2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
54 #include <asm/debug.h>
56 #include <asm/firmware.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
71 struct task_struct
*last_task_used_math
= NULL
;
72 struct task_struct
*last_task_used_altivec
= NULL
;
73 struct task_struct
*last_task_used_vsx
= NULL
;
74 struct task_struct
*last_task_used_spe
= NULL
;
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
81 void flush_fp_to_thread(struct task_struct
*tsk
)
83 if (tsk
->thread
.regs
) {
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
93 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
102 BUG_ON(tsk
!= current
);
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
111 void enable_kernel_fp(void)
113 WARN_ON(preemptible());
116 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
119 giveup_fpu(NULL
); /* just enables FP for kernel */
121 giveup_fpu(last_task_used_math
);
122 #endif /* CONFIG_SMP */
124 EXPORT_SYMBOL(enable_kernel_fp
);
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
129 WARN_ON(preemptible());
132 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
133 giveup_altivec(current
);
135 giveup_altivec_notask();
137 giveup_altivec(last_task_used_altivec
);
138 #endif /* CONFIG_SMP */
140 EXPORT_SYMBOL(enable_kernel_altivec
);
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
146 void flush_altivec_to_thread(struct task_struct
*tsk
)
148 if (tsk
->thread
.regs
) {
150 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
152 BUG_ON(tsk
!= current
);
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
160 #endif /* CONFIG_ALTIVEC */
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
167 WARN_ON(preemptible());
170 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
))
173 giveup_vsx(NULL
); /* just enable vsx for kernel - force */
175 giveup_vsx(last_task_used_vsx
);
176 #endif /* CONFIG_SMP */
178 EXPORT_SYMBOL(enable_kernel_vsx
);
181 void giveup_vsx(struct task_struct
*tsk
)
188 void flush_vsx_to_thread(struct task_struct
*tsk
)
190 if (tsk
->thread
.regs
) {
192 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
194 BUG_ON(tsk
!= current
);
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
202 #endif /* CONFIG_VSX */
206 void enable_kernel_spe(void)
208 WARN_ON(preemptible());
211 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
214 giveup_spe(NULL
); /* just enable SPE for kernel - force */
216 giveup_spe(last_task_used_spe
);
217 #endif /* __SMP __ */
219 EXPORT_SYMBOL(enable_kernel_spe
);
221 void flush_spe_to_thread(struct task_struct
*tsk
)
223 if (tsk
->thread
.regs
) {
225 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
227 BUG_ON(tsk
!= current
);
229 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
235 #endif /* CONFIG_SPE */
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
242 void discard_lazy_cpu_state(void)
245 if (last_task_used_math
== current
)
246 last_task_used_math
= NULL
;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec
== current
)
249 last_task_used_altivec
= NULL
;
250 #endif /* CONFIG_ALTIVEC */
252 if (last_task_used_vsx
== current
)
253 last_task_used_vsx
= NULL
;
254 #endif /* CONFIG_VSX */
256 if (last_task_used_spe
== current
)
257 last_task_used_spe
= NULL
;
261 #endif /* CONFIG_SMP */
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
265 unsigned long error_code
, int signal_code
, int breakpt
)
269 current
->thread
.trap_nr
= signal_code
;
270 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
271 11, SIGSEGV
) == NOTIFY_STOP
)
274 /* Deliver the signal to userspace */
275 info
.si_signo
= SIGTRAP
;
276 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
277 info
.si_code
= signal_code
;
278 info
.si_addr
= (void __user
*)address
;
279 force_sig_info(SIGTRAP
, &info
, current
);
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs
*regs
, unsigned long address
,
283 unsigned long error_code
)
287 current
->thread
.trap_nr
= TRAP_HWBKPT
;
288 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
289 11, SIGSEGV
) == NOTIFY_STOP
)
292 if (debugger_break_match(regs
))
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
298 /* Deliver the signal to userspace */
299 info
.si_signo
= SIGTRAP
;
301 info
.si_code
= TRAP_HWBKPT
;
302 info
.si_addr
= (void __user
*)address
;
303 force_sig_info(SIGTRAP
, &info
, current
);
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
311 * Set the debug registers back to their default "safe" values.
