2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
36 * We allow up to a page of inline data to go with the SQE
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
40 struct nvmet_rdma_cmd
{
44 struct scatterlist inline_sg
;
45 struct page
*inline_page
;
46 struct nvme_command
*nvme_cmd
;
47 struct nvmet_rdma_queue
*queue
;
51 NVMET_RDMA_REQ_INLINE_DATA
= (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY
= (1 << 1),
55 struct nvmet_rdma_rsp
{
56 struct ib_sge send_sge
;
57 struct ib_cqe send_cqe
;
58 struct ib_send_wr send_wr
;
60 struct nvmet_rdma_cmd
*cmd
;
61 struct nvmet_rdma_queue
*queue
;
63 struct ib_cqe read_cqe
;
64 struct rdma_rw_ctx rw
;
72 struct list_head wait_list
;
73 struct list_head free_list
;
76 enum nvmet_rdma_queue_state
{
77 NVMET_RDMA_Q_CONNECTING
,
79 NVMET_RDMA_Q_DISCONNECTING
,
80 NVMET_RDMA_IN_DEVICE_REMOVAL
,
83 struct nvmet_rdma_queue
{
84 struct rdma_cm_id
*cm_id
;
85 struct nvmet_port
*port
;
88 struct nvmet_rdma_device
*dev
;
89 spinlock_t state_lock
;
90 enum nvmet_rdma_queue_state state
;
91 struct nvmet_cq nvme_cq
;
92 struct nvmet_sq nvme_sq
;
94 struct nvmet_rdma_rsp
*rsps
;
95 struct list_head free_rsps
;
97 struct nvmet_rdma_cmd
*cmds
;
99 struct work_struct release_work
;
100 struct list_head rsp_wait_list
;
101 struct list_head rsp_wr_wait_list
;
102 spinlock_t rsp_wr_wait_lock
;
109 struct list_head queue_list
;
112 struct nvmet_rdma_device
{
113 struct ib_device
*device
;
116 struct nvmet_rdma_cmd
*srq_cmds
;
119 struct list_head entry
;
122 static bool nvmet_rdma_use_srq
;
123 module_param_named(use_srq
, nvmet_rdma_use_srq
, bool, 0444);
124 MODULE_PARM_DESC(use_srq
, "Use shared receive queue.");
126 static DEFINE_IDA(nvmet_rdma_queue_ida
);
127 static LIST_HEAD(nvmet_rdma_queue_list
);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex
);
130 static LIST_HEAD(device_list
);
131 static DEFINE_MUTEX(device_list_mutex
);
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
);
134 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
135 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
136 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
137 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
);
140 static struct nvmet_fabrics_ops nvmet_rdma_ops
;
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32
get_unaligned_le24(const u8
*p
)
145 return (u32
)p
[0] | (u32
)p
[1] << 8 | (u32
)p
[2] << 16;
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp
*rsp
)
150 return nvme_is_write(rsp
->req
.cmd
) &&
151 rsp
->req
.transfer_len
&&
152 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp
*rsp
)
157 return !nvme_is_write(rsp
->req
.cmd
) &&
158 rsp
->req
.transfer_len
&&
159 !rsp
->req
.rsp
->status
&&
160 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
163 static inline struct nvmet_rdma_rsp
*
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue
*queue
)
166 struct nvmet_rdma_rsp
*rsp
;
169 spin_lock_irqsave(&queue
->rsps_lock
, flags
);
170 rsp
= list_first_entry(&queue
->free_rsps
,
171 struct nvmet_rdma_rsp
, free_list
);
172 list_del(&rsp
->free_list
);
173 spin_unlock_irqrestore(&queue
->rsps_lock
, flags
);
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp
*rsp
)
183 spin_lock_irqsave(&rsp
->queue
->rsps_lock
, flags
);
184 list_add_tail(&rsp
->free_list
, &rsp
->queue
->free_rsps
);
185 spin_unlock_irqrestore(&rsp
->queue
->rsps_lock
, flags
);
188 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device
*ndev
,
189 struct nvmet_rdma_cmd
*c
, bool admin
)
191 /* NVMe command / RDMA RECV */
192 c
->nvme_cmd
= kmalloc(sizeof(*c
->nvme_cmd
), GFP_KERNEL
);
196 c
->sge
[0].addr
= ib_dma_map_single(ndev
->device
, c
->nvme_cmd
,
197 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
198 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[0].addr
))
201 c
->sge
[0].length
= sizeof(*c
->nvme_cmd
);
202 c
->sge
[0].lkey
= ndev
->pd
->local_dma_lkey
;
205 c
->inline_page
= alloc_pages(GFP_KERNEL
,
206 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
209 c
->sge
[1].addr
= ib_dma_map_page(ndev
->device
,
210 c
->inline_page
, 0, NVMET_RDMA_INLINE_DATA_SIZE
,
212 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[1].addr
))
213 goto out_free_inline_page
;
214 c
->sge
[1].length
= NVMET_RDMA_INLINE_DATA_SIZE
;
215 c
->sge
[1].lkey
= ndev
->pd
->local_dma_lkey
;
218 c
->cqe
.done
= nvmet_rdma_recv_done
;
220 c
->wr
.wr_cqe
= &c
->cqe
;
221 c
->wr
.sg_list
= c
->sge
;
222 c
->wr
.num_sge
= admin
? 1 : 2;
226 out_free_inline_page
:
228 __free_pages(c
->inline_page
,
229 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
232 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
233 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
241 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device
*ndev
,
242 struct nvmet_rdma_cmd
*c
, bool admin
