2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/miscdevice.h>
18 #include <linux/major.h>
19 #include <linux/ioport.h>
20 #include <linux/fcntl.h>
21 #include <linux/init.h>
22 #include <linux/poll.h>
24 #include <linux/proc_fs.h>
25 #include <linux/spinlock.h>
26 #include <linux/sysctl.h>
27 #include <linux/wait.h>
28 #include <linux/sched/signal.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
37 #include <linux/acpi.h>
38 #include <linux/hpet.h>
39 #include <asm/current.h>
41 #include <asm/div64.h>
44 * The High Precision Event Timer driver.
45 * This driver is closely modelled after the rtc.c driver.
46 * See HPET spec revision 1.
48 #define HPET_USER_FREQ (64)
49 #define HPET_DRIFT (500)
51 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
54 /* WARNING -- don't get confused. These macros are never used
55 * to write the (single) counter, and rarely to read it.
56 * They're badly named; to fix, someday.
58 #if BITS_PER_LONG == 64
59 #define write_counter(V, MC) writeq(V, MC)
60 #define read_counter(MC) readq(MC)
62 #define write_counter(V, MC) writel(V, MC)
63 #define read_counter(MC) readl(MC)
66 static DEFINE_MUTEX(hpet_mutex
); /* replaces BKL */
67 static u32 hpet_nhpet
, hpet_max_freq
= HPET_USER_FREQ
;
69 /* This clocksource driver currently only works on ia64 */
71 static void __iomem
*hpet_mctr
;
73 static u64
read_hpet(struct clocksource
*cs
)
75 return (u64
)read_counter((void __iomem
*)hpet_mctr
);
78 static struct clocksource clocksource_hpet
= {
82 .mask
= CLOCKSOURCE_MASK(64),
83 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
85 static struct clocksource
*hpet_clocksource
;
88 /* A lock for concurrent access by app and isr hpet activity. */
89 static DEFINE_SPINLOCK(hpet_lock
);
91 #define HPET_DEV_NAME (7)
94 struct hpets
*hd_hpets
;
95 struct hpet __iomem
*hd_hpet
;
96 struct hpet_timer __iomem
*hd_timer
;
97 unsigned long hd_ireqfreq
;
98 unsigned long hd_irqdata
;
99 wait_queue_head_t hd_waitqueue
;
100 struct fasync_struct
*hd_async_queue
;
101 unsigned int hd_flags
;
103 unsigned int hd_hdwirq
;
104 char hd_name
[HPET_DEV_NAME
];
108 struct hpets
*hp_next
;
109 struct hpet __iomem
*hp_hpet
;
110 unsigned long hp_hpet_phys
;
111 struct clocksource
*hp_clocksource
;
112 unsigned long long hp_tick_freq
;
113 unsigned long hp_delta
;
114 unsigned int hp_ntimer
;
115 unsigned int hp_which
;
116 struct hpet_dev hp_dev
[1];
119 static struct hpets
*hpets
;
121 #define HPET_OPEN 0x0001
122 #define HPET_IE 0x0002 /* interrupt enabled */
123 #define HPET_PERIODIC 0x0004
124 #define HPET_SHARED_IRQ 0x0008
128 static inline unsigned long long readq(void __iomem
*addr
)
130 return readl(addr
) | (((unsigned long long)readl(addr
+ 4)) << 32LL);
135 static inline void writeq(unsigned long long v
, void __iomem
*addr
)
137 writel(v
& 0xffffffff, addr
);
138 writel(v
>> 32, addr
+ 4);
142 static irqreturn_t
hpet_interrupt(int irq
, void *data
)
144 struct hpet_dev
*devp
;
148 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
150 if ((devp
->hd_flags
& HPET_SHARED_IRQ
) &&
151 !(isr
& readl(&devp
->hd_hpet
->hpet_isr
)))
154 spin_lock(&hpet_lock
);
158 * For non-periodic timers, increment the accumulator.
159 * This has the effect of treating non-periodic like periodic.