313 static void set_debug_reg_defaults(struct thread_struct
*thread
)
315 thread
->iac1
= thread
->iac2
= 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread
->iac3
= thread
->iac4
= 0;
319 thread
->dac1
= thread
->dac2
= 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread
->dvc1
= thread
->dvc2
= 0;
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
328 thread
->dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
| \
329 DBCR1_IAC3US
| DBCR1_IAC4US
;
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
334 thread
->dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
340 static void prime_debug_regs(struct thread_struct
*thread
)
342 mtspr(SPRN_IAC1
, thread
->iac1
);
343 mtspr(SPRN_IAC2
, thread
->iac2
);
344 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3
, thread
->iac3
);
346 mtspr(SPRN_IAC4
, thread
->iac4
);
348 mtspr(SPRN_DAC1
, thread
->dac1
);
349 mtspr(SPRN_DAC2
, thread
->dac2
);
350 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1
, thread
->dvc1
);
352 mtspr(SPRN_DVC2
, thread
->dvc2
);
354 mtspr(SPRN_DBCR0
, thread
->dbcr0
);
355 mtspr(SPRN_DBCR1
, thread
->dbcr1
);
357 mtspr(SPRN_DBCR2
, thread
->dbcr2
);
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
365 static void switch_booke_debug_regs(struct thread_struct
*new_thread
)
367 if ((current
->thread
.dbcr0
& DBCR0_IDM
)
368 || (new_thread
->dbcr0
& DBCR0_IDM
))
369 prime_debug_regs(new_thread
);
371 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
372 #ifndef CONFIG_HAVE_HW_BREAKPOINT
373 static void set_debug_reg_defaults(struct thread_struct
*thread
)
375 thread
->hw_brk
.address
= 0;
376 thread
->hw_brk
.type
= 0;
377 set_breakpoint(&thread
->hw_brk
);
379 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
380 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
382 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
383 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
385 mtspr(SPRN_DAC1
, dabr
);
386 #ifdef CONFIG_PPC_47x
391 #elif defined(CONFIG_PPC_BOOK3S)
392 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
394 mtspr(SPRN_DABR
, dabr
);
395 mtspr(SPRN_DABRX
, dabrx
);
399 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
405 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
407 unsigned long dabr
, dabrx
;
409 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
410 dabrx
= ((brk
->type
>> 3) & 0x7);
413 return ppc_md
.set_dabr(dabr
, dabrx
);
415 return __set_dabr(dabr
, dabrx
);
418 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
420 unsigned long dawr
, dawrx
, mrd
;
424 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
425 << (63 - 58); //* read/write bits */
426 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
429 >> 3; //* PRIM bits */
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
436 mrd
= ((brk
->len
+ 7) >> 3) - 1;
437 dawrx
|= (mrd
& 0x3f) << (63 - 53);
440 return ppc_md
.set_dawr(dawr
, dawrx
);
441 mtspr(SPRN_DAWR
, dawr
);
442 mtspr(SPRN_DAWRX
, dawrx
);
446 int set_breakpoint(struct arch_hw_breakpoint
*brk
)
448 __get_cpu_var(current_brk
) = *brk
;
450 if (cpu_has_feature(CPU_FTR_DAWR
))
451 return set_dawr(brk
);
453 return set_dabr(brk
);
457 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
460 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
461 struct arch_hw_breakpoint
*b
)
463 if (a
->address
!= b
->address
)
465 if (a
->type
!= b
->type
)
467 if (a
->len
!= b
->len
)
471 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472 static inline void tm_reclaim_task(struct task_struct
*tsk
)
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
484 struct thread_struct
*thr
= &tsk
->thread
;
489 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
490 goto out_and_saveregs
;
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
496 thr
->tm_orig_msr
= thr
->regs
->msr
;
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk
->pid
, thr
->regs
->nip
,
501 thr
->regs
->ccr
, thr
->regs
->msr
,
504 tm_reclaim(thr
, thr
->regs
->msr
, TM_CAUSE_RESCHED
);
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
518 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
522 if (!cpu_has_feature(CPU_FTR_TM
))
525 /* Recheckpoint the registers of the thread we're about to switch to.