)
245 ib_dma_unmap_page(ndev
->device
, c
->sge
[1].addr
,
246 NVMET_RDMA_INLINE_DATA_SIZE
, DMA_FROM_DEVICE
);
247 __free_pages(c
->inline_page
,
248 get_order(NVMET_RDMA_INLINE_DATA_SIZE
));
250 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
251 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
255 static struct nvmet_rdma_cmd
*
256 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device
*ndev
,
257 int nr_cmds
, bool admin
)
259 struct nvmet_rdma_cmd
*cmds
;
260 int ret
= -EINVAL
, i
;
262 cmds
= kcalloc(nr_cmds
, sizeof(struct nvmet_rdma_cmd
), GFP_KERNEL
);
266 for (i
= 0; i
< nr_cmds
; i
++) {
267 ret
= nvmet_rdma_alloc_cmd(ndev
, cmds
+ i
, admin
);
276 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
282 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device
*ndev
,
283 struct nvmet_rdma_cmd
*cmds
, int nr_cmds
, bool admin
)
287 for (i
= 0; i
< nr_cmds
; i
++)
288 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
292 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device
*ndev
,
293 struct nvmet_rdma_rsp
*r
)
295 /* NVMe CQE / RDMA SEND */
296 r
->req
.rsp
= kmalloc(sizeof(*r
->req
.rsp
), GFP_KERNEL
);
300 r
->send_sge
.addr
= ib_dma_map_single(ndev
->device
, r
->req
.rsp
,
301 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
302 if (ib_dma_mapping_error(ndev
->device
, r
->send_sge
.addr
))
305 r
->send_sge
.length
= sizeof(*r
->req
.rsp
);
306 r
->send_sge
.lkey
= ndev
->pd
->local_dma_lkey
;
308 r
->send_cqe
.done
= nvmet_rdma_send_done
;
310 r
->send_wr
.wr_cqe
= &r
->send_cqe
;
311 r
->send_wr
.sg_list
= &r
->send_sge
;
312 r
->send_wr
.num_sge
= 1;
313 r
->send_wr
.send_flags
= IB_SEND_SIGNALED
;
315 /* Data In / RDMA READ */
316 r
->read_cqe
.done
= nvmet_rdma_read_data_done
;
325 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device
*ndev
,
326 struct nvmet_rdma_rsp
*r
)
328 ib_dma_unmap_single(ndev
->device
, r
->send_sge
.addr
,
329 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
334 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue
*queue
)
336 struct nvmet_rdma_device
*ndev
= queue
->dev
;
337 int nr_rsps
= queue
->recv_queue_size
* 2;
338 int ret
= -EINVAL
, i
;
340 queue
->rsps
= kcalloc(nr_rsps
, sizeof(struct nvmet_rdma_rsp
),
345 for (i
= 0; i
< nr_rsps
; i
++) {
346 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
348 ret
= nvmet_rdma_alloc_rsp(ndev
, rsp
);
352 list_add_tail(&rsp
->free_list
, &queue
->free_rsps
);
359 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
361 list_del(&rsp
->free_list
);
362 nvmet_rdma_free_rsp(ndev
, rsp
);
369 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue
*queue
)
371 struct nvmet_rdma_device
*ndev
= queue
->dev
;
372 int i
, nr_rsps
= queue
->recv_queue_size
* 2;
374 for (i
= 0; i
< nr_rsps
; i
++) {
375 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
377 list_del(&rsp
->free_list
);
378 nvmet_rdma_free_rsp(ndev
, rsp
);
383 static int nvmet_rdma_post_recv(struct nvmet_rdma_device
*ndev
,
384 struct nvmet_rdma_cmd
*cmd
)
386 struct ib_recv_wr
*bad_wr
;
388 ib_dma_sync_single_for_device(ndev
->device
,
389 cmd
->sge
[0].addr
, cmd
->sge
[0].length
,
393 return ib_post_srq_recv(ndev
->srq
, &cmd
->wr
, &bad_wr
);
394 return ib_post_recv(cmd
->queue
->cm_id
->qp
, &cmd
->wr
, &bad_wr
);
397 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue
*queue
)
399 spin_lock(&queue
->rsp_wr_wait_lock
);
400 while (!list_empty(&queue
->rsp_wr_wait_list
)) {
401 struct nvmet_rdma_rsp
*rsp
;
404 rsp
= list_entry(queue
->rsp_wr_wait_list
.next
,
405 struct nvmet_rdma_rsp
, wait_list
);
406 list_del(&rsp
->wait_list
);
408 spin_unlock(&queue
->rsp_wr_wait_lock
);
409 ret
= nvmet_rdma_execute_command(rsp
);
410 spin_lock(&queue
->rsp_wr_wait_lock
);
413 list_add(&rsp
->wait_list
, &queue
->rsp_wr_wait_list
);
417 spin_unlock(&queue
->rsp_wr_wait_lock
);
421 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp
*rsp
)
423 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
425 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
428 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
429 queue
->cm_id
->port_num
, rsp
->req
.sg
,
430 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
433 if (rsp
->req
.sg
!= &rsp
->cmd
->inline_sg
)
434 sgl_free(rsp
->req
.sg
);
436 if (unlikely(!list_empty_careful(&queue
->rsp_wr_wait_list
)))
437 nvmet_rdma_process_wr_wait_list(queue
);
439 nvmet_rdma_put_rsp(rsp
);
442 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue
*queue
)
444 if (queue
->nvme_sq
.ctrl
) {
445 nvmet_ctrl_fatal_error(queue
->nvme_sq
.ctrl
);
448 * we didn't setup the controller yet in case
449 * of admin connect error, just disconnect and
452 nvmet_rdma_queue_disconnect(queue
);
456 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
458 struct nvmet_rdma_rsp
*rsp
=