161 if ((devp
->hd_flags
& (HPET_IE
| HPET_PERIODIC
)) == HPET_IE
) {
162 unsigned long m
, t
, mc
, base
, k
;
163 struct hpet __iomem
*hpet
= devp
->hd_hpet
;
164 struct hpets
*hpetp
= devp
->hd_hpets
;
166 t
= devp
->hd_ireqfreq
;
167 m
= read_counter(&devp
->hd_timer
->hpet_compare
);
168 mc
= read_counter(&hpet
->hpet_mc
);
169 /* The time for the next interrupt would logically be t + m,
170 * however, if we are very unlucky and the interrupt is delayed
171 * for longer than t then we will completely miss the next
172 * interrupt if we set t + m and an application will hang.
173 * Therefore we need to make a more complex computation assuming
174 * that there exists a k for which the following is true:
175 * k * t + base < mc + delta
176 * (k + 1) * t + base > mc + delta
177 * where t is the interval in hpet ticks for the given freq,
178 * base is the theoretical start value 0 < base < t,
179 * mc is the main counter value at the time of the interrupt,
180 * delta is the time it takes to write the a value to the
182 * k may then be computed as (mc - base + delta) / t .
185 k
= (mc
- base
+ hpetp
->hp_delta
) / t
;
186 write_counter(t
* (k
+ 1) + base
,
187 &devp
->hd_timer
->hpet_compare
);
190 if (devp
->hd_flags
& HPET_SHARED_IRQ
)
191 writel(isr
, &devp
->hd_hpet
->hpet_isr
);
192 spin_unlock(&hpet_lock
);
194 wake_up_interruptible(&devp
->hd_waitqueue
);
196 kill_fasync(&devp
->hd_async_queue
, SIGIO
, POLL_IN
);
201 static void hpet_timer_set_irq(struct hpet_dev
*devp
)
205 struct hpet_timer __iomem
*timer
;
207 spin_lock_irq(&hpet_lock
);
208 if (devp
->hd_hdwirq
) {
209 spin_unlock_irq(&hpet_lock
);
213 timer
= devp
->hd_timer
;
215 /* we prefer level triggered mode */
216 v
= readl(&timer
->hpet_config
);
217 if (!(v
& Tn_INT_TYPE_CNF_MASK
)) {
218 v
|= Tn_INT_TYPE_CNF_MASK
;
219 writel(v
, &timer
->hpet_config
);
221 spin_unlock_irq(&hpet_lock
);
223 v
= (readq(&timer
->hpet_config
) & Tn_INT_ROUTE_CAP_MASK
) >>
224 Tn_INT_ROUTE_CAP_SHIFT
;
227 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
228 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
230 if (acpi_irq_model
== ACPI_IRQ_MODEL_PIC
)
235 for_each_set_bit(irq
, &v
, HPET_MAX_IRQ
) {
236 if (irq
>= nr_irqs
) {
241 gsi
= acpi_register_gsi(NULL
, irq
, ACPI_LEVEL_SENSITIVE
,
246 /* FIXME: Setup interrupt source table */
249 if (irq
< HPET_MAX_IRQ
) {
250 spin_lock_irq(&hpet_lock
);
251 v
= readl(&timer
->hpet_config
);
252 v
|= irq
<< Tn_INT_ROUTE_CNF_SHIFT
;
253 writel(v
, &timer
->hpet_config
);
254 devp
->hd_hdwirq
= gsi
;
255 spin_unlock_irq(&hpet_lock
);
260 static int hpet_open(struct inode
*inode
, struct file
*file
)
262 struct hpet_dev
*devp
;
266 if (file
->f_mode
& FMODE_WRITE
)
269 mutex_lock(&hpet_mutex
);
270 spin_lock_irq(&hpet_lock
);
272 for (devp
= NULL
, hpetp
= hpets
; hpetp
&& !devp
; hpetp
= hpetp
->hp_next
)
273 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
274 if (hpetp
->hp_dev
[i
].hd_flags
& HPET_OPEN
)
277 devp
= &hpetp
->hp_dev
[i
];
282 spin_unlock_irq(&hpet_lock
);
283 mutex_unlock(&hpet_mutex
);
287 file
->private_data
= devp
;
288 devp
->hd_irqdata
= 0;
289 devp
->hd_flags
|= HPET_OPEN
;
290 spin_unlock_irq(&hpet_lock
);
291 mutex_unlock(&hpet_mutex
);
293 hpet_timer_set_irq(devp
);
299 hpet_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
* ppos
)
301 DECLARE_WAITQUEUE(wait
, current
);
304 struct hpet_dev
*devp
;
306 devp
= file
->private_data
;
307 if (!devp
->hd_ireqfreq
