priority to the current task
1482 * - the newly woken task is non-migratable while current is migratable
1483 * - current will be preempted on the next reschedule
1485 * we should check to see if current can readily move to a different
1486 * cpu. If so, we will reschedule to allow the push logic to try
1487 * to move current somewhere else, making room for our non-migratable
1488 * task.
1490 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1491 check_preempt_equal_prio(rq, p);
1492 #endif
1495 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1496 struct rt_rq *rt_rq)
1498 struct rt_prio_array *array = &rt_rq->active;
1499 struct sched_rt_entity *next = NULL;
1500 struct list_head *queue;
1501 int idx;
1503 idx = sched_find_first_bit(array->bitmap);
1504 BUG_ON(idx >= MAX_RT_PRIO);
1506 queue = array->queue + idx;
1507 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1509 return next;
1512 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1514 struct sched_rt_entity *rt_se;
1515 struct task_struct *p;
1516 struct rt_rq *rt_rq = &rq->rt;
1518 do {
1519 rt_se = pick_next_rt_entity(rq, rt_rq);
1520 BUG_ON(!rt_se);
1521 rt_rq = group_rt_rq(rt_se);
1522 } while (rt_rq);
1524 p = rt_task_of(rt_se);
1525 p->se.exec_start = rq_clock_task(rq);
1527 return p;
1530 static struct task_struct *
1531 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1533 struct task_struct *p;
1534 struct rt_rq *rt_rq = &rq->rt;
1536 if (need_pull_rt_task(rq, prev)) {
1538 * This is OK, because current is on_cpu, which avoids it being
1539 * picked for load-balance and preemption/IRQs are still
1540 * disabled avoiding further scheduler activity on it and we're
1541 * being very careful to re-start the picking loop.
1543 rq_unpin_lock(rq, rf);
1544 pull_rt_task(rq);
1545 rq_repin_lock(rq, rf);
1547 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1548 * means a dl or stop task can slip in, in which case we need
1549 * to re-start task selection.
1551 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1552 rq->dl.dl_nr_running))
1553 return RETRY_TASK;
1557 * We may dequeue prev's rt_rq in put_prev_task().
1558 * So, we update time before rt_nr_running check.
1560 if (prev->sched_class == &rt_sched_class)
1561 update_curr_rt(rq);
1563 if (!rt_rq->rt_queued)
1564 return NULL;
1566 put_prev_task(rq, prev);
1568 p = _pick_next_task_rt(rq);
1570 /* The running task is never eligible for pushing */
1571 dequeue_pushable_task(rq, p);
1573 rt_queue_push_tasks(rq);
1575 return p;
1578 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1580 update_curr_rt(rq);
1583 * The previous task needs to be made eligible for pushing
1584 * if it is still active
1586 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1587 enqueue_pushable_task(rq, p);
1590 #ifdef CONFIG_SMP
1592 /* Only try algorithms three times */
1593 #define RT_MAX_TRIES 3
1595 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1597 if (!task_running(rq, p) &&
1598 cpumask_test_cpu(cpu, &p->cpus_allowed))
1599 return 1;
1601 return 0;
1605 * Return the highest pushable rq's task, which is suitable to be executed
1606 * on the CPU, NULL otherwise
1608 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1610 struct plist_head *head = &rq->rt.pushable_tasks;
1611 struct task_struct *p;
1613 if (!has_pushable_tasks(rq))
1614 return NULL;
1616 plist_for_each_entry(p, head, pushable_tasks) {
1617 if (pick_rt_task(rq, p, cpu))
1618 return p;
1621 return NULL;
1624 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1626 static int find_lowest_rq(struct task_struct *task)
1628 struct sched_domain *sd;
1629 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1630 int this_cpu = smp_processor_id();
1631 int cpu = task_cpu(task);
1633 /* Make sure the mask is initialized first */
1634 if (unlikely(!lowest_mask))
1635 return -1;
1637 if (task->nr_cpus_allowed == 1)
1638 return -1; /* No other targets possible */
1640 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1641 return -1; /* No targets found */
1644 * At this point we have built a mask of CPUs representing the
1645 * lowest priority tasks in the system. Now we want to elect
1646 * the best one based on our affinity and topology.