459 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, send_cqe
);
461 nvmet_rdma_release_rsp(rsp
);
463 if (unlikely(wc
->status
!= IB_WC_SUCCESS
&&
464 wc
->status
!= IB_WC_WR_FLUSH_ERR
)) {
465 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
466 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
467 nvmet_rdma_error_comp(rsp
->queue
);
471 static void nvmet_rdma_queue_response(struct nvmet_req
*req
)
473 struct nvmet_rdma_rsp
*rsp
=
474 container_of(req
, struct nvmet_rdma_rsp
, req
);
475 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
476 struct ib_send_wr
*first_wr
, *bad_wr
;
478 if (rsp
->flags
& NVMET_RDMA_REQ_INVALIDATE_RKEY
) {
479 rsp
->send_wr
.opcode
= IB_WR_SEND_WITH_INV
;
480 rsp
->send_wr
.ex
.invalidate_rkey
= rsp
->invalidate_rkey
;
482 rsp
->send_wr
.opcode
= IB_WR_SEND
;
485 if (nvmet_rdma_need_data_out(rsp
))
486 first_wr
= rdma_rw_ctx_wrs(&rsp
->rw
, cm_id
->qp
,
487 cm_id
->port_num
, NULL
, &rsp
->send_wr
);
489 first_wr
= &rsp
->send_wr
;
491 nvmet_rdma_post_recv(rsp
->queue
->dev
, rsp
->cmd
);
493 ib_dma_sync_single_for_device(rsp
->queue
->dev
->device
,
494 rsp
->send_sge
.addr
, rsp
->send_sge
.length
,
497 if (ib_post_send(cm_id
->qp
, first_wr
, &bad_wr
)) {
498 pr_err("sending cmd response failed\n");
499 nvmet_rdma_release_rsp(rsp
);
503 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
505 struct nvmet_rdma_rsp
*rsp
=
506 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, read_cqe
);
507 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
509 WARN_ON(rsp
->n_rdma
<= 0);
510 atomic_add(rsp
->n_rdma
, &queue
->sq_wr_avail
);
511 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
512 queue
->cm_id
->port_num
, rsp
->req
.sg
,
513 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
516 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
517 nvmet_req_uninit(&rsp
->req
);
518 nvmet_rdma_release_rsp(rsp
);
519 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
520 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
521 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
522 nvmet_rdma_error_comp(queue
);
527 nvmet_req_execute(&rsp
->req
);
530 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp
*rsp
, u32 len
,
533 sg_init_table(&rsp
->cmd
->inline_sg
, 1);
534 sg_set_page(&rsp
->cmd
->inline_sg
, rsp
->cmd
->inline_page
, len
, off
);
535 rsp
->req
.sg
= &rsp
->cmd
->inline_sg
;
539 static u16
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp
*rsp
)
541 struct nvme_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.sgl
;
542 u64 off
= le64_to_cpu(sgl
->addr
);
543 u32 len
= le32_to_cpu(sgl
->length
);
545 if (!nvme_is_write(rsp
->req
.cmd
))
546 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
548 if (off
+ len
> NVMET_RDMA_INLINE_DATA_SIZE
) {
549 pr_err("invalid inline data offset!\n");
550 return NVME_SC_SGL_INVALID_OFFSET
| NVME_SC_DNR
;
553 /* no data command? */
557 nvmet_rdma_use_inline_sg(rsp
, len
, off
);
558 rsp
->flags
|= NVMET_RDMA_REQ_INLINE_DATA
;
559 rsp
->req
.transfer_len
+= len
;
563 static u16
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp
*rsp
,
564 struct nvme_keyed_sgl_desc
*sgl
, bool invalidate
)
566 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
567 u64 addr
= le64_to_cpu(sgl
->addr
);
568 u32 len
= get_unaligned_le24(sgl
->length
);
569 u32 key
= get_unaligned_le32(sgl
->key
);
572 /* no data command? */
576 rsp
->req
.sg
= sgl_alloc(len
, GFP_KERNEL
, &rsp
->req
.sg_cnt
);
578 return NVME_SC_INTERNAL
;
580 ret
= rdma_rw_ctx_init(&rsp
->rw
, cm_id
->qp
, cm_id
->port_num
,
581 rsp
->req
.sg
, rsp
->req
.sg_cnt
, 0, addr
, key
,
582 nvmet_data_dir(&rsp
->req
));
584 return NVME_SC_INTERNAL
;
585 rsp
->req
.transfer_len
+= len
;
589 rsp
->invalidate_rkey
= key
;
590 rsp
->flags
|= NVMET_RDMA_REQ_INVALIDATE_RKEY
;
596 static u16
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp
*rsp
)
598 struct nvme_keyed_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.ksgl
;
600 switch (sgl
->type
>> 4) {
601 case NVME_SGL_FMT_DATA_DESC
:
602 switch (sgl
->type
& 0xf) {
603 case NVME_SGL_FMT_OFFSET
:
604 return nvmet_rdma_map_sgl_inline(rsp
);
606 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
607 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
609 case NVME_KEY_SGL_FMT_DATA_DESC
:
610 switch (sgl
->type
& 0xf) {
611 case NVME_SGL_FMT_ADDRESS
| NVME_SGL_FMT_INVALIDATE
:
612 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, true);
613 case NVME_SGL_FMT_ADDRESS
:
614 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, false);
616 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
617 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
620 pr_err("invalid SGL type: %#x\n", sgl
->type
);
621 return NVME_SC_SGL_INVALID_TYPE
| NVME_SC_DNR
;
625 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
)