)
310 if (count
< sizeof(unsigned long))
313 add_wait_queue(&devp
->hd_waitqueue
, &wait
);
316 set_current_state(TASK_INTERRUPTIBLE
);
318 spin_lock_irq(&hpet_lock
);
319 data
= devp
->hd_irqdata
;
320 devp
->hd_irqdata
= 0;
321 spin_unlock_irq(&hpet_lock
);
325 else if (file
->f_flags
& O_NONBLOCK
) {
328 } else if (signal_pending(current
)) {
329 retval
= -ERESTARTSYS
;
335 retval
= put_user(data
, (unsigned long __user
*)buf
);
337 retval
= sizeof(unsigned long);
339 __set_current_state(TASK_RUNNING
);
340 remove_wait_queue(&devp
->hd_waitqueue
, &wait
);
345 static unsigned int hpet_poll(struct file
*file
, poll_table
* wait
)
348 struct hpet_dev
*devp
;
350 devp
= file
->private_data
;
352 if (!devp
->hd_ireqfreq
)
355 poll_wait(file
, &devp
->hd_waitqueue
, wait
);
357 spin_lock_irq(&hpet_lock
);
358 v
= devp
->hd_irqdata
;
359 spin_unlock_irq(&hpet_lock
);
362 return POLLIN
| POLLRDNORM
;
367 #ifdef CONFIG_HPET_MMAP
368 #ifdef CONFIG_HPET_MMAP_DEFAULT
369 static int hpet_mmap_enabled
= 1;
371 static int hpet_mmap_enabled
= 0;
374 static __init
int hpet_mmap_enable(char *str
)
376 get_option(&str
, &hpet_mmap_enabled
);
377 pr_info("HPET mmap %s\n", hpet_mmap_enabled
? "enabled" : "disabled");
380 __setup("hpet_mmap", hpet_mmap_enable
);
382 static int hpet_mmap(struct file
*file
, struct vm_area_struct
*vma
)
384 struct hpet_dev
*devp
;
387 if (!hpet_mmap_enabled
)
390 devp
= file
->private_data
;
391 addr
= devp
->hd_hpets
->hp_hpet_phys
;
393 if (addr
& (PAGE_SIZE
- 1))
396 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
397 return vm_iomap_memory(vma
, addr
, PAGE_SIZE
);
400 static int hpet_mmap(struct file
*file
, struct vm_area_struct
*vma
)
406 static int hpet_fasync(int fd
, struct file
*file
, int on
)
408 struct hpet_dev
*devp
;
410 devp
= file
->private_data
;
412 if (fasync_helper(fd
, file
, on
, &devp
->hd_async_queue
) >= 0)
418 static int hpet_release(struct inode
*inode
, struct file
*file
)
420 struct hpet_dev
*devp
;
421 struct hpet_timer __iomem
*timer
;
424 devp
= file
->private_data
;
425 timer
= devp
->hd_timer
;
427 spin_lock_irq(&hpet_lock
);
429 writeq((readq(&timer
->hpet_config
) & ~Tn_INT_ENB_CNF_MASK
),
430 &timer
->hpet_config
);
435 devp
->hd_ireqfreq
= 0;
437 if (devp
->hd_flags
& HPET_PERIODIC
438 && readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
441 v
= readq(&timer
->hpet_config
);
442 v
^= Tn_TYPE_CNF_MASK
;
443 writeq(v
, &timer
->hpet_config
);
446 devp
->hd_flags
&= ~(HPET_OPEN
| HPET_IE
| HPET_PERIODIC
);
447 spin_unlock_irq(&hpet_lock
);
452 file
->private_data
= NULL
;
456 static int hpet_ioctl_ieon(struct hpet_dev
*devp
)
458 struct hpet_timer __iomem
*timer
;
459 struct hpet __iomem
*hpet
;
462 unsigned long g
, v
, t
, m
;
463 unsigned long flags
, isr
;
465 timer
= devp
->hd_timer
;
466 hpet
= devp
->hd_hpet
;
467 hpetp
= devp
->hd_hpets
;
469 if (!devp
->hd_ireqfreq
)
472 spin_lock_irq(&hpet_lock
);
474 if (devp
->hd_flags
& HPET_IE
) {
475 spin_unlock_irq(&hpet_lock
);
479 devp
->hd_flags
|= HPET_IE
;
481 if (readl(&timer
->hpet_config
) & Tn_INT_TYPE_CNF_MASK
)
482 devp
->hd_flags
|= HPET_SHARED_IRQ
;
483 spin_unlock_irq(&hpet_lock
);
485 irq
= devp
->hd_hdwirq
;
488 unsigned long irq_flags
;
490 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
492 * To prevent the interrupt handler from seeing an
493 * unwanted interrupt status bit, program the timer
494 * so that it will not fire in the near future ...