1648 * We prioritize the last CPU that the task executed on since
1649 * it is most likely cache-hot in that location.
1651 if (cpumask_test_cpu(cpu, lowest_mask))
1652 return cpu;
1655 * Otherwise, we consult the sched_domains span maps to figure
1656 * out which CPU is logically closest to our hot cache data.
1658 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1659 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1661 rcu_read_lock();
1662 for_each_domain(cpu, sd) {
1663 if (sd->flags & SD_WAKE_AFFINE) {
1664 int best_cpu;
1667 * "this_cpu" is cheaper to preempt than a
1668 * remote processor.
1670 if (this_cpu != -1 &&
1671 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1672 rcu_read_unlock();
1673 return this_cpu;
1676 best_cpu = cpumask_first_and(lowest_mask,
1677 sched_domain_span(sd));
1678 if (best_cpu < nr_cpu_ids) {
1679 rcu_read_unlock();
1680 return best_cpu;
1684 rcu_read_unlock();
1687 * And finally, if there were no matches within the domains
1688 * just give the caller *something* to work with from the compatible
1689 * locations.
1691 if (this_cpu != -1)
1692 return this_cpu;
1694 cpu = cpumask_any(lowest_mask);
1695 if (cpu < nr_cpu_ids)
1696 return cpu;
1698 return -1;
1701 /* Will lock the rq it finds */
1702 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1704 struct rq *lowest_rq = NULL;
1705 int tries;
1706 int cpu;
1708 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1709 cpu = find_lowest_rq(task);
1711 if ((cpu == -1) || (cpu == rq->cpu))
1712 break;
1714 lowest_rq = cpu_rq(cpu);
1716 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1718 * Target rq has tasks of equal or higher priority,
1719 * retrying does not release any lock and is unlikely
1720 * to yield a different result.
1722 lowest_rq = NULL;
1723 break;
1726 /* if the prio of this runqueue changed, try again */
1727 if (double_lock_balance(rq, lowest_rq)) {
1729 * We had to unlock the run queue. In
1730 * the mean time, task could have
1731 * migrated already or had its affinity changed.
1732 * Also make sure that it wasn't scheduled on its rq.
1734 if (unlikely(task_rq(task) != rq ||
1735 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1736 task_running(rq, task) ||
1737 !rt_task(task) ||
1738 !task_on_rq_queued(task))) {
1740 double_unlock_balance(rq, lowest_rq);
1741 lowest_rq = NULL;
1742 break;
1746 /* If this rq is still suitable use it. */
1747 if (lowest_rq->rt.highest_prio.curr > task->prio)
1748 break;
1750 /* try again */
1751 double_unlock_balance(rq, lowest_rq);
1752 lowest_rq = NULL;
1755 return lowest_rq;
1758 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1760 struct task_struct *p;
1762 if (!has_pushable_tasks(rq))
1763 return NULL;
1765 p = plist_first_entry(&rq->rt.pushable_tasks,
1766 struct task_struct, pushable_tasks);
1768 BUG_ON(rq->cpu != task_cpu(p));
1769 BUG_ON(task_current(rq, p));
1770 BUG_ON(p->nr_cpus_allowed <= 1);
1772 BUG_ON(!task_on_rq_queued(p));
1773 BUG_ON(!rt_task(p));
1775 return p;
1779 * If the current CPU has more than one RT task, see if the non
1780 * running task can migrate over to a CPU that is running a task
1781 * of lesser priority.
1783 static int push_rt_task(struct rq *rq)
1785 struct task_struct *next_task;
1786 struct rq *lowest_rq;
1787 int ret = 0;
1789 if (!rq->rt.overloaded)
1790 return 0;
1792 next_task = pick_next_pushable_task(rq);
1793 if (!next_task)
1794 return 0;
1796 retry:
1797 if (unlikely(next_task == rq->curr)) {
1798 WARN_ON(1);
1799 return 0;
1803 * It's possible that the next_task slipped in of
1804 * higher priority than current. If that's the case
1805 * just reschedule current.