627 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
629 if (unlikely(atomic_sub_return(1 + rsp
->n_rdma
,
630 &queue
->sq_wr_avail
) < 0)) {
631 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
632 1 + rsp
->n_rdma
, queue
->idx
,
633 queue
->nvme_sq
.ctrl
->cntlid
);
634 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
638 if (nvmet_rdma_need_data_in(rsp
)) {
639 if (rdma_rw_ctx_post(&rsp
->rw
, queue
->cm_id
->qp
,
640 queue
->cm_id
->port_num
, &rsp
->read_cqe
, NULL
))
641 nvmet_req_complete(&rsp
->req
, NVME_SC_DATA_XFER_ERROR
);
643 nvmet_req_execute(&rsp
->req
);
649 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue
*queue
,
650 struct nvmet_rdma_rsp
*cmd
)
654 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
655 cmd
->cmd
->sge
[0].addr
, cmd
->cmd
->sge
[0].length
,
657 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
658 cmd
->send_sge
.addr
, cmd
->send_sge
.length
,
661 if (!nvmet_req_init(&cmd
->req
, &queue
->nvme_cq
,
662 &queue
->nvme_sq
, &nvmet_rdma_ops
))
665 status
= nvmet_rdma_map_sgl(cmd
);
669 if (unlikely(!nvmet_rdma_execute_command(cmd
))) {
670 spin_lock(&queue
->rsp_wr_wait_lock
);
671 list_add_tail(&cmd
->wait_list
, &queue
->rsp_wr_wait_list
);
672 spin_unlock(&queue
->rsp_wr_wait_lock
);
678 nvmet_req_complete(&cmd
->req
, status
);
681 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
683 struct nvmet_rdma_cmd
*cmd
=
684 container_of(wc
->wr_cqe
, struct nvmet_rdma_cmd
, cqe
);
685 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
686 struct nvmet_rdma_rsp
*rsp
;
688 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
689 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
690 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
691 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
),
693 nvmet_rdma_error_comp(queue
);
698 if (unlikely(wc
->byte_len
< sizeof(struct nvme_command
))) {
699 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
700 nvmet_rdma_error_comp(queue
);
705 rsp
= nvmet_rdma_get_rsp(queue
);
709 rsp
->req
.cmd
= cmd
->nvme_cmd
;
710 rsp
->req
.port
= queue
->port
;
713 if (unlikely(queue
->state
!= NVMET_RDMA_Q_LIVE
)) {
716 spin_lock_irqsave(&queue
->state_lock
, flags
);
717 if (queue
->state
== NVMET_RDMA_Q_CONNECTING
)
718 list_add_tail(&rsp
->wait_list
, &queue
->rsp_wait_list
);
720 nvmet_rdma_put_rsp(rsp
);
721 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
725 nvmet_rdma_handle_command(queue
, rsp
);
728 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device
*ndev
)
733 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
734 ib_destroy_srq(ndev
->srq
);
737 static int nvmet_rdma_init_srq(struct nvmet_rdma_device
*ndev
)
739 struct ib_srq_init_attr srq_attr
= { NULL
, };
744 srq_size
= 4095; /* XXX: tune */
746 srq_attr
.attr
.max_wr
= srq_size
;
747 srq_attr
.attr
.max_sge
= 2;
748 srq_attr
.attr
.srq_limit
= 0;
749 srq_attr
.srq_type
= IB_SRQT_BASIC
;
750 srq
= ib_create_srq(ndev
->pd
, &srq_attr
);
753 * If SRQs aren't supported we just go ahead and use normal
754 * non-shared receive queues.
756 pr_info("SRQ requested but not supported.\n");
760 ndev
->srq_cmds
= nvmet_rdma_alloc_cmds(ndev
, srq_size
, false);
761 if (IS_ERR(ndev
->srq_cmds
)) {
762 ret
= PTR_ERR(ndev
->srq_cmds
);
763 goto out_destroy_srq
;
767 ndev
->srq_size
= srq_size
;
769 for (i
= 0; i
< srq_size
; i
++)
770 nvmet_rdma_post_recv(ndev
, &ndev
->srq_cmds
[i
]);
779 static void nvmet_rdma_free_dev(struct kref
*ref
)
781 struct nvmet_rdma_device
*ndev
=
782 container_of(ref
, struct nvmet_rdma_device
, ref
);
784 mutex_lock(&device_list_mutex
);
785 list_del(&ndev
->entry
);
786 mutex_unlock(&device_list_mutex
);
788 nvmet_rdma_destroy_srq(ndev
);
789 ib_dealloc_pd(ndev
->pd
);
794 static struct nvmet_rdma_device
*
795 nvmet_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
797 struct nvmet_rdma_device
*ndev
;
800 mutex_lock(&device_list_mutex
);
801 list_for_each_entry(ndev
, &device_list
, entry
) {
802 if (ndev
->device
->node_guid
== cm_id
->device
->node_guid
&&
803 kref_get_unless_zero(&ndev
->ref
))
807 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
811 ndev
->device
= cm_id
->device
;
812 kref_init(&ndev
->ref
);
814 ndev
->pd
= ib_alloc_pd(ndev
->device
, 0);
815 if (IS_ERR(ndev
->pd
))
818 if (nvmet_rdma_use_srq
) {
819 ret
= nvmet_rdma_init_srq(ndev
);
824 list_add(&ndev
->entry
, &device_list
);
826 mutex_unlock(&device_list_mutex
);
827 pr_debug("added %s.\n", ndev
->device
->name
);
831 ib_dealloc_pd(ndev
->pd
);
835 mutex_unlock(&device_list_mutex
);
839 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue
*queue
)
841 struct ib_qp_init_attr qp_attr
;
842 struct nvmet_rdma_device
*ndev
= queue
->dev
;
843 int comp_vector
, nr_cqe
, ret
, i
;
846 * Spread the io queues across completion vectors,
847 * but still keep all admin queues on vector 0.
