2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Eric Anholt <eric@anholt.net>
19 * Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
23 #include "gma_display.h"
24 #include "psb_intel_drv.h"
25 #include "psb_intel_reg.h"
27 #include "framebuffer.h"
30 * Returns whether any output on the specified pipe is of the specified type
32 bool gma_pipe_has_type(struct drm_crtc
*crtc
, int type
)
34 struct drm_device
*dev
= crtc
->dev
;
35 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
36 struct drm_connector
*l_entry
;
38 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
39 if (l_entry
->encoder
&& l_entry
->encoder
->crtc
== crtc
) {
40 struct gma_encoder
*gma_encoder
=
41 gma_attached_encoder(l_entry
);
42 if (gma_encoder
->type
== type
)
50 void gma_wait_for_vblank(struct drm_device
*dev
)
52 /* Wait for 20ms, i.e. one cycle at 50hz. */
56 int gma_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
57 struct drm_framebuffer
*old_fb
)
59 struct drm_device
*dev
= crtc
->dev
;
60 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
61 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
62 struct psb_framebuffer
*psbfb
= to_psb_fb(crtc
->primary
->fb
);
63 int pipe
= gma_crtc
->pipe
;
64 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
65 unsigned long start
, offset
;
69 if (!gma_power_begin(dev
, true))
73 if (!crtc
->primary
->fb
) {
74 dev_err(dev
->dev
, "No FB bound\n");
75 goto gma_pipe_cleaner
;
78 /* We are displaying this buffer, make sure it is actually loaded
80 ret
= psb_gtt_pin(psbfb
->gtt
);
82 goto gma_pipe_set_base_exit
;
83 start
= psbfb
->gtt
->offset
;
84 offset
= y
* crtc
->primary
->fb
->pitches
[0] + x
* (crtc
->primary
->fb
->bits_per_pixel
/ 8);
86 REG_WRITE(map
->stride
, crtc
->primary
->fb
->pitches
[0]);
88 dspcntr
= REG_READ(map
->cntr
);
89 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
91 switch (crtc
->primary
->fb
->bits_per_pixel
) {
93 dspcntr
|= DISPPLANE_8BPP
;
96 if (crtc
->primary
->fb
->depth
== 15)
97 dspcntr
|= DISPPLANE_15_16BPP
;
99 dspcntr
|= DISPPLANE_16BPP
;
103 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
106 dev_err(dev
->dev
, "Unknown color depth\n");
108 goto gma_pipe_set_base_exit
;
110 REG_WRITE(map
->cntr
, dspcntr
);
113 "Writing base %08lX %08lX %d %d\n", start
, offset
, x
, y
);
115 /* FIXME: Investigate whether this really is the base for psb and why
116 the linear offset is named base for the other chips. map->surf
117 should be the base and map->linoff the offset for all chips */
119 REG_WRITE(map
->base
, offset
+ start
);
122 REG_WRITE(map
->base
, offset
);
124 REG_WRITE(map
->surf
, start
);
129 /* If there was a previous display we can now unpin it */
131 psb_gtt_unpin(to_psb_fb(old_fb
)->gtt
);
133 gma_pipe_set_base_exit
:
138 /* Loads the palette/gamma unit for the CRTC with the prepared values */
139 void gma_crtc_load_lut(struct drm_crtc
*crtc
)
141 struct drm_device
*dev
= crtc
->dev
;
142 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
143 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
144 const struct psb_offset
*map
= &dev_priv
->regmap
[gma_crtc
->pipe
];
145 int palreg
= map
->palette
;
148 /* The clocks have to be on to load the palette. */
152 if (gma_power_begin(dev
, false)) {
153 for (i
= 0; i
< 256; i
++) {
154 REG_WRITE(palreg
+ 4 * i
,
155 ((gma_crtc
->lut_r
[i
] +
156 gma_crtc
->lut_adj
[i
]) << 16) |
157 ((gma_crtc
->lut_g
[i
] +
158 gma_crtc
->lut_adj
[i
]) << 8) |
159 (gma_crtc
->lut_b
[i
] +
160 gma_crtc
->lut_adj
[i
]));
164 for (i
= 0; i
< 256; i
++) {
165 /* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
166 dev_priv
->regs
.pipe
[0].palette
[i
] =
167 ((gma_crtc
->lut_r
[i
] +
168 gma_crtc
->lut_adj
[i
]) << 16) |
169 ((gma_crtc
->lut_g
[i
] +
170 gma_crtc
->lut_adj
[i
]) << 8) |
171 (gma_crtc
->lut_b
[i
] +
172 gma_crtc
->lut_adj
[i
]);
178 int gma_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
, u16
*blue
,
181 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
184 for (i
= 0; i
< size
; i
++) {
185 gma_crtc
->lut_r
[i
] = red
[i
] >> 8;
186 gma_crtc
->lut_g
[i
] = green
[i
] >> 8;
187 gma_crtc
->lut_b
[i
] = blue
[i
] >> 8;
190 gma_crtc_load_lut(crtc
);
196 * Sets the power management mode of the pipe and plane.