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
533 if (!new->thread
.regs
)
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
539 tm_restore_sprs(&new->thread
);
541 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
))
543 msr
= new->thread
.tm_orig_msr
;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid
, new->thread
.regs
->msr
, msr
);
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread
, msr
);
552 /* This loads the speculative FP/VEC state, if used */
554 do_load_up_transact_fpu(&new->thread
);
555 new->thread
.regs
->msr
|=
556 (MSR_FP
| new->thread
.fpexc_mode
);
559 do_load_up_transact_altivec(&new->thread
);
560 new->thread
.regs
->msr
|= MSR_VEC
;
562 /* We may as well turn on VSX too since all the state is restored now */
564 new->thread
.regs
->msr
|= MSR_VSX
;
566 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
567 "(kernel msr 0x%lx)\n",
571 static inline void __switch_to_tm(struct task_struct
*prev
)
573 if (cpu_has_feature(CPU_FTR_TM
)) {
575 tm_reclaim_task(prev
);
579 #define tm_recheckpoint_new_task(new)
580 #define __switch_to_tm(prev)
581 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
583 struct task_struct
*__switch_to(struct task_struct
*prev
,
584 struct task_struct
*new)
586 struct thread_struct
*new_thread
, *old_thread
;
588 struct task_struct
*last
;
589 #ifdef CONFIG_PPC_BOOK3S_64
590 struct ppc64_tlb_batch
*batch
;
593 __switch_to_tm(prev
);
596 /* avoid complexity of lazy save/restore of fpu
597 * by just saving it every time we switch out if
598 * this task used the fpu during the last quantum.
600 * If it tries to use the fpu again, it'll trap and
601 * reload its fp regs. So we don't have to do a restore
602 * every switch, just a save.
605 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
607 #ifdef CONFIG_ALTIVEC
609 * If the previous thread used altivec in the last quantum
610 * (thus changing altivec regs) then save them.
611 * We used to check the VRSAVE register but not all apps
612 * set it, so we don't rely on it now (and in fact we need
613 * to save & restore VSCR even if VRSAVE == 0). -- paulus
615 * On SMP we always save/restore altivec regs just to avoid the
616 * complexity of changing processors.
619 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
620 giveup_altivec(prev
);
621 #endif /* CONFIG_ALTIVEC */
623 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VSX
))
624 /* VMX and FPU registers are already save here */
626 #endif /* CONFIG_VSX */
629 * If the previous thread used spe in the last quantum
630 * (thus changing spe regs) then save them.
632 * On SMP we always save/restore spe regs just to avoid the
633 * complexity of changing processors.
635 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
637 #endif /* CONFIG_SPE */
639 #else /* CONFIG_SMP */
640 #ifdef CONFIG_ALTIVEC
641 /* Avoid the trap. On smp this this never happens since
642 * we don't set last_task_used_altivec -- Cort
644 if (new->thread
.regs
&& last_task_used_altivec
== new)
645 new->thread
.regs
->msr
|= MSR_VEC
;
646 #endif /* CONFIG_ALTIVEC */
648 if (new->thread
.regs
&& last_task_used_vsx
== new)
649 new->thread
.regs
->msr
|= MSR_VSX
;
650 #endif /* CONFIG_VSX */
652 /* Avoid the trap. On smp this this never happens since
653 * we don't set last_task_used_spe
655 if (new->thread
.regs
&& last_task_used_spe
== new)
656 new->thread
.regs
->msr
|= MSR_SPE
;
657 #endif /* CONFIG_SPE */
659 #endif /* CONFIG_SMP */
661 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
662 switch_booke_debug_regs(&new->thread
);
665 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
668 #ifndef CONFIG_HAVE_HW_BREAKPOINT
669 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk
), &new->thread
.hw_brk
)))
670 set_breakpoint(&new->thread
.hw_brk
);
671 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
675 new_thread
= &new->thread
;
676 old_thread
= ¤t
->thread
;
680 * Collect processor utilization data per process
682 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
683 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
684 long unsigned start_tb
, current_tb
;
685 start_tb
= old_thread
->start_tb
;
686 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
687 old_thread
->accum_tb
+= (current_tb
- start_tb
);
688 new_thread
->start_tb
= current_tb
;
690 #endif /* CONFIG_PPC64 */
692 #ifdef CONFIG_PPC_BOOK3S_64
693 batch
= &__get_cpu_var(ppc64_tlb_batch
);
695 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
697 __flush_tlb_pending(batch
);
700 #endif /* CONFIG_PPC_BOOK3S_64 */
702 local_irq_save(flags
);
705 * We can't take a PMU exception inside _switch() since there is a
706 * window where the kernel stack SLB and the kernel stack are out
707 * of sync. Hard disable here.