496 writel(readl(&timer
->hpet_config
) & ~Tn_TYPE_CNF_MASK
,
497 &timer
->hpet_config
);
498 write_counter(read_counter(&hpet
->hpet_mc
),
499 &timer
->hpet_compare
);
500 /* ... and clear any left-over status. */
501 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
502 writel(isr
, &hpet
->hpet_isr
);
505 sprintf(devp
->hd_name
, "hpet%d", (int)(devp
- hpetp
->hp_dev
));
506 irq_flags
= devp
->hd_flags
& HPET_SHARED_IRQ
? IRQF_SHARED
: 0;
507 if (request_irq(irq
, hpet_interrupt
, irq_flags
,
508 devp
->hd_name
, (void *)devp
)) {
509 printk(KERN_ERR
"hpet: IRQ %d is not free\n", irq
);
515 spin_lock_irq(&hpet_lock
);
516 devp
->hd_flags
^= HPET_IE
;
517 spin_unlock_irq(&hpet_lock
);
522 t
= devp
->hd_ireqfreq
;
523 v
= readq(&timer
->hpet_config
);
525 /* 64-bit comparators are not yet supported through the ioctls,
526 * so force this into 32-bit mode if it supports both modes
528 g
= v
| Tn_32MODE_CNF_MASK
| Tn_INT_ENB_CNF_MASK
;
530 if (devp
->hd_flags
& HPET_PERIODIC
) {
531 g
|= Tn_TYPE_CNF_MASK
;
532 v
|= Tn_TYPE_CNF_MASK
| Tn_VAL_SET_CNF_MASK
;
533 writeq(v
, &timer
->hpet_config
);
534 local_irq_save(flags
);
537 * NOTE: First we modify the hidden accumulator
538 * register supported by periodic-capable comparators.
539 * We never want to modify the (single) counter; that
540 * would affect all the comparators. The value written
541 * is the counter value when the first interrupt is due.
543 m
= read_counter(&hpet
->hpet_mc
);
544 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
546 * Then we modify the comparator, indicating the period
547 * for subsequent interrupt.
549 write_counter(t
, &timer
->hpet_compare
);
551 local_irq_save(flags
);
552 m
= read_counter(&hpet
->hpet_mc
);
553 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
556 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
557 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
558 writel(isr
, &hpet
->hpet_isr
);
560 writeq(g
, &timer
->hpet_config
);
561 local_irq_restore(flags
);
566 /* converts Hz to number of timer ticks */
567 static inline unsigned long hpet_time_div(struct hpets
*hpets
,
570 unsigned long long m
;
572 m
= hpets
->hp_tick_freq
+ (dis
>> 1);
574 return (unsigned long)m
;
578 hpet_ioctl_common(struct hpet_dev
*devp
, unsigned int cmd
, unsigned long arg
,
579 struct hpet_info
*info
)
581 struct hpet_timer __iomem
*timer
;
582 struct hpet __iomem
*hpet
;
593 timer
= devp
->hd_timer
;
594 hpet
= devp
->hd_hpet
;
595 hpetp
= devp
->hd_hpets
;
598 return hpet_ioctl_ieon(devp
);
607 if ((devp
->hd_flags
& HPET_IE
) == 0)
609 v
= readq(&timer
->hpet_config
);
610 v
&= ~Tn_INT_ENB_CNF_MASK
;
611 writeq(v
, &timer
->hpet_config
);
613 free_irq(devp
->hd_irq
, devp
);
616 devp
->hd_flags
^= HPET_IE
;
620 memset(info
, 0, sizeof(*info
));
621 if (devp
->hd_ireqfreq
)
623 hpet_time_div(hpetp
, devp
->hd_ireqfreq
);
625 readq(&timer
->hpet_config
) & Tn_PER_INT_CAP_MASK
;
626 info
->hi_hpet
= hpetp
->hp_which
;
627 info
->hi_timer
= devp
- hpetp
->hp_dev
;
631 v
= readq(&timer
->hpet_config
);
632 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
636 devp
->hd_flags
|= HPET_PERIODIC
;
639 v
= readq(&timer
->hpet_config
);
640 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