198 * This code should probably grow support for turning the cursor off and back
199 * on appropriately at the same time as we're turning the pipe off/on.
201 void gma_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
203 struct drm_device
*dev
= crtc
->dev
;
204 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
205 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
206 int pipe
= gma_crtc
->pipe
;
207 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
210 /* XXX: When our outputs are all unaware of DPMS modes other than off
211 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
215 dev_priv
->ops
->disable_sr(dev
);
218 case DRM_MODE_DPMS_ON
:
219 case DRM_MODE_DPMS_STANDBY
:
220 case DRM_MODE_DPMS_SUSPEND
:
221 if (gma_crtc
->active
)
224 gma_crtc
->active
= true;
226 /* Enable the DPLL */
227 temp
= REG_READ(map
->dpll
);
228 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
229 REG_WRITE(map
->dpll
, temp
);
231 /* Wait for the clocks to stabilize. */
233 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
235 /* Wait for the clocks to stabilize. */
237 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
239 /* Wait for the clocks to stabilize. */
243 /* Enable the plane */
244 temp
= REG_READ(map
->cntr
);
245 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
247 temp
| DISPLAY_PLANE_ENABLE
);
248 /* Flush the plane changes */
249 REG_WRITE(map
->base
, REG_READ(map
->base
));
254 /* Enable the pipe */
255 temp
= REG_READ(map
->conf
);
256 if ((temp
& PIPEACONF_ENABLE
) == 0)
257 REG_WRITE(map
->conf
, temp
| PIPEACONF_ENABLE
);
259 temp
= REG_READ(map
->status
);
261 temp
|= PIPE_FIFO_UNDERRUN
;
262 REG_WRITE(map
->status
, temp
);
263 REG_READ(map
->status
);
265 gma_crtc_load_lut(crtc
);
267 /* Give the overlay scaler a chance to enable
268 * if it's on this pipe */
269 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
271 case DRM_MODE_DPMS_OFF
:
272 if (!gma_crtc
->active
)
275 gma_crtc
->active
= false;
277 /* Give the overlay scaler a chance to disable
278 * if it's on this pipe */
279 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
281 /* Disable the VGA plane that we never use */
282 REG_WRITE(VGACNTRL
, VGA_DISP_DISABLE
);
284 /* Turn off vblank interrupts */
285 drm_crtc_vblank_off(crtc
);
287 /* Wait for vblank for the disable to take effect */
288 gma_wait_for_vblank(dev
);
291 temp
= REG_READ(map
->cntr
);
292 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
294 temp
& ~DISPLAY_PLANE_ENABLE
);
295 /* Flush the plane changes */
296 REG_WRITE(map
->base
, REG_READ(map
->base
));
301 temp
= REG_READ(map
->conf
);
302 if ((temp
& PIPEACONF_ENABLE
) != 0) {
303 REG_WRITE(map
->conf
, temp
& ~PIPEACONF_ENABLE
);
307 /* Wait for vblank for the disable to take effect. */
308 gma_wait_for_vblank(dev
);
313 temp
= REG_READ(map
->dpll
);
314 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
315 REG_WRITE(map
->dpll
, temp
& ~DPLL_VCO_ENABLE
);
319 /* Wait for the clocks to turn off. */
325 dev_priv
->ops
->update_wm(dev
, crtc
);
327 /* Set FIFO watermarks */
328 REG_WRITE(DSPARB
, 0x3F3E);
331 int gma_crtc_cursor_set(struct drm_crtc
*crtc
,
332 struct drm_file
*file_priv
,
334 uint32_t width
, uint32_t height
)
336 struct drm_device
*dev
= crtc
->dev
;
337 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
338 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
339 int pipe
= gma_crtc
->pipe
;
340 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
341 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
344 struct gtt_range
*gt
;
345 struct gtt_range
*cursor_gt
= gma_crtc
->cursor_gt
;
346 struct drm_gem_object
*obj
;
347 void *tmp_dst