849 comp_vector
= !queue
->host_qid
? 0 :
850 queue
->idx
% ndev
->device
->num_comp_vectors
;
853 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
855 nr_cqe
= queue
->recv_queue_size
+ 2 * queue
->send_queue_size
;
857 queue
->cq
= ib_alloc_cq(ndev
->device
, queue
,
858 nr_cqe
+ 1, comp_vector
,
860 if (IS_ERR(queue
->cq
)) {
861 ret
= PTR_ERR(queue
->cq
);
862 pr_err("failed to create CQ cqe= %d ret= %d\n",
867 memset(&qp_attr
, 0, sizeof(qp_attr
));
868 qp_attr
.qp_context
= queue
;
869 qp_attr
.event_handler
= nvmet_rdma_qp_event
;
870 qp_attr
.send_cq
= queue
->cq
;
871 qp_attr
.recv_cq
= queue
->cq
;
872 qp_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
873 qp_attr
.qp_type
= IB_QPT_RC
;
875 qp_attr
.cap
.max_send_wr
= queue
->send_queue_size
+ 1;
876 qp_attr
.cap
.max_rdma_ctxs
= queue
->send_queue_size
;
877 qp_attr
.cap
.max_send_sge
= max(ndev
->device
->attrs
.max_sge_rd
,
878 ndev
->device
->attrs
.max_sge
);
881 qp_attr
.srq
= ndev
->srq
;
884 qp_attr
.cap
.max_recv_wr
= 1 + queue
->recv_queue_size
;
885 qp_attr
.cap
.max_recv_sge
= 2;
888 ret
= rdma_create_qp(queue
->cm_id
, ndev
->pd
, &qp_attr
);
890 pr_err("failed to create_qp ret= %d\n", ret
);
894 atomic_set(&queue
->sq_wr_avail
, qp_attr
.cap
.max_send_wr
);
896 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
897 __func__
, queue
->cq
->cqe
, qp_attr
.cap
.max_send_sge
,
898 qp_attr
.cap
.max_send_wr
, queue
->cm_id
);
901 for (i
= 0; i
< queue
->recv_queue_size
; i
++) {
902 queue
->cmds
[i
].queue
= queue
;
903 nvmet_rdma_post_recv(ndev
, &queue
->cmds
[i
]);
911 ib_free_cq(queue
->cq
);
915 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue
*queue
)
917 ib_drain_qp(queue
->cm_id
->qp
);
918 rdma_destroy_qp(queue
->cm_id
);
919 ib_free_cq(queue
->cq
);
922 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue
*queue
)
924 pr_debug("freeing queue %d\n", queue
->idx
);
926 nvmet_sq_destroy(&queue
->nvme_sq
);
928 nvmet_rdma_destroy_queue_ib(queue
);
929 if (!queue
->dev
->srq
) {
930 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
931 queue
->recv_queue_size
,
934 nvmet_rdma_free_rsps(queue
);
935 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
939 static void nvmet_rdma_release_queue_work(struct work_struct
*w
)
941 struct nvmet_rdma_queue
*queue
=
942 container_of(w
, struct nvmet_rdma_queue
, release_work
);
943 struct rdma_cm_id
*cm_id
= queue
->cm_id
;
944 struct nvmet_rdma_device
*dev
= queue
->dev
;
945 enum nvmet_rdma_queue_state state
= queue
->state
;
947 nvmet_rdma_free_queue(queue
);
949 if (state
!= NVMET_RDMA_IN_DEVICE_REMOVAL
)
950 rdma_destroy_id(cm_id
);
952 kref_put(&dev
->ref
, nvmet_rdma_free_dev
);
956 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param
*conn
,
957 struct nvmet_rdma_queue
*queue
)
959 struct nvme_rdma_cm_req
*req
;
961 req
= (struct nvme_rdma_cm_req
*)conn
->private_data
;
962 if (!req
|| conn
->private_data_len
== 0)
963 return NVME_RDMA_CM_INVALID_LEN
;
965 if (le16_to_cpu(req
->recfmt
) != NVME_RDMA_CM_FMT_1_0
)
966 return NVME_RDMA_CM_INVALID_RECFMT
;
968 queue
->host_qid
= le16_to_cpu(req
->qid
);
971 * req->hsqsize corresponds to our recv queue size plus 1
972 * req->hrqsize corresponds to our send queue size
974 queue
->recv_queue_size
= le16_to_cpu(req
->hsqsize
) + 1;
975 queue
->send_queue_size
= le16_to_cpu(req
->hrqsize
);
977 if (!queue
->host_qid
&& queue
->recv_queue_size
> NVME_AQ_DEPTH
)
978 return NVME_RDMA_CM_INVALID_HSQSIZE
;
980 /* XXX: Should we enforce some kind of max for IO queues? */
985 static int nvmet_rdma_cm_reject(struct rdma_cm_id
*cm_id
,
986 enum nvme_rdma_cm_status status
)
988 struct nvme_rdma_cm_rej rej
;
990 pr_debug("rejecting connect request: status %d (%s)\n",
991 status
, nvme_rdma_cm_msg(status
));
993 rej
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
994 rej
.sts
= cpu_to_le16(status
);
996 return rdma_reject(cm_id
, (void *)&rej
, sizeof(rej
));
999 static struct nvmet_rdma_queue
*
1000 nvmet_rdma_alloc_queue(struct nvmet_rdma_device
*ndev
,
1001 struct rdma_cm_id
*cm_id
,
1002 struct rdma_cm_event
*event
)
1004 struct nvmet_rdma_queue
*queue
;
1007 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
1009 ret
= NVME_RDMA_CM_NO_RSC
;
1013 ret
= nvmet_sq_init(&queue
->nvme_sq
);
1015 ret
= NVME_RDMA_CM_NO_RSC
;
1016 goto out_free_queue
;
1019 ret
= nvmet_rdma_parse_cm_connect_req(&event
->param
.conn
, queue
);
1021 goto out_destroy_sq
;
1024 * Schedules the actual release because calling rdma_destroy_id from
1025 * inside a CM callback would trigger a deadlock. (great API design..)
