2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/interrupt.h>
16 #include <linux/kallsyms.h>
17 #include <linux/spinlock.h>
18 #include <linux/kprobes.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kgdb.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/ptrace.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
35 #include <linux/smp.h>
39 #include <linux/ioport.h>
40 #include <linux/eisa.h>
43 #if defined(CONFIG_EDAC)
44 #include <linux/edac.h>
47 #include <asm/kmemcheck.h>
48 #include <asm/stacktrace.h>
49 #include <asm/processor.h>
50 #include <asm/debugreg.h>
51 #include <linux/atomic.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
56 #include <asm/fpu-internal.h>
58 #include <asm/context_tracking.h>
60 #include <asm/mach_traps.h>
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
70 asmlinkage
int system_call(void);
73 * The IDT has to be page-aligned to simplify the Pentium
74 * F0 0F bug workaround.
76 gate_desc idt_table
[NR_VECTORS
] __page_aligned_data
= { { { { 0, 0 } } }, };
79 DECLARE_BITMAP(used_vectors
, NR_VECTORS
);
80 EXPORT_SYMBOL_GPL(used_vectors
);
82 static inline void conditional_sti(struct pt_regs
*regs
)
84 if (regs
->flags
& X86_EFLAGS_IF
)
88 static inline void preempt_conditional_sti(struct pt_regs
*regs
)
91 if (regs
->flags
& X86_EFLAGS_IF
)
95 static inline void conditional_cli(struct pt_regs
*regs
)
97 if (regs
->flags
& X86_EFLAGS_IF
)
101 static inline void preempt_conditional_cli(struct pt_regs
*regs
)
103 if (regs
->flags
& X86_EFLAGS_IF
)
109 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, char *str
,
110 struct pt_regs
*regs
, long error_code
)
113 if (regs
->flags
& X86_VM_MASK
) {
115 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
116 * On nmi (interrupt 2), do_trap should not be called.
118 if (trapnr
< X86_TRAP_UD
) {
119 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
126 if (!user_mode(regs
)) {
127 if (!fixup_exception(regs
)) {
128 tsk
->thread
.error_code
= error_code
;
129 tsk
->thread
.trap_nr
= trapnr
;
130 die(str
, regs
, error_code
);
138 static void __kprobes
139 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
140 long error_code
, siginfo_t
*info
)
142 struct task_struct
*tsk
= current
;
145 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
148 * We want error_code and trap_nr set for userspace faults and
149 * kernelspace faults which result in die(), but not
150 * kernelspace faults which are fixed up. die() gives the
151 * process no chance to handle the signal and notice the
152 * kernel fault information, so that won't result in polluting
153 * the information about previously queued, but not yet
154 * delivered, faults. See also do_general_protection below.
156 tsk
->thread
.error_code
= error_code
;
157 tsk
->thread
.trap_nr
= trapnr
;
160 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
161 printk_ratelimit()) {
162 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
163 tsk
->comm
, tsk
->pid
, str
,
164 regs
->ip
, regs
->sp
, error_code
);
165 print_vma_addr(" in ", regs
->ip
);
171 force_sig_info(signr
, info
, tsk
);
173 force_sig(signr
, tsk
);
176 #define DO_ERROR(trapnr, signr, str, name) \
177 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
179 exception_enter(regs); \
180 if (notify_die(DIE_TRAP, str, regs, error_code, \
181 trapnr, signr) == NOTIFY_STOP) { \
182 exception_exit(regs); \
185 conditional_sti(regs); \
186 do_trap(trapnr, signr, str, regs, error_code, NULL); \
187 exception_exit(regs); \
190 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
191 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
194 info.si_signo = signr; \
196 info.si_code = sicode; \
197 info.si_addr = (void __user *)siaddr; \