644 if (devp
->hd_flags
& HPET_PERIODIC
&&
645 readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
646 v
= readq(&timer
->hpet_config
);
647 v
^= Tn_TYPE_CNF_MASK
;
648 writeq(v
, &timer
->hpet_config
);
650 devp
->hd_flags
&= ~HPET_PERIODIC
;
653 if ((arg
> hpet_max_freq
) &&
654 !capable(CAP_SYS_RESOURCE
)) {
664 devp
->hd_ireqfreq
= hpet_time_div(hpetp
, arg
);
671 hpet_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
673 struct hpet_info info
;
676 mutex_lock(&hpet_mutex
);
677 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
678 mutex_unlock(&hpet_mutex
);
680 if ((cmd
== HPET_INFO
) && !err
&&
681 (copy_to_user((void __user
*)arg
, &info
, sizeof(info
))))
688 struct compat_hpet_info
{
689 compat_ulong_t hi_ireqfreq
; /* Hz */
690 compat_ulong_t hi_flags
; /* information */
691 unsigned short hi_hpet
;
692 unsigned short hi_timer
;
696 hpet_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
698 struct hpet_info info
;
701 mutex_lock(&hpet_mutex
);
702 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
703 mutex_unlock(&hpet_mutex
);
705 if ((cmd
== HPET_INFO
) && !err
) {
706 struct compat_hpet_info __user
*u
= compat_ptr(arg
);
707 if (put_user(info
.hi_ireqfreq
, &u
->hi_ireqfreq
) ||
708 put_user(info
.hi_flags
, &u
->hi_flags
) ||
709 put_user(info
.hi_hpet
, &u
->hi_hpet
) ||
710 put_user(info
.hi_timer
, &u
->hi_timer
))
718 static const struct file_operations hpet_fops
= {
719 .owner
= THIS_MODULE
,
723 .unlocked_ioctl
= hpet_ioctl
,
725 .compat_ioctl
= hpet_compat_ioctl
,
728 .release
= hpet_release
,
729 .fasync
= hpet_fasync
,
733 static int hpet_is_known(struct hpet_data
*hdp
)
737 for (hpetp
= hpets
; hpetp
; hpetp
= hpetp
->hp_next
)
738 if (hpetp
->hp_hpet_phys
== hdp
->hd_phys_address
)
744 static struct ctl_table hpet_table
[] = {
746 .procname
= "max-user-freq",
747 .data
= &hpet_max_freq
,
748 .maxlen
= sizeof(int),
750 .proc_handler
= proc_dointvec
,
755 static struct ctl_table hpet_root
[] = {
765 static struct ctl_table dev_root
[] = {
775 static struct ctl_table_header
*sysctl_header
;
778 * Adjustment for when arming the timer with
779 * initial conditions. That is, main counter
780 * ticks expired before interrupts are enabled.
782 #define TICK_CALIBRATE (1000UL)
784 static unsigned long __hpet_calibrate(struct hpets
*hpetp
)
786 struct hpet_timer __iomem
*timer
= NULL
;
787 unsigned long t
, m
, count
, i
, flags
, start
;
788 struct hpet_dev
*devp
;
790 struct hpet __iomem
*hpet
;
792 for (j
= 0, devp
= hpetp
->hp_dev
; j
< hpetp
->hp_ntimer
; j
++, devp
++)
793 if ((devp
->hd_flags
& HPET_OPEN
) == 0) {
794 timer
= devp
->hd_timer
;
801 hpet
= hpetp
->hp_hpet
;
802 t
= read_counter(&timer
->hpet_compare
);
805 count
= hpet_time_div(hpetp
, TICK_CALIBRATE
);
807 local_irq_save(flags
);
809 start
= read_counter(&hpet
->hpet_mc
);
812 m
= read_counter(&hpet
->hpet_mc
);
813 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
814 } while (i
++, (m
- start
) < count
);
816 local_irq_restore(flags
);
818 return (m
- start
) / i
;
821 static unsigned long hpet_calibrate(struct hpets
*hpetp
)
823 unsigned long ret
= ~0UL;
827 * Try to calibrate until return value becomes stable small value.