1807 if (unlikely(next_task->prio < rq->curr->prio)) {
1808 resched_curr(rq);
1809 return 0;
1812 /* We might release rq lock */
1813 get_task_struct(next_task);
1815 /* find_lock_lowest_rq locks the rq if found */
1816 lowest_rq = find_lock_lowest_rq(next_task, rq);
1817 if (!lowest_rq) {
1818 struct task_struct *task;
1820 * find_lock_lowest_rq releases rq->lock
1821 * so it is possible that next_task has migrated.
1823 * We need to make sure that the task is still on the same
1824 * run-queue and is also still the next task eligible for
1825 * pushing.
1827 task = pick_next_pushable_task(rq);
1828 if (task == next_task) {
1830 * The task hasn't migrated, and is still the next
1831 * eligible task, but we failed to find a run-queue
1832 * to push it to. Do not retry in this case, since
1833 * other CPUs will pull from us when ready.
1835 goto out;
1838 if (!task)
1839 /* No more tasks, just exit */
1840 goto out;
1843 * Something has shifted, try again.
1845 put_task_struct(next_task);
1846 next_task = task;
1847 goto retry;
1850 deactivate_task(rq, next_task, 0);
1851 set_task_cpu(next_task, lowest_rq->cpu);
1852 activate_task(lowest_rq, next_task, 0);
1853 ret = 1;
1855 resched_curr(lowest_rq);
1857 double_unlock_balance(rq, lowest_rq);
1859 out:
1860 put_task_struct(next_task);
1862 return ret;
1865 static void push_rt_tasks(struct rq *rq)
1867 /* push_rt_task will return true if it moved an RT */
1868 while (push_rt_task(rq))
1872 #ifdef HAVE_RT_PUSH_IPI
1875 * When a high priority task schedules out from a CPU and a lower priority
1876 * task is scheduled in, a check is made to see if there's any RT tasks
1877 * on other CPUs that are waiting to run because a higher priority RT task
1878 * is currently running on its CPU. In this case, the CPU with multiple RT
1879 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1880 * up that may be able to run one of its non-running queued RT tasks.
1882 * All CPUs with overloaded RT tasks need to be notified as there is currently
1883 * no way to know which of these CPUs have the highest priority task waiting
1884 * to run. Instead of trying to take a spinlock on each of these CPUs,
1885 * which has shown to cause large latency when done on machines with many
1886 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1887 * RT tasks waiting to run.
1889 * Just sending an IPI to each of the CPUs is also an issue, as on large
1890 * count CPU machines, this can cause an IPI storm on a CPU, especially
1891 * if its the only CPU with multiple RT tasks queued, and a large number
1892 * of CPUs scheduling a lower priority task at the same time.
1894 * Each root domain has its own irq work function that can iterate over
1895 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1896 * tassk must be checked if there's one or many CPUs that are lowering
1897 * their priority, there's a single irq work iterator that will try to
1898 * push off RT tasks that are waiting to run.
1900 * When a CPU schedules a lower priority task, it will kick off the
1901 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1902 * As it only takes the first CPU that schedules a lower priority task
1903 * to start the process, the rto_start variable is incremented and if
1904 * the atomic result is one, then that CPU will try to take the rto_lock.
1905 * This prevents high contention on the lock as the process handles all
1906 * CPUs scheduling lower priority tasks.
1908 * All CPUs that are scheduling a lower priority task will increment the
1909 * rt_loop_next variable. This will make sure that the irq work iterator
1910 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1911 * priority task, even if the iterator is in the middle of a scan. Incrementing
1912 * the rt_loop_next will cause the iterator to perform another scan.
1915 static int rto_next_cpu(struct root_domain *rd)
1917 int next;
1918 int cpu;
1921 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1922 * rt_next_cpu() will simply return the first CPU found in
1923 * the rto_mask.