198 exception_enter(regs); \
199 if (notify_die(DIE_TRAP, str, regs, error_code, \
200 trapnr, signr) == NOTIFY_STOP) { \
201 exception_exit(regs); \
204 conditional_sti(regs); \
205 do_trap(trapnr, signr, str, regs, error_code, &info); \
206 exception_exit(regs); \
209 DO_ERROR_INFO(X86_TRAP_DE
, SIGFPE
, "divide error", divide_error
, FPE_INTDIV
,
211 DO_ERROR(X86_TRAP_OF
, SIGSEGV
, "overflow", overflow
)
212 DO_ERROR(X86_TRAP_BR
, SIGSEGV
, "bounds", bounds
)
213 DO_ERROR_INFO(X86_TRAP_UD
, SIGILL
, "invalid opcode", invalid_op
, ILL_ILLOPN
,
215 DO_ERROR(X86_TRAP_OLD_MF
, SIGFPE
, "coprocessor segment overrun",
216 coprocessor_segment_overrun
)
217 DO_ERROR(X86_TRAP_TS
, SIGSEGV
, "invalid TSS", invalid_TSS
)
218 DO_ERROR(X86_TRAP_NP
, SIGBUS
, "segment not present", segment_not_present
)
220 DO_ERROR(X86_TRAP_SS
, SIGBUS
, "stack segment", stack_segment
)
222 DO_ERROR_INFO(X86_TRAP_AC
, SIGBUS
, "alignment check", alignment_check
,
226 /* Runs on IST stack */
227 dotraplinkage
void do_stack_segment(struct pt_regs
*regs
, long error_code
)
229 exception_enter(regs
);
230 if (notify_die(DIE_TRAP
, "stack segment", regs
, error_code
,
231 X86_TRAP_SS
, SIGBUS
) != NOTIFY_STOP
) {
232 preempt_conditional_sti(regs
);
233 do_trap(X86_TRAP_SS
, SIGBUS
, "stack segment", regs
, error_code
, NULL
);
234 preempt_conditional_cli(regs
);
236 exception_exit(regs
);
239 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
)
241 static const char str
[] = "double fault";
242 struct task_struct
*tsk
= current
;
244 exception_enter(regs
);
245 /* Return not checked because double check cannot be ignored */
246 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
248 tsk
->thread
.error_code
= error_code
;
249 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
252 * This is always a kernel trap and never fixable (and thus must
256 die(str
, regs
, error_code
);
260 dotraplinkage
void __kprobes
261 do_general_protection(struct pt_regs
*regs
, long error_code
)
263 struct task_struct
*tsk
;
265 exception_enter(regs
);
266 conditional_sti(regs
);
269 if (regs
->flags
& X86_VM_MASK
) {
271 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
277 if (!user_mode(regs
)) {
278 if (fixup_exception(regs
))
281 tsk
->thread
.error_code
= error_code
;
282 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
283 if (notify_die(DIE_GPF
, "general protection fault", regs
, error_code
,
284 X86_TRAP_GP
, SIGSEGV
) != NOTIFY_STOP
)
285 die("general protection fault", regs
, error_code
);
289 tsk
->thread
.error_code
= error_code
;
290 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
292 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
293 printk_ratelimit()) {
294 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
295 tsk
->comm
, task_pid_nr(tsk
),
296 regs
->ip
, regs
->sp
, error_code
);
297 print_vma_addr(" in ", regs
->ip
);
301 force_sig(SIGSEGV
, tsk
);
303 exception_exit(regs
);
306 /* May run on IST stack. */
307 dotraplinkage
void __kprobes notrace
do_int3(struct pt_regs
*regs
, long error_code
)
309 #ifdef CONFIG_DYNAMIC_FTRACE
311 * ftrace must be first, everything else may cause a recursive crash.
312 * See note by declaration of modifying_ftrace_code in ftrace.c
314 if (unlikely(atomic_read(&modifying_ftrace_code
)) &&
315 ftrace_int3_handler(regs
))
318 exception_enter(regs
);
319 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
320 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
321 SIGTRAP
) == NOTIFY_STOP
)
323 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
325 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
326 SIGTRAP
) == NOTIFY_STOP
)
330 * Let others (NMI) know that the debug stack is in use
331 * as we may switch to the interrupt stack.