711 tm_recheckpoint_new_task(new);
713 last
= _switch(old_thread
, new_thread
);
715 #ifdef CONFIG_PPC_BOOK3S_64
716 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
717 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
718 batch
= &__get_cpu_var(ppc64_tlb_batch
);
721 #endif /* CONFIG_PPC_BOOK3S_64 */
723 local_irq_restore(flags
);
728 static int instructions_to_print
= 16;
730 static void show_instructions(struct pt_regs
*regs
)
733 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
736 printk("Instruction dump:");
738 for (i
= 0; i
< instructions_to_print
; i
++) {
744 #if !defined(CONFIG_BOOKE)
745 /* If executing with the IMMU off, adjust pc rather
746 * than print XXXXXXXX.
748 if (!(regs
->msr
& MSR_IR
))
749 pc
= (unsigned long)phys_to_virt(pc
);
752 /* We use __get_user here *only* to avoid an OOPS on a
753 * bad address because the pc *should* only be a
756 if (!__kernel_text_address(pc
) ||
757 __get_user(instr
, (unsigned int __user
*)pc
)) {
758 printk(KERN_CONT
"XXXXXXXX ");
761 printk(KERN_CONT
"<%08x> ", instr
);
763 printk(KERN_CONT
"%08x ", instr
);
772 static struct regbit
{
776 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
805 static void printbits(unsigned long val
, struct regbit
*bits
)
807 const char *sep
= "";
810 for (; bits
->bit
; ++bits
)
811 if (val
& bits
->bit
) {
812 printk("%s%s", sep
, bits
->name
);
820 #define REGS_PER_LINE 4
821 #define LAST_VOLATILE 13
824 #define REGS_PER_LINE 8
825 #define LAST_VOLATILE 12
828 void show_regs(struct pt_regs
* regs
)
832 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
833 regs
->nip
, regs
->link
, regs
->ctr
);
834 printk("REGS: %p TRAP: %04lx %s (%s)\n",
835 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
836 printk("MSR: "REG
" ", regs
->msr
);
837 printbits(regs
->msr
, msr_bits
);
838 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
840 printk("SOFTE: %ld\n", regs
->softe
);
843 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
844 printk("CFAR: "REG
"\n", regs
->orig_gpr3
);
845 if (trap
== 0x300 || trap
== 0x600)
846 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
847 printk("DEAR: "REG
", ESR: "REG
"\n", regs
->dar
, regs
->dsisr
);
849 printk("DAR: "REG
", DSISR: %08lx\n", regs
->dar
, regs
->dsisr
);
851 printk("TASK = %p[%d] '%s' THREAD: %p",
852 current
, task_pid_nr(current
), current
->comm
, task_thread_info(current
));
855 printk(" CPU: %d", raw_smp_processor_id());
856 #endif /* CONFIG_SMP */
858 for (i
= 0; i
< 32; i
++) {
859 if ((i
% REGS_PER_LINE
) == 0)
860 printk("\nGPR%02d: ", i
);
861 printk(REG
" ", regs
->gpr
[i
]);
862 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
866 #ifdef CONFIG_KALLSYMS
868 * Lookup NIP late so we have the best change of getting the
869 * above info out without failing
871 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
872 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
875 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch
);
877 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
878 if (!user_mode(regs
))
879 show_instructions(regs
);
882 void exit_thread(void)
884 discard_lazy_cpu_state();
887 void flush_thread(void)
889 discard_lazy_cpu_state();
891 #ifdef CONFIG_HAVE_HW_BREAKPOINT
892 flush_ptrace_hw_breakpoint(current
);
893 #else /* CONFIG_HAVE_HW_BREAKPOINT */
894 set_debug_reg_defaults(¤t
->thread
);
895 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
899 release_thread(struct task_struct
*t
)
904 * this gets called so that we can store coprocessor state into memory and
905 * copy the current task into the new thread.