1925 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1926 * will return the next CPU found in the rto_mask.
1928 * If there are no more CPUs left in the rto_mask, then a check is made
1929 * against rto_loop and rto_loop_next. rto_loop is only updated with
1930 * the rto_lock held, but any CPU may increment the rto_loop_next
1931 * without any locking.
1933 for (;;) {
1935 /* When rto_cpu is -1 this acts like cpumask_first() */
1936 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1938 rd->rto_cpu = cpu;
1940 if (cpu < nr_cpu_ids)
1941 return cpu;
1943 rd->rto_cpu = -1;
1946 * ACQUIRE ensures we see the @rto_mask changes
1947 * made prior to the @next value observed.
1949 * Matches WMB in rt_set_overload().
1951 next = atomic_read_acquire(&rd->rto_loop_next);
1953 if (rd->rto_loop == next)
1954 break;
1956 rd->rto_loop = next;
1959 return -1;
1962 static inline bool rto_start_trylock(atomic_t *v)
1964 return !atomic_cmpxchg_acquire(v, 0, 1);
1967 static inline void rto_start_unlock(atomic_t *v)
1969 atomic_set_release(v, 0);
1972 static void tell_cpu_to_push(struct rq *rq)
1974 int cpu = -1;
1976 /* Keep the loop going if the IPI is currently active */
1977 atomic_inc(&rq->rd->rto_loop_next);
1979 /* Only one CPU can initiate a loop at a time */
1980 if (!rto_start_trylock(&rq->rd->rto_loop_start))
1981 return;
1983 raw_spin_lock(&rq->rd->rto_lock);
1986 * The rto_cpu is updated under the lock, if it has a valid CPU
1987 * then the IPI is still running and will continue due to the
1988 * update to loop_next, and nothing needs to be done here.
1989 * Otherwise it is finishing up and an ipi needs to be sent.
1991 if (rq->rd->rto_cpu < 0)
1992 cpu = rto_next_cpu(rq->rd);
1994 raw_spin_unlock(&rq->rd->rto_lock);
1996 rto_start_unlock(&rq->rd->rto_loop_start);
1998 if (cpu >= 0) {
1999 /* Make sure the rd does not get freed while pushing */
2000 sched_get_rd(rq->rd);
2001 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2005 /* Called from hardirq context */
2006 void rto_push_irq_work_func(struct irq_work *work)
2008 struct root_domain *rd =
2009 container_of(work, struct root_domain, rto_push_work);
2010 struct rq *rq;
2011 int cpu;
2013 rq = this_rq();
2016 * We do not need to grab the lock to check for has_pushable_tasks.
2017 * When it gets updated, a check is made if a push is possible.
2019 if (has_pushable_tasks(rq)) {
2020 raw_spin_lock(&rq->lock);
2021 push_rt_tasks(rq);
2022 raw_spin_unlock(&rq->lock);
2025 raw_spin_lock(&rd->rto_lock);
2027 /* Pass the IPI to the next rt overloaded queue */
2028 cpu = rto_next_cpu(rd);
2030 raw_spin_unlock(&rd->rto_lock);
2032 if (cpu < 0) {
2033 sched_put_rd(rd);
2034 return;
2037 /* Try the next RT overloaded CPU */
2038 irq_work_queue_on(&rd->rto_push_work, cpu);
2040 #endif /* HAVE_RT_PUSH_IPI */
2042 static void pull_rt_task(struct rq *this_rq)
2044 int this_cpu = this_rq->cpu, cpu;
2045 bool resched = false;
2046 struct task_struct *p;
2047 struct rq *src_rq;
2048 int rt_overload_count = rt_overloaded(this_rq);
2050 if (likely(!rt_overload_count))
2051 return;
2054 * Match the barrier from rt_set_overloaded; this guarantees that if we
2055 * see overloaded we must also see the rto_mask bit.