828 * If SMI interruption occurs in calibration loop, the return value
829 * will be big. This avoids its impact.
832 tmp
= __hpet_calibrate(hpetp
);
841 int hpet_alloc(struct hpet_data
*hdp
)
844 struct hpet_dev
*devp
;
848 struct hpet __iomem
*hpet
;
849 static struct hpets
*last
;
850 unsigned long period
;
851 unsigned long long temp
;
855 * hpet_alloc can be called by platform dependent code.
856 * If platform dependent code has allocated the hpet that
857 * ACPI has also reported, then we catch it here.
859 if (hpet_is_known(hdp
)) {
860 printk(KERN_DEBUG
"%s: duplicate HPET ignored\n",
865 siz
= sizeof(struct hpets
) + ((hdp
->hd_nirqs
- 1) *
866 sizeof(struct hpet_dev
));
868 hpetp
= kzalloc(siz
, GFP_KERNEL
);
873 hpetp
->hp_which
= hpet_nhpet
++;
874 hpetp
->hp_hpet
= hdp
->hd_address
;
875 hpetp
->hp_hpet_phys
= hdp
->hd_phys_address
;
877 hpetp
->hp_ntimer
= hdp
->hd_nirqs
;
879 for (i
= 0; i
< hdp
->hd_nirqs
; i
++)
880 hpetp
->hp_dev
[i
].hd_hdwirq
= hdp
->hd_irq
[i
];
882 hpet
= hpetp
->hp_hpet
;
884 cap
= readq(&hpet
->hpet_cap
);
886 ntimer
= ((cap
& HPET_NUM_TIM_CAP_MASK
) >> HPET_NUM_TIM_CAP_SHIFT
) + 1;
888 if (hpetp
->hp_ntimer
!= ntimer
) {
889 printk(KERN_WARNING
"hpet: number irqs doesn't agree"
890 " with number of timers\n");
896 last
->hp_next
= hpetp
;
902 period
= (cap
& HPET_COUNTER_CLK_PERIOD_MASK
) >>
903 HPET_COUNTER_CLK_PERIOD_SHIFT
; /* fs, 10^-15 */
904 temp
= 1000000000000000uLL; /* 10^15 femtoseconds per second */
905 temp
+= period
>> 1; /* round */
906 do_div(temp
, period
);
907 hpetp
->hp_tick_freq
= temp
; /* ticks per second */
909 printk(KERN_INFO
"hpet%d: at MMIO 0x%lx, IRQ%s",
910 hpetp
->hp_which
, hdp
->hd_phys_address
,
911 hpetp
->hp_ntimer
> 1 ? "s" : "");
912 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
913 printk(KERN_CONT
"%s %d", i
> 0 ? "," : "", hdp
->hd_irq
[i
]);
914 printk(KERN_CONT
"\n");
916 temp
= hpetp
->hp_tick_freq
;
917 remainder
= do_div(temp
, 1000000);
919 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
920 hpetp
->hp_which
, hpetp
->hp_ntimer
,
921 cap
& HPET_COUNTER_SIZE_MASK
? 64 : 32,
922 (unsigned) temp
, remainder
);
924 mcfg
= readq(&hpet
->hpet_config
);
925 if ((mcfg
& HPET_ENABLE_CNF_MASK
) == 0) {
926 write_counter(0L, &hpet
->hpet_mc
);
927 mcfg
|= HPET_ENABLE_CNF_MASK
;
928 writeq(mcfg
, &hpet
->hpet_config
);
931 for (i
= 0, devp
= hpetp
->hp_dev
; i
< hpetp
->hp_ntimer
; i
++, devp
++) {
932 struct hpet_timer __iomem
*timer
;
934 timer
= &hpet
->hpet_timers
[devp
- hpetp
->hp_dev
];
936 devp
->hd_hpets
= hpetp
;
937 devp
->hd_hpet
= hpet
;
938 devp
->hd_timer
= timer
;
941 * If the timer was reserved by platform code,
942 * then make timer unavailable for opens.