907 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
909 flush_fp_to_thread(src
);
910 flush_altivec_to_thread(src
);
911 flush_vsx_to_thread(src
);
912 flush_spe_to_thread(src
);
913 #ifdef CONFIG_HAVE_HW_BREAKPOINT
914 flush_ptrace_hw_breakpoint(src
);
915 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
924 extern unsigned long dscr_default
; /* defined in arch/powerpc/kernel/sysfs.c */
926 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
927 unsigned long arg
, struct task_struct
*p
)
929 struct pt_regs
*childregs
, *kregs
;
930 extern void ret_from_fork(void);
931 extern void ret_from_kernel_thread(void);
933 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
936 sp
-= sizeof(struct pt_regs
);
937 childregs
= (struct pt_regs
*) sp
;
938 if (unlikely(p
->flags
& PF_KTHREAD
)) {
939 struct thread_info
*ti
= (void *)task_stack_page(p
);
940 memset(childregs
, 0, sizeof(struct pt_regs
));
941 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
942 childregs
->gpr
[14] = usp
; /* function */
944 clear_tsk_thread_flag(p
, TIF_32BIT
);
945 childregs
->softe
= 1;
947 childregs
->gpr
[15] = arg
;
948 p
->thread
.regs
= NULL
; /* no user register state */
949 ti
->flags
|= _TIF_RESTOREALL
;
950 f
= ret_from_kernel_thread
;
952 struct pt_regs
*regs
= current_pt_regs();
953 CHECK_FULL_REGS(regs
);
956 childregs
->gpr
[1] = usp
;
957 p
->thread
.regs
= childregs
;
958 childregs
->gpr
[3] = 0; /* Result from fork() */
959 if (clone_flags
& CLONE_SETTLS
) {
961 if (!is_32bit_task())
962 childregs
->gpr
[13] = childregs
->gpr
[6];
965 childregs
->gpr
[2] = childregs
->gpr
[6];
970 sp
-= STACK_FRAME_OVERHEAD
;
973 * The way this works is that at some point in the future
974 * some task will call _switch to switch to the new task.
975 * That will pop off the stack frame created below and start
976 * the new task running at ret_from_fork. The new task will
977 * do some house keeping and then return from the fork or clone
978 * system call, using the stack frame created above.
980 sp
-= sizeof(struct pt_regs
);
981 kregs
= (struct pt_regs
*) sp
;
982 sp
-= STACK_FRAME_OVERHEAD
;
984 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
985 _ALIGN_UP(sizeof(struct thread_info
), 16);
987 #ifdef CONFIG_PPC_STD_MMU_64
988 if (mmu_has_feature(MMU_FTR_SLB
)) {
989 unsigned long sp_vsid
;
990 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
992 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
993 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
994 << SLB_VSID_SHIFT_1T
;
996 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
998 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
999 p
->thread
.ksp_vsid
= sp_vsid
;
1001 #endif /* CONFIG_PPC_STD_MMU_64 */
1003 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1004 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1005 p
->thread
.dscr
= current
->thread
.dscr
;
1007 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1008 p
->thread
.ppr
= INIT_PPR
;
1011 * The PPC64 ABI makes use of a TOC to contain function
1012 * pointers. The function (ret_from_except) is actually a pointer
1013 * to the TOC entry. The first entry is a pointer to the actual
1017 kregs
->nip
= *((unsigned long *)f
);
1019 kregs
->nip
= (unsigned long)f
;
1025 * Set up a thread for executing a new program
1027 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1030 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1034 * If we exec out of a kernel thread then thread.regs will not be
1037 if (!current
->thread
.regs
) {
1038 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1039 current
->thread
.regs
= regs
- 1;
1042 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1050 * We have just cleared all the nonvolatile GPRs, so make
1051 * FULL_REGS(regs) return true. This is necessary to allow
1052 * ptrace to examine the thread immediately after exec.