2057 smp_rmb();
2059 /* If we are the only overloaded CPU do nothing */
2060 if (rt_overload_count == 1 &&
2061 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2062 return;
2064 #ifdef HAVE_RT_PUSH_IPI
2065 if (sched_feat(RT_PUSH_IPI)) {
2066 tell_cpu_to_push(this_rq);
2067 return;
2069 #endif
2071 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2072 if (this_cpu == cpu)
2073 continue;
2075 src_rq = cpu_rq(cpu);
2078 * Don't bother taking the src_rq->lock if the next highest
2079 * task is known to be lower-priority than our current task.
2080 * This may look racy, but if this value is about to go
2081 * logically higher, the src_rq will push this task away.
2082 * And if its going logically lower, we do not care
2084 if (src_rq->rt.highest_prio.next >=
2085 this_rq->rt.highest_prio.curr)
2086 continue;
2089 * We can potentially drop this_rq's lock in
2090 * double_lock_balance, and another CPU could
2091 * alter this_rq
2093 double_lock_balance(this_rq, src_rq);
2096 * We can pull only a task, which is pushable
2097 * on its rq, and no others.
2099 p = pick_highest_pushable_task(src_rq, this_cpu);
2102 * Do we have an RT task that preempts
2103 * the to-be-scheduled task?
2105 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2106 WARN_ON(p == src_rq->curr);
2107 WARN_ON(!task_on_rq_queued(p));
2110 * There's a chance that p is higher in priority
2111 * than what's currently running on its CPU.
2112 * This is just that p is wakeing up and hasn't
2113 * had a chance to schedule. We only pull
2114 * p if it is lower in priority than the
2115 * current task on the run queue
2117 if (p->prio < src_rq->curr->prio)
2118 goto skip;
2120 resched = true;
2122 deactivate_task(src_rq, p, 0);
2123 set_task_cpu(p, this_cpu);
2124 activate_task(this_rq, p, 0);
2126 * We continue with the search, just in
2127 * case there's an even higher prio task
2128 * in another runqueue. (low likelihood
2129 * but possible)
2132 skip:
2133 double_unlock_balance(this_rq, src_rq);
2136 if (resched)
2137 resched_curr(this_rq);
2141 * If we are not running and we are not going to reschedule soon, we should
2142 * try to push tasks away now
2144 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2146 if (!task_running(rq, p) &&
2147 !test_tsk_need_resched(rq->curr) &&
2148 p->nr_cpus_allowed > 1 &&
2149 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2150 (rq->curr->nr_cpus_allowed < 2 ||
2151 rq->curr->prio <= p->prio))
2152 push_rt_tasks(rq);
2155 /* Assumes rq->lock is held */
2156 static void rq_online_rt(struct rq *rq)
2158 if (rq->rt.overloaded)
2159 rt_set_overload(rq);
2161 __enable_runtime(rq);
2163 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2166 /* Assumes rq->lock is held */
2167 static void rq_offline_rt(struct rq *rq)
2169 if (rq->rt.overloaded)
2170 rt_clear_overload(rq);
2172 __disable_runtime(rq);
2174 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2178 * When switch from the rt queue, we bring ourselves to a position
2179 * that we might want to pull RT tasks from other runqueues.
2181 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2184 * If there are other RT tasks then we will reschedule
2185 * and the scheduling of the other RT tasks will handle
2186 * the balancing. But if we are the last RT task
2187 * we may need to handle the pulling of RT tasks
2188 * now.
2190 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2191 return;
2193 rt_queue_pull_task(rq);
2196 void __init init_sched_rt_class(void)
2198 unsigned int i;
2200 for_each_possible_cpu(i) {
2201 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2202 GFP_KERNEL, cpu_to_node(i));
2205 #endif /* CONFIG_SMP */
2208 * When switching a task to RT, we may overload the runqueue
2209 * with RT tasks. In this case we try to push them off to
2210 * other runqueues.
2212 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2215 * If we are already running, then there's nothing
2216 * that needs to be done. But if we are not running
2217 * we may need to preempt the current running task.
2218 * If that current running task is also an RT task
2219 * then see if we can move to another run queue.
