bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_device_info.c
blobd28592e435127c1f05bd85682f6c0d0e280ae0b3
1 /*
2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <drm/drm_print.h>
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 PLATFORM_NAME(I830),
33 PLATFORM_NAME(I845G),
34 PLATFORM_NAME(I85X),
35 PLATFORM_NAME(I865G),
36 PLATFORM_NAME(I915G),
37 PLATFORM_NAME(I915GM),
38 PLATFORM_NAME(I945G),
39 PLATFORM_NAME(I945GM),
40 PLATFORM_NAME(G33),
41 PLATFORM_NAME(PINEVIEW),
42 PLATFORM_NAME(I965G),
43 PLATFORM_NAME(I965GM),
44 PLATFORM_NAME(G45),
45 PLATFORM_NAME(GM45),
46 PLATFORM_NAME(IRONLAKE),
47 PLATFORM_NAME(SANDYBRIDGE),
48 PLATFORM_NAME(IVYBRIDGE),
49 PLATFORM_NAME(VALLEYVIEW),
50 PLATFORM_NAME(HASWELL),
51 PLATFORM_NAME(BROADWELL),
52 PLATFORM_NAME(CHERRYVIEW),
53 PLATFORM_NAME(SKYLAKE),
54 PLATFORM_NAME(BROXTON),
55 PLATFORM_NAME(KABYLAKE),
56 PLATFORM_NAME(GEMINILAKE),
57 PLATFORM_NAME(COFFEELAKE),
58 PLATFORM_NAME(CANNONLAKE),
60 #undef PLATFORM_NAME
62 const char *intel_platform_name(enum intel_platform platform)
64 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
66 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
67 platform_names[platform] == NULL))
68 return "<unknown>";
70 return platform_names[platform];
73 void intel_device_info_dump_flags(const struct intel_device_info *info,
74 struct drm_printer *p)
76 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
77 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
78 #undef PRINT_FLAG
81 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
83 drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
84 drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
85 drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
86 drm_printf(p, "subslice mask %04x\n", sseu->subslice_mask);
87 drm_printf(p, "subslice per slice: %u\n",
88 hweight8(sseu->subslice_mask));
89 drm_printf(p, "EU total: %u\n", sseu->eu_total);
90 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
91 drm_printf(p, "has slice power gating: %s\n",
92 yesno(sseu->has_slice_pg));
93 drm_printf(p, "has subslice power gating: %s\n",
94 yesno(sseu->has_subslice_pg));
95 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
98 void intel_device_info_dump_runtime(const struct intel_device_info *info,
99 struct drm_printer *p)
101 sseu_dump(&info->sseu, p);
103 drm_printf(p, "CS timestamp frequency: %u kHz\n",
104 info->cs_timestamp_frequency_khz);
107 void intel_device_info_dump(const struct intel_device_info *info,
108 struct drm_printer *p)
110 struct drm_i915_private *dev_priv =
111 container_of(info, struct drm_i915_private, info);
113 drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
114 INTEL_DEVID(dev_priv),
115 INTEL_REVID(dev_priv),
116 intel_platform_name(info->platform),
117 info->gen);
119 intel_device_info_dump_flags(info, p);
122 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
124 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
125 const u32 fuse2 = I915_READ(GEN8_FUSE2);
127 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
128 GEN10_F2_S_ENA_SHIFT;
129 sseu->subslice_mask = (1 << 4) - 1;
130 sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
131 GEN10_F2_SS_DIS_SHIFT);
133 sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0));
134 sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1));
135 sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2));
136 sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) &
137 GEN10_EU_DIS_SS_MASK));
140 * CNL is expected to always have a uniform distribution
141 * of EU across subslices with the exception that any one
142 * EU in any one subslice may be fused off for die
143 * recovery.