944 if (hdp
->hd_state
& (1 << i
)) {
945 devp
->hd_flags
= HPET_OPEN
;
949 init_waitqueue_head(&devp
->hd_waitqueue
);
952 hpetp
->hp_delta
= hpet_calibrate(hpetp
);
954 /* This clocksource driver currently only works on ia64 */
956 if (!hpet_clocksource
) {
957 hpet_mctr
= (void __iomem
*)&hpetp
->hp_hpet
->hpet_mc
;
958 clocksource_hpet
.archdata
.fsys_mmio
= hpet_mctr
;
959 clocksource_register_hz(&clocksource_hpet
, hpetp
->hp_tick_freq
);
960 hpetp
->hp_clocksource
= &clocksource_hpet
;
961 hpet_clocksource
= &clocksource_hpet
;
968 static acpi_status
hpet_resources(struct acpi_resource
*res
, void *data
)
970 struct hpet_data
*hdp
;
972 struct acpi_resource_address64 addr
;
976 status
= acpi_resource_to_address64(res
, &addr
);
978 if (ACPI_SUCCESS(status
)) {
979 hdp
->hd_phys_address
= addr
.address
.minimum
;
980 hdp
->hd_address
= ioremap(addr
.address
.minimum
, addr
.address
.address_length
);
982 if (hpet_is_known(hdp
)) {
983 iounmap(hdp
->hd_address
);
984 return AE_ALREADY_EXISTS
;
986 } else if (res
->type
== ACPI_RESOURCE_TYPE_FIXED_MEMORY32
) {
987 struct acpi_resource_fixed_memory32
*fixmem32
;
989 fixmem32
= &res
->data
.fixed_memory32
;
991 hdp
->hd_phys_address
= fixmem32
->address
;
992 hdp
->hd_address
= ioremap(fixmem32
->address
,
995 if (hpet_is_known(hdp
)) {
996 iounmap(hdp
->hd_address
);
997 return AE_ALREADY_EXISTS
;
999 } else if (res
->type
== ACPI_RESOURCE_TYPE_EXTENDED_IRQ
) {
1000 struct acpi_resource_extended_irq
*irqp
;
1003 irqp
= &res
->data
.extended_irq
;
1005 for (i
= 0; i
< irqp
->interrupt_count
; i
++) {
1006 if (hdp
->hd_nirqs
>= HPET_MAX_TIMERS
)
1009 irq
= acpi_register_gsi(NULL
, irqp
->interrupts
[i
],
1010 irqp
->triggering
, irqp
->polarity
);
1014 hdp
->hd_irq
[hdp
->hd_nirqs
] = irq
;
1022 static int hpet_acpi_add(struct acpi_device
*device
)
1025 struct hpet_data data
;
1027 memset(&data
, 0, sizeof(data
));
1030 acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
1031 hpet_resources
, &data
);
1033 if (ACPI_FAILURE(result
))
1036 if (!data
.hd_address
|| !data
.hd_nirqs
) {
1037 if (data
.hd_address
)
1038 iounmap(data
.hd_address
);
1039 printk("%s: no address or irqs in _CRS\n", __func__
);
1043 return hpet_alloc(&data
);
1046 static const struct acpi_device_id hpet_device_ids
[] = {
1051 static struct acpi_driver hpet_acpi_driver
= {
1053 .ids
= hpet_device_ids
,
1055 .add
= hpet_acpi_add
,
1059 static struct miscdevice hpet_misc
= { HPET_MINOR
, "hpet", &hpet_fops
};
1061 static int __init
hpet_init(void)
1065 result
= misc_register(&hpet_misc
);
1069 sysctl_header
= register_sysctl_table(dev_root
);
1071 result
= acpi_bus_register_driver(&hpet_acpi_driver
);
1074 unregister_sysctl_table(sysctl_header
);
1075 misc_deregister(&hpet_misc
);
1081 device_initcall(hpet_init
);
1084 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1085 MODULE_LICENSE("GPL");