2221 if (task_on_rq_queued(p) && rq->curr != p) {
2222 #ifdef CONFIG_SMP
2223 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2224 rt_queue_push_tasks(rq);
2225 #endif /* CONFIG_SMP */
2226 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2227 resched_curr(rq);
2232 * Priority of the task has changed. This may cause
2233 * us to initiate a push or pull.
2235 static void
2236 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2238 if (!task_on_rq_queued(p))
2239 return;
2241 if (rq->curr == p) {
2242 #ifdef CONFIG_SMP
2244 * If our priority decreases while running, we
2245 * may need to pull tasks to this runqueue.
2247 if (oldprio < p->prio)
2248 rt_queue_pull_task(rq);
2251 * If there's a higher priority task waiting to run
2252 * then reschedule.
2254 if (p->prio > rq->rt.highest_prio.curr)
2255 resched_curr(rq);
2256 #else
2257 /* For UP simply resched on drop of prio */
2258 if (oldprio < p->prio)
2259 resched_curr(rq);
2260 #endif /* CONFIG_SMP */
2261 } else {
2263 * This task is not running, but if it is
2264 * greater than the current running task
2265 * then reschedule.
2267 if (p->prio < rq->curr->prio)
2268 resched_curr(rq);
2272 #ifdef CONFIG_POSIX_TIMERS
2273 static void watchdog(struct rq *rq, struct task_struct *p)
2275 unsigned long soft, hard;
2277 /* max may change after cur was read, this will be fixed next tick */
2278 soft = task_rlimit(p, RLIMIT_RTTIME);
2279 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2281 if (soft != RLIM_INFINITY) {
2282 unsigned long next;
2284 if (p->rt.watchdog_stamp != jiffies) {
2285 p->rt.timeout++;
2286 p->rt.watchdog_stamp = jiffies;
2289 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2290 if (p->rt.timeout > next)
2291 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2294 #else
2295 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2296 #endif
2299 * scheduler tick hitting a task of our scheduling class.
2301 * NOTE: This function can be called remotely by the tick offload that
2302 * goes along full dynticks. Therefore no local assumption can be made
2303 * and everything must be accessed through the @rq and @curr passed in
2304 * parameters.
2306 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2308 struct sched_rt_entity *rt_se = &p->rt;
2310 update_curr_rt(rq);
2312 watchdog(rq, p);
2315 * RR tasks need a special form of timeslice management.
2316 * FIFO tasks have no timeslices.
2318 if (p->policy != SCHED_RR)
2319 return;
2321 if (--p->rt.time_slice)
2322 return;
2324 p->rt.time_slice = sched_rr_timeslice;
2327 * Requeue to the end of queue if we (and all of our ancestors) are not
2328 * the only element on the queue
2330 for_each_sched_rt_entity(rt_se) {
2331 if (rt_se->run_list.prev != rt_se->run_list.next) {
2332 requeue_task_rt(rq, p, 0);
2333 resched_curr(rq);
2334 return;
2339 static void set_curr_task_rt(struct rq *rq)
2341 struct task_struct *p = rq->curr;
2343 p->se.exec_start = rq_clock_task(rq);
2345 /* The running task is never eligible for pushing */
2346 dequeue_pushable_task(rq, p);
2349 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2352 * Time slice is 0 for SCHED_FIFO tasks
2354 if (task->policy == SCHED_RR)
2355 return sched_rr_timeslice;
2356 else
2357 return 0;
2360 const struct sched_class rt_sched_class = {
2361 .next = &fair_sched_class,
2362 .enqueue_task = enqueue_task_rt,
2363 .dequeue_task = dequeue_task_rt,
2364 .yield_task = yield_task_rt,
2366 .check_preempt_curr = check_preempt_curr_rt,
2368 .pick_next_task = pick_next_task_rt,
2369 .put_prev_task = put_prev_task_rt,
2371 #ifdef CONFIG_SMP
2372 .select_task_rq = select_task_rq_rt,
2374 .set_cpus_allowed = set_cpus_allowed_common,
2375 .rq_online = rq_online_rt,
2376 .rq_offline = rq_offline_rt,
2377 .task_woken = task_woken_rt,
2378 .switched_from = switched_from_rt,
2379 #endif
2381 .set_curr_task = set_curr_task_rt,
2382 .task_tick = task_tick_rt,
2384 .get_rr_interval = get_rr_interval_rt,
2386 .prio_changed = prio_changed_rt,
2387 .switched_to = switched_to_rt,
2389 .update_curr = update_curr_rt,
2392 #ifdef CONFIG_RT_GROUP_SCHED
2394 * Ensure that the real time constraints are schedulable.