145 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
146 DIV_ROUND_UP(sseu->eu_total,
147 sseu_subslice_total(sseu)) : 0;
149 /* No restrictions on Power Gating */
150 sseu->has_slice_pg = 1;
151 sseu->has_subslice_pg = 1;
152 sseu->has_eu_pg = 1;
155 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
157 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
158 u32 fuse, eu_dis;
160 fuse = I915_READ(CHV_FUSE_GT);
162 sseu->slice_mask = BIT(0);
164 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
165 sseu->subslice_mask |= BIT(0);
166 eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
167 CHV_FGT_EU_DIS_SS0_R1_MASK);
168 sseu->eu_total += 8 - hweight32(eu_dis);
171 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
172 sseu->subslice_mask |= BIT(1);
173 eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
174 CHV_FGT_EU_DIS_SS1_R1_MASK);
175 sseu->eu_total += 8 - hweight32(eu_dis);
179 * CHV expected to always have a uniform distribution of EU
180 * across subslices.
182 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
183 sseu->eu_total / sseu_subslice_total(sseu) :
186 * CHV supports subslice power gating on devices with more than
187 * one subslice, and supports EU power gating on devices with
188 * more than one EU pair per subslice.
190 sseu->has_slice_pg = 0;
191 sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
192 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
195 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
197 struct intel_device_info *info = mkwrite_device_info(dev_priv);
198 struct sseu_dev_info *sseu = &info->sseu;
199 int s_max = 3, ss_max = 4, eu_max = 8;
200 int s, ss;
201 u32 fuse2, eu_disable;
202 u8 eu_mask = 0xff;
204 fuse2 = I915_READ(GEN8_FUSE2);
205 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
208 * The subslice disable field is global, i.e. it applies
209 * to each of the enabled slices.
211 sseu->subslice_mask = (1 << ss_max) - 1;
212 sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
213 GEN9_F2_SS_DIS_SHIFT);
216 * Iterate through enabled slices and subslices to
217 * count the total enabled EU.
219 for (s = 0; s < s_max; s++) {
220 if (!(sseu->slice_mask & BIT(s)))
221 /* skip disabled slice */
222 continue;
224 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
225 for (ss = 0; ss < ss_max; ss++) {
226 int eu_per_ss;
228 if (!(sseu->subslice_mask & BIT(ss)))
229 /* skip disabled subslice */
230 continue;
232 eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
233 eu_mask);
236 * Record which subslice(s) has(have) 7 EUs. we
237 * can tune the hash used to spread work among
238 * subslices if they are unbalanced.
240 if (eu_per_ss == 7)
241 sseu->subslice_7eu[s] |= BIT(ss);
243 sseu->eu_total += eu_per_ss;
248 * SKL is expected to always have a uniform distribution
249 * of EU across subslices with the exception that any one
250 * EU in any one subslice may be fused off for die
251 * recovery. BXT is expected to be perfectly uniform in EU
252 * distribution.
254 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
255 DIV_ROUND_UP(sseu->eu_total,
256 sseu_subslice_total(sseu)) : 0;
258 * SKL+ supports slice power gating on devices with more than
259 * one slice, and supports EU power gating on devices with
260 * more than one EU pair per subslice. BXT+ supports subslice
261 * power gating on devices with more than one subslice, and
262 * supports EU power gating on devices with more than one EU
263 * pair per subslice.
265 sseu->has_slice_pg =
266 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
267 sseu->has_subslice_pg =
268 IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
269 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
271 if (IS_GEN9_LP(dev_priv)) {
272 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask & BIT(ss)))
273 info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3;
275 sseu->min_eu_in_pool = 0;
276 if (info->has_pooled_eu) {
277 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
278 sseu->min_eu_in_pool = 3;
279 else if (IS_SS_DISABLED(1))
280 sseu->min_eu_in_pool = 6;
281 else
282 sseu->min_eu_in_pool = 9;
284 #undef IS_SS_DISABLED
288 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
290 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
291 const int s_max = 3, ss_max = 3, eu_max = 8;
292 int s, ss;
293 u32 fuse2, eu_disable[3]; /* s_max */
295 fuse2 = I915_READ(GEN8_FUSE2);
296 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
298 * The subslice disable field is global, i.e. it applies
299 * to each of the enabled slices.