, *tmp_src
;
348 int ret
= 0, i
, cursor_pages
;
350 /* If we didn't get a handle then turn the cursor off */
352 temp
= CURSOR_MODE_DISABLE
;
353 if (gma_power_begin(dev
, false)) {
354 REG_WRITE(control
, temp
);
359 /* Unpin the old GEM object */
360 if (gma_crtc
->cursor_obj
) {
361 gt
= container_of(gma_crtc
->cursor_obj
,
362 struct gtt_range
, gem
);
364 drm_gem_object_unreference_unlocked(gma_crtc
->cursor_obj
);
365 gma_crtc
->cursor_obj
= NULL
;
370 /* Currently we only support 64x64 cursors */
371 if (width
!= 64 || height
!= 64) {
372 dev_dbg(dev
->dev
, "We currently only support 64x64 cursors\n");
376 obj
= drm_gem_object_lookup(file_priv
, handle
);
382 if (obj
->size
< width
* height
* 4) {
383 dev_dbg(dev
->dev
, "Buffer is too small\n");
388 gt
= container_of(obj
, struct gtt_range
, gem
);
390 /* Pin the memory into the GTT */
391 ret
= psb_gtt_pin(gt
);
393 dev_err(dev
->dev
, "Can not pin down handle 0x%x\n", handle
);
397 if (dev_priv
->ops
->cursor_needs_phys
) {
398 if (cursor_gt
== NULL
) {
399 dev_err(dev
->dev
, "No hardware cursor mem available");
404 /* Prevent overflow */
408 cursor_pages
= gt
->npage
;
410 /* Copy the cursor to cursor mem */
411 tmp_dst
= dev_priv
->vram_addr
+ cursor_gt
->offset
;
412 for (i
= 0; i
< cursor_pages
; i
++) {
413 tmp_src
= kmap(gt
->pages
[i
]);
414 memcpy(tmp_dst
, tmp_src
, PAGE_SIZE
);
415 kunmap(gt
->pages
[i
]);
416 tmp_dst
+= PAGE_SIZE
;
419 addr
= gma_crtc
->cursor_addr
;
422 gma_crtc
->cursor_addr
= addr
;
426 /* set the pipe for the cursor */
427 temp
|= (pipe
<< 28);
428 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
430 if (gma_power_begin(dev
, false)) {
431 REG_WRITE(control
, temp
);
432 REG_WRITE(base
, addr
);
436 /* unpin the old bo */
437 if (gma_crtc
->cursor_obj
) {
438 gt
= container_of(gma_crtc
->cursor_obj
, struct gtt_range
, gem
);
440 drm_gem_object_unreference_unlocked(gma_crtc
->cursor_obj
);
443 gma_crtc
->cursor_obj
= obj
;
448 drm_gem_object_unreference_unlocked(obj
);
452 int gma_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
454 struct drm_device
*dev
= crtc
->dev
;
455 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
456 int pipe
= gma_crtc
->pipe
;
461 temp
|= (CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
);
465 temp
|= (CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
);
469 temp
|= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
);
470 temp
|= ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
472 addr
= gma_crtc
->cursor_addr
;
474 if (gma_power_begin(dev
, false)) {
475 REG_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
476 REG_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, addr
);
482 void gma_crtc_prepare(struct drm_crtc
*crtc
)
484 const struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
485 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
488 void gma_crtc_commit(struct drm_crtc
*crtc
)
490 const struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
491 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
494 void gma_crtc_disable(struct drm_crtc
*crtc
)
496 struct gtt_range
*gt
;
497 const struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
499 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
501 if (crtc
->primary
->fb
) {
502 gt
= to_psb_fb(crtc
->primary
->fb
)->gtt
;
507 void gma_crtc_destroy(struct drm_crtc
*crtc
)
509 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
511 kfree(gma_crtc
->crtc_state
);
512 drm_crtc_cleanup(crtc
);
516 int gma_crtc_set_config(struct drm_mode_set
*set
)
518 struct drm_device
*dev
= set
->crtc
->dev
;
519 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
522 if (!dev_priv