1027 INIT_WORK(&queue
->release_work
, nvmet_rdma_release_queue_work
);
1029 queue
->cm_id
= cm_id
;
1031 spin_lock_init(&queue
->state_lock
);
1032 queue
->state
= NVMET_RDMA_Q_CONNECTING
;
1033 INIT_LIST_HEAD(&queue
->rsp_wait_list
);
1034 INIT_LIST_HEAD(&queue
->rsp_wr_wait_list
);
1035 spin_lock_init(&queue
->rsp_wr_wait_lock
);
1036 INIT_LIST_HEAD(&queue
->free_rsps
);
1037 spin_lock_init(&queue
->rsps_lock
);
1038 INIT_LIST_HEAD(&queue
->queue_list
);
1040 queue
->idx
= ida_simple_get(&nvmet_rdma_queue_ida
, 0, 0, GFP_KERNEL
);
1041 if (queue
->idx
< 0) {
1042 ret
= NVME_RDMA_CM_NO_RSC
;
1043 goto out_destroy_sq
;
1046 ret
= nvmet_rdma_alloc_rsps(queue
);
1048 ret
= NVME_RDMA_CM_NO_RSC
;
1049 goto out_ida_remove
;
1053 queue
->cmds
= nvmet_rdma_alloc_cmds(ndev
,
1054 queue
->recv_queue_size
,
1056 if (IS_ERR(queue
->cmds
)) {
1057 ret
= NVME_RDMA_CM_NO_RSC
;
1058 goto out_free_responses
;
1062 ret
= nvmet_rdma_create_queue_ib(queue
);
1064 pr_err("%s: creating RDMA queue failed (%d).\n",
1066 ret
= NVME_RDMA_CM_NO_RSC
;
1074 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1075 queue
->recv_queue_size
,
1079 nvmet_rdma_free_rsps(queue
);
1081 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1083 nvmet_sq_destroy(&queue
->nvme_sq
);
1087 nvmet_rdma_cm_reject(cm_id
, ret
);
1091 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
)
1093 struct nvmet_rdma_queue
*queue
= priv
;
1095 switch (event
->event
) {
1096 case IB_EVENT_COMM_EST
:
1097 rdma_notify(queue
->cm_id
, event
->event
);
1100 pr_err("received IB QP event: %s (%d)\n",
1101 ib_event_msg(event
->event
), event
->event
);
1106 static int nvmet_rdma_cm_accept(struct rdma_cm_id
*cm_id
,
1107 struct nvmet_rdma_queue
*queue
,
1108 struct rdma_conn_param
*p
)
1110 struct rdma_conn_param param
= { };
1111 struct nvme_rdma_cm_rep priv
= { };
1114 param
.rnr_retry_count
= 7;
1115 param
.flow_control
= 1;
1116 param
.initiator_depth
= min_t(u8
, p
->initiator_depth
,
1117 queue
->dev
->device
->attrs
.max_qp_init_rd_atom
);
1118 param
.private_data
= &priv
;
1119 param
.private_data_len
= sizeof(priv
);
1120 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1121 priv
.crqsize
= cpu_to_le16(queue
->recv_queue_size
);
1123 ret
= rdma_accept(cm_id
, ¶m
);
1125 pr_err("rdma_accept failed (error code = %d)\n", ret
);
1130 static int nvmet_rdma_queue_connect(struct rdma_cm_id
*cm_id
,
1131 struct rdma_cm_event
*event
)
1133 struct nvmet_rdma_device
*ndev
;
1134 struct nvmet_rdma_queue
*queue
;
1137 ndev
= nvmet_rdma_find_get_device(cm_id
);
1139 nvmet_rdma_cm_reject(cm_id
, NVME_RDMA_CM_NO_RSC
);
1140 return -ECONNREFUSED
;
1143 queue
= nvmet_rdma_alloc_queue(ndev
, cm_id
, event
);
1148 queue
->port
= cm_id
->context
;
1150 if (queue
->host_qid
== 0) {
1151 /* Let inflight controller teardown complete */
1152 flush_scheduled_work();
1155 ret
= nvmet_rdma_cm_accept(cm_id
, queue
, &event
->param
.conn
);
1159 mutex_lock(&nvmet_rdma_queue_mutex
);
1160 list_add_tail(&queue
->queue_list
, &nvmet_rdma_queue_list
);
1161 mutex_unlock(&nvmet_rdma_queue_mutex
);
1166 nvmet_rdma_free_queue(queue
);
1168 kref_put(&ndev
->ref
, nvmet_rdma_free_dev
);
1173 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue
*queue
)
1175 unsigned long flags
;
1177 spin_lock_irqsave(&queue
->state_lock
, flags
);
1178 if (queue
->state
!= NVMET_RDMA_Q_CONNECTING
) {
1179 pr_warn("trying to establish a connected queue\n");
1182 queue
->state
= NVMET_RDMA_Q_LIVE
;
1184 while (!list_empty(&queue
->rsp_wait_list
)) {
1185 struct nvmet_rdma_rsp
*cmd
;
1187 cmd
= list_first_entry(&queue
->rsp_wait_list
,
1188 struct nvmet_rdma_rsp
, wait_list
);
1189 list_del(&cmd
->wait_list
);