301 sseu->subslice_mask = GENMASK(ss_max - 1, 0);
302 sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
303 GEN8_F2_SS_DIS_SHIFT);
305 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
306 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
307 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
308 (32 - GEN8_EU_DIS0_S1_SHIFT));
309 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
310 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
311 (32 - GEN8_EU_DIS1_S2_SHIFT));
314 * Iterate through enabled slices and subslices to
315 * count the total enabled EU.
317 for (s = 0; s < s_max; s++) {
318 if (!(sseu->slice_mask & BIT(s)))
319 /* skip disabled slice */
320 continue;
322 for (ss = 0; ss < ss_max; ss++) {
323 u32 n_disabled;
325 if (!(sseu->subslice_mask & BIT(ss)))
326 /* skip disabled subslice */
327 continue;
329 n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));
332 * Record which subslices have 7 EUs.
334 if (eu_max - n_disabled == 7)
335 sseu->subslice_7eu[s] |= 1 << ss;
337 sseu->eu_total += eu_max - n_disabled;
342 * BDW is expected to always have a uniform distribution of EU across
343 * subslices with the exception that any one EU in any one subslice may
344 * be fused off for die recovery.
346 sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
347 DIV_ROUND_UP(sseu->eu_total,
348 sseu_subslice_total(sseu)) : 0;
351 * BDW supports slice power gating on devices with more than
352 * one slice.
354 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
355 sseu->has_subslice_pg = 0;
356 sseu->has_eu_pg = 0;
359 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
361 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
362 u32 base_freq, frac_freq;
364 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
365 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
366 base_freq *= 1000;
368 frac_freq = ((ts_override &
369 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
370 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
371 frac_freq = 1000 / (frac_freq + 1);
373 return base_freq + frac_freq;
376 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
378 u32 f12_5_mhz = 12500;
379 u32 f19_2_mhz = 19200;
380 u32 f24_mhz = 24000;
382 if (INTEL_GEN(dev_priv) <= 4) {
383 /* PRMs say:
385 * "The value in this register increments once every 16
386 * hclks." (through the “Clocking Configuration”
387 * (“CLKCFG”) MCHBAR register)
389 return dev_priv->rawclk_freq / 16;
390 } else if (INTEL_GEN(dev_priv) <= 8) {
391 /* PRMs say:
393 * "The PCU TSC counts 10ns increments; this timestamp
394 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
395 * rolling over every 1.5 hours).
397 return f12_5_mhz;
398 } else if (INTEL_GEN(dev_priv) <= 9) {
399 u32 ctc_reg = I915_READ(CTC_MODE);
400 u32 freq = 0;
402 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
403 freq = read_reference_ts_freq(dev_priv);
404 } else {
405 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
407 /* Now figure out how the command stream's timestamp
408 * register increments from this frequency (it might
409 * increment only every few clock cycle).
411 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
412 CTC_SHIFT_PARAMETER_SHIFT);
415 return freq;
416 } else if (INTEL_GEN(dev_priv) <= 10) {
417 u32 ctc_reg = I915_READ(CTC_MODE);
418 u32 freq = 0;
419 u32 rpm_config_reg = 0;
421 /* First figure out the reference frequency. There are 2 ways
422 * we can compute the frequency, either through the
423 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
424 * tells us which one we should use.
426 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
427 freq = read_reference_ts_freq(dev_priv);
428 } else {
429 u32 crystal_clock;
431 rpm_config_reg = I915_READ(RPM_CONFIG0);
432 crystal_clock = (rpm_config_reg &
433 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
434 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
435 switch (crystal_clock) {
436 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
437 freq = f19_2_mhz;
438 break;
439 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
440 freq = f24_mhz;
441 break;
444 /* Now figure out how the command stream's timestamp
445 * register increments from this frequency (it might
446 * increment only every few clock cycle).
448 freq >>= 3 - ((rpm_config_reg &
449 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
450 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
453 return freq;
456 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
457 return 0;
461 * intel_device_info_runtime_init - initialize runtime info
462 * @info: intel device info struct
464 * Determine various intel_device_info fields at runtime.
466 * Use it when either:
467 * - it's judged too laborious to fill n static structures with the limit
468 * when a simple if statement does the job,
469 * - run-time checks (eg read fuse/strap registers) are needed.