333 debug_stack_usage_inc();
334 preempt_conditional_sti(regs
);
335 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, error_code
, NULL
);
336 preempt_conditional_cli(regs
);
337 debug_stack_usage_dec();
339 exception_exit(regs
);
344 * Help handler running on IST stack to switch back to user stack
345 * for scheduling or signal handling. The actual stack switch is done in
348 asmlinkage __kprobes
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
350 struct pt_regs
*regs
= eregs
;
351 /* Did already sync */
352 if (eregs
== (struct pt_regs
*)eregs
->sp
)
354 /* Exception from user space */
355 else if (user_mode(eregs
))
356 regs
= task_pt_regs(current
);
358 * Exception from kernel and interrupts are enabled. Move to
359 * kernel process stack.
361 else if (eregs
->flags
& X86_EFLAGS_IF
)
362 regs
= (struct pt_regs
*)(eregs
->sp
-= sizeof(struct pt_regs
));
370 * Our handling of the processor debug registers is non-trivial.
371 * We do not clear them on entry and exit from the kernel. Therefore
372 * it is possible to get a watchpoint trap here from inside the kernel.
373 * However, the code in ./ptrace.c has ensured that the user can
374 * only set watchpoints on userspace addresses. Therefore the in-kernel
375 * watchpoint trap can only occur in code which is reading/writing
376 * from user space. Such code must not hold kernel locks (since it
377 * can equally take a page fault), therefore it is safe to call
378 * force_sig_info even though that claims and releases locks.
380 * Code in ./signal.c ensures that the debug control register
381 * is restored before we deliver any signal, and therefore that
382 * user code runs with the correct debug control register even though
385 * Being careful here means that we don't have to be as careful in a
386 * lot of more complicated places (task switching can be a bit lazy
387 * about restoring all the debug state, and ptrace doesn't have to
388 * find every occurrence of the TF bit that could be saved away even
391 * May run on IST stack.
393 dotraplinkage
void __kprobes
do_debug(struct pt_regs
*regs
, long error_code
)
395 struct task_struct
*tsk
= current
;
400 exception_enter(regs
);
402 get_debugreg(dr6
, 6);
404 /* Filter out all the reserved bits which are preset to 1 */
405 dr6
&= ~DR6_RESERVED
;
408 * If dr6 has no reason to give us about the origin of this trap,
409 * then it's very likely the result of an icebp/int01 trap.
410 * User wants a sigtrap for that.
412 if (!dr6
&& user_mode(regs
))
415 /* Catch kmemcheck conditions first of all! */
416 if ((dr6
& DR_STEP
) && kmemcheck_trap(regs
))
419 /* DR6 may or may not be cleared by the CPU */
423 * The processor cleared BTF, so don't mark that we need it set.
425 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
427 /* Store the virtualized DR6 value */
428 tsk
->thread
.debugreg6
= dr6
;
430 if (notify_die(DIE_DEBUG
, "debug", regs
, PTR_ERR(&dr6
), error_code
,
431 SIGTRAP
) == NOTIFY_STOP
)
435 * Let others (NMI) know that the debug stack is in use
436 * as we may switch to the interrupt stack.
438 debug_stack_usage_inc();
440 /* It's safe to allow irq's after DR6 has been saved */
441 preempt_conditional_sti(regs
);
443 if (regs
->flags
& X86_VM_MASK
) {
444 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, error_code
,
446 preempt_conditional_cli(regs
);
447 debug_stack_usage_dec();
452 * Single-stepping through system calls: ignore any exceptions in
453 * kernel space, but re-enable TF when returning to user mode.
455 * We already checked v86 mode above, so we can check for kernel mode
456 * by just checking the CPL of CS.
458 if ((dr6
& DR_STEP
) && !user_mode(regs
)) {
459 tsk
->thread
.debugreg6
&= ~DR_STEP
;
460 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
461 regs
->flags
&= ~X86_EFLAGS_TF
;
463 si_code
= get_si_code(tsk
->thread
.debugreg6
);
464 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
465 send_sigtrap(tsk
, regs
, error_code
, si_code
);
466 preempt_conditional_cli(regs
);
467 debug_stack_usage_dec();
470 exception_exit(regs
);
474 * Note that we play around with the 'TS' bit in an attempt to get
475 * the correct behaviour even in the presence of the asynchronous
478 void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
480 struct task_struct
*task
= current
;
483 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
486 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, SIGFPE
) == NOTIFY_STOP
)
488 conditional_sti(regs
);
490 if (!user_mode_vm(regs
))
492 if (!fixup_exception(regs
)) {
493 task
->thread
.error_code
= error_code
;
494 task
->thread
.trap_nr
= trapnr
;
495 die(str
, regs
, error_code
);
501 * Save the info for the exception handler and clear the error.