1059 regs
->msr
= MSR_USER
;
1061 if (!is_32bit_task()) {
1062 unsigned long entry
, toc
;
1064 /* start is a relocated pointer to the function descriptor for
1065 * the elf _start routine. The first entry in the function
1066 * descriptor is the entry address of _start and the second
1067 * entry is the TOC value we need to use.
1069 __get_user(entry
, (unsigned long __user
*)start
);
1070 __get_user(toc
, (unsigned long __user
*)start
+1);
1072 /* Check whether the e_entry function descriptor entries
1073 * need to be relocated before we can use them.
1075 if (load_addr
!= 0) {
1081 regs
->msr
= MSR_USER64
;
1085 regs
->msr
= MSR_USER32
;
1088 discard_lazy_cpu_state();
1090 current
->thread
.used_vsr
= 0;
1092 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
1093 current
->thread
.fpscr
.val
= 0;
1094 #ifdef CONFIG_ALTIVEC
1095 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
1096 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
1097 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1098 current
->thread
.vrsave
= 0;
1099 current
->thread
.used_vr
= 0;
1100 #endif /* CONFIG_ALTIVEC */
1102 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1103 current
->thread
.acc
= 0;
1104 current
->thread
.spefscr
= 0;
1105 current
->thread
.used_spe
= 0;
1106 #endif /* CONFIG_SPE */
1107 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1108 if (cpu_has_feature(CPU_FTR_TM
))
1109 regs
->msr
|= MSR_TM
;
1110 current
->thread
.tm_tfhar
= 0;
1111 current
->thread
.tm_texasr
= 0;
1112 current
->thread
.tm_tfiar
= 0;
1113 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1116 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1117 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1119 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1121 struct pt_regs
*regs
= tsk
->thread
.regs
;
1123 /* This is a bit hairy. If we are an SPE enabled processor
1124 * (have embedded fp) we store the IEEE exception enable flags in
1125 * fpexc_mode. fpexc_mode is also used for setting FP exception
1126 * mode (asyn, precise, disabled) for 'Classic' FP. */
1127 if (val
& PR_FP_EXC_SW_ENABLE
) {
1129 if (cpu_has_feature(CPU_FTR_SPE
)) {
1130 tsk
->thread
.fpexc_mode
= val
&
1131 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1141 /* on a CONFIG_SPE this does not hurt us. The bits that
1142 * __pack_fe01 use do not overlap with bits used for
1143 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1144 * on CONFIG_SPE implementations are reserved so writing to
1145 * them does not change anything */
1146 if (val
> PR_FP_EXC_PRECISE
)
1148 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1149 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1150 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1151 | tsk
->thread
.fpexc_mode
;
1155 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1159 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1161 if (cpu_has_feature(CPU_FTR_SPE
))
1162 val
= tsk
->thread
.fpexc_mode
;
1169 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1170 return put_user(val
, (unsigned int __user
*) adr
);
1173 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1175 struct pt_regs
*regs
= tsk
->thread
.regs
;
1177 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1178 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1184 if (val
== PR_ENDIAN_BIG
)
1185 regs
->msr
&= ~MSR_LE
;
1186 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1187 regs
->msr
|= MSR_LE
;
1194 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1196 struct pt_regs
*regs
= tsk
->thread
.regs
;
1199 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1200 !cpu_has_feature(CPU_FTR_REAL_LE
))
1206 if (regs
->msr
& MSR_LE
) {
1207 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1208 val
= PR_ENDIAN_LITTLE
;
1210 val
= PR_ENDIAN_PPC_LITTLE
;
1212 val
= PR_ENDIAN_BIG
;
1214 return put_user(val
, (unsigned int __user
*)adr
);
1217 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1219 tsk
->thread
.align_ctl
= val
;
1223 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1225 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1228 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1229 unsigned long nbytes
)
1231 unsigned long stack_page
;
1232 unsigned long cpu
= task_cpu(p
);
1235 * Avoid crashing if the stack has overflowed and corrupted
1236 * task_cpu(p), which is in the thread_info struct.
