bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
blob2b62fc5b8d859212b0cf8250c1de471fd03bb13d
1 /*
2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 /**
10 * DOC: VC4 HVS module.
12 * The Hardware Video Scaler (HVS) is the piece of hardware that does
13 * translation, scaling, colorspace conversion, and compositing of
14 * pixels stored in framebuffers into a FIFO of pixels going out to
15 * the Pixel Valve (CRTC). It operates at the system clock rate (the
16 * system audio clock gate, specifically), which is much higher than
17 * the pixel clock rate.
19 * There is a single global HVS, with multiple output FIFOs that can
20 * be consumed by the PVs. This file just manages the resources for
21 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
22 * each CRTC.
25 #include <linux/component.h>
26 #include "vc4_drv.h"
27 #include "vc4_regs.h"
29 #define HVS_REG(reg) { reg, #reg }
30 static const struct {
31 u32 reg;
32 const char *name;
33 } hvs_regs[] = {
34 HVS_REG(SCALER_DISPCTRL),
35 HVS_REG(SCALER_DISPSTAT),
36 HVS_REG(SCALER_DISPID),
37 HVS_REG(SCALER_DISPECTRL),
38 HVS_REG(SCALER_DISPPROF),
39 HVS_REG(SCALER_DISPDITHER),
40 HVS_REG(SCALER_DISPEOLN),
41 HVS_REG(SCALER_DISPLIST0),
42 HVS_REG(SCALER_DISPLIST1),
43 HVS_REG(SCALER_DISPLIST2),
44 HVS_REG(SCALER_DISPLSTAT),
45 HVS_REG(SCALER_DISPLACT0),
46 HVS_REG(SCALER_DISPLACT1),
47 HVS_REG(SCALER_DISPLACT2),
48 HVS_REG(SCALER_DISPCTRL0),
49 HVS_REG(SCALER_DISPBKGND0),
50 HVS_REG(SCALER_DISPSTAT0),
51 HVS_REG(SCALER_DISPBASE0),
52 HVS_REG(SCALER_DISPCTRL1),
53 HVS_REG(SCALER_DISPBKGND1),
54 HVS_REG(SCALER_DISPSTAT1),
55 HVS_REG(SCALER_DISPBASE1),
56 HVS_REG(SCALER_DISPCTRL2),
57 HVS_REG(SCALER_DISPBKGND2),
58 HVS_REG(SCALER_DISPSTAT2),
59 HVS_REG(SCALER_DISPBASE2),
60 HVS_REG(SCALER_DISPALPHA2),
63 void vc4_hvs_dump_state(struct drm_device *dev)
65 struct vc4_dev *vc4 = to_vc4_dev(dev);
66 int i;
68 for (i = 0; i < ARRAY_SIZE(hvs_regs); i++) {
69 DRM_INFO("0x%04x (%s): 0x%08x\n",
70 hvs_regs[i].reg, hvs_regs[i].name,
71 HVS_READ(hvs_regs[i].reg));
74 DRM_INFO("HVS ctx:\n");
75 for (i = 0; i < 64; i += 4) {
76 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
77 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
78 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
79 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
80 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
81 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
85 #ifdef CONFIG_DEBUG_FS
86 int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused)
88 struct drm_info_node *node = (struct drm_info_node *)m->private;
89 struct drm_device *dev = node->minor->dev;
90 struct vc4_dev *vc4 = to_vc4_dev(dev);
91 int i;
93 for (i = 0; i < ARRAY_SIZE(hvs_regs); i++) {
94 seq_printf(m, "%s (0x%04x): 0x%08x\n",
95 hvs_regs[i].name, hvs_regs[i].reg,
96 HVS_READ(hvs_regs[i].reg));
99 return 0;
101 #endif
103 /* The filter kernel is composed of dwords each containing 3 9-bit
104 * signed integers packed next to each other.
106 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
107 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
108 ((((c0) & 0x1ff) << 0) | \
109 (((c1) & 0x1ff) << 9) | \
110 (((c2) & 0x1ff) << 18))
112 /* The whole filter kernel is arranged as the coefficients 0-16 going
113 * up, then a pad, then 17-31 going down and reversed within the
114 * dwords. This means that a linear phase kernel (where it's
115 * symmetrical at the boundary between 15 and 16) has the last 5
116 * dwords matching the first 5, but reversed.