504 task
->thread
.trap_nr
= trapnr
;
505 task
->thread
.error_code
= error_code
;
506 info
.si_signo
= SIGFPE
;
508 info
.si_addr
= (void __user
*)regs
->ip
;
509 if (trapnr
== X86_TRAP_MF
) {
510 unsigned short cwd
, swd
;
512 * (~cwd & swd) will mask out exceptions that are not set to unmasked
513 * status. 0x3f is the exception bits in these regs, 0x200 is the
514 * C1 reg you need in case of a stack fault, 0x040 is the stack
515 * fault bit. We should only be taking one exception at a time,
516 * so if this combination doesn't produce any single exception,
517 * then we have a bad program that isn't synchronizing its FPU usage
518 * and it will suffer the consequences since we won't be able to
519 * fully reproduce the context of the exception
521 cwd
= get_fpu_cwd(task
);
522 swd
= get_fpu_swd(task
);
527 * The SIMD FPU exceptions are handled a little differently, as there
528 * is only a single status/control register. Thus, to determine which
529 * unmasked exception was caught we must mask the exception mask bits
530 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
532 unsigned short mxcsr
= get_fpu_mxcsr(task
);
533 err
= ~(mxcsr
>> 7) & mxcsr
;
536 if (err
& 0x001) { /* Invalid op */
538 * swd & 0x240 == 0x040: Stack Underflow
539 * swd & 0x240 == 0x240: Stack Overflow
540 * User must clear the SF bit (0x40) if set
542 info
.si_code
= FPE_FLTINV
;
543 } else if (err
& 0x004) { /* Divide by Zero */
544 info
.si_code
= FPE_FLTDIV
;
545 } else if (err
& 0x008) { /* Overflow */
546 info
.si_code
= FPE_FLTOVF
;
547 } else if (err
& 0x012) { /* Denormal, Underflow */
548 info
.si_code
= FPE_FLTUND
;
549 } else if (err
& 0x020) { /* Precision */
550 info
.si_code
= FPE_FLTRES
;
553 * If we're using IRQ 13, or supposedly even some trap
554 * X86_TRAP_MF implementations, it's possible
555 * we get a spurious trap, which is not an error.
559 force_sig_info(SIGFPE
, &info
, task
);
562 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
564 exception_enter(regs
);
565 math_error(regs
, error_code
, X86_TRAP_MF
);
566 exception_exit(regs
);
570 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
572 exception_enter(regs
);
573 math_error(regs
, error_code
, X86_TRAP_XF
);
574 exception_exit(regs
);
578 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
580 conditional_sti(regs
);
582 /* No need to warn about this any longer. */
583 pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
587 asmlinkage
void __attribute__((weak
)) smp_thermal_interrupt(void)
591 asmlinkage
void __attribute__((weak
)) smp_threshold_interrupt(void)
596 * 'math_state_restore()' saves the current math information in the
597 * old math state array, and gets the new ones from the current task
599 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
600 * Don't touch unless you *really* know how it works.
602 * Must be called with kernel preemption disabled (eg with local
603 * local interrupts as in the case of do_device_not_available).