->rpm_enabled
)
523 return drm_crtc_helper_set_config(set
);
525 pm_runtime_forbid(&dev
->pdev
->dev
);
526 ret
= drm_crtc_helper_set_config(set
);
527 pm_runtime_allow(&dev
->pdev
->dev
);
533 * Save HW states of given crtc
535 void gma_crtc_save(struct drm_crtc
*crtc
)
537 struct drm_device
*dev
= crtc
->dev
;
538 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
539 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
540 struct psb_intel_crtc_state
*crtc_state
= gma_crtc
->crtc_state
;
541 const struct psb_offset
*map
= &dev_priv
->regmap
[gma_crtc
->pipe
];
542 uint32_t palette_reg
;
546 dev_err(dev
->dev
, "No CRTC state found\n");
550 crtc_state
->saveDSPCNTR
= REG_READ(map
->cntr
);
551 crtc_state
->savePIPECONF
= REG_READ(map
->conf
);
552 crtc_state
->savePIPESRC
= REG_READ(map
->src
);
553 crtc_state
->saveFP0
= REG_READ(map
->fp0
);
554 crtc_state
->saveFP1
= REG_READ(map
->fp1
);
555 crtc_state
->saveDPLL
= REG_READ(map
->dpll
);
556 crtc_state
->saveHTOTAL
= REG_READ(map
->htotal
);
557 crtc_state
->saveHBLANK
= REG_READ(map
->hblank
);
558 crtc_state
->saveHSYNC
= REG_READ(map
->hsync
);
559 crtc_state
->saveVTOTAL
= REG_READ(map
->vtotal
);
560 crtc_state
->saveVBLANK
= REG_READ(map
->vblank
);
561 crtc_state
->saveVSYNC
= REG_READ(map
->vsync
);
562 crtc_state
->saveDSPSTRIDE
= REG_READ(map
->stride
);
564 /* NOTE: DSPSIZE DSPPOS only for psb */
565 crtc_state
->saveDSPSIZE
= REG_READ(map
->size
);
566 crtc_state
->saveDSPPOS
= REG_READ(map
->pos
);
568 crtc_state
->saveDSPBASE
= REG_READ(map
->base
);
570 palette_reg
= map
->palette
;
571 for (i
= 0; i
< 256; ++i
)
572 crtc_state
->savePalette
[i
] = REG_READ(palette_reg
+ (i
<< 2));
576 * Restore HW states of given crtc
578 void gma_crtc_restore(struct drm_crtc
*crtc
)
580 struct drm_device
*dev
= crtc
->dev
;
581 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
582 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
583 struct psb_intel_crtc_state
*crtc_state
= gma_crtc
->crtc_state
;
584 const struct psb_offset
*map
= &dev_priv
->regmap
[gma_crtc
->pipe
];
585 uint32_t palette_reg
;
589 dev_err(dev
->dev
, "No crtc state\n");
593 if (crtc_state
->saveDPLL
& DPLL_VCO_ENABLE
) {
595 crtc_state
->saveDPLL
& ~DPLL_VCO_ENABLE
);
600 REG_WRITE(map
->fp0
, crtc_state
->saveFP0
);
603 REG_WRITE(map
->fp1
, crtc_state
->saveFP1
);
606 REG_WRITE(map
->dpll
, crtc_state
->saveDPLL
);
610 REG_WRITE(map
->htotal
, crtc_state
->saveHTOTAL
);
611 REG_WRITE(map
->hblank
, crtc_state
->saveHBLANK
);
612 REG_WRITE(map
->hsync
, crtc_state
->saveHSYNC
);
613 REG_WRITE(map
->vtotal
, crtc_state
->saveVTOTAL
);
614 REG_WRITE(map
->vblank
, crtc_state
->saveVBLANK
);
615 REG_WRITE(map
->vsync
, crtc_state
->saveVSYNC
);
616 REG_WRITE(map
->stride
, crtc_state
->saveDSPSTRIDE
);
618 REG_WRITE(map
->size
, crtc_state
->saveDSPSIZE
);
619 REG_WRITE(map
->pos
, crtc_state
->saveDSPPOS
);
621 REG_WRITE(map
->src
, crtc_state
->savePIPESRC
);
622 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
623 REG_WRITE(map
->conf
, crtc_state
->savePIPECONF
);
625 gma_wait_for_vblank(dev
);
627 REG_WRITE(map
->cntr
, crtc_state
->saveDSPCNTR
);
628 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
630 gma_wait_for_vblank(dev
);
632 palette_reg
= map
->palette
;
633 for (i
= 0; i
< 256; ++i
)
634 REG_WRITE(palette_reg
+ (i
<< 2), crtc_state
->savePalette
[i
]);
637 void gma_encoder_prepare(struct drm_encoder
*encoder
)
639 const struct drm_encoder_helper_funcs
*encoder_funcs
=
640 encoder
->helper_private
;
641 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
642 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
645 void gma_encoder_commit(struct drm_encoder