118 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
119 c9, c10, c11, c12, c13, c14, c15) \
120 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
121 VC4_PPF_FILTER_WORD(c3, c4, c5), \
122 VC4_PPF_FILTER_WORD(c6, c7, c8), \
123 VC4_PPF_FILTER_WORD(c9, c10, c11), \
124 VC4_PPF_FILTER_WORD(c12, c13, c14), \
125 VC4_PPF_FILTER_WORD(c15, c15, 0)}
127 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
128 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
130 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
131 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
133 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
134 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
135 50, 82, 119, 155, 187, 213, 227);
137 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
138 struct drm_mm_node *space,
139 const u32 *kernel)
141 int ret, i;
142 u32 __iomem *dst_kernel;
144 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
145 if (ret) {
146 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
147 ret);
148 return ret;
151 dst_kernel = hvs->dlist + space->start;
153 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
154 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
155 writel(kernel[i], &dst_kernel[i]);
156 else {
157 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
158 &dst_kernel[i]);
162 return 0;
165 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
167 struct platform_device *pdev = to_platform_device(dev);
168 struct drm_device *drm = dev_get_drvdata(master);
169 struct vc4_dev *vc4 = drm->dev_private;
170 struct vc4_hvs *hvs = NULL;
171 int ret;
172 u32 dispctrl;
174 hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
175 if (!hvs)
176 return -ENOMEM;
178 hvs->pdev = pdev;
180 hvs->regs = vc4_ioremap_regs(pdev, 0);
181 if (IS_ERR(hvs->regs))
182 return PTR_ERR(hvs->regs);
184 hvs->dlist = hvs->regs + SCALER_DLIST_START;
186 spin_lock_init(&hvs->mm_lock);
188 /* Set up the HVS display list memory manager. We never
189 * overwrite the setup from the bootloader (just 128b out of
190 * our 16K), since we don't want to scramble the screen when
191 * transitioning from the firmware's boot setup to runtime.
193 drm_mm_init(&hvs->dlist_mm,
194 HVS_BOOTLOADER_DLIST_END,
195 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
197 /* Set up the HVS LBM memory manager. We could have some more
198 * complicated data structure that allowed reuse of LBM areas
199 * between planes when they don't overlap on the screen, but
200 * for now we just allocate globally.
202 drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
204 /* Upload filter kernels. We only have the one for now, so we
205 * keep it around for the lifetime of the driver.
207 ret = vc4_hvs_upload_linear_kernel(hvs,
208 &hvs->mitchell_netravali_filter,
209 mitchell_netravali_1_3_1_3_kernel);
210 if (ret)
211 return ret;
213 vc4->hvs = hvs;
215 dispctrl = HVS_READ(SCALER_DISPCTRL);
217 dispctrl |= SCALER_DISPCTRL_ENABLE;
219 /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
220 * be unused.
222 dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
223 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
225 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
227 return 0;
230 static void vc4_hvs_unbind(struct device *dev, struct device *master,
231 void *data)
233 struct drm_device *drm = dev_get_drvdata(master);
234 struct vc4_dev *vc4 = drm->dev_private;
236 if (vc4->hvs->mitchell_netravali_filter.allocated)
237 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
239 drm_mm_takedown(&vc4->hvs->dlist_mm);
240 drm_mm_takedown(&vc4->hvs->lbm_mm);
242 vc4->hvs = NULL;
245 static const struct component_ops vc4_hvs_ops = {
246 .bind = vc4_hvs_bind,
247 .unbind = vc4_hvs_unbind,
250 static int vc4_hvs_dev_probe(struct platform_device *pdev)
252 return component_add(&pdev->dev, &vc4_hvs_ops);
255 static int vc4_hvs_dev_remove(struct platform_device *pdev)
257 component_del(&pdev->dev, &vc4_hvs_ops);
258 return 0;
261 static const struct of_device_id vc4_hvs_dt_match[] = {
262 { .compatible = "brcm,bcm2835-hvs" },
266 struct platform_driver vc4_hvs_driver = {
267 .probe = vc4_hvs_dev_probe,
268 .remove = vc4_hvs_dev_remove,
269 .driver = {
270 .name = "vc4_hvs",
271 .of_match_table = vc4_hvs_dt_match,