1238 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1239 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1240 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1241 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1244 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1245 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1246 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1252 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1253 unsigned long nbytes
)
1255 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1257 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1258 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1261 return valid_irq_stack(sp
, p
, nbytes
);
1264 EXPORT_SYMBOL(validate_sp
);
1266 unsigned long get_wchan(struct task_struct
*p
)
1268 unsigned long ip
, sp
;
1271 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1275 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1279 sp
= *(unsigned long *)sp
;
1280 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1283 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1284 if (!in_sched_functions(ip
))
1287 } while (count
++ < 16);
1291 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1293 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1295 unsigned long sp
, ip
, lr
, newsp
;
1298 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1299 int curr_frame
= current
->curr_ret_stack
;
1300 extern void return_to_handler(void);
1301 unsigned long rth
= (unsigned long)return_to_handler
;
1302 unsigned long mrth
= -1;
1304 extern void mod_return_to_handler(void);
1305 rth
= *(unsigned long *)rth
;
1306 mrth
= (unsigned long)mod_return_to_handler
;
1307 mrth
= *(unsigned long *)mrth
;
1311 sp
= (unsigned long) stack
;
1316 asm("mr %0,1" : "=r" (sp
));
1318 sp
= tsk
->thread
.ksp
;
1322 printk("Call Trace:\n");
1324 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1327 stack
= (unsigned long *) sp
;
1329 ip
= stack
[STACK_FRAME_LR_SAVE
];
1330 if (!firstframe
|| ip
!= lr
) {
1331 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1332 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1333 if ((ip
== rth
|| ip
== mrth
) && curr_frame
>= 0) {
1335 (void *)current
->ret_stack
[curr_frame
].ret
);
1340 printk(" (unreliable)");
1346 * See if this is an exception frame.
1347 * We look for the "regshere" marker in the current frame.
1349 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1350 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1351 struct pt_regs
*regs
= (struct pt_regs
*)
1352 (sp
+ STACK_FRAME_OVERHEAD
);
1354 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1355 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1360 } while (count
++ < kstack_depth_to_print
);
1363 void dump_stack(void)
1365 show_stack(current
, NULL
);
1367 EXPORT_SYMBOL(dump_stack
);
1370 /* Called with hard IRQs off */
1371 void __ppc64_runlatch_on(void)
1373 struct thread_info
*ti
= current_thread_info();
1376 ctrl
= mfspr(SPRN_CTRLF
);
1377 ctrl
|= CTRL_RUNLATCH
;
1378 mtspr(SPRN_CTRLT
, ctrl
);
1380 ti
->local_flags
|= _TLF_RUNLATCH
;
1383 /* Called with hard IRQs off */
1384 void __ppc64_runlatch_off(void)
1386 struct thread_info
*ti
= current_thread_info();
1389 ti
->local_flags
&= ~_TLF_RUNLATCH
;
1391 ctrl
= mfspr(SPRN_CTRLF
);
1392 ctrl
&= ~CTRL_RUNLATCH
;
1393 mtspr(SPRN_CTRLT
, ctrl
);
1395 #endif /* CONFIG_PPC64 */
1397 unsigned long arch_align_stack(unsigned long sp
)
1399 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1400 sp
-= get_random_int() & ~PAGE_MASK
;
1404 static inline unsigned long brk_rnd(void)
1406 unsigned long rnd
= 0;
1408 /* 8MB for 32bit, 1GB for 64bit */
1409 if (is_32bit_task())
1410 rnd
= (long)(get_random_int() % (1<<(23-PAGE_SHIFT
)));
1412 rnd
= (long)(get_random_int() % (1<<(30-PAGE_SHIFT
)));
1414 return rnd
<< PAGE_SHIFT
;
1417 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1419 unsigned long base
= mm
->brk
;
1422 #ifdef CONFIG_PPC_STD_MMU_64
1424 * If we are using 1TB segments and we are allowed to randomise
1425 * the heap, we can put it above 1TB so it is backed by a 1TB
1426 * segment. Otherwise the heap will be in the bottom 1TB
1427 * which always uses 256MB segments and this may result in a
1428 * performance penalty.
1430 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1431 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1434 ret
= PAGE_ALIGN(base
+ brk_rnd());
1442 unsigned long randomize_et_dyn(unsigned long base
)
1444 unsigned long ret
= PAGE_ALIGN(base
+ brk_rnd());