2396 static DEFINE_MUTEX(rt_constraints_mutex);
2398 /* Must be called with tasklist_lock held */
2399 static inline int tg_has_rt_tasks(struct task_group *tg)
2401 struct task_struct *g, *p;
2404 * Autogroups do not have RT tasks; see autogroup_create().
2406 if (task_group_is_autogroup(tg))
2407 return 0;
2409 for_each_process_thread(g, p) {
2410 if (rt_task(p) && task_group(p) == tg)
2411 return 1;
2414 return 0;
2417 struct rt_schedulable_data {
2418 struct task_group *tg;
2419 u64 rt_period;
2420 u64 rt_runtime;
2423 static int tg_rt_schedulable(struct task_group *tg, void *data)
2425 struct rt_schedulable_data *d = data;
2426 struct task_group *child;
2427 unsigned long total, sum = 0;
2428 u64 period, runtime;
2430 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2431 runtime = tg->rt_bandwidth.rt_runtime;
2433 if (tg == d->tg) {
2434 period = d->rt_period;
2435 runtime = d->rt_runtime;
2439 * Cannot have more runtime than the period.
2441 if (runtime > period && runtime != RUNTIME_INF)
2442 return -EINVAL;
2445 * Ensure we don't starve existing RT tasks.
2447 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2448 return -EBUSY;
2450 total = to_ratio(period, runtime);
2453 * Nobody can have more than the global setting allows.
2455 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2456 return -EINVAL;
2459 * The sum of our children's runtime should not exceed our own.
2461 list_for_each_entry_rcu(child, &tg->children, siblings) {
2462 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2463 runtime = child->rt_bandwidth.rt_runtime;
2465 if (child == d->tg) {
2466 period = d->rt_period;
2467 runtime = d->rt_runtime;
2470 sum += to_ratio(period, runtime);
2473 if (sum > total)
2474 return -EINVAL;
2476 return 0;
2479 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2481 int ret;
2483 struct rt_schedulable_data data = {
2484 .tg = tg,
2485 .rt_period = period,
2486 .rt_runtime = runtime,
2489 rcu_read_lock();
2490 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2491 rcu_read_unlock();
2493 return ret;
2496 static int tg_set_rt_bandwidth(struct task_group *tg,
2497 u64 rt_period, u64 rt_runtime)
2499 int i, err = 0;
2502 * Disallowing the root group RT runtime is BAD, it would disallow the
2503 * kernel creating (and or operating) RT threads.