*encoder
)
647 const struct drm_encoder_helper_funcs
*encoder_funcs
=
648 encoder
->helper_private
;
649 /* lvds has its own version of commit see psb_intel_lvds_commit */
650 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
653 void gma_encoder_destroy(struct drm_encoder
*encoder
)
655 struct gma_encoder
*intel_encoder
= to_gma_encoder(encoder
);
657 drm_encoder_cleanup(encoder
);
658 kfree(intel_encoder
);
661 /* Currently there is only a 1:1 mapping of encoders and connectors */
662 struct drm_encoder
*gma_best_encoder(struct drm_connector
*connector
)
664 struct gma_encoder
*gma_encoder
= gma_attached_encoder(connector
);
666 return &gma_encoder
->base
;
669 void gma_connector_attach_encoder(struct gma_connector
*connector
,
670 struct gma_encoder
*encoder
)
672 connector
->encoder
= encoder
;
673 drm_mode_connector_attach_encoder(&connector
->base
,
677 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
679 bool gma_pll_is_valid(struct drm_crtc
*crtc
,
680 const struct gma_limit_t
*limit
,
681 struct gma_clock_t
*clock
)
683 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
684 GMA_PLL_INVALID("p1 out of range");
685 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
686 GMA_PLL_INVALID("p out of range");
687 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
688 GMA_PLL_INVALID("m2 out of range");
689 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
690 GMA_PLL_INVALID("m1 out of range");
691 /* On CDV m1 is always 0 */
692 if (clock
->m1
<= clock
->m2
&& clock
->m1
!= 0)
693 GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
694 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
695 GMA_PLL_INVALID("m out of range");
696 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
697 GMA_PLL_INVALID("n out of range");
698 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
699 GMA_PLL_INVALID("vco out of range");
700 /* XXX: We may need to be checking "Dot clock"
701 * depending on the multiplier, connector, etc.,
702 * rather than just a single range.
704 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
705 GMA_PLL_INVALID("dot out of range");
710 bool gma_find_best_pll(const struct gma_limit_t
*limit
,
711 struct drm_crtc
*crtc
, int target
, int refclk
,
712 struct gma_clock_t
*best_clock
)
714 struct drm_device
*dev
= crtc
->dev
;
715 const struct gma_clock_funcs
*clock_funcs
=
716 to_gma_crtc(crtc
)->clock_funcs
;
717 struct gma_clock_t clock
;
720 if (gma_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
721 (REG_READ(LVDS
) & LVDS_PORT_EN
) != 0) {
723 * For LVDS, if the panel is on, just rely on its current
724 * settings for dual-channel. We haven't figured out how to
725 * reliably set up different single/dual channel state, if we
728 if ((REG_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
730 clock
.p2
= limit
->p2
.p2_fast
;
732 clock
.p2
= limit
->p2
.p2_slow
;
734 if (target
< limit
->p2
.dot_limit
)
735 clock
.p2
= limit
->p2
.p2_slow
;
737 clock
.p2
= limit
->p2
.p2_fast
;
740 memset(best_clock
, 0, sizeof(*best_clock
));
742 /* m1 is always 0 on CDV so the outmost loop will run just once */
743 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
744 for (clock
.m2
= limit
->m2
.min
;
745 (clock
.m2
< clock
.m1
|| clock
.m1
== 0) &&
746 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
747 for (clock
.n
= limit
->n
.min
;
748 clock
.n
<= limit
->n
.max
; clock
.n
++) {
749 for (clock
.p1
= limit
->p1
.min
;
750 clock
.p1
<= limit
->p1
.max
;
754 clock_funcs
->clock(refclk
, &clock
);
756 if (!clock_funcs
->pll_is_valid(crtc
,
760 this_err
= abs(clock
.dot
- target
);
761 if (this_err
< err
) {
770 return err
!= target
;