605 void math_state_restore(void)
607 struct task_struct
*tsk
= current
;
609 if (!tsk_used_math(tsk
)) {
612 * does a slab alloc which can sleep
618 do_group_exit(SIGKILL
);
624 __thread_fpu_begin(tsk
);
627 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
629 if (unlikely(restore_fpu_checking(tsk
))) {
631 force_sig(SIGSEGV
, tsk
);
637 EXPORT_SYMBOL_GPL(math_state_restore
);
639 dotraplinkage
void __kprobes
640 do_device_not_available(struct pt_regs
*regs
, long error_code
)
642 exception_enter(regs
);
643 BUG_ON(use_eager_fpu());
645 #ifdef CONFIG_MATH_EMULATION
646 if (read_cr0() & X86_CR0_EM
) {
647 struct math_emu_info info
= { };
649 conditional_sti(regs
);
653 exception_exit(regs
);
657 math_state_restore(); /* interrupts still off */
659 conditional_sti(regs
);
661 exception_exit(regs
);
665 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
669 exception_enter(regs
);
672 info
.si_signo
= SIGILL
;
674 info
.si_code
= ILL_BADSTK
;
676 if (notify_die(DIE_TRAP
, "iret exception", regs
, error_code
,
677 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
678 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, error_code
,
681 exception_exit(regs
);
685 /* Set of traps needed for early debugging. */
686 void __init
early_trap_init(void)
688 set_intr_gate_ist(X86_TRAP_DB
, &debug
, DEBUG_STACK
);
689 /* int3 can be called from all */
690 set_system_intr_gate_ist(X86_TRAP_BP
, &int3
, DEBUG_STACK
);
692 set_intr_gate(X86_TRAP_PF
, &page_fault
);
694 load_idt(&idt_descr
);
697 void __init
early_trap_pf_init(void)
700 set_intr_gate(X86_TRAP_PF
, &page_fault
);
704 void __init
trap_init(void)
709 void __iomem
*p
= early_ioremap(0x0FFFD9, 4);
711 if (readl(p
) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
716 set_intr_gate(X86_TRAP_DE
, ÷_error
);
717 set_intr_gate_ist(X86_TRAP_NMI
, &nmi
, NMI_STACK
);
718 /* int4 can be called from all */
719 set_system_intr_gate(X86_TRAP_OF
, &overflow
);
720 set_intr_gate(X86_TRAP_BR
, &bounds
);
721 set_intr_gate(X86_TRAP_UD
, &invalid_op
);
722 set_intr_gate(X86_TRAP_NM
, &device_not_available
);
724 set_task_gate(X86_TRAP_DF
, GDT_ENTRY_DOUBLEFAULT_TSS
);
726 set_intr_gate_ist(X86_TRAP_DF
, &double_fault
, DOUBLEFAULT_STACK
);
728 set_intr_gate(X86_TRAP_OLD_MF
, &coprocessor_segment_overrun
);
729 set_intr_gate(X86_TRAP_TS
, &invalid_TSS
);
730 set_intr_gate(X86_TRAP_NP
, &segment_not_present
);
731 set_intr_gate_ist(X86_TRAP_SS
, &stack_segment
, STACKFAULT_STACK
);
732 set_intr_gate(X86_TRAP_GP
, &general_protection
);
733 set_intr_gate(X86_TRAP_SPURIOUS
, &spurious_interrupt_bug
);
734 set_intr_gate(X86_TRAP_MF
, &coprocessor_error
);
735 set_intr_gate(X86_TRAP_AC
, &alignment_check
);
736 #ifdef CONFIG_X86_MCE
737 set_intr_gate_ist(X86_TRAP_MC
, &machine_check
, MCE_STACK
);
739 set_intr_gate(X86_TRAP_XF
, &simd_coprocessor_error
);
741 /* Reserve all the builtin and the syscall vector: */
742 for (i
= 0; i
< FIRST_EXTERNAL_VECTOR
; i
++)
743 set_bit(i
, used_vectors
);
745 #ifdef CONFIG_IA32_EMULATION
746 set_system_intr_gate(IA32_SYSCALL_VECTOR
, ia32_syscall
);
747 set_bit(IA32_SYSCALL_VECTOR
, used_vectors
);
751 set_system_trap_gate(SYSCALL_VECTOR
, &system_call
);
752 set_bit(SYSCALL_VECTOR
, used_vectors
);
756 * Should be a barrier for any external CPU state:
760 x86_init
.irqs
.trap_init();
763 memcpy(&nmi_idt_table
, &idt_table
, IDT_ENTRIES
* 16);
764 set_nmi_gate(X86_TRAP_DB
, &debug
);
765 set_nmi_gate(X86_TRAP_BP
, &int3
);