2505 if (tg == &root_task_group && rt_runtime == 0)
2506 return -EINVAL;
2508 /* No period doesn't make any sense. */
2509 if (rt_period == 0)
2510 return -EINVAL;
2512 mutex_lock(&rt_constraints_mutex);
2513 read_lock(&tasklist_lock);
2514 err = __rt_schedulable(tg, rt_period, rt_runtime);
2515 if (err)
2516 goto unlock;
2518 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2520 tg->rt_bandwidth.rt_runtime = rt_runtime;
2522 for_each_possible_cpu(i) {
2523 struct rt_rq *rt_rq = tg->rt_rq[i];
2525 raw_spin_lock(&rt_rq->rt_runtime_lock);
2526 rt_rq->rt_runtime = rt_runtime;
2527 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2529 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2530 unlock:
2531 read_unlock(&tasklist_lock);
2532 mutex_unlock(&rt_constraints_mutex);
2534 return err;
2537 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2539 u64 rt_runtime, rt_period;
2541 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2542 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2543 if (rt_runtime_us < 0)
2544 rt_runtime = RUNTIME_INF;
2546 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2549 long sched_group_rt_runtime(struct task_group *tg)
2551 u64 rt_runtime_us;
2553 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2554 return -1;
2556 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2557 do_div(rt_runtime_us, NSEC_PER_USEC);
2558 return rt_runtime_us;
2561 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2563 u64 rt_runtime, rt_period;
2565 rt_period = rt_period_us * NSEC_PER_USEC;
2566 rt_runtime = tg->rt_bandwidth.rt_runtime;
2568 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2571 long sched_group_rt_period(struct task_group *tg)
2573 u64 rt_period_us;
2575 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2576 do_div(rt_period_us, NSEC_PER_USEC);
2577 return rt_period_us;
2580 static int sched_rt_global_constraints(void)
2582 int ret = 0;
2584 mutex_lock(&rt_constraints_mutex);
2585 read_lock(&tasklist_lock);
2586 ret = __rt_schedulable(NULL, 0, 0);
2587 read_unlock(&tasklist_lock);
2588 mutex_unlock(&rt_constraints_mutex);
2590 return ret;
2593 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2595 /* Don't accept realtime tasks when there is no way for them to run */
2596 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2597 return 0;
2599 return 1;
2602 #else /* !CONFIG_RT_GROUP_SCHED */
2603 static int sched_rt_global_constraints(void)
2605 unsigned long flags;
2606 int i;
2608 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2609 for_each_possible_cpu(i) {
2610 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2612 raw_spin_lock(&rt_rq->rt_runtime_lock);
2613 rt_rq->rt_runtime = global_rt_runtime();
2614 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2616 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2618 return 0;
2620 #endif /* CONFIG_RT_GROUP_SCHED */
2622 static int sched_rt_global_validate(void)
2624 if (sysctl_sched_rt_period <= 0)
2625 return -EINVAL;
2627 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2628 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2629 return -EINVAL;
2631 return 0;
2634 static void sched_rt_do_global(void)
2636 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2637 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2640 int sched_rt_handler(struct ctl_table *table, int write,
2641 void __user *buffer, size_t *lenp,
2642 loff_t *ppos)
2644 int old_period, old_runtime;
2645 static DEFINE_MUTEX(mutex);
2646 int ret;
2648 mutex_lock(&mutex);
2649 old_period = sysctl_sched_rt_period;
2650 old_runtime = sysctl_sched_rt_runtime;
2652 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2654 if (!ret && write) {
2655 ret = sched_rt_global_validate();
2656 if (ret)
2657 goto undo;
2659 ret = sched_dl_global_validate();
2660 if (ret)
2661 goto undo;
2663 ret = sched_rt_global_constraints();
2664 if (ret)
2665 goto undo;
2667 sched_rt_do_global();
2668 sched_dl_do_global();
2670 if (0) {
2671 undo:
2672 sysctl_sched_rt_period = old_period;
2673 sysctl_sched_rt_runtime = old_runtime;
2675 mutex_unlock(&mutex);
2677 return ret;
2680 int sched_rr_handler(struct ctl_table *table, int write,
2681 void __user *buffer, size_t *lenp,
2682 loff_t *ppos)
2684 int ret;
2685 static DEFINE_MUTEX(mutex);
2687 mutex_lock(&mutex);
2688 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2690 * Make sure that internally we keep jiffies.
2691 * Also, writing zero resets the timeslice to default:
2693 if (!ret && write) {
2694 sched_rr_timeslice =
2695 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2696 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2698 mutex_unlock(&mutex);
2700 return ret;
2703 #ifdef CONFIG_SCHED_DEBUG
2704 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2706 void print_rt_stats(struct seq_file *m, int cpu)
2708 rt_rq_iter_t iter;
2709 struct rt_rq *rt_rq;
2711 rcu_read_lock();
2712 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2713 print_rt_rq(m, cpu, rt_rq);
2714 rcu_read_unlock();
2716 #endif /* CONFIG_SCHED_DEBUG */