bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / msm / msm_gpu.h
blobfccfccd303af7605b43c38aad85a20a666929c6a
1 /*
2 * Copyright (C) 2013 Red Hat
3 * Author: Rob Clark <robdclark@gmail.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
18 #ifndef __MSM_GPU_H__
19 #define __MSM_GPU_H__
21 #include <linux/clk.h>
22 #include <linux/regulator/consumer.h>
24 #include "msm_drv.h"
25 #include "msm_fence.h"
26 #include "msm_ringbuffer.h"
28 struct msm_gem_submit;
29 struct msm_gpu_perfcntr;
31 struct msm_gpu_config {
32 const char *ioname;
33 const char *irqname;
34 uint64_t va_start;
35 uint64_t va_end;
36 unsigned int nr_rings;
39 /* So far, with hardware that I've seen to date, we can have:
40 * + zero, one, or two z180 2d cores
41 * + a3xx or a2xx 3d core, which share a common CP (the firmware
42 * for the CP seems to implement some different PM4 packet types
43 * but the basics of cmdstream submission are the same)
45 * Which means that the eventual complete "class" hierarchy, once
46 * support for all past and present hw is in place, becomes:
47 * + msm_gpu
48 * + adreno_gpu
49 * + a3xx_gpu
50 * + a2xx_gpu
51 * + z180_gpu
53 struct msm_gpu_funcs {
54 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
55 int (*hw_init)(struct msm_gpu *gpu);
56 int (*pm_suspend)(struct msm_gpu *gpu);
57 int (*pm_resume)(struct msm_gpu *gpu);
58 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
59 struct msm_file_private *ctx);
60 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
61 irqreturn_t (*irq)(struct msm_gpu *irq);
62 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
63 void (*recover)(struct msm_gpu *gpu);
64 void (*destroy)(struct msm_gpu *gpu);
65 #ifdef CONFIG_DEBUG_FS
66 /* show GPU status in debugfs: */
67 void (*show)(struct msm_gpu *gpu, struct seq_file *m);
68 #endif
69 int (*gpu_busy)(struct msm_gpu *gpu, uint64_t *value);
72 struct msm_gpu {
73 const char *name;
74 struct drm_device *dev;
75 struct platform_device *pdev;
76 const struct msm_gpu_funcs *funcs;
78 /* performance counters (hw & sw): */
79 spinlock_t perf_lock;
80 bool perfcntr_active;
81 struct {
82 bool active;
83 ktime_t time;
84 } last_sample;
85 uint32_t totaltime, activetime; /* sw counters */
86 uint32_t last_cntrs[5]; /* hw counters */
87 const struct msm_gpu_perfcntr *perfcntrs;
88 uint32_t num_perfcntrs;
90 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
91 int nr_rings;
93 /* list of GEM active objects: */
94 struct list_head active_list;
96 /* does gpu need hw_init? */
97 bool needs_hw_init;
99 /* worker for handling active-list retiring: */
100 struct work_struct retire_work;
102 void __iomem *mmio;
103 int irq;
105 struct msm_gem_address_space *aspace;
107 /* Power Control: */
108 struct regulator *gpu_reg, *gpu_cx;
109 struct clk **grp_clks;
110 int nr_clocks;
111 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
112 uint32_t fast_rate;
114 /* Hang and Inactivity Detection:
116 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
118 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
119 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
120 struct timer_list hangcheck_timer;
121 struct work_struct recover_work;
123 struct drm_gem_object *memptrs_bo;
125 struct {
126 struct devfreq *devfreq;
127 u64 busy_cycles;
128 ktime_t time;
129 } devfreq;
132 /* It turns out that all targets use the same ringbuffer size */
133 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
134 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
136 #define MSM_GPU_RB_CNTL_DEFAULT \
137 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
138 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
140 static inline bool msm_gpu_active(struct msm_gpu *gpu)
142 int i;
144 for (i = 0; i < gpu->nr_rings; i++) {
145 struct msm_ringbuffer *ring = gpu->rb[i];
147 if (ring->seqno > ring->memptrs->fence)
148 return true;
151 return false;
154 /* Perf-Counters:
155 * The select_reg and select_val are just there for the benefit of the child
156 * class that actually enables the perf counter.. but msm_gpu base class
157 * will handle sampling/displaying the counters.
160 struct msm_gpu_perfcntr {
161 uint32_t select_reg;
162 uint32_t sample_reg;
163 uint32_t select_val;
164 const char *name;
167 struct msm_gpu_submitqueue {
168 int id;
169 u32 flags;
170 u32 prio;
171 int faults;
172 struct list_head node;
173 struct kref ref;
176 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
178 msm_writel(data, gpu->mmio + (reg << 2));
181 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
183 return msm_readl(gpu->mmio + (reg << 2));
186 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
188 uint32_t val = gpu_read(gpu, reg);
190 val &= ~mask;
191 gpu_write(gpu, reg, val | or);
194 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
196 u64 val;
199 * Why not a readq here? Two reasons: 1) many of the LO registers are
200 * not quad word aligned and 2) the GPU hardware designers have a bit
201 * of a history of putting registers where they fit, especially in
202 * spins. The longer a GPU family goes the higher the chance that
203 * we'll get burned. We could do a series of validity checks if we
204 * wanted to, but really is a readq() that much better? Nah.
208 * For some lo/hi registers (like perfcounters), the hi value is latched
209 * when the lo is read, so make sure to read the lo first to trigger
210 * that
212 val = (u64) msm_readl(gpu->mmio + (lo << 2));
213 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
215 return val;
218 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
220 /* Why not a writeq here? Read the screed above */
221 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
222 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
225 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
226 int msm_gpu_pm_resume(struct msm_gpu *gpu);
228 int msm_gpu_hw_init(struct msm_gpu *gpu);
230 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
231 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
232 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
233 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
235 void msm_gpu_retire(struct msm_gpu *gpu);
236 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
237 struct msm_file_private *ctx);
239 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
240 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
241 const char *name, struct msm_gpu_config *config);
243 void msm_gpu_cleanup(struct msm_gpu *gpu);
245 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
246 void __init adreno_register(void);
247 void __exit adreno_unregister(void);
249 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
251 if (queue)
252 kref_put(&queue->ref, msm_submitqueue_destroy);
255 #endif /* __MSM_GPU_H__ */