471 * This function needs to be called:
472 * - after the MMIO has been setup as we are reading registers,
473 * - after the PCH has been detected,
474 * - before the first usage of the fields it can tweak.
476 void intel_device_info_runtime_init(struct intel_device_info *info)
478 struct drm_i915_private *dev_priv =
479 container_of(info, struct drm_i915_private, info);
480 enum pipe pipe;
482 if (INTEL_GEN(dev_priv) >= 10) {
483 for_each_pipe(dev_priv, pipe)
484 info->num_scalers[pipe] = 2;
485 } else if (INTEL_GEN(dev_priv) == 9) {
486 info->num_scalers[PIPE_A] = 2;
487 info->num_scalers[PIPE_B] = 2;
488 info->num_scalers[PIPE_C] = 1;
492 * Skylake and Broxton currently don't expose the topmost plane as its
493 * use is exclusive with the legacy cursor and we only want to expose
494 * one of those, not both. Until we can safely expose the topmost plane
495 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
496 * we don't expose the topmost plane at all to prevent ABI breakage
497 * down the line.
499 if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
500 for_each_pipe(dev_priv, pipe)
501 info->num_sprites[pipe] = 3;
502 else if (IS_BROXTON(dev_priv)) {
503 info->num_sprites[PIPE_A] = 2;
504 info->num_sprites[PIPE_B] = 2;
505 info->num_sprites[PIPE_C] = 1;
506 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
507 for_each_pipe(dev_priv, pipe)
508 info->num_sprites[pipe] = 2;
509 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
510 for_each_pipe(dev_priv, pipe)
511 info->num_sprites[pipe] = 1;
514 if (i915_modparams.disable_display) {
515 DRM_INFO("Display disabled (module parameter)\n");
516 info->num_pipes = 0;
517 } else if (info->num_pipes > 0 &&
518 (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
519 HAS_PCH_SPLIT(dev_priv)) {
520 u32 fuse_strap = I915_READ(FUSE_STRAP);
521 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
524 * SFUSE_STRAP is supposed to have a bit signalling the display
525 * is fused off. Unfortunately it seems that, at least in
526 * certain cases, fused off display means that PCH display
527 * reads don't land anywhere. In that case, we read 0s.
529 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
530 * should be set when taking over after the firmware.
532 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
533 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
534 (HAS_PCH_CPT(dev_priv) &&
535 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
536 DRM_INFO("Display fused off, disabling\n");
537 info->num_pipes = 0;
538 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
539 DRM_INFO("PipeC fused off\n");
540 info->num_pipes -= 1;
542 } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
543 u32 dfsm = I915_READ(SKL_DFSM);
544 u8 disabled_mask = 0;
545 bool invalid;
546 int num_bits;
548 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
549 disabled_mask |= BIT(PIPE_A);
550 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
551 disabled_mask |= BIT(PIPE_B);
552 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
553 disabled_mask |= BIT(PIPE_C);
555 num_bits = hweight8(disabled_mask);
557 switch (disabled_mask) {
558 case BIT(PIPE_A):
559 case BIT(PIPE_B):
560 case BIT(PIPE_A) | BIT(PIPE_B):
561 case BIT(PIPE_A) | BIT(PIPE_C):
562 invalid = true;
563 break;
564 default:
565 invalid = false;
568 if (num_bits > info->num_pipes || invalid)
569 DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
570 disabled_mask);
571 else
572 info->num_pipes -= num_bits;
575 /* Initialize slice/subslice/EU info */
576 if (IS_CHERRYVIEW(dev_priv))
577 cherryview_sseu_info_init(dev_priv);
578 else if (IS_BROADWELL(dev_priv))
579 broadwell_sseu_info_init(dev_priv);
580 else if (INTEL_GEN(dev_priv) == 9)
581 gen9_sseu_info_init(dev_priv);
582 else if (INTEL_GEN(dev_priv) >= 10)
583 gen10_sseu_info_init(dev_priv);
585 /* Initialize command stream timestamp frequency */
586 info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);