1191 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1192 nvmet_rdma_handle_command(queue
, cmd
);
1193 spin_lock_irqsave(&queue
->state_lock
, flags
);
1197 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1200 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1202 bool disconnect
= false;
1203 unsigned long flags
;
1205 pr_debug("cm_id= %p queue->state= %d\n", queue
->cm_id
, queue
->state
);
1207 spin_lock_irqsave(&queue
->state_lock
, flags
);
1208 switch (queue
->state
) {
1209 case NVMET_RDMA_Q_CONNECTING
:
1210 case NVMET_RDMA_Q_LIVE
:
1211 queue
->state
= NVMET_RDMA_Q_DISCONNECTING
;
1212 case NVMET_RDMA_IN_DEVICE_REMOVAL
:
1215 case NVMET_RDMA_Q_DISCONNECTING
:
1218 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1221 rdma_disconnect(queue
->cm_id
);
1222 schedule_work(&queue
->release_work
);
1226 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1228 bool disconnect
= false;
1230 mutex_lock(&nvmet_rdma_queue_mutex
);
1231 if (!list_empty(&queue
->queue_list
)) {
1232 list_del_init(&queue
->queue_list
);
1235 mutex_unlock(&nvmet_rdma_queue_mutex
);
1238 __nvmet_rdma_queue_disconnect(queue
);
1241 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id
*cm_id
,
1242 struct nvmet_rdma_queue
*queue
)
1244 WARN_ON_ONCE(queue
->state
!= NVMET_RDMA_Q_CONNECTING
);
1246 mutex_lock(&nvmet_rdma_queue_mutex
);
1247 if (!list_empty(&queue
->queue_list
))
1248 list_del_init(&queue
->queue_list
);
1249 mutex_unlock(&nvmet_rdma_queue_mutex
);
1251 pr_err("failed to connect queue %d\n", queue
->idx
);
1252 schedule_work(&queue
->release_work
);
1256 * nvme_rdma_device_removal() - Handle RDMA device removal
1257 * @cm_id: rdma_cm id, used for nvmet port
1258 * @queue: nvmet rdma queue (cm id qp_context)
1260 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1261 * to unplug. Note that this event can be generated on a normal
1262 * queue cm_id and/or a device bound listener cm_id (where in this
1263 * case queue will be null).
1265 * We registered an ib_client to handle device removal for queues,
1266 * so we only need to handle the listening port cm_ids. In this case
1267 * we nullify the priv to prevent double cm_id destruction and destroying
1268 * the cm_id implicitely by returning a non-zero rc to the callout.
1270 static int nvmet_rdma_device_removal(struct rdma_cm_id
*cm_id
,
1271 struct nvmet_rdma_queue
*queue
)
1273 struct nvmet_port
*port
;
1277 * This is a queue cm_id. we have registered
1278 * an ib_client to handle queues removal
1279 * so don't interfear and just return.
1284 port
= cm_id
->context
;
1287 * This is a listener cm_id. Make sure that
1288 * future remove_port won't invoke a double
1289 * cm_id destroy. use atomic xchg to make sure
1290 * we don't compete with remove_port.
1292 if (xchg(&port
->priv
, NULL
) != cm_id
)
1296 * We need to return 1 so that the core will destroy
1297 * it's own ID. What a great API design..
1302 static int nvmet_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1303 struct rdma_cm_event
*event
)
1305 struct nvmet_rdma_queue
*queue
= NULL
;
1309 queue
= cm_id
->qp
->qp_context
;
1311 pr_debug("%s (%d): status %d id %p\n",
1312 rdma_event_msg(event
->event
), event
->event
,
1313 event
->status
, cm_id
);
1315 switch (event
->event
) {
1316 case RDMA_CM_EVENT_CONNECT_REQUEST
:
1317 ret
= nvmet_rdma_queue_connect(cm_id
, event
);
1319 case RDMA_CM_EVENT_ESTABLISHED
:
1320 nvmet_rdma_queue_established(queue
);
1322 case RDMA_CM_EVENT_ADDR_CHANGE
:
1323 case RDMA_CM_EVENT_DISCONNECTED
:
1324 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1326 * We might end up here when we already freed the qp
1327 * which means queue release sequence is in progress,
1328 * so don't get in the way...
1331 nvmet_rdma_queue_disconnect(queue
);
1333 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1334 ret
= nvmet_rdma_device_removal(cm_id
, queue
);
1336 case RDMA_CM_EVENT_REJECTED
:
1337 pr_debug("Connection rejected: %s\n",
1338 rdma_reject_msg(cm_id
, event
->status
));
1340 case RDMA_CM_EVENT_UNREACHABLE
:
1341 case RDMA_CM_EVENT_CONNECT_ERROR
:
1342 nvmet_rdma_queue_connect_fail(cm_id
, queue
);
1345 pr_err("received unrecognized RDMA CM event %d\n",
1353 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1355 struct nvmet_rdma_queue
*queue
;
1358 mutex_lock(&nvmet_rdma_queue_mutex
);
1359 list_for_each_entry(queue
, &nvmet_rdma_queue_list
, queue_list
) {
1360 if (queue
->nvme_sq
.ctrl
== ctrl
) {
1361 list_del_init(&queue
->queue_list
);
1362 mutex_unlock(&nvmet_rdma_queue_mutex
);
1364 __nvmet_rdma_queue_disconnect(queue
);
1368 mutex_unlock(&nvmet_rdma_queue_mutex
);
1371 static int nvmet_rdma_add_port(struct nvmet_port
*port
)
1373 struct rdma_cm_id
*cm_id
;
1374 struct sockaddr_storage addr
= { };
1375 __kernel_sa_family_t af
;
1378 switch (port
->disc_addr
.adrfam
) {
1379 case NVMF_ADDR_FAMILY_IP4
:
1382 case NVMF_ADDR_FAMILY_IP6
:
1386 pr_err("address family %d not supported\n",
1387 port
->disc_addr
.adrfam
);
1391 ret
= inet_pton_with_scope(&init_net
, af
, port
->disc_addr
.traddr
,
1392 port
->disc_addr
.trsvcid
, &addr
);
1394 pr_err("malformed ip/port passed: %s:%s\n",
1395 port
->disc_addr
.traddr
, port
->disc_addr
.trsvcid
);
1399 cm_id
= rdma_create_id(&init_net
, nvmet_rdma_cm_handler
, port
,
1400 RDMA_PS_TCP
, IB_QPT_RC
);
1401 if (IS_ERR(cm_id
)) {
1402 pr_err("CM ID creation failed\n");
1403 return PTR_ERR(cm_id
);
1407 * Allow both IPv4 and IPv6 sockets to bind a single port
1410 ret
= rdma_set_afonly(cm_id
, 1);
1412 pr_err("rdma_set_afonly failed (%d)\n", ret
);
1413 goto out_destroy_id
;
1416 ret
= rdma_bind_addr(cm_id
, (struct sockaddr
*)&addr
);
1418 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1419 (struct sockaddr
*)&addr
, ret
);
1420 goto out_destroy_id
;
1423 ret
= rdma_listen(cm_id
, 128);
1425 pr_err("listening to %pISpcs failed (%d)\n",
1426 (struct sockaddr
*)&addr
, ret
);
1427 goto out_destroy_id
;
1430 pr_info("enabling port %d (%pISpcs)\n",
1431 le16_to_cpu(port
->disc_addr
.portid
), (struct sockaddr
*)&addr
);
1436 rdma_destroy_id(cm_id
);
1440 static void nvmet_rdma_remove_port(struct nvmet_port
*port
)
1442 struct rdma_cm_id
*cm_id
= xchg(&port
->priv
, NULL
);
1445 rdma_destroy_id(cm_id
);
1448 static struct nvmet_fabrics_ops nvmet_rdma_ops
= {
1449 .owner
= THIS_MODULE
,
1450 .type
= NVMF_TRTYPE_RDMA
,
1451 .sqe_inline_size
= NVMET_RDMA_INLINE_DATA_SIZE
,
1453 .has_keyed_sgls
= 1,
1454 .add_port
= nvmet_rdma_add_port
,
1455 .remove_port
= nvmet_rdma_remove_port
,
1456 .queue_response
= nvmet_rdma_queue_response
,
1457 .delete_ctrl
= nvmet_rdma_delete_ctrl
,
1460 static void nvmet_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
1462 struct nvmet_rdma_queue
*queue
, *tmp
;
1464 /* Device is being removed, delete all queues using this device */
1465 mutex_lock(&nvmet_rdma_queue_mutex
);
1466 list_for_each_entry_safe(queue
, tmp
, &nvmet_rdma_queue_list
,
1468 if (queue
->dev
->device
!= ib_device
)
1471 pr_info("Removing queue %d\n", queue
->idx
);
1472 list_del_init(&queue
->queue_list
);
1473 __nvmet_rdma_queue_disconnect(queue
);
1475 mutex_unlock(&nvmet_rdma_queue_mutex
);
1477 flush_scheduled_work();
1480 static struct ib_client nvmet_rdma_ib_client
= {
1481 .name
= "nvmet_rdma",
1482 .remove
= nvmet_rdma_remove_one
1485 static int __init
nvmet_rdma_init(void)
1489 ret
= ib_register_client(&nvmet_rdma_ib_client
);
1493 ret
= nvmet_register_transport(&nvmet_rdma_ops
);
1500 ib_unregister_client(&nvmet_rdma_ib_client
);
1504 static void __exit
nvmet_rdma_exit(void)
1506 nvmet_unregister_transport(&nvmet_rdma_ops
);
1507 ib_unregister_client(&nvmet_rdma_ib_client
);
1508 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list
));
1509 ida_destroy(&nvmet_rdma_queue_ida
);
1512 module_init(nvmet_rdma_init
);
1513 module_exit(nvmet_rdma_exit
);
1515 MODULE_LICENSE("GPL v2");
1516 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */