2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode
;
87 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
88 MODULE_PARM_DESC(hpsa_simple_mode
,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id
[] = {
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
149 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
153 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products
[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access
},
161 {0x40800E11, "Smart Array 5i", &SA5B_access
},
162 {0x40820E11, "Smart Array 532", &SA5B_access
},
163 {0x40830E11, "Smart Array 5312", &SA5B_access
},
164 {0x409A0E11, "Smart Array 641", &SA5A_access
},
165 {0x409B0E11, "Smart Array 642", &SA5A_access
},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
168 {0x40910E11, "Smart Array 6i", &SA5A_access
},
169 {0x3225103C, "Smart Array P600", &SA5A_access
},
170 {0x3223103C, "Smart Array P800", &SA5A_access
},
171 {0x3234103C, "Smart Array P400", &SA5A_access
},
172 {0x3235103C, "Smart Array P400i", &SA5A_access
},
173 {0x3211103C, "Smart Array E200i", &SA5A_access
},
174 {0x3212103C, "Smart Array E200", &SA5A_access
},
175 {0x3213103C, "Smart Array E200i", &SA5A_access
},
176 {0x3214103C, "Smart Array E200i", &SA5A_access
},
177 {0x3215103C, "Smart Array E200i", &SA5A_access
},
178 {0x3237103C, "Smart Array E500", &SA5A_access
},
179 {0x323D103C, "Smart Array P700m", &SA5A_access
},
180 {0x3241103C, "Smart Array P212", &SA5_access
},
181 {0x3243103C, "Smart Array P410", &SA5_access
},
182 {0x3245103C, "Smart Array P410i", &SA5_access
},
183 {0x3247103C, "Smart Array P411", &SA5_access
},
184 {0x3249103C, "Smart Array P812", &SA5_access
},
185 {0x324A103C, "Smart Array P712m", &SA5_access
},
186 {0x324B103C, "Smart Array P711m", &SA5_access
},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access
},
189 {0x3351103C, "Smart Array P420", &SA5_access
},
190 {0x3352103C, "Smart Array P421", &SA5_access
},
191 {0x3353103C, "Smart Array P822", &SA5_access
},
192 {0x3354103C, "Smart Array P420i", &SA5_access
},
193 {0x3355103C, "Smart Array P220i", &SA5_access
},
194 {0x3356103C, "Smart Array P721m", &SA5_access
},
195 {0x1920103C, "Smart Array P430i", &SA5_access
},
196 {0x1921103C, "Smart Array P830i", &SA5_access
},
197 {0x1922103C, "Smart Array P430", &SA5_access
},
198 {0x1923103C, "Smart Array P431", &SA5_access
},
199 {0x1924103C, "Smart Array P830", &SA5_access
},
200 {0x1925103C, "Smart Array P831", &SA5_access
},
201 {0x1926103C, "Smart Array P731m", &SA5_access
},
202 {0x1928103C, "Smart Array P230i", &SA5_access
},
203 {0x1929103C, "Smart Array P530", &SA5_access
},
204 {0x21BD103C, "Smart Array P244br", &SA5_access
},
205 {0x21BE103C, "Smart Array P741m", &SA5_access
},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
209 {0x21C2103C, "Smart Array P440", &SA5_access
},
210 {0x21C3103C, "Smart Array P441", &SA5_access
},
211 {0x21C4103C, "Smart Array", &SA5_access
},
212 {0x21C5103C, "Smart Array P841", &SA5_access
},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
214 {0x21C7103C, "Smart HBA H240", &SA5_access
},
215 {0x21C8103C, "Smart HBA H241", &SA5_access
},
216 {0x21C9103C, "Smart Array", &SA5_access
},
217 {0x21CA103C, "Smart Array P246br", &SA5_access
},
218 {0x21CB103C, "Smart Array P840", &SA5_access
},
219 {0x21CC103C, "Smart Array", &SA5_access
},
220 {0x21CD103C, "Smart Array", &SA5_access
},
221 {0x21CE103C, "Smart HBA", &SA5_access
},
222 {0x05809005, "SmartHBA-SA", &SA5_access
},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
236 static struct scsi_transport_template
*hpsa_sas_transport_template
;
237 static int hpsa_add_sas_host(struct ctlr_info
*h
);
238 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
239 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
240 struct hpsa_scsi_dev_t
*device
);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
244 struct sas_rphy
*rphy
);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy
;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle
;
250 static int number_of_controllers
;
252 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
253 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
254 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
257 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
261 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
262 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
263 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
264 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
265 struct scsi_cmnd
*scmd
);
266 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
267 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
269 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
274 static void hpsa_scan_start(struct Scsi_Host
*);
275 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
276 unsigned long elapsed_time
);
277 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
280 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
281 static int hpsa_slave_configure(struct scsi_device
*sdev
);
282 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
284 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
285 static int check_for_unit_attention(struct ctlr_info
*h
,
286 struct CommandList
*c
);
287 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
288 struct CommandList
*c
);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket
, int num_buckets
,
291 int nsgs
, int min_blocks
, u32
*bucket_map
);
292 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
294 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
295 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
296 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
298 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
299 unsigned long *memory_bar
);
300 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
302 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
303 unsigned char lunaddr
[],
305 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
307 static inline void finish_cmd(struct CommandList
*c
);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
312 static void hpsa_flush_cache(struct ctlr_info
*h
);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
314 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
315 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
316 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
317 static u32
lockup_detected(struct ctlr_info
*h
);
318 static int detect_controller_lockup(struct ctlr_info
*h
);
319 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
321 struct ReportExtendedLUNdata
*buf
, int bufsize
);
322 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
323 unsigned char scsi3addr
[], u8 page
);
324 static int hpsa_luns_changed(struct ctlr_info
*h
);
325 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
326 struct hpsa_scsi_dev_t
*dev
,
327 unsigned char *scsi3addr
);
329 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
331 unsigned long *priv
= shost_priv(sdev
->host
);
332 return (struct ctlr_info
*) *priv
;
335 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
337 unsigned long *priv
= shost_priv(sh
);
338 return (struct ctlr_info
*) *priv
;
341 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
343 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
346 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
348 return c
->reset_pending
;
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
353 u8
*sense_key
, u8
*asc
, u8
*ascq
)
355 struct scsi_sense_hdr sshdr
;
362 if (sense_data_len
< 1)
365 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
367 *sense_key
= sshdr
.sense_key
;
373 static int check_for_unit_attention(struct ctlr_info
*h
,
374 struct CommandList
*c
)
376 u8 sense_key
, asc
, ascq
;
379 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
380 sense_len
= sizeof(c
->err_info
->SenseInfo
);
382 sense_len
= c
->err_info
->SenseLen
;
384 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
385 &sense_key
, &asc
, &ascq
);
386 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
391 dev_warn(&h
->pdev
->dev
,
392 "%s: a state change detected, command retried\n",
396 dev_warn(&h
->pdev
->dev
,
397 "%s: LUN failure detected\n", h
->devname
);
399 case REPORT_LUNS_CHANGED
:
400 dev_warn(&h
->pdev
->dev
,
401 "%s: report LUN data changed\n", h
->devname
);
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
408 dev_warn(&h
->pdev
->dev
,
409 "%s: a power on or device reset detected\n",
412 case UNIT_ATTENTION_CLEARED
:
413 dev_warn(&h
->pdev
->dev
,
414 "%s: unit attention cleared by another initiator\n",
418 dev_warn(&h
->pdev
->dev
,
419 "%s: unknown unit attention detected\n",
426 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
428 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
429 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
430 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
432 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
436 static u32
lockup_detected(struct ctlr_info
*h
);
437 static ssize_t
host_show_lockup_detected(struct device
*dev
,
438 struct device_attribute
*attr
, char *buf
)
442 struct Scsi_Host
*shost
= class_to_shost(dev
);
444 h
= shost_to_hba(shost
);
445 ld
= lockup_detected(h
);
447 return sprintf(buf
, "ld=%d\n", ld
);
450 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
451 struct device_attribute
*attr
,
452 const char *buf
, size_t count
)
456 struct Scsi_Host
*shost
= class_to_shost(dev
);
459 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
461 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
462 strncpy(tmpbuf
, buf
, len
);
464 if (sscanf(tmpbuf
, "%d", &status
) != 1)
466 h
= shost_to_hba(shost
);
467 h
->acciopath_status
= !!status
;
468 dev_warn(&h
->pdev
->dev
,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h
->acciopath_status
? "enabled" : "disabled");
474 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
475 struct device_attribute
*attr
,
476 const char *buf
, size_t count
)
478 int debug_level
, len
;
480 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
485 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
486 strncpy(tmpbuf
, buf
, len
);
488 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
492 h
= shost_to_hba(shost
);
493 h
->raid_offload_debug
= debug_level
;
494 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
495 h
->raid_offload_debug
);
499 static ssize_t
host_store_rescan(struct device
*dev
,
500 struct device_attribute
*attr
,
501 const char *buf
, size_t count
)
504 struct Scsi_Host
*shost
= class_to_shost(dev
);
505 h
= shost_to_hba(shost
);
506 hpsa_scan_start(h
->scsi_host
);
510 static ssize_t
host_show_firmware_revision(struct device
*dev
,
511 struct device_attribute
*attr
, char *buf
)
514 struct Scsi_Host
*shost
= class_to_shost(dev
);
515 unsigned char *fwrev
;
517 h
= shost_to_hba(shost
);
518 if (!h
->hba_inquiry_data
)
520 fwrev
= &h
->hba_inquiry_data
[32];
521 return snprintf(buf
, 20, "%c%c%c%c\n",
522 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
525 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
526 struct device_attribute
*attr
, char *buf
)
528 struct Scsi_Host
*shost
= class_to_shost(dev
);
529 struct ctlr_info
*h
= shost_to_hba(shost
);
531 return snprintf(buf
, 20, "%d\n",
532 atomic_read(&h
->commands_outstanding
));
535 static ssize_t
host_show_transport_mode(struct device
*dev
,
536 struct device_attribute
*attr
, char *buf
)
539 struct Scsi_Host
*shost
= class_to_shost(dev
);
541 h
= shost_to_hba(shost
);
542 return snprintf(buf
, 20, "%s\n",
543 h
->transMethod
& CFGTBL_Trans_Performant
?
544 "performant" : "simple");
547 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
548 struct device_attribute
*attr
, char *buf
)
551 struct Scsi_Host
*shost
= class_to_shost(dev
);
553 h
= shost_to_hba(shost
);
554 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
555 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller
[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller
[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
603 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
607 for (i
= 0; i
< nelems
; i
++)
608 if (a
[i
] == board_id
)
613 static int ctlr_is_hard_resettable(u32 board_id
)
615 return !board_id_in_array(unresettable_controller
,
616 ARRAY_SIZE(unresettable_controller
), board_id
);
619 static int ctlr_is_soft_resettable(u32 board_id
)
621 return !board_id_in_array(soft_unresettable_controller
,
622 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
625 static int ctlr_is_resettable(u32 board_id
)
627 return ctlr_is_hard_resettable(board_id
) ||
628 ctlr_is_soft_resettable(board_id
);
631 static ssize_t
host_show_resettable(struct device
*dev
,
632 struct device_attribute
*attr
, char *buf
)
635 struct Scsi_Host
*shost
= class_to_shost(dev
);
637 h
= shost_to_hba(shost
);
638 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
643 return (scsi3addr
[3] & 0xC0) == 0x40;
646 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
661 return !device
->physical_device
;
664 static ssize_t
raid_level_show(struct device
*dev
,
665 struct device_attribute
*attr
, char *buf
)
668 unsigned char rlevel
;
670 struct scsi_device
*sdev
;
671 struct hpsa_scsi_dev_t
*hdev
;
674 sdev
= to_scsi_device(dev
);
675 h
= sdev_to_hba(sdev
);
676 spin_lock_irqsave(&h
->lock
, flags
);
677 hdev
= sdev
->hostdata
;
679 spin_unlock_irqrestore(&h
->lock
, flags
);
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev
)) {
685 spin_unlock_irqrestore(&h
->lock
, flags
);
686 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
690 rlevel
= hdev
->raid_level
;
691 spin_unlock_irqrestore(&h
->lock
, flags
);
692 if (rlevel
> RAID_UNKNOWN
)
693 rlevel
= RAID_UNKNOWN
;
694 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
698 static ssize_t
lunid_show(struct device
*dev
,
699 struct device_attribute
*attr
, char *buf
)
702 struct scsi_device
*sdev
;
703 struct hpsa_scsi_dev_t
*hdev
;
705 unsigned char lunid
[8];
707 sdev
= to_scsi_device(dev
);
708 h
= sdev_to_hba(sdev
);
709 spin_lock_irqsave(&h
->lock
, flags
);
710 hdev
= sdev
->hostdata
;
712 spin_unlock_irqrestore(&h
->lock
, flags
);
715 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
716 spin_unlock_irqrestore(&h
->lock
, flags
);
717 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
720 static ssize_t
unique_id_show(struct device
*dev
,
721 struct device_attribute
*attr
, char *buf
)
724 struct scsi_device
*sdev
;
725 struct hpsa_scsi_dev_t
*hdev
;
727 unsigned char sn
[16];
729 sdev
= to_scsi_device(dev
);
730 h
= sdev_to_hba(sdev
);
731 spin_lock_irqsave(&h
->lock
, flags
);
732 hdev
= sdev
->hostdata
;
734 spin_unlock_irqrestore(&h
->lock
, flags
);
737 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
738 spin_unlock_irqrestore(&h
->lock
, flags
);
739 return snprintf(buf
, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn
[0], sn
[1], sn
[2], sn
[3],
743 sn
[4], sn
[5], sn
[6], sn
[7],
744 sn
[8], sn
[9], sn
[10], sn
[11],
745 sn
[12], sn
[13], sn
[14], sn
[15]);
748 static ssize_t
sas_address_show(struct device
*dev
,
749 struct device_attribute
*attr
, char *buf
)
752 struct scsi_device
*sdev
;
753 struct hpsa_scsi_dev_t
*hdev
;
757 sdev
= to_scsi_device(dev
);
758 h
= sdev_to_hba(sdev
);
759 spin_lock_irqsave(&h
->lock
, flags
);
760 hdev
= sdev
->hostdata
;
761 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
762 spin_unlock_irqrestore(&h
->lock
, flags
);
765 sas_address
= hdev
->sas_address
;
766 spin_unlock_irqrestore(&h
->lock
, flags
);
768 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
771 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
772 struct device_attribute
*attr
, char *buf
)
775 struct scsi_device
*sdev
;
776 struct hpsa_scsi_dev_t
*hdev
;
780 sdev
= to_scsi_device(dev
);
781 h
= sdev_to_hba(sdev
);
782 spin_lock_irqsave(&h
->lock
, flags
);
783 hdev
= sdev
->hostdata
;
785 spin_unlock_irqrestore(&h
->lock
, flags
);
788 offload_enabled
= hdev
->offload_enabled
;
789 spin_unlock_irqrestore(&h
->lock
, flags
);
791 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
792 return snprintf(buf
, 20, "%d\n", offload_enabled
);
794 return snprintf(buf
, 40, "%s\n",
795 "Not applicable for a controller");
799 static ssize_t
path_info_show(struct device
*dev
,
800 struct device_attribute
*attr
, char *buf
)
803 struct scsi_device
*sdev
;
804 struct hpsa_scsi_dev_t
*hdev
;
810 u8 path_map_index
= 0;
812 unsigned char phys_connector
[2];
814 sdev
= to_scsi_device(dev
);
815 h
= sdev_to_hba(sdev
);
816 spin_lock_irqsave(&h
->devlock
, flags
);
817 hdev
= sdev
->hostdata
;
819 spin_unlock_irqrestore(&h
->devlock
, flags
);
824 for (i
= 0; i
< MAX_PATHS
; i
++) {
825 path_map_index
= 1<<i
;
826 if (i
== hdev
->active_path_index
)
828 else if (hdev
->path_map
& path_map_index
)
833 output_len
+= scnprintf(buf
+ output_len
,
834 PAGE_SIZE
- output_len
,
835 "[%d:%d:%d:%d] %20.20s ",
836 h
->scsi_host
->host_no
,
837 hdev
->bus
, hdev
->target
, hdev
->lun
,
838 scsi_device_type(hdev
->devtype
));
840 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
841 output_len
+= scnprintf(buf
+ output_len
,
842 PAGE_SIZE
- output_len
,
848 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
849 sizeof(phys_connector
));
850 if (phys_connector
[0] < '0')
851 phys_connector
[0] = '0';
852 if (phys_connector
[1] < '0')
853 phys_connector
[1] = '0';
854 output_len
+= scnprintf(buf
+ output_len
,
855 PAGE_SIZE
- output_len
,
858 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
859 hdev
->expose_device
) {
860 if (box
== 0 || box
== 0xFF) {
861 output_len
+= scnprintf(buf
+ output_len
,
862 PAGE_SIZE
- output_len
,
866 output_len
+= scnprintf(buf
+ output_len
,
867 PAGE_SIZE
- output_len
,
868 "BOX: %hhu BAY: %hhu %s\n",
871 } else if (box
!= 0 && box
!= 0xFF) {
872 output_len
+= scnprintf(buf
+ output_len
,
873 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
876 output_len
+= scnprintf(buf
+ output_len
,
877 PAGE_SIZE
- output_len
, "%s\n", active
);
880 spin_unlock_irqrestore(&h
->devlock
, flags
);
884 static ssize_t
host_show_ctlr_num(struct device
*dev
,
885 struct device_attribute
*attr
, char *buf
)
888 struct Scsi_Host
*shost
= class_to_shost(dev
);
890 h
= shost_to_hba(shost
);
891 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
894 static ssize_t
host_show_legacy_board(struct device
*dev
,
895 struct device_attribute
*attr
, char *buf
)
898 struct Scsi_Host
*shost
= class_to_shost(dev
);
900 h
= shost_to_hba(shost
);
901 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
904 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
905 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
906 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
907 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
908 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
910 host_show_hp_ssd_smart_path_enabled
, NULL
);
911 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
912 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
913 host_show_hp_ssd_smart_path_status
,
914 host_store_hp_ssd_smart_path_status
);
915 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
916 host_store_raid_offload_debug
);
917 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
918 host_show_firmware_revision
, NULL
);
919 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
920 host_show_commands_outstanding
, NULL
);
921 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
922 host_show_transport_mode
, NULL
);
923 static DEVICE_ATTR(resettable
, S_IRUGO
,
924 host_show_resettable
, NULL
);
925 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
926 host_show_lockup_detected
, NULL
);
927 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
928 host_show_ctlr_num
, NULL
);
929 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
930 host_show_legacy_board
, NULL
);
932 static struct device_attribute
*hpsa_sdev_attrs
[] = {
933 &dev_attr_raid_level
,
936 &dev_attr_hp_ssd_smart_path_enabled
,
938 &dev_attr_sas_address
,
942 static struct device_attribute
*hpsa_shost_attrs
[] = {
944 &dev_attr_firmware_revision
,
945 &dev_attr_commands_outstanding
,
946 &dev_attr_transport_mode
,
947 &dev_attr_resettable
,
948 &dev_attr_hp_ssd_smart_path_status
,
949 &dev_attr_raid_offload_debug
,
950 &dev_attr_lockup_detected
,
952 &dev_attr_legacy_board
,
956 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 static struct scsi_host_template hpsa_driver_template
= {
960 .module
= THIS_MODULE
,
963 .queuecommand
= hpsa_scsi_queue_command
,
964 .scan_start
= hpsa_scan_start
,
965 .scan_finished
= hpsa_scan_finished
,
966 .change_queue_depth
= hpsa_change_queue_depth
,
968 .use_clustering
= ENABLE_CLUSTERING
,
969 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
971 .slave_alloc
= hpsa_slave_alloc
,
972 .slave_configure
= hpsa_slave_configure
,
973 .slave_destroy
= hpsa_slave_destroy
,
975 .compat_ioctl
= hpsa_compat_ioctl
,
977 .sdev_attrs
= hpsa_sdev_attrs
,
978 .shost_attrs
= hpsa_shost_attrs
,
983 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
986 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
988 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
989 return h
->access
.command_completed(h
, q
);
991 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
992 return h
->access
.command_completed(h
, q
);
994 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
995 a
= rq
->head
[rq
->current_entry
];
997 atomic_dec(&h
->commands_outstanding
);
1001 /* Check for wraparound */
1002 if (rq
->current_entry
== h
->max_commands
) {
1003 rq
->current_entry
= 0;
1004 rq
->wraparound
^= 1;
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1044 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1045 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1046 if (unlikely(!h
->msix_vectors
))
1048 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1049 c
->Header
.ReplyQueue
=
1050 raw_smp_processor_id() % h
->nreply_queues
;
1052 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1056 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1057 struct CommandList
*c
,
1060 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1063 * Tell the controller to post the reply to the queue for this
1064 * processor. This seems to give the best I/O throughput.
1066 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1067 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1069 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1071 * Set the bits in the address sent down to include:
1072 * - performant mode bit (bit 0)
1073 * - pull count (bits 1-3)
1074 * - command type (bits 4-6)
1076 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1077 IOACCEL1_BUSADDR_CMDTYPE
;
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1081 struct CommandList
*c
,
1084 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1085 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1087 /* Tell the controller to post the reply to the queue for this
1088 * processor. This seems to give the best I/O throughput.
1090 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1091 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1093 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1099 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1102 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1103 struct CommandList
*c
,
1106 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1112 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1113 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1115 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1117 * Set the bits in the address sent down to include:
1118 * - performant mode bit not used in ioaccel mode 2
1119 * - pull count (bits 0-3)
1120 * - command type isn't needed for ioaccel2
1122 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1125 static int is_firmware_flash_cmd(u8
*cdb
)
1127 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1131 * During firmware flash, the heartbeat register may not update as frequently
1132 * as it should. So we dial down lockup detection during firmware flash. and
1133 * dial it back up when firmware flash completes.
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1139 struct CommandList
*c
)
1141 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1143 atomic_inc(&h
->firmware_flash_in_progress
);
1144 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1148 struct CommandList
*c
)
1150 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1151 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1152 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1156 struct CommandList
*c
, int reply_queue
)
1158 dial_down_lockup_detection_during_fw_flash(h
, c
);
1159 atomic_inc(&h
->commands_outstanding
);
1160 switch (c
->cmd_type
) {
1162 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1163 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1166 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1167 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1170 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1171 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1174 set_performant_mode(h
, c
, reply_queue
);
1175 h
->access
.submit_command(h
, c
);
1179 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1181 if (unlikely(hpsa_is_pending_event(c
)))
1182 return finish_cmd(c
);
1184 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1187 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1189 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1192 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1194 if (!h
->hba_inquiry_data
)
1196 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1201 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1202 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1204 /* finds an unused bus, target, lun for a new physical device
1205 * assumes h->devlock is held
1208 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1210 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1212 for (i
= 0; i
< h
->ndevices
; i
++) {
1213 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1214 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1217 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1218 if (i
< HPSA_MAX_DEVICES
) {
1227 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1228 struct hpsa_scsi_dev_t
*dev
, char *description
)
1230 #define LABEL_SIZE 25
1231 char label
[LABEL_SIZE
];
1233 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1236 switch (dev
->devtype
) {
1238 snprintf(label
, LABEL_SIZE
, "controller");
1240 case TYPE_ENCLOSURE
:
1241 snprintf(label
, LABEL_SIZE
, "enclosure");
1246 snprintf(label
, LABEL_SIZE
, "external");
1247 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1248 snprintf(label
, LABEL_SIZE
, "%s",
1249 raid_label
[PHYSICAL_DRIVE
]);
1251 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1252 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1253 raid_label
[dev
->raid_level
]);
1256 snprintf(label
, LABEL_SIZE
, "rom");
1259 snprintf(label
, LABEL_SIZE
, "tape");
1261 case TYPE_MEDIUM_CHANGER
:
1262 snprintf(label
, LABEL_SIZE
, "changer");
1265 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1269 dev_printk(level
, &h
->pdev
->dev
,
1270 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1273 scsi_device_type(dev
->devtype
),
1277 dev
->offload_config
? '+' : '-',
1278 dev
->offload_to_be_enabled
? '+' : '-',
1279 dev
->expose_device
);
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1284 struct hpsa_scsi_dev_t
*device
,
1285 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1287 /* assumes h->devlock is held */
1288 int n
= h
->ndevices
;
1290 unsigned char addr1
[8], addr2
[8];
1291 struct hpsa_scsi_dev_t
*sd
;
1293 if (n
>= HPSA_MAX_DEVICES
) {
1294 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1299 /* physical devices do not have lun or target assigned until now. */
1300 if (device
->lun
!= -1)
1301 /* Logical device, lun is already assigned. */
1304 /* If this device a non-zero lun of a multi-lun device
1305 * byte 4 of the 8-byte LUN addr will contain the logical
1306 * unit no, zero otherwise.
1308 if (device
->scsi3addr
[4] == 0) {
1309 /* This is not a non-zero lun of a multi-lun device */
1310 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1311 device
->bus
, &device
->target
, &device
->lun
) != 0)
1316 /* This is a non-zero lun of a multi-lun device.
1317 * Search through our list and find the device which
1318 * has the same 8 byte LUN address, excepting byte 4 and 5.
1319 * Assign the same bus and target for this new LUN.
1320 * Use the logical unit number from the firmware.
1322 memcpy(addr1
, device
->scsi3addr
, 8);
1325 for (i
= 0; i
< n
; i
++) {
1327 memcpy(addr2
, sd
->scsi3addr
, 8);
1330 /* differ only in byte 4 and 5? */
1331 if (memcmp(addr1
, addr2
, 8) == 0) {
1332 device
->bus
= sd
->bus
;
1333 device
->target
= sd
->target
;
1334 device
->lun
= device
->scsi3addr
[4];
1338 if (device
->lun
== -1) {
1339 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1340 " suspect firmware bug or unsupported hardware "
1341 "configuration.\n");
1349 added
[*nadded
] = device
;
1351 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1352 device
->expose_device
? "added" : "masked");
1357 * Called during a scan operation.
1359 * Update an entry in h->dev[] array.
1361 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1362 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1364 /* assumes h->devlock is held */
1365 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1367 /* Raid level changed. */
1368 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1371 * ioacccel_handle may have changed for a dual domain disk
1373 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1375 /* Raid offload parameters changed. Careful about the ordering. */
1376 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1378 * if drive is newly offload_enabled, we want to copy the
1379 * raid map data first. If previously offload_enabled and
1380 * offload_config were set, raid map data had better be
1381 * the same as it was before. If raid map data has changed
1382 * then it had better be the case that
1383 * h->dev[entry]->offload_enabled is currently 0.
1385 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1386 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1388 if (new_entry
->offload_to_be_enabled
) {
1389 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1390 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1393 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1394 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1395 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1398 * We can turn off ioaccel offload now, but need to delay turning
1399 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400 * can't do that until all the devices are updated.
1402 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1405 * turn ioaccel off immediately if told to do so.
1407 if (!new_entry
->offload_to_be_enabled
)
1408 h
->dev
[entry
]->offload_enabled
= 0;
1410 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1415 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1416 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1417 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1419 /* assumes h->devlock is held */
1420 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1421 removed
[*nremoved
] = h
->dev
[entry
];
1425 * New physical devices won't have target/lun assigned yet
1426 * so we need to preserve the values in the slot we are replacing.
1428 if (new_entry
->target
== -1) {
1429 new_entry
->target
= h
->dev
[entry
]->target
;
1430 new_entry
->lun
= h
->dev
[entry
]->lun
;
1433 h
->dev
[entry
] = new_entry
;
1434 added
[*nadded
] = new_entry
;
1437 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1442 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1444 /* assumes h->devlock is held */
1446 struct hpsa_scsi_dev_t
*sd
;
1448 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1451 removed
[*nremoved
] = h
->dev
[entry
];
1454 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1455 h
->dev
[i
] = h
->dev
[i
+1];
1457 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461 (a)[7] == (b)[7] && \
1462 (a)[6] == (b)[6] && \
1463 (a)[5] == (b)[5] && \
1464 (a)[4] == (b)[4] && \
1465 (a)[3] == (b)[3] && \
1466 (a)[2] == (b)[2] && \
1467 (a)[1] == (b)[1] && \
1470 static void fixup_botched_add(struct ctlr_info
*h
,
1471 struct hpsa_scsi_dev_t
*added
)
1473 /* called when scsi_add_device fails in order to re-adjust
1474 * h->dev[] to match the mid layer's view.
1476 unsigned long flags
;
1479 spin_lock_irqsave(&h
->lock
, flags
);
1480 for (i
= 0; i
< h
->ndevices
; i
++) {
1481 if (h
->dev
[i
] == added
) {
1482 for (j
= i
; j
< h
->ndevices
-1; j
++)
1483 h
->dev
[j
] = h
->dev
[j
+1];
1488 spin_unlock_irqrestore(&h
->lock
, flags
);
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1493 struct hpsa_scsi_dev_t
*dev2
)
1495 /* we compare everything except lun and target as these
1496 * are not yet assigned. Compare parts likely
1499 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1500 sizeof(dev1
->scsi3addr
)) != 0)
1502 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1503 sizeof(dev1
->device_id
)) != 0)
1505 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1507 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1509 if (dev1
->devtype
!= dev2
->devtype
)
1511 if (dev1
->bus
!= dev2
->bus
)
1516 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1517 struct hpsa_scsi_dev_t
*dev2
)
1519 /* Device attributes that can change, but don't mean
1520 * that the device is a different device, nor that the OS
1521 * needs to be told anything about the change.
1523 if (dev1
->raid_level
!= dev2
->raid_level
)
1525 if (dev1
->offload_config
!= dev2
->offload_config
)
1527 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1529 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1530 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1533 * This can happen for dual domain devices. An active
1534 * path change causes the ioaccel handle to change
1536 * for example note the handle differences between p0 and p1
1537 * Device WWN ,WWN hash,Handle
1538 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1546 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1547 * and return needle location in *index. If scsi3addr matches, but not
1548 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549 * location in *index.
1550 * In the case of a minor device attribute change, such as RAID level, just
1551 * return DEVICE_UPDATED, along with the updated device's location in index.
1552 * If needle not found, return DEVICE_NOT_FOUND.
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1555 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1564 return DEVICE_NOT_FOUND
;
1566 for (i
= 0; i
< haystack_size
; i
++) {
1567 if (haystack
[i
] == NULL
) /* previously removed. */
1569 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1571 if (device_is_the_same(needle
, haystack
[i
])) {
1572 if (device_updated(needle
, haystack
[i
]))
1573 return DEVICE_UPDATED
;
1576 /* Keep offline devices offline */
1577 if (needle
->volume_offline
)
1578 return DEVICE_NOT_FOUND
;
1579 return DEVICE_CHANGED
;
1584 return DEVICE_NOT_FOUND
;
1587 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1588 unsigned char scsi3addr
[])
1590 struct offline_device_entry
*device
;
1591 unsigned long flags
;
1593 /* Check to see if device is already on the list */
1594 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1595 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1596 if (memcmp(device
->scsi3addr
, scsi3addr
,
1597 sizeof(device
->scsi3addr
)) == 0) {
1598 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1602 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1604 /* Device is not on the list, add it. */
1605 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1609 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1610 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1611 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1612 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1617 struct hpsa_scsi_dev_t
*sd
)
1619 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1620 dev_info(&h
->pdev
->dev
,
1621 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622 h
->scsi_host
->host_no
,
1623 sd
->bus
, sd
->target
, sd
->lun
);
1624 switch (sd
->volume_offline
) {
1627 case HPSA_LV_UNDERGOING_ERASE
:
1628 dev_info(&h
->pdev
->dev
,
1629 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630 h
->scsi_host
->host_no
,
1631 sd
->bus
, sd
->target
, sd
->lun
);
1633 case HPSA_LV_NOT_AVAILABLE
:
1634 dev_info(&h
->pdev
->dev
,
1635 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636 h
->scsi_host
->host_no
,
1637 sd
->bus
, sd
->target
, sd
->lun
);
1639 case HPSA_LV_UNDERGOING_RPI
:
1640 dev_info(&h
->pdev
->dev
,
1641 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642 h
->scsi_host
->host_no
,
1643 sd
->bus
, sd
->target
, sd
->lun
);
1645 case HPSA_LV_PENDING_RPI
:
1646 dev_info(&h
->pdev
->dev
,
1647 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648 h
->scsi_host
->host_no
,
1649 sd
->bus
, sd
->target
, sd
->lun
);
1651 case HPSA_LV_ENCRYPTED_NO_KEY
:
1652 dev_info(&h
->pdev
->dev
,
1653 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654 h
->scsi_host
->host_no
,
1655 sd
->bus
, sd
->target
, sd
->lun
);
1657 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1658 dev_info(&h
->pdev
->dev
,
1659 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660 h
->scsi_host
->host_no
,
1661 sd
->bus
, sd
->target
, sd
->lun
);
1663 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1664 dev_info(&h
->pdev
->dev
,
1665 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666 h
->scsi_host
->host_no
,
1667 sd
->bus
, sd
->target
, sd
->lun
);
1669 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1670 dev_info(&h
->pdev
->dev
,
1671 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672 h
->scsi_host
->host_no
,
1673 sd
->bus
, sd
->target
, sd
->lun
);
1675 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1676 dev_info(&h
->pdev
->dev
,
1677 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678 h
->scsi_host
->host_no
,
1679 sd
->bus
, sd
->target
, sd
->lun
);
1681 case HPSA_LV_PENDING_ENCRYPTION
:
1682 dev_info(&h
->pdev
->dev
,
1683 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684 h
->scsi_host
->host_no
,
1685 sd
->bus
, sd
->target
, sd
->lun
);
1687 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1688 dev_info(&h
->pdev
->dev
,
1689 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690 h
->scsi_host
->host_no
,
1691 sd
->bus
, sd
->target
, sd
->lun
);
1697 * Figure the list of physical drive pointers for a logical drive with
1698 * raid offload configured.
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1701 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1702 struct hpsa_scsi_dev_t
*logical_drive
)
1704 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1705 struct raid_map_disk_data
*dd
= &map
->data
[0];
1707 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1708 le16_to_cpu(map
->metadata_disks_per_row
);
1709 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1710 le16_to_cpu(map
->layout_map_count
) *
1711 total_disks_per_row
;
1712 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1713 total_disks_per_row
;
1716 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1717 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1719 logical_drive
->nphysical_disks
= nraid_map_entries
;
1722 for (i
= 0; i
< nraid_map_entries
; i
++) {
1723 logical_drive
->phys_disk
[i
] = NULL
;
1724 if (!logical_drive
->offload_config
)
1726 for (j
= 0; j
< ndevices
; j
++) {
1729 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1730 dev
[j
]->devtype
!= TYPE_ZBC
)
1732 if (is_logical_device(dev
[j
]))
1734 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1737 logical_drive
->phys_disk
[i
] = dev
[j
];
1739 qdepth
= min(h
->nr_cmds
, qdepth
+
1740 logical_drive
->phys_disk
[i
]->queue_depth
);
1745 * This can happen if a physical drive is removed and
1746 * the logical drive is degraded. In that case, the RAID
1747 * map data will refer to a physical disk which isn't actually
1748 * present. And in that case offload_enabled should already
1749 * be 0, but we'll turn it off here just in case
1751 if (!logical_drive
->phys_disk
[i
]) {
1752 dev_warn(&h
->pdev
->dev
,
1753 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755 h
->scsi_host
->host_no
, logical_drive
->bus
,
1756 logical_drive
->target
, logical_drive
->lun
);
1757 logical_drive
->offload_enabled
= 0;
1758 logical_drive
->offload_to_be_enabled
= 0;
1759 logical_drive
->queue_depth
= 8;
1762 if (nraid_map_entries
)
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1767 logical_drive
->queue_depth
= qdepth
;
1769 if (logical_drive
->external
)
1770 logical_drive
->queue_depth
= EXTERNAL_QD
;
1772 logical_drive
->queue_depth
= h
->nr_cmds
;
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1777 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1781 for (i
= 0; i
< ndevices
; i
++) {
1784 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1785 dev
[i
]->devtype
!= TYPE_ZBC
)
1787 if (!is_logical_device(dev
[i
]))
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1809 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1810 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1814 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1821 if (is_logical_device(device
)) /* RAID */
1822 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1823 device
->target
, device
->lun
);
1825 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1831 struct hpsa_scsi_dev_t
*dev
)
1836 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1837 struct CommandList
*c
= h
->cmd_pool
+ i
;
1838 int refcount
= atomic_inc_return(&c
->refcount
);
1840 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1842 unsigned long flags
;
1844 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c
))
1847 spin_unlock_irqrestore(&h
->lock
, flags
);
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1857 struct hpsa_scsi_dev_t
*device
)
1863 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1872 dev_warn(&h
->pdev
->dev
,
1873 "%s: removing device with %d outstanding commands!\n",
1877 static void hpsa_remove_device(struct ctlr_info
*h
,
1878 struct hpsa_scsi_dev_t
*device
)
1880 struct scsi_device
*sdev
= NULL
;
1886 * Allow for commands to drain
1888 device
->removed
= 1;
1889 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1891 if (is_logical_device(device
)) { /* RAID */
1892 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1893 device
->target
, device
->lun
);
1895 scsi_remove_device(sdev
);
1896 scsi_device_put(sdev
);
1899 * We don't expect to get here. Future commands
1900 * to this device will get a selection timeout as
1901 * if the device were gone.
1903 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1904 "didn't find device for removal.");
1908 hpsa_remove_sas_device(device
);
1912 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1913 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1915 /* sd contains scsi3 addresses and devtypes, and inquiry
1916 * data. This function takes what's in sd to be the current
1917 * reality and updates h->dev[] to reflect that reality.
1919 int i
, entry
, device_change
, changes
= 0;
1920 struct hpsa_scsi_dev_t
*csd
;
1921 unsigned long flags
;
1922 struct hpsa_scsi_dev_t
**added
, **removed
;
1923 int nadded
, nremoved
;
1926 * A reset can cause a device status to change
1927 * re-schedule the scan to see what happened.
1929 spin_lock_irqsave(&h
->reset_lock
, flags
);
1930 if (h
->reset_in_progress
) {
1931 h
->drv_req_rescan
= 1;
1932 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1935 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1937 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1938 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1940 if (!added
|| !removed
) {
1941 dev_warn(&h
->pdev
->dev
, "out of memory in "
1942 "adjust_hpsa_scsi_table\n");
1946 spin_lock_irqsave(&h
->devlock
, flags
);
1948 /* find any devices in h->dev[] that are not in
1949 * sd[] and remove them from h->dev[], and for any
1950 * devices which have changed, remove the old device
1951 * info and add the new device info.
1952 * If minor device attributes change, just update
1953 * the existing device structure.
1958 while (i
< h
->ndevices
) {
1960 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1961 if (device_change
== DEVICE_NOT_FOUND
) {
1963 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1964 continue; /* remove ^^^, hence i not incremented */
1965 } else if (device_change
== DEVICE_CHANGED
) {
1967 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1968 added
, &nadded
, removed
, &nremoved
);
1969 /* Set it to NULL to prevent it from being freed
1970 * at the bottom of hpsa_update_scsi_devices()
1973 } else if (device_change
== DEVICE_UPDATED
) {
1974 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1979 /* Now, make sure every device listed in sd[] is also
1980 * listed in h->dev[], adding them if they aren't found
1983 for (i
= 0; i
< nsds
; i
++) {
1984 if (!sd
[i
]) /* if already added above. */
1987 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988 * as the SCSI mid-layer does not handle such devices well.
1989 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990 * at 160Hz, and prevents the system from coming up.
1992 if (sd
[i
]->volume_offline
) {
1993 hpsa_show_volume_status(h
, sd
[i
]);
1994 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1998 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1999 h
->ndevices
, &entry
);
2000 if (device_change
== DEVICE_NOT_FOUND
) {
2002 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
2004 sd
[i
] = NULL
; /* prevent from being freed later. */
2005 } else if (device_change
== DEVICE_CHANGED
) {
2006 /* should never happen... */
2008 dev_warn(&h
->pdev
->dev
,
2009 "device unexpectedly changed.\n");
2010 /* but if it does happen, we just ignore that device */
2013 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2016 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017 * any logical drives that need it enabled.
2019 * The raid map should be current by now.
2021 * We are updating the device list used for I/O requests.
2023 for (i
= 0; i
< h
->ndevices
; i
++) {
2024 if (h
->dev
[i
] == NULL
)
2026 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2029 spin_unlock_irqrestore(&h
->devlock
, flags
);
2031 /* Monitor devices which are in one of several NOT READY states to be
2032 * brought online later. This must be done without holding h->devlock,
2033 * so don't touch h->dev[]
2035 for (i
= 0; i
< nsds
; i
++) {
2036 if (!sd
[i
]) /* if already added above. */
2038 if (sd
[i
]->volume_offline
)
2039 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2042 /* Don't notify scsi mid layer of any changes the first time through
2043 * (or if there are no changes) scsi_scan_host will do it later the
2044 * first time through.
2049 /* Notify scsi mid layer of any removed devices */
2050 for (i
= 0; i
< nremoved
; i
++) {
2051 if (removed
[i
] == NULL
)
2053 if (removed
[i
]->expose_device
)
2054 hpsa_remove_device(h
, removed
[i
]);
2059 /* Notify scsi mid layer of any added devices */
2060 for (i
= 0; i
< nadded
; i
++) {
2063 if (added
[i
] == NULL
)
2065 if (!(added
[i
]->expose_device
))
2067 rc
= hpsa_add_device(h
, added
[i
]);
2070 dev_warn(&h
->pdev
->dev
,
2071 "addition failed %d, device not added.", rc
);
2072 /* now we have to remove it from h->dev,
2073 * since it didn't get added to scsi mid layer
2075 fixup_botched_add(h
, added
[i
]);
2076 h
->drv_req_rescan
= 1;
2085 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086 * Assume's h->devlock is held.
2088 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2089 int bus
, int target
, int lun
)
2092 struct hpsa_scsi_dev_t
*sd
;
2094 for (i
= 0; i
< h
->ndevices
; i
++) {
2096 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2102 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2104 struct hpsa_scsi_dev_t
*sd
= NULL
;
2105 unsigned long flags
;
2106 struct ctlr_info
*h
;
2108 h
= sdev_to_hba(sdev
);
2109 spin_lock_irqsave(&h
->devlock
, flags
);
2110 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2111 struct scsi_target
*starget
;
2112 struct sas_rphy
*rphy
;
2114 starget
= scsi_target(sdev
);
2115 rphy
= target_to_rphy(starget
);
2116 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2118 sd
->target
= sdev_id(sdev
);
2119 sd
->lun
= sdev
->lun
;
2123 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2124 sdev_id(sdev
), sdev
->lun
);
2126 if (sd
&& sd
->expose_device
) {
2127 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2128 sdev
->hostdata
= sd
;
2130 sdev
->hostdata
= NULL
;
2131 spin_unlock_irqrestore(&h
->devlock
, flags
);
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2138 struct hpsa_scsi_dev_t
*sd
;
2141 sd
= sdev
->hostdata
;
2142 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2146 queue_depth
= EXTERNAL_QD
;
2148 queue_depth
= sd
->queue_depth
!= 0 ?
2149 sd
->queue_depth
: sdev
->host
->can_queue
;
2151 queue_depth
= sdev
->host
->can_queue
;
2153 scsi_change_queue_depth(sdev
, queue_depth
);
2158 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2160 /* nothing to do. */
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2167 if (!h
->ioaccel2_cmd_sg_list
)
2169 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2170 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2171 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2173 kfree(h
->ioaccel2_cmd_sg_list
);
2174 h
->ioaccel2_cmd_sg_list
= NULL
;
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2181 if (h
->chainsize
<= 0)
2184 h
->ioaccel2_cmd_sg_list
=
2185 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2187 if (!h
->ioaccel2_cmd_sg_list
)
2189 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2190 h
->ioaccel2_cmd_sg_list
[i
] =
2191 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2192 h
->maxsgentries
, GFP_KERNEL
);
2193 if (!h
->ioaccel2_cmd_sg_list
[i
])
2199 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2207 if (!h
->cmd_sg_list
)
2209 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2210 kfree(h
->cmd_sg_list
[i
]);
2211 h
->cmd_sg_list
[i
] = NULL
;
2213 kfree(h
->cmd_sg_list
);
2214 h
->cmd_sg_list
= NULL
;
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2221 if (h
->chainsize
<= 0)
2224 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2226 if (!h
->cmd_sg_list
)
2229 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2230 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2231 h
->chainsize
, GFP_KERNEL
);
2232 if (!h
->cmd_sg_list
[i
])
2239 hpsa_free_sg_chain_blocks(h
);
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2244 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2246 struct ioaccel2_sg_element
*chain_block
;
2250 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2251 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2252 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2254 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2255 /* prevent subsequent unmapping */
2256 cp
->sg
->address
= 0;
2259 cp
->sg
->address
= cpu_to_le64(temp64
);
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2264 struct io_accel2_cmd
*cp
)
2266 struct ioaccel2_sg_element
*chain_sg
;
2271 temp64
= le64_to_cpu(chain_sg
->address
);
2272 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2273 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2276 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2277 struct CommandList
*c
)
2279 struct SGDescriptor
*chain_sg
, *chain_block
;
2283 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2284 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2285 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2286 chain_len
= sizeof(*chain_sg
) *
2287 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2288 chain_sg
->Len
= cpu_to_le32(chain_len
);
2289 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2291 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2292 /* prevent subsequent unmapping */
2293 chain_sg
->Addr
= cpu_to_le64(0);
2296 chain_sg
->Addr
= cpu_to_le64(temp64
);
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2301 struct CommandList
*c
)
2303 struct SGDescriptor
*chain_sg
;
2305 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2308 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2309 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2310 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2314 /* Decode the various types of errors on ioaccel2 path.
2315 * Return 1 for any error that should generate a RAID path retry.
2316 * Return 0 for errors that don't require a RAID path retry.
2318 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2319 struct CommandList
*c
,
2320 struct scsi_cmnd
*cmd
,
2321 struct io_accel2_cmd
*c2
,
2322 struct hpsa_scsi_dev_t
*dev
)
2326 u32 ioaccel2_resid
= 0;
2328 switch (c2
->error_data
.serv_response
) {
2329 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2330 switch (c2
->error_data
.status
) {
2331 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2333 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2334 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2335 if (c2
->error_data
.data_present
!=
2336 IOACCEL2_SENSE_DATA_PRESENT
) {
2337 memset(cmd
->sense_buffer
, 0,
2338 SCSI_SENSE_BUFFERSIZE
);
2341 /* copy the sense data */
2342 data_len
= c2
->error_data
.sense_data_len
;
2343 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2344 data_len
= SCSI_SENSE_BUFFERSIZE
;
2345 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2347 sizeof(c2
->error_data
.sense_data_buff
);
2348 memcpy(cmd
->sense_buffer
,
2349 c2
->error_data
.sense_data_buff
, data_len
);
2352 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2355 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2358 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2361 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2369 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2370 switch (c2
->error_data
.status
) {
2371 case IOACCEL2_STATUS_SR_IO_ERROR
:
2372 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2373 case IOACCEL2_STATUS_SR_OVERRUN
:
2376 case IOACCEL2_STATUS_SR_UNDERRUN
:
2377 cmd
->result
= (DID_OK
<< 16); /* host byte */
2378 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2379 ioaccel2_resid
= get_unaligned_le32(
2380 &c2
->error_data
.resid_cnt
[0]);
2381 scsi_set_resid(cmd
, ioaccel2_resid
);
2383 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2384 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2385 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2387 * Did an HBA disk disappear? We will eventually
2388 * get a state change event from the controller but
2389 * in the meantime, we need to tell the OS that the
2390 * HBA disk is no longer there and stop I/O
2391 * from going down. This allows the potential re-insert
2392 * of the disk to get the same device node.
2394 if (dev
->physical_device
&& dev
->expose_device
) {
2395 cmd
->result
= DID_NO_CONNECT
<< 16;
2397 h
->drv_req_rescan
= 1;
2398 dev_warn(&h
->pdev
->dev
,
2399 "%s: device is gone!\n", __func__
);
2402 * Retry by sending down the RAID path.
2403 * We will get an event from ctlr to
2404 * trigger rescan regardless.
2412 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2414 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2416 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2419 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2426 return retry
; /* retry on raid path? */
2429 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2430 struct CommandList
*c
)
2432 bool do_wake
= false;
2435 * Reset c->scsi_cmd here so that the reset handler will know
2436 * this command has completed. Then, check to see if the handler is
2437 * waiting for this command, and, if so, wake it.
2439 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2440 mb(); /* Declare command idle before checking for pending events. */
2441 if (c
->reset_pending
) {
2442 unsigned long flags
;
2443 struct hpsa_scsi_dev_t
*dev
;
2446 * There appears to be a reset pending; lock the lock and
2447 * reconfirm. If so, then decrement the count of outstanding
2448 * commands and wake the reset command if this is the last one.
2450 spin_lock_irqsave(&h
->lock
, flags
);
2451 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2452 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2454 c
->reset_pending
= NULL
;
2455 spin_unlock_irqrestore(&h
->lock
, flags
);
2459 wake_up_all(&h
->event_sync_wait_queue
);
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2463 struct CommandList
*c
)
2465 hpsa_cmd_resolve_events(h
, c
);
2466 cmd_tagged_free(h
, c
);
2469 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2470 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2472 hpsa_cmd_resolve_and_free(h
, c
);
2473 if (cmd
&& cmd
->scsi_done
)
2474 cmd
->scsi_done(cmd
);
2477 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2479 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2480 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2483 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2484 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2485 struct hpsa_scsi_dev_t
*dev
)
2487 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2489 /* check for good status */
2490 if (likely(c2
->error_data
.serv_response
== 0 &&
2491 c2
->error_data
.status
== 0))
2492 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2495 * Any RAID offload error results in retry which will use
2496 * the normal I/O path so the controller can handle whatever is
2499 if (is_logical_device(dev
) &&
2500 c2
->error_data
.serv_response
==
2501 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2502 if (c2
->error_data
.status
==
2503 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2504 dev
->offload_enabled
= 0;
2505 dev
->offload_to_be_enabled
= 0;
2508 return hpsa_retry_cmd(h
, c
);
2511 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2512 return hpsa_retry_cmd(h
, c
);
2514 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2519 struct CommandList
*cp
)
2521 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2523 switch (tmf_status
) {
2524 case CISS_TMF_COMPLETE
:
2526 * CISS_TMF_COMPLETE never happens, instead,
2527 * ei->CommandStatus == 0 for this case.
2529 case CISS_TMF_SUCCESS
:
2531 case CISS_TMF_INVALID_FRAME
:
2532 case CISS_TMF_NOT_SUPPORTED
:
2533 case CISS_TMF_FAILED
:
2534 case CISS_TMF_WRONG_LUN
:
2535 case CISS_TMF_OVERLAPPED_TAG
:
2538 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2545 static void complete_scsi_command(struct CommandList
*cp
)
2547 struct scsi_cmnd
*cmd
;
2548 struct ctlr_info
*h
;
2549 struct ErrorInfo
*ei
;
2550 struct hpsa_scsi_dev_t
*dev
;
2551 struct io_accel2_cmd
*c2
;
2554 u8 asc
; /* additional sense code */
2555 u8 ascq
; /* additional sense code qualifier */
2556 unsigned long sense_data_size
;
2563 cmd
->result
= DID_NO_CONNECT
<< 16;
2564 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2567 dev
= cmd
->device
->hostdata
;
2569 cmd
->result
= DID_NO_CONNECT
<< 16;
2570 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2572 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2574 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2575 if ((cp
->cmd_type
== CMD_SCSI
) &&
2576 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2577 hpsa_unmap_sg_chain_block(h
, cp
);
2579 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2580 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2581 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2583 cmd
->result
= (DID_OK
<< 16); /* host byte */
2584 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2586 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2587 if (dev
->physical_device
&& dev
->expose_device
&&
2589 cmd
->result
= DID_NO_CONNECT
<< 16;
2590 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2592 if (likely(cp
->phys_disk
!= NULL
))
2593 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2597 * We check for lockup status here as it may be set for
2598 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599 * fail_all_oustanding_cmds()
2601 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2602 /* DID_NO_CONNECT will prevent a retry */
2603 cmd
->result
= DID_NO_CONNECT
<< 16;
2604 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2607 if ((unlikely(hpsa_is_pending_event(cp
))))
2608 if (cp
->reset_pending
)
2609 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2611 if (cp
->cmd_type
== CMD_IOACCEL2
)
2612 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2614 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2615 if (ei
->CommandStatus
== 0)
2616 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2618 /* For I/O accelerator commands, copy over some fields to the normal
2619 * CISS header used below for error handling.
2621 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2622 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2623 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2624 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2625 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2626 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2627 cp
->Header
.tag
= c
->tag
;
2628 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2629 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2631 /* Any RAID offload error results in retry which will use
2632 * the normal I/O path so the controller can handle whatever's
2635 if (is_logical_device(dev
)) {
2636 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2637 dev
->offload_enabled
= 0;
2638 return hpsa_retry_cmd(h
, cp
);
2642 /* an error has occurred */
2643 switch (ei
->CommandStatus
) {
2645 case CMD_TARGET_STATUS
:
2646 cmd
->result
|= ei
->ScsiStatus
;
2647 /* copy the sense data */
2648 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2649 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2651 sense_data_size
= sizeof(ei
->SenseInfo
);
2652 if (ei
->SenseLen
< sense_data_size
)
2653 sense_data_size
= ei
->SenseLen
;
2654 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2656 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2657 &sense_key
, &asc
, &ascq
);
2658 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2659 if (sense_key
== ABORTED_COMMAND
) {
2660 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2665 /* Problem was not a check condition
2666 * Pass it up to the upper layers...
2668 if (ei
->ScsiStatus
) {
2669 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2670 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671 "Returning result: 0x%x\n",
2673 sense_key
, asc
, ascq
,
2675 } else { /* scsi status is zero??? How??? */
2676 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2677 "Returning no connection.\n", cp
),
2679 /* Ordinarily, this case should never happen,
2680 * but there is a bug in some released firmware
2681 * revisions that allows it to happen if, for
2682 * example, a 4100 backplane loses power and
2683 * the tape drive is in it. We assume that
2684 * it's a fatal error of some kind because we
2685 * can't show that it wasn't. We will make it
2686 * look like selection timeout since that is
2687 * the most common reason for this to occur,
2688 * and it's severe enough.
2691 cmd
->result
= DID_NO_CONNECT
<< 16;
2695 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2697 case CMD_DATA_OVERRUN
:
2698 dev_warn(&h
->pdev
->dev
,
2699 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2702 /* print_bytes(cp, sizeof(*cp), 1, 0);
2704 /* We get CMD_INVALID if you address a non-existent device
2705 * instead of a selection timeout (no response). You will
2706 * see this if you yank out a drive, then try to access it.
2707 * This is kind of a shame because it means that any other
2708 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709 * missing target. */
2710 cmd
->result
= DID_NO_CONNECT
<< 16;
2713 case CMD_PROTOCOL_ERR
:
2714 cmd
->result
= DID_ERROR
<< 16;
2715 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2718 case CMD_HARDWARE_ERR
:
2719 cmd
->result
= DID_ERROR
<< 16;
2720 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2723 case CMD_CONNECTION_LOST
:
2724 cmd
->result
= DID_ERROR
<< 16;
2725 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2729 cmd
->result
= DID_ABORT
<< 16;
2731 case CMD_ABORT_FAILED
:
2732 cmd
->result
= DID_ERROR
<< 16;
2733 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2736 case CMD_UNSOLICITED_ABORT
:
2737 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2738 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2742 cmd
->result
= DID_TIME_OUT
<< 16;
2743 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2746 case CMD_UNABORTABLE
:
2747 cmd
->result
= DID_ERROR
<< 16;
2748 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2750 case CMD_TMF_STATUS
:
2751 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2752 cmd
->result
= DID_ERROR
<< 16;
2754 case CMD_IOACCEL_DISABLED
:
2755 /* This only handles the direct pass-through case since RAID
2756 * offload is handled above. Just attempt a retry.
2758 cmd
->result
= DID_SOFT_ERROR
<< 16;
2759 dev_warn(&h
->pdev
->dev
,
2760 "cp %p had HP SSD Smart Path error\n", cp
);
2763 cmd
->result
= DID_ERROR
<< 16;
2764 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2765 cp
, ei
->CommandStatus
);
2768 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2771 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2772 struct CommandList
*c
, int sg_used
, int data_direction
)
2776 for (i
= 0; i
< sg_used
; i
++)
2777 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2778 le32_to_cpu(c
->SG
[i
].Len
),
2782 static int hpsa_map_one(struct pci_dev
*pdev
,
2783 struct CommandList
*cp
,
2790 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2791 cp
->Header
.SGList
= 0;
2792 cp
->Header
.SGTotal
= cpu_to_le16(0);
2796 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2797 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2798 /* Prevent subsequent unmap of something never mapped */
2799 cp
->Header
.SGList
= 0;
2800 cp
->Header
.SGTotal
= cpu_to_le16(0);
2803 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2804 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2805 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2806 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2807 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2814 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2816 DECLARE_COMPLETION_ONSTACK(wait
);
2819 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2820 if (timeout_msecs
== NO_TIMEOUT
) {
2821 /* TODO: get rid of this no-timeout thing */
2822 wait_for_completion_io(&wait
);
2825 if (!wait_for_completion_io_timeout(&wait
,
2826 msecs_to_jiffies(timeout_msecs
))) {
2827 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2834 int reply_queue
, unsigned long timeout_msecs
)
2836 if (unlikely(lockup_detected(h
))) {
2837 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2840 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2843 static u32
lockup_detected(struct ctlr_info
*h
)
2846 u32 rc
, *lockup_detected
;
2849 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2850 rc
= *lockup_detected
;
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2857 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2859 int backoff_time
= 10, retry_count
= 0;
2863 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2864 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2869 if (retry_count
> 3) {
2870 msleep(backoff_time
);
2871 if (backoff_time
< 1000)
2874 } while ((check_for_unit_attention(h
, c
) ||
2875 check_for_busy(h
, c
)) &&
2876 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2877 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2878 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2883 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2884 struct CommandList
*c
)
2886 const u8
*cdb
= c
->Request
.CDB
;
2887 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2889 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2893 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2894 struct CommandList
*cp
)
2896 const struct ErrorInfo
*ei
= cp
->err_info
;
2897 struct device
*d
= &cp
->h
->pdev
->dev
;
2898 u8 sense_key
, asc
, ascq
;
2901 switch (ei
->CommandStatus
) {
2902 case CMD_TARGET_STATUS
:
2903 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2904 sense_len
= sizeof(ei
->SenseInfo
);
2906 sense_len
= ei
->SenseLen
;
2907 decode_sense_data(ei
->SenseInfo
, sense_len
,
2908 &sense_key
, &asc
, &ascq
);
2909 hpsa_print_cmd(h
, "SCSI status", cp
);
2910 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2911 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912 sense_key
, asc
, ascq
);
2914 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2915 if (ei
->ScsiStatus
== 0)
2916 dev_warn(d
, "SCSI status is abnormally zero. "
2917 "(probably indicates selection timeout "
2918 "reported incorrectly due to a known "
2919 "firmware bug, circa July, 2001.)\n");
2921 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2923 case CMD_DATA_OVERRUN
:
2924 hpsa_print_cmd(h
, "overrun condition", cp
);
2927 /* controller unfortunately reports SCSI passthru's
2928 * to non-existent targets as invalid commands.
2930 hpsa_print_cmd(h
, "invalid command", cp
);
2931 dev_warn(d
, "probably means device no longer present\n");
2934 case CMD_PROTOCOL_ERR
:
2935 hpsa_print_cmd(h
, "protocol error", cp
);
2937 case CMD_HARDWARE_ERR
:
2938 hpsa_print_cmd(h
, "hardware error", cp
);
2940 case CMD_CONNECTION_LOST
:
2941 hpsa_print_cmd(h
, "connection lost", cp
);
2944 hpsa_print_cmd(h
, "aborted", cp
);
2946 case CMD_ABORT_FAILED
:
2947 hpsa_print_cmd(h
, "abort failed", cp
);
2949 case CMD_UNSOLICITED_ABORT
:
2950 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2953 hpsa_print_cmd(h
, "timed out", cp
);
2955 case CMD_UNABORTABLE
:
2956 hpsa_print_cmd(h
, "unabortable", cp
);
2958 case CMD_CTLR_LOCKUP
:
2959 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2962 hpsa_print_cmd(h
, "unknown status", cp
);
2963 dev_warn(d
, "Unknown command status %x\n",
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
2969 u8 page
, u8
*buf
, size_t bufsize
)
2972 struct CommandList
*c
;
2973 struct ErrorInfo
*ei
;
2976 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
2977 page
, scsi3addr
, TYPE_CMD
)) {
2981 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2982 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2986 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2987 hpsa_scsi_interpret_error(h
, c
);
2995 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
3002 buf
= kzalloc(1024, GFP_KERNEL
);
3006 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3012 sa
= get_unaligned_be64(buf
+12);
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3020 u16 page
, unsigned char *buf
,
3021 unsigned char bufsize
)
3024 struct CommandList
*c
;
3025 struct ErrorInfo
*ei
;
3029 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3030 page
, scsi3addr
, TYPE_CMD
)) {
3034 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3035 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3039 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3040 hpsa_scsi_interpret_error(h
, c
);
3048 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3049 u8 reset_type
, int reply_queue
)
3052 struct CommandList
*c
;
3053 struct ErrorInfo
*ei
;
3058 /* fill_cmd can't fail here, no data buffer to map. */
3059 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
3060 scsi3addr
, TYPE_MSG
);
3061 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3063 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3066 /* no unmap needed here because no data xfer. */
3069 if (ei
->CommandStatus
!= 0) {
3070 hpsa_scsi_interpret_error(h
, c
);
3078 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3079 struct hpsa_scsi_dev_t
*dev
,
3080 unsigned char *scsi3addr
)
3084 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3085 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3087 if (hpsa_is_cmd_idle(c
))
3090 switch (c
->cmd_type
) {
3092 case CMD_IOCTL_PEND
:
3093 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3094 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3099 if (c
->phys_disk
== dev
) {
3100 /* HBA mode match */
3103 /* Possible RAID mode -- check each phys dev. */
3104 /* FIXME: Do we need to take out a lock here? If
3105 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3107 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3108 /* FIXME: an alternate test might be
3110 * match = dev->phys_disk[i]->ioaccel_handle
3111 * == c2->scsi_nexus; */
3112 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3118 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3119 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3120 le32_to_cpu(ac
->it_nexus
);
3124 case 0: /* The command is in the middle of being initialized. */
3129 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3137 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3138 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3143 /* We can really only handle one reset at a time */
3144 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3145 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3149 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3151 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3152 struct CommandList
*c
= h
->cmd_pool
+ i
;
3153 int refcount
= atomic_inc_return(&c
->refcount
);
3155 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3156 unsigned long flags
;
3159 * Mark the target command as having a reset pending,
3160 * then lock a lock so that the command cannot complete
3161 * while we're considering it. If the command is not
3162 * idle then count it; otherwise revoke the event.
3164 c
->reset_pending
= dev
;
3165 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3166 if (!hpsa_is_cmd_idle(c
))
3167 atomic_inc(&dev
->reset_cmds_out
);
3169 c
->reset_pending
= NULL
;
3170 spin_unlock_irqrestore(&h
->lock
, flags
);
3176 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3178 wait_event(h
->event_sync_wait_queue
,
3179 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3180 lockup_detected(h
));
3182 if (unlikely(lockup_detected(h
))) {
3183 dev_warn(&h
->pdev
->dev
,
3184 "Controller lockup detected during reset wait\n");
3189 atomic_set(&dev
->reset_cmds_out
, 0);
3191 rc
= wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3193 mutex_unlock(&h
->reset_mutex
);
3197 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3198 unsigned char *scsi3addr
, unsigned char *raid_level
)
3203 *raid_level
= RAID_UNKNOWN
;
3204 buf
= kzalloc(64, GFP_KERNEL
);
3208 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3209 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3212 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3213 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3216 *raid_level
= buf
[8];
3217 if (*raid_level
> RAID_UNKNOWN
)
3218 *raid_level
= RAID_UNKNOWN
;
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3227 struct raid_map_data
*map_buff
)
3229 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3231 u16 map_cnt
, row_cnt
, disks_per_row
;
3236 /* Show details only if debugging has been activated. */
3237 if (h
->raid_offload_debug
< 2)
3240 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3241 le32_to_cpu(map_buff
->structure_size
));
3242 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3243 le32_to_cpu(map_buff
->volume_blk_size
));
3244 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3245 le64_to_cpu(map_buff
->volume_blk_cnt
));
3246 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3247 map_buff
->phys_blk_shift
);
3248 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3249 map_buff
->parity_rotation_shift
);
3250 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3251 le16_to_cpu(map_buff
->strip_size
));
3252 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3253 le64_to_cpu(map_buff
->disk_starting_blk
));
3254 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3255 le64_to_cpu(map_buff
->disk_blk_cnt
));
3256 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3257 le16_to_cpu(map_buff
->data_disks_per_row
));
3258 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3259 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3260 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3261 le16_to_cpu(map_buff
->row_cnt
));
3262 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3263 le16_to_cpu(map_buff
->layout_map_count
));
3264 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3265 le16_to_cpu(map_buff
->flags
));
3266 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3267 le16_to_cpu(map_buff
->flags
) &
3268 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3269 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3270 le16_to_cpu(map_buff
->dekindex
));
3271 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3272 for (map
= 0; map
< map_cnt
; map
++) {
3273 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3274 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3275 for (row
= 0; row
< row_cnt
; row
++) {
3276 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3278 le16_to_cpu(map_buff
->data_disks_per_row
);
3279 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3280 dev_info(&h
->pdev
->dev
,
3281 " D%02u: h=0x%04x xor=%u,%u\n",
3282 col
, dd
->ioaccel_handle
,
3283 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3285 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3286 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3287 dev_info(&h
->pdev
->dev
,
3288 " M%02u: h=0x%04x xor=%u,%u\n",
3289 col
, dd
->ioaccel_handle
,
3290 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3295 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3296 __attribute__((unused
)) int rc
,
3297 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3302 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3303 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3306 struct CommandList
*c
;
3307 struct ErrorInfo
*ei
;
3311 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3312 sizeof(this_device
->raid_map
), 0,
3313 scsi3addr
, TYPE_CMD
)) {
3314 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3318 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3319 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3323 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3324 hpsa_scsi_interpret_error(h
, c
);
3330 /* @todo in the future, dynamically allocate RAID map memory */
3331 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3332 sizeof(this_device
->raid_map
)) {
3333 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3336 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3344 unsigned char scsi3addr
[], u16 bmic_device_index
,
3345 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3348 struct CommandList
*c
;
3349 struct ErrorInfo
*ei
;
3353 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3354 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3358 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3359 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3361 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3362 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3366 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3367 hpsa_scsi_interpret_error(h
, c
);
3375 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3376 struct bmic_identify_controller
*buf
, size_t bufsize
)
3379 struct CommandList
*c
;
3380 struct ErrorInfo
*ei
;
3384 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3385 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3389 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3390 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3394 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3395 hpsa_scsi_interpret_error(h
, c
);
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3404 unsigned char scsi3addr
[], u16 bmic_device_index
,
3405 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3408 struct CommandList
*c
;
3409 struct ErrorInfo
*ei
;
3412 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3413 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3417 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3418 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3420 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3423 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3424 hpsa_scsi_interpret_error(h
, c
);
3434 * get enclosure information
3435 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437 * Uses id_physical_device to determine the box_index.
3439 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3440 unsigned char *scsi3addr
,
3441 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3442 struct hpsa_scsi_dev_t
*encl_dev
)
3445 struct CommandList
*c
= NULL
;
3446 struct ErrorInfo
*ei
= NULL
;
3447 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3448 struct bmic_identify_physical_device
*id_phys
= NULL
;
3449 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3450 u16 bmic_device_index
= 0;
3452 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3454 encl_dev
->sas_address
=
3455 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3457 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3462 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3467 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3471 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3475 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3476 id_phys
, sizeof(*id_phys
));
3478 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3479 __func__
, encl_dev
->external
, bmic_device_index
);
3485 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3486 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3491 if (id_phys
->phys_connector
[1] == 'E')
3492 c
->Request
.CDB
[5] = id_phys
->box_index
;
3494 c
->Request
.CDB
[5] = 0;
3496 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3502 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3507 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3508 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3509 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3520 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3521 "Error, could not get enclosure information\n");
3524 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3525 unsigned char *scsi3addr
)
3527 struct ReportExtendedLUNdata
*physdev
;
3532 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3536 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3537 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3541 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3543 for (i
= 0; i
< nphysicals
; i
++)
3544 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3545 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3554 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3555 struct hpsa_scsi_dev_t
*dev
)
3560 if (is_hba_lunid(scsi3addr
)) {
3561 struct bmic_sense_subsystem_info
*ssi
;
3563 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3567 rc
= hpsa_bmic_sense_subsystem_information(h
,
3568 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3570 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3571 h
->sas_address
= sa
;
3576 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3578 dev
->sas_address
= sa
;
3581 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3582 struct ReportExtendedLUNdata
*physdev
)
3587 if (h
->discovery_polling
)
3590 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3592 for (i
= 0; i
< nphysicals
; i
++) {
3593 if (physdev
->LUN
[i
].device_type
==
3594 BMIC_DEVICE_TYPE_CONTROLLER
3595 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3596 dev_info(&h
->pdev
->dev
,
3597 "External controller present, activate discovery polling and disable rld caching\n");
3598 hpsa_disable_rld_caching(h
);
3599 h
->discovery_polling
= 1;
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3607 unsigned char scsi3addr
[], u8 page
)
3612 unsigned char *buf
, bufsize
;
3614 buf
= kzalloc(256, GFP_KERNEL
);
3618 /* Get the size of the page list first */
3619 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3620 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3621 buf
, HPSA_VPD_HEADER_SZ
);
3623 goto exit_unsupported
;
3625 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3626 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3630 /* Get the whole VPD page list */
3631 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3632 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3635 goto exit_unsupported
;
3638 for (i
= 1; i
<= pages
; i
++)
3639 if (buf
[3 + i
] == page
)
3640 goto exit_supported
;
3650 * Called during a scan operation.
3651 * Sets ioaccel status on the new device list, not the existing device list
3653 * The device list used during I/O will be updated later in
3654 * adjust_hpsa_scsi_table.
3656 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3657 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3663 this_device
->offload_config
= 0;
3664 this_device
->offload_enabled
= 0;
3665 this_device
->offload_to_be_enabled
= 0;
3667 buf
= kzalloc(64, GFP_KERNEL
);
3670 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3672 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3673 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3681 this_device
->offload_config
=
3682 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3683 if (this_device
->offload_config
) {
3684 this_device
->offload_to_be_enabled
=
3685 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3686 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3687 this_device
->offload_to_be_enabled
= 0;
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3697 unsigned char *device_id
, int index
, int buflen
)
3702 /* Does controller have VPD for device id? */
3703 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3704 return 1; /* not supported */
3706 buf
= kzalloc(64, GFP_KERNEL
);
3710 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3711 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3715 memcpy(device_id
, &buf
[8], buflen
);
3720 return rc
; /*0 - got id, otherwise, didn't */
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3724 void *buf
, int bufsize
,
3725 int extended_response
)
3728 struct CommandList
*c
;
3729 unsigned char scsi3addr
[8];
3730 struct ErrorInfo
*ei
;
3734 /* address the controller */
3735 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3736 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3737 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3741 if (extended_response
)
3742 c
->Request
.CDB
[1] = extended_response
;
3743 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3744 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3748 if (ei
->CommandStatus
!= 0 &&
3749 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3750 hpsa_scsi_interpret_error(h
, c
);
3753 struct ReportLUNdata
*rld
= buf
;
3755 if (rld
->extended_response_flag
!= extended_response
) {
3756 if (!h
->legacy_board
) {
3757 dev_err(&h
->pdev
->dev
,
3758 "report luns requested format %u, got %u\n",
3760 rld
->extended_response_flag
);
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3772 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3775 struct ReportLUNdata
*lbuf
;
3777 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3778 HPSA_REPORT_PHYS_EXTENDED
);
3779 if (!rc
|| rc
!= -EOPNOTSUPP
)
3782 /* REPORT PHYS EXTENDED is not supported */
3783 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3787 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3792 /* Copy ReportLUNdata header */
3793 memcpy(buf
, lbuf
, 8);
3794 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3795 for (i
= 0; i
< nphys
; i
++)
3796 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3803 struct ReportLUNdata
*buf
, int bufsize
)
3805 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3809 int bus
, int target
, int lun
)
3812 device
->target
= target
;
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3818 unsigned char scsi3addr
[])
3825 buf
= kzalloc(64, GFP_KERNEL
);
3827 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3829 /* Does controller have VPD for logical volume status? */
3830 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3833 /* Get the size of the VPD return buffer */
3834 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3835 buf
, HPSA_VPD_HEADER_SZ
);
3840 /* Now get the whole VPD buffer */
3841 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3842 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3845 status
= buf
[4]; /* status byte */
3851 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3854 /* Determine offline status of a volume.
3857 * 0xff (offline for unknown reasons)
3858 * # (integer code indicating one of several NOT READY states
3859 * describing why a volume is to be kept offline)
3861 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3862 unsigned char scsi3addr
[])
3864 struct CommandList
*c
;
3865 unsigned char *sense
;
3866 u8 sense_key
, asc
, ascq
;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3878 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3882 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3884 sense
= c
->err_info
->SenseInfo
;
3885 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3886 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3888 sense_len
= c
->err_info
->SenseLen
;
3889 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3890 cmd_status
= c
->err_info
->CommandStatus
;
3891 scsi_status
= c
->err_info
->ScsiStatus
;
3894 /* Determine the reason for not ready state */
3895 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3897 /* Keep volume offline in certain cases: */
3899 case HPSA_LV_FAILED
:
3900 case HPSA_LV_UNDERGOING_ERASE
:
3901 case HPSA_LV_NOT_AVAILABLE
:
3902 case HPSA_LV_UNDERGOING_RPI
:
3903 case HPSA_LV_PENDING_RPI
:
3904 case HPSA_LV_ENCRYPTED_NO_KEY
:
3905 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3906 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3907 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3908 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3910 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3911 /* If VPD status page isn't available,
3912 * use ASC/ASCQ to determine state
3914 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3915 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3924 static int hpsa_update_device_info(struct ctlr_info
*h
,
3925 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3926 unsigned char *is_OBDR_device
)
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3934 unsigned char *inq_buff
;
3935 unsigned char *obdr_sig
;
3938 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3944 /* Do an inquiry to the device to see what it is. */
3945 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3946 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3947 dev_err(&h
->pdev
->dev
,
3948 "%s: inquiry failed, device will be skipped.\n",
3950 rc
= HPSA_INQUIRY_FAILED
;
3954 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3955 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3957 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3958 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3959 memcpy(this_device
->vendor
, &inq_buff
[8],
3960 sizeof(this_device
->vendor
));
3961 memcpy(this_device
->model
, &inq_buff
[16],
3962 sizeof(this_device
->model
));
3963 this_device
->rev
= inq_buff
[2];
3964 memset(this_device
->device_id
, 0,
3965 sizeof(this_device
->device_id
));
3966 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3967 sizeof(this_device
->device_id
)) < 0)
3968 dev_err(&h
->pdev
->dev
,
3969 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3971 h
->scsi_host
->host_no
,
3972 this_device
->target
, this_device
->lun
,
3973 scsi_device_type(this_device
->devtype
),
3974 this_device
->model
);
3976 if ((this_device
->devtype
== TYPE_DISK
||
3977 this_device
->devtype
== TYPE_ZBC
) &&
3978 is_logical_dev_addr_mode(scsi3addr
)) {
3979 unsigned char volume_offline
;
3981 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3982 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3983 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3984 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3985 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
3988 * Legacy boards might not support volume status
3990 dev_info(&h
->pdev
->dev
,
3991 "C0:T%d:L%d Volume status not available, assuming online.\n",
3992 this_device
->target
, this_device
->lun
);
3995 this_device
->volume_offline
= volume_offline
;
3996 if (volume_offline
== HPSA_LV_FAILED
) {
3997 rc
= HPSA_LV_FAILED
;
3998 dev_err(&h
->pdev
->dev
,
3999 "%s: LV failed, device will be skipped.\n",
4004 this_device
->raid_level
= RAID_UNKNOWN
;
4005 this_device
->offload_config
= 0;
4006 this_device
->offload_enabled
= 0;
4007 this_device
->offload_to_be_enabled
= 0;
4008 this_device
->hba_ioaccel_enabled
= 0;
4009 this_device
->volume_offline
= 0;
4010 this_device
->queue_depth
= h
->nr_cmds
;
4013 if (this_device
->external
)
4014 this_device
->queue_depth
= EXTERNAL_QD
;
4016 if (is_OBDR_device
) {
4017 /* See if this is a One-Button-Disaster-Recovery device
4018 * by looking for "$DR-10" at offset 43 in inquiry data.
4020 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4021 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4022 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4023 OBDR_SIG_LEN
) == 0);
4034 * Helper function to assign bus, target, lun mapping of devices.
4035 * Logical drive target and lun are assigned at this time, but
4036 * physical device lun and target assignment are deferred (assigned
4037 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4039 static void figure_bus_target_lun(struct ctlr_info
*h
,
4040 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4042 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4044 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4045 /* physical device, target and lun filled in later */
4046 if (is_hba_lunid(lunaddrbytes
)) {
4047 int bus
= HPSA_HBA_BUS
;
4050 bus
= HPSA_LEGACY_HBA_BUS
;
4051 hpsa_set_bus_target_lun(device
,
4052 bus
, 0, lunid
& 0x3fff);
4054 /* defer target, lun assignment for physical devices */
4055 hpsa_set_bus_target_lun(device
,
4056 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4059 /* It's a logical device */
4060 if (device
->external
) {
4061 hpsa_set_bus_target_lun(device
,
4062 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4066 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4070 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4071 int i
, int nphysicals
, int nlocal_logicals
)
4073 /* In report logicals, local logicals are listed first,
4074 * then any externals.
4076 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4078 if (i
== raid_ctlr_position
)
4081 if (i
< logicals_start
)
4084 /* i is in logicals range, but still within local logicals */
4085 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4088 return 1; /* it's an external lun */
4092 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4093 * logdev. The number of luns in physdev and logdev are returned in
4094 * *nphysicals and *nlogicals, respectively.
4095 * Returns 0 on success, -1 otherwise.
4097 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4098 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4099 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4101 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4102 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4105 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4106 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4107 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4109 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4111 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4112 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4115 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4116 /* Reject Logicals in excess of our max capability. */
4117 if (*nlogicals
> HPSA_MAX_LUN
) {
4118 dev_warn(&h
->pdev
->dev
,
4119 "maximum logical LUNs (%d) exceeded. "
4120 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4121 *nlogicals
- HPSA_MAX_LUN
);
4122 *nlogicals
= HPSA_MAX_LUN
;
4124 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4125 dev_warn(&h
->pdev
->dev
,
4126 "maximum logical + physical LUNs (%d) exceeded. "
4127 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4128 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4129 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4134 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4135 int i
, int nphysicals
, int nlogicals
,
4136 struct ReportExtendedLUNdata
*physdev_list
,
4137 struct ReportLUNdata
*logdev_list
)
4139 /* Helper function, figure out where the LUN ID info is coming from
4140 * given index i, lists of physical and logical devices, where in
4141 * the list the raid controller is supposed to appear (first or last)
4144 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4145 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4147 if (i
== raid_ctlr_position
)
4148 return RAID_CTLR_LUNID
;
4150 if (i
< logicals_start
)
4151 return &physdev_list
->LUN
[i
-
4152 (raid_ctlr_position
== 0)].lunid
[0];
4154 if (i
< last_device
)
4155 return &logdev_list
->LUN
[i
- nphysicals
-
4156 (raid_ctlr_position
== 0)][0];
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4163 struct hpsa_scsi_dev_t
*dev
,
4164 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4165 struct bmic_identify_physical_device
*id_phys
)
4168 struct ext_report_lun_entry
*rle
;
4170 rle
= &rlep
->LUN
[rle_index
];
4172 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4173 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4174 dev
->hba_ioaccel_enabled
= 1;
4175 memset(id_phys
, 0, sizeof(*id_phys
));
4176 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4177 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4180 /* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4184 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4185 DRIVE_CMDS_RESERVED_FOR_FW
;
4187 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4191 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4192 struct bmic_identify_physical_device
*id_phys
)
4194 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4196 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4197 this_device
->hba_ioaccel_enabled
= 1;
4199 memcpy(&this_device
->active_path_index
,
4200 &id_phys
->active_path_number
,
4201 sizeof(this_device
->active_path_index
));
4202 memcpy(&this_device
->path_map
,
4203 &id_phys
->redundant_path_present_map
,
4204 sizeof(this_device
->path_map
));
4205 memcpy(&this_device
->box
,
4206 &id_phys
->alternate_paths_phys_box_on_port
,
4207 sizeof(this_device
->box
));
4208 memcpy(&this_device
->phys_connector
,
4209 &id_phys
->alternate_paths_phys_connector
,
4210 sizeof(this_device
->phys_connector
));
4211 memcpy(&this_device
->bay
,
4212 &id_phys
->phys_bay_in_box
,
4213 sizeof(this_device
->bay
));
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4218 struct bmic_identify_controller
*id_ctlr
,
4224 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4228 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4229 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4231 if (id_ctlr
->configured_logical_drive_count
< 255)
4232 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4234 *nlocals
= le16_to_cpu(
4235 id_ctlr
->extended_logical_unit_count
);
4241 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4243 struct bmic_identify_physical_device
*id_phys
;
4244 bool is_spare
= false;
4247 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4251 rc
= hpsa_bmic_id_physical_device(h
,
4253 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4254 id_phys
, sizeof(*id_phys
));
4256 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4262 #define RPL_DEV_FLAG_NON_DISK 0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4268 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4269 struct ext_report_lun_entry
*rle
)
4274 if (!MASKED_DEVICE(lunaddrbytes
))
4277 device_flags
= rle
->device_flags
;
4278 device_type
= rle
->device_type
;
4280 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4281 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4286 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4289 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4293 * Spares may be spun down, we do not want to
4294 * do an Inquiry to a RAID set spare drive as
4295 * that would have them spun up, that is a
4296 * performance hit because I/O to the RAID device
4297 * stops while the spin up occurs which can take
4300 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4306 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4308 /* the idea here is we could get notified
4309 * that some devices have changed, so we do a report
4310 * physical luns and report logical luns cmd, and adjust
4311 * our list of devices accordingly.
4313 * The scsi3addr's of devices won't change so long as the
4314 * adapter is not reset. That means we can rescan and
4315 * tell which devices we already know about, vs. new
4316 * devices, vs. disappearing devices.
4318 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4319 struct ReportLUNdata
*logdev_list
= NULL
;
4320 struct bmic_identify_physical_device
*id_phys
= NULL
;
4321 struct bmic_identify_controller
*id_ctlr
= NULL
;
4324 u32 nlocal_logicals
= 0;
4325 u32 ndev_allocated
= 0;
4326 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4328 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4329 int raid_ctlr_position
;
4330 bool physical_device
;
4331 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4333 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4334 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4335 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4336 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4337 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4338 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4340 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4341 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4342 dev_err(&h
->pdev
->dev
, "out of memory\n");
4345 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4347 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4349 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4350 logdev_list
, &nlogicals
)) {
4351 h
->drv_req_rescan
= 1;
4355 /* Set number of local logicals (non PTRAID) */
4356 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4357 dev_warn(&h
->pdev
->dev
,
4358 "%s: Can't determine number of local logical devices.\n",
4362 /* We might see up to the maximum number of logical and physical disks
4363 * plus external target devices, and a device for the local RAID
4366 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4368 hpsa_ext_ctrl_present(h
, physdev_list
);
4370 /* Allocate the per device structures */
4371 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4372 if (i
>= HPSA_MAX_DEVICES
) {
4373 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4374 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4375 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4379 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4380 if (!currentsd
[i
]) {
4381 h
->drv_req_rescan
= 1;
4387 if (is_scsi_rev_5(h
))
4388 raid_ctlr_position
= 0;
4390 raid_ctlr_position
= nphysicals
+ nlogicals
;
4392 /* adjust our table of devices */
4393 n_ext_target_devs
= 0;
4394 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4395 u8
*lunaddrbytes
, is_OBDR
= 0;
4397 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4398 bool skip_device
= false;
4400 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4402 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4404 /* Figure out where the LUN ID info is coming from */
4405 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4406 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4408 /* Determine if this is a lun from an external target array */
4409 tmpdevice
->external
=
4410 figure_external_status(h
, raid_ctlr_position
, i
,
4411 nphysicals
, nlocal_logicals
);
4414 * Skip over some devices such as a spare.
4416 if (!tmpdevice
->external
&& physical_device
) {
4417 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4418 &physdev_list
->LUN
[phys_dev_index
]);
4423 /* Get device type, vendor, model, device id, raid_map */
4424 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4426 if (rc
== -ENOMEM
) {
4427 dev_warn(&h
->pdev
->dev
,
4428 "Out of memory, rescan deferred.\n");
4429 h
->drv_req_rescan
= 1;
4433 h
->drv_req_rescan
= 1;
4437 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4438 this_device
= currentsd
[ncurrent
];
4440 *this_device
= *tmpdevice
;
4441 this_device
->physical_device
= physical_device
;
4444 * Expose all devices except for physical devices that
4447 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4448 this_device
->expose_device
= 0;
4450 this_device
->expose_device
= 1;
4454 * Get the SAS address for physical devices that are exposed.
4456 if (this_device
->physical_device
&& this_device
->expose_device
)
4457 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4459 switch (this_device
->devtype
) {
4461 /* We don't *really* support actual CD-ROM devices,
4462 * just "One Button Disaster Recovery" tape drive
4463 * which temporarily pretends to be a CD-ROM drive.
4464 * So we check that the device is really an OBDR tape
4465 * device by checking for "$DR-10" in bytes 43-48 of
4473 if (this_device
->physical_device
) {
4474 /* The disk is in HBA mode. */
4475 /* Never use RAID mapper in HBA mode. */
4476 this_device
->offload_enabled
= 0;
4477 hpsa_get_ioaccel_drive_info(h
, this_device
,
4478 physdev_list
, phys_dev_index
, id_phys
);
4479 hpsa_get_path_info(this_device
,
4480 physdev_list
, phys_dev_index
, id_phys
);
4485 case TYPE_MEDIUM_CHANGER
:
4488 case TYPE_ENCLOSURE
:
4489 if (!this_device
->external
)
4490 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4491 physdev_list
, phys_dev_index
,
4496 /* Only present the Smartarray HBA as a RAID controller.
4497 * If it's a RAID controller other than the HBA itself
4498 * (an external RAID controller, MSA500 or similar)
4501 if (!is_hba_lunid(lunaddrbytes
))
4508 if (ncurrent
>= HPSA_MAX_DEVICES
)
4512 if (h
->sas_host
== NULL
) {
4515 rc
= hpsa_add_sas_host(h
);
4517 dev_warn(&h
->pdev
->dev
,
4518 "Could not add sas host %d\n", rc
);
4523 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4526 for (i
= 0; i
< ndev_allocated
; i
++)
4527 kfree(currentsd
[i
]);
4529 kfree(physdev_list
);
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4536 struct scatterlist
*sg
)
4538 u64 addr64
= (u64
) sg_dma_address(sg
);
4539 unsigned int len
= sg_dma_len(sg
);
4541 desc
->Addr
= cpu_to_le64(addr64
);
4542 desc
->Len
= cpu_to_le32(len
);
4547 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548 * dma mapping and fills in the scatter gather entries of the
4551 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4552 struct CommandList
*cp
,
4553 struct scsi_cmnd
*cmd
)
4555 struct scatterlist
*sg
;
4556 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4557 struct SGDescriptor
*curr_sg
;
4559 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4561 use_sg
= scsi_dma_map(cmd
);
4566 goto sglist_finished
;
4569 * If the number of entries is greater than the max for a single list,
4570 * then we have a chained list; we will set up all but one entry in the
4571 * first list (the last entry is saved for link information);
4572 * otherwise, we don't have a chained list and we'll set up at each of
4573 * the entries in the one list.
4576 chained
= use_sg
> h
->max_cmd_sg_entries
;
4577 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4578 last_sg
= scsi_sg_count(cmd
) - 1;
4579 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4580 hpsa_set_sg_descriptor(curr_sg
, sg
);
4586 * Continue with the chained list. Set curr_sg to the chained
4587 * list. Modify the limit to the total count less the entries
4588 * we've already set up. Resume the scan at the list entry
4589 * where the previous loop left off.
4591 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4592 sg_limit
= use_sg
- sg_limit
;
4593 for_each_sg(sg
, sg
, sg_limit
, i
) {
4594 hpsa_set_sg_descriptor(curr_sg
, sg
);
4599 /* Back the pointer up to the last entry and mark it as "last". */
4600 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4602 if (use_sg
+ chained
> h
->maxSG
)
4603 h
->maxSG
= use_sg
+ chained
;
4606 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4607 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4608 if (hpsa_map_sg_chain_block(h
, cp
)) {
4609 scsi_dma_unmap(cmd
);
4617 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4618 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4623 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4624 u8
*cdb
, int cdb_len
,
4631 outlen
= scnprintf(buf
, BUFLEN
,
4632 "%s: Blocking zero-length request: CDB:", func
);
4633 for (i
= 0; i
< cdb_len
; i
++)
4634 outlen
+= scnprintf(buf
+outlen
, BUFLEN
- outlen
,
4636 dev_warn(&h
->pdev
->dev
, "%s\n", buf
);
4639 #define IO_ACCEL_INELIGIBLE 1
4640 /* zero-length transfers trigger hardware errors. */
4641 static bool is_zero_length_transfer(u8
*cdb
)
4645 /* Block zero-length transfer sizes on certain commands. */
4649 case VERIFY
: /* 0x2F */
4650 case WRITE_VERIFY
: /* 0x2E */
4651 block_cnt
= get_unaligned_be16(&cdb
[7]);
4655 case VERIFY_12
: /* 0xAF */
4656 case WRITE_VERIFY_12
: /* 0xAE */
4657 block_cnt
= get_unaligned_be32(&cdb
[6]);
4661 case VERIFY_16
: /* 0x8F */
4662 block_cnt
= get_unaligned_be32(&cdb
[10]);
4668 return block_cnt
== 0;
4671 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4677 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4684 if (*cdb_len
== 6) {
4685 block
= (((cdb
[1] & 0x1F) << 16) |
4692 BUG_ON(*cdb_len
!= 12);
4693 block
= get_unaligned_be32(&cdb
[2]);
4694 block_cnt
= get_unaligned_be32(&cdb
[6]);
4696 if (block_cnt
> 0xffff)
4697 return IO_ACCEL_INELIGIBLE
;
4699 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4701 cdb
[2] = (u8
) (block
>> 24);
4702 cdb
[3] = (u8
) (block
>> 16);
4703 cdb
[4] = (u8
) (block
>> 8);
4704 cdb
[5] = (u8
) (block
);
4706 cdb
[7] = (u8
) (block_cnt
>> 8);
4707 cdb
[8] = (u8
) (block_cnt
);
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4716 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4717 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4719 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4720 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4722 unsigned int total_len
= 0;
4723 struct scatterlist
*sg
;
4726 struct SGDescriptor
*curr_sg
;
4727 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4729 /* TODO: implement chaining support */
4730 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4731 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4732 return IO_ACCEL_INELIGIBLE
;
4735 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4737 if (is_zero_length_transfer(cdb
)) {
4738 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4739 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4740 return IO_ACCEL_INELIGIBLE
;
4743 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4744 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4745 return IO_ACCEL_INELIGIBLE
;
4748 c
->cmd_type
= CMD_IOACCEL1
;
4750 /* Adjust the DMA address to point to the accelerated command buffer */
4751 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4752 (c
->cmdindex
* sizeof(*cp
));
4753 BUG_ON(c
->busaddr
& 0x0000007F);
4755 use_sg
= scsi_dma_map(cmd
);
4757 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4763 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4764 addr64
= (u64
) sg_dma_address(sg
);
4765 len
= sg_dma_len(sg
);
4767 curr_sg
->Addr
= cpu_to_le64(addr64
);
4768 curr_sg
->Len
= cpu_to_le32(len
);
4769 curr_sg
->Ext
= cpu_to_le32(0);
4772 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4774 switch (cmd
->sc_data_direction
) {
4776 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4778 case DMA_FROM_DEVICE
:
4779 control
|= IOACCEL1_CONTROL_DATA_IN
;
4782 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4785 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4786 cmd
->sc_data_direction
);
4791 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4794 c
->Header
.SGList
= use_sg
;
4795 /* Fill out the command structure to submit */
4796 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4797 cp
->transfer_len
= cpu_to_le32(total_len
);
4798 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4799 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4800 cp
->control
= cpu_to_le32(control
);
4801 memcpy(cp
->CDB
, cdb
, cdb_len
);
4802 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4803 /* Tag was already set at init time. */
4804 enqueue_cmd_and_start_io(h
, c
);
4809 * Queue a command directly to a device behind the controller using the
4810 * I/O accelerator path.
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4813 struct CommandList
*c
)
4815 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4816 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4823 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4824 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4828 * Set encryption parameters for the ioaccel2 request
4830 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4831 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4833 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4834 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4835 struct raid_map_data
*map
= &dev
->raid_map
;
4838 /* Are we doing encryption on this device */
4839 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4841 /* Set the data encryption key index. */
4842 cp
->dekindex
= map
->dekindex
;
4844 /* Set the encryption enable flag, encoded into direction field. */
4845 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4847 /* Set encryption tweak values based on logical block address
4848 * If block size is 512, tweak value is LBA.
4849 * For other block sizes, tweak is (LBA * block size)/ 512)
4851 switch (cmd
->cmnd
[0]) {
4852 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4855 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4856 (cmd
->cmnd
[2] << 8) |
4861 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4864 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4868 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4871 dev_err(&h
->pdev
->dev
,
4872 "ERROR: %s: size (0x%x) not supported for encryption\n",
4873 __func__
, cmd
->cmnd
[0]);
4878 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4879 first_block
= first_block
*
4880 le32_to_cpu(map
->volume_blk_size
)/512;
4882 cp
->tweak_lower
= cpu_to_le32(first_block
);
4883 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4887 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4888 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4890 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4891 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4892 struct ioaccel2_sg_element
*curr_sg
;
4894 struct scatterlist
*sg
;
4902 if (!cmd
->device
->hostdata
)
4905 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4907 if (is_zero_length_transfer(cdb
)) {
4908 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4909 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4910 return IO_ACCEL_INELIGIBLE
;
4913 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4914 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4915 return IO_ACCEL_INELIGIBLE
;
4918 c
->cmd_type
= CMD_IOACCEL2
;
4919 /* Adjust the DMA address to point to the accelerated command buffer */
4920 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4921 (c
->cmdindex
* sizeof(*cp
));
4922 BUG_ON(c
->busaddr
& 0x0000007F);
4924 memset(cp
, 0, sizeof(*cp
));
4925 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4927 use_sg
= scsi_dma_map(cmd
);
4929 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4935 if (use_sg
> h
->ioaccel_maxsg
) {
4936 addr64
= le64_to_cpu(
4937 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4938 curr_sg
->address
= cpu_to_le64(addr64
);
4939 curr_sg
->length
= 0;
4940 curr_sg
->reserved
[0] = 0;
4941 curr_sg
->reserved
[1] = 0;
4942 curr_sg
->reserved
[2] = 0;
4943 curr_sg
->chain_indicator
= 0x80;
4945 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4947 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4948 addr64
= (u64
) sg_dma_address(sg
);
4949 len
= sg_dma_len(sg
);
4951 curr_sg
->address
= cpu_to_le64(addr64
);
4952 curr_sg
->length
= cpu_to_le32(len
);
4953 curr_sg
->reserved
[0] = 0;
4954 curr_sg
->reserved
[1] = 0;
4955 curr_sg
->reserved
[2] = 0;
4956 curr_sg
->chain_indicator
= 0;
4960 switch (cmd
->sc_data_direction
) {
4962 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4963 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4965 case DMA_FROM_DEVICE
:
4966 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4967 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4970 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4971 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4974 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4975 cmd
->sc_data_direction
);
4980 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4981 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4984 /* Set encryption parameters, if necessary */
4985 set_encrypt_ioaccel2(h
, c
, cp
);
4987 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4988 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4989 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4991 cp
->data_len
= cpu_to_le32(total_len
);
4992 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4993 offsetof(struct io_accel2_cmd
, error_data
));
4994 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4996 /* fill in sg elements */
4997 if (use_sg
> h
->ioaccel_maxsg
) {
4999 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
5000 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
5001 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5002 scsi_dma_unmap(cmd
);
5006 cp
->sg_count
= (u8
) use_sg
;
5008 enqueue_cmd_and_start_io(h
, c
);
5013 * Queue a command to the correct I/O accelerator path.
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
5016 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
5017 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5019 if (!c
->scsi_cmd
->device
)
5022 if (!c
->scsi_cmd
->device
->hostdata
)
5025 /* Try to honor the device's queue depth */
5026 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5027 phys_disk
->queue_depth
) {
5028 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5029 return IO_ACCEL_INELIGIBLE
;
5031 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5032 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5033 cdb
, cdb_len
, scsi3addr
,
5036 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5037 cdb
, cdb_len
, scsi3addr
,
5041 static void raid_map_helper(struct raid_map_data
*map
,
5042 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5044 if (offload_to_mirror
== 0) {
5045 /* use physical disk in the first mirrored group. */
5046 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5050 /* determine mirror group that *map_index indicates */
5051 *current_group
= *map_index
/
5052 le16_to_cpu(map
->data_disks_per_row
);
5053 if (offload_to_mirror
== *current_group
)
5055 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5056 /* select map index from next group */
5057 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5060 /* select map index from first group */
5061 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5064 } while (offload_to_mirror
!= *current_group
);
5068 * Attempt to perform offload RAID mapping for a logical volume I/O.
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5071 struct CommandList
*c
)
5073 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5074 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5075 struct raid_map_data
*map
= &dev
->raid_map
;
5076 struct raid_map_disk_data
*dd
= &map
->data
[0];
5079 u64 first_block
, last_block
;
5082 u64 first_row
, last_row
;
5083 u32 first_row_offset
, last_row_offset
;
5084 u32 first_column
, last_column
;
5085 u64 r0_first_row
, r0_last_row
;
5086 u32 r5or6_blocks_per_row
;
5087 u64 r5or6_first_row
, r5or6_last_row
;
5088 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5089 u32 r5or6_first_column
, r5or6_last_column
;
5090 u32 total_disks_per_row
;
5092 u32 first_group
, last_group
, current_group
;
5100 #if BITS_PER_LONG == 32
5103 int offload_to_mirror
;
5108 /* check for valid opcode, get LBA and block count */
5109 switch (cmd
->cmnd
[0]) {
5113 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5114 (cmd
->cmnd
[2] << 8) |
5116 block_cnt
= cmd
->cmnd
[4];
5124 (((u64
) cmd
->cmnd
[2]) << 24) |
5125 (((u64
) cmd
->cmnd
[3]) << 16) |
5126 (((u64
) cmd
->cmnd
[4]) << 8) |
5129 (((u32
) cmd
->cmnd
[7]) << 8) |
5136 (((u64
) cmd
->cmnd
[2]) << 24) |
5137 (((u64
) cmd
->cmnd
[3]) << 16) |
5138 (((u64
) cmd
->cmnd
[4]) << 8) |
5141 (((u32
) cmd
->cmnd
[6]) << 24) |
5142 (((u32
) cmd
->cmnd
[7]) << 16) |
5143 (((u32
) cmd
->cmnd
[8]) << 8) |
5150 (((u64
) cmd
->cmnd
[2]) << 56) |
5151 (((u64
) cmd
->cmnd
[3]) << 48) |
5152 (((u64
) cmd
->cmnd
[4]) << 40) |
5153 (((u64
) cmd
->cmnd
[5]) << 32) |
5154 (((u64
) cmd
->cmnd
[6]) << 24) |
5155 (((u64
) cmd
->cmnd
[7]) << 16) |
5156 (((u64
) cmd
->cmnd
[8]) << 8) |
5159 (((u32
) cmd
->cmnd
[10]) << 24) |
5160 (((u32
) cmd
->cmnd
[11]) << 16) |
5161 (((u32
) cmd
->cmnd
[12]) << 8) |
5165 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5167 last_block
= first_block
+ block_cnt
- 1;
5169 /* check for write to non-RAID-0 */
5170 if (is_write
&& dev
->raid_level
!= 0)
5171 return IO_ACCEL_INELIGIBLE
;
5173 /* check for invalid block or wraparound */
5174 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5175 last_block
< first_block
)
5176 return IO_ACCEL_INELIGIBLE
;
5178 /* calculate stripe information for the request */
5179 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5180 le16_to_cpu(map
->strip_size
);
5181 strip_size
= le16_to_cpu(map
->strip_size
);
5182 #if BITS_PER_LONG == 32
5183 tmpdiv
= first_block
;
5184 (void) do_div(tmpdiv
, blocks_per_row
);
5186 tmpdiv
= last_block
;
5187 (void) do_div(tmpdiv
, blocks_per_row
);
5189 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5190 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5191 tmpdiv
= first_row_offset
;
5192 (void) do_div(tmpdiv
, strip_size
);
5193 first_column
= tmpdiv
;
5194 tmpdiv
= last_row_offset
;
5195 (void) do_div(tmpdiv
, strip_size
);
5196 last_column
= tmpdiv
;
5198 first_row
= first_block
/ blocks_per_row
;
5199 last_row
= last_block
/ blocks_per_row
;
5200 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5201 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5202 first_column
= first_row_offset
/ strip_size
;
5203 last_column
= last_row_offset
/ strip_size
;
5206 /* if this isn't a single row/column then give to the controller */
5207 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5208 return IO_ACCEL_INELIGIBLE
;
5210 /* proceeding with driver mapping */
5211 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5212 le16_to_cpu(map
->metadata_disks_per_row
);
5213 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5214 le16_to_cpu(map
->row_cnt
);
5215 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5217 switch (dev
->raid_level
) {
5219 break; /* nothing special to do */
5221 /* Handles load balance across RAID 1 members.
5222 * (2-drive R1 and R10 with even # of drives.)
5223 * Appropriate for SSDs, not optimal for HDDs
5225 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5226 if (dev
->offload_to_mirror
)
5227 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5228 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5231 /* Handles N-way mirrors (R1-ADM)
5232 * and R10 with # of drives divisible by 3.)
5234 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5236 offload_to_mirror
= dev
->offload_to_mirror
;
5237 raid_map_helper(map
, offload_to_mirror
,
5238 &map_index
, ¤t_group
);
5239 /* set mirror group to use next time */
5241 (offload_to_mirror
>=
5242 le16_to_cpu(map
->layout_map_count
) - 1)
5243 ? 0 : offload_to_mirror
+ 1;
5244 dev
->offload_to_mirror
= offload_to_mirror
;
5245 /* Avoid direct use of dev->offload_to_mirror within this
5246 * function since multiple threads might simultaneously
5247 * increment it beyond the range of dev->layout_map_count -1.
5252 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5255 /* Verify first and last block are in same RAID group */
5256 r5or6_blocks_per_row
=
5257 le16_to_cpu(map
->strip_size
) *
5258 le16_to_cpu(map
->data_disks_per_row
);
5259 BUG_ON(r5or6_blocks_per_row
== 0);
5260 stripesize
= r5or6_blocks_per_row
*
5261 le16_to_cpu(map
->layout_map_count
);
5262 #if BITS_PER_LONG == 32
5263 tmpdiv
= first_block
;
5264 first_group
= do_div(tmpdiv
, stripesize
);
5265 tmpdiv
= first_group
;
5266 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5267 first_group
= tmpdiv
;
5268 tmpdiv
= last_block
;
5269 last_group
= do_div(tmpdiv
, stripesize
);
5270 tmpdiv
= last_group
;
5271 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5272 last_group
= tmpdiv
;
5274 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5275 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5277 if (first_group
!= last_group
)
5278 return IO_ACCEL_INELIGIBLE
;
5280 /* Verify request is in a single row of RAID 5/6 */
5281 #if BITS_PER_LONG == 32
5282 tmpdiv
= first_block
;
5283 (void) do_div(tmpdiv
, stripesize
);
5284 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5285 tmpdiv
= last_block
;
5286 (void) do_div(tmpdiv
, stripesize
);
5287 r5or6_last_row
= r0_last_row
= tmpdiv
;
5289 first_row
= r5or6_first_row
= r0_first_row
=
5290 first_block
/ stripesize
;
5291 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5293 if (r5or6_first_row
!= r5or6_last_row
)
5294 return IO_ACCEL_INELIGIBLE
;
5297 /* Verify request is in a single column */
5298 #if BITS_PER_LONG == 32
5299 tmpdiv
= first_block
;
5300 first_row_offset
= do_div(tmpdiv
, stripesize
);
5301 tmpdiv
= first_row_offset
;
5302 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5303 r5or6_first_row_offset
= first_row_offset
;
5304 tmpdiv
= last_block
;
5305 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5306 tmpdiv
= r5or6_last_row_offset
;
5307 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5308 tmpdiv
= r5or6_first_row_offset
;
5309 (void) do_div(tmpdiv
, map
->strip_size
);
5310 first_column
= r5or6_first_column
= tmpdiv
;
5311 tmpdiv
= r5or6_last_row_offset
;
5312 (void) do_div(tmpdiv
, map
->strip_size
);
5313 r5or6_last_column
= tmpdiv
;
5315 first_row_offset
= r5or6_first_row_offset
=
5316 (u32
)((first_block
% stripesize
) %
5317 r5or6_blocks_per_row
);
5319 r5or6_last_row_offset
=
5320 (u32
)((last_block
% stripesize
) %
5321 r5or6_blocks_per_row
);
5323 first_column
= r5or6_first_column
=
5324 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5326 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5328 if (r5or6_first_column
!= r5or6_last_column
)
5329 return IO_ACCEL_INELIGIBLE
;
5331 /* Request is eligible */
5332 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5333 le16_to_cpu(map
->row_cnt
);
5335 map_index
= (first_group
*
5336 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5337 (map_row
* total_disks_per_row
) + first_column
;
5340 return IO_ACCEL_INELIGIBLE
;
5343 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5344 return IO_ACCEL_INELIGIBLE
;
5346 c
->phys_disk
= dev
->phys_disk
[map_index
];
5348 return IO_ACCEL_INELIGIBLE
;
5350 disk_handle
= dd
[map_index
].ioaccel_handle
;
5351 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5352 first_row
* le16_to_cpu(map
->strip_size
) +
5353 (first_row_offset
- first_column
*
5354 le16_to_cpu(map
->strip_size
));
5355 disk_block_cnt
= block_cnt
;
5357 /* handle differing logical/physical block sizes */
5358 if (map
->phys_blk_shift
) {
5359 disk_block
<<= map
->phys_blk_shift
;
5360 disk_block_cnt
<<= map
->phys_blk_shift
;
5362 BUG_ON(disk_block_cnt
> 0xffff);
5364 /* build the new CDB for the physical disk I/O */
5365 if (disk_block
> 0xffffffff) {
5366 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5368 cdb
[2] = (u8
) (disk_block
>> 56);
5369 cdb
[3] = (u8
) (disk_block
>> 48);
5370 cdb
[4] = (u8
) (disk_block
>> 40);
5371 cdb
[5] = (u8
) (disk_block
>> 32);
5372 cdb
[6] = (u8
) (disk_block
>> 24);
5373 cdb
[7] = (u8
) (disk_block
>> 16);
5374 cdb
[8] = (u8
) (disk_block
>> 8);
5375 cdb
[9] = (u8
) (disk_block
);
5376 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5377 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5378 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5379 cdb
[13] = (u8
) (disk_block_cnt
);
5384 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5386 cdb
[2] = (u8
) (disk_block
>> 24);
5387 cdb
[3] = (u8
) (disk_block
>> 16);
5388 cdb
[4] = (u8
) (disk_block
>> 8);
5389 cdb
[5] = (u8
) (disk_block
);
5391 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5392 cdb
[8] = (u8
) (disk_block_cnt
);
5396 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5398 dev
->phys_disk
[map_index
]);
5402 * Submit commands down the "normal" RAID stack path
5403 * All callers to hpsa_ciss_submit must check lockup_detected
5404 * beforehand, before (opt.) and after calling cmd_alloc
5406 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5407 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5408 unsigned char scsi3addr
[])
5410 cmd
->host_scribble
= (unsigned char *) c
;
5411 c
->cmd_type
= CMD_SCSI
;
5413 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5414 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5415 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5417 /* Fill in the request block... */
5419 c
->Request
.Timeout
= 0;
5420 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5421 c
->Request
.CDBLen
= cmd
->cmd_len
;
5422 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5423 switch (cmd
->sc_data_direction
) {
5425 c
->Request
.type_attr_dir
=
5426 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5428 case DMA_FROM_DEVICE
:
5429 c
->Request
.type_attr_dir
=
5430 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5433 c
->Request
.type_attr_dir
=
5434 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5436 case DMA_BIDIRECTIONAL
:
5437 /* This can happen if a buggy application does a scsi passthru
5438 * and sets both inlen and outlen to non-zero. ( see
5439 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5442 c
->Request
.type_attr_dir
=
5443 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5444 /* This is technically wrong, and hpsa controllers should
5445 * reject it with CMD_INVALID, which is the most correct
5446 * response, but non-fibre backends appear to let it
5447 * slide by, and give the same results as if this field
5448 * were set correctly. Either way is acceptable for
5449 * our purposes here.
5455 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5456 cmd
->sc_data_direction
);
5461 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5462 hpsa_cmd_resolve_and_free(h
, c
);
5463 return SCSI_MLQUEUE_HOST_BUSY
;
5465 enqueue_cmd_and_start_io(h
, c
);
5466 /* the cmd'll come back via intr handler in complete_scsi_command() */
5470 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5471 struct CommandList
*c
)
5473 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5475 /* Zero out all of commandlist except the last field, refcount */
5476 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5477 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5478 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5479 c
->err_info
= h
->errinfo_pool
+ index
;
5480 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5481 err_dma_handle
= h
->errinfo_pool_dhandle
5482 + index
* sizeof(*c
->err_info
);
5483 c
->cmdindex
= index
;
5484 c
->busaddr
= (u32
) cmd_dma_handle
;
5485 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5486 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5488 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5491 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5495 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5496 struct CommandList
*c
= h
->cmd_pool
+ i
;
5498 hpsa_cmd_init(h
, i
, c
);
5499 atomic_set(&c
->refcount
, 0);
5503 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5504 struct CommandList
*c
)
5506 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5508 BUG_ON(c
->cmdindex
!= index
);
5510 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5511 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5512 c
->busaddr
= (u32
) cmd_dma_handle
;
5515 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5516 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5517 unsigned char *scsi3addr
)
5519 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5520 int rc
= IO_ACCEL_INELIGIBLE
;
5523 return SCSI_MLQUEUE_HOST_BUSY
;
5525 cmd
->host_scribble
= (unsigned char *) c
;
5527 if (dev
->offload_enabled
) {
5528 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5529 c
->cmd_type
= CMD_SCSI
;
5531 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5532 if (rc
< 0) /* scsi_dma_map failed. */
5533 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5534 } else if (dev
->hba_ioaccel_enabled
) {
5535 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5536 c
->cmd_type
= CMD_SCSI
;
5538 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5539 if (rc
< 0) /* scsi_dma_map failed. */
5540 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5545 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5547 struct scsi_cmnd
*cmd
;
5548 struct hpsa_scsi_dev_t
*dev
;
5549 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5552 dev
= cmd
->device
->hostdata
;
5554 cmd
->result
= DID_NO_CONNECT
<< 16;
5555 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5557 if (c
->reset_pending
)
5558 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5559 if (c
->cmd_type
== CMD_IOACCEL2
) {
5560 struct ctlr_info
*h
= c
->h
;
5561 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5564 if (c2
->error_data
.serv_response
==
5565 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5566 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5569 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5571 * If we get here, it means dma mapping failed.
5572 * Try again via scsi mid layer, which will
5573 * then get SCSI_MLQUEUE_HOST_BUSY.
5575 cmd
->result
= DID_IMM_RETRY
<< 16;
5576 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5578 /* else, fall thru and resubmit down CISS path */
5581 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5582 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5584 * If we get here, it means dma mapping failed. Try
5585 * again via scsi mid layer, which will then get
5586 * SCSI_MLQUEUE_HOST_BUSY.
5588 * hpsa_ciss_submit will have already freed c
5589 * if it encountered a dma mapping failure.
5591 cmd
->result
= DID_IMM_RETRY
<< 16;
5592 cmd
->scsi_done(cmd
);
5596 /* Running in struct Scsi_Host->host_lock less mode */
5597 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5599 struct ctlr_info
*h
;
5600 struct hpsa_scsi_dev_t
*dev
;
5601 unsigned char scsi3addr
[8];
5602 struct CommandList
*c
;
5605 /* Get the ptr to our adapter structure out of cmd->host. */
5606 h
= sdev_to_hba(cmd
->device
);
5608 BUG_ON(cmd
->request
->tag
< 0);
5610 dev
= cmd
->device
->hostdata
;
5612 cmd
->result
= DID_NO_CONNECT
<< 16;
5613 cmd
->scsi_done(cmd
);
5618 cmd
->result
= DID_NO_CONNECT
<< 16;
5619 cmd
->scsi_done(cmd
);
5623 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5625 if (unlikely(lockup_detected(h
))) {
5626 cmd
->result
= DID_NO_CONNECT
<< 16;
5627 cmd
->scsi_done(cmd
);
5630 c
= cmd_tagged_alloc(h
, cmd
);
5633 * Call alternate submit routine for I/O accelerated commands.
5634 * Retries always go down the normal I/O path.
5636 if (likely(cmd
->retries
== 0 &&
5637 !blk_rq_is_passthrough(cmd
->request
) &&
5638 h
->acciopath_status
)) {
5639 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5642 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5643 hpsa_cmd_resolve_and_free(h
, c
);
5644 return SCSI_MLQUEUE_HOST_BUSY
;
5647 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5650 static void hpsa_scan_complete(struct ctlr_info
*h
)
5652 unsigned long flags
;
5654 spin_lock_irqsave(&h
->scan_lock
, flags
);
5655 h
->scan_finished
= 1;
5656 wake_up(&h
->scan_wait_queue
);
5657 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5660 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5662 struct ctlr_info
*h
= shost_to_hba(sh
);
5663 unsigned long flags
;
5666 * Don't let rescans be initiated on a controller known to be locked
5667 * up. If the controller locks up *during* a rescan, that thread is
5668 * probably hosed, but at least we can prevent new rescan threads from
5669 * piling up on a locked up controller.
5671 if (unlikely(lockup_detected(h
)))
5672 return hpsa_scan_complete(h
);
5675 * If a scan is already waiting to run, no need to add another
5677 spin_lock_irqsave(&h
->scan_lock
, flags
);
5678 if (h
->scan_waiting
) {
5679 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5683 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5685 /* wait until any scan already in progress is finished. */
5687 spin_lock_irqsave(&h
->scan_lock
, flags
);
5688 if (h
->scan_finished
)
5690 h
->scan_waiting
= 1;
5691 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5692 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5693 /* Note: We don't need to worry about a race between this
5694 * thread and driver unload because the midlayer will
5695 * have incremented the reference count, so unload won't
5696 * happen if we're in here.
5699 h
->scan_finished
= 0; /* mark scan as in progress */
5700 h
->scan_waiting
= 0;
5701 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5703 if (unlikely(lockup_detected(h
)))
5704 return hpsa_scan_complete(h
);
5707 * Do the scan after a reset completion
5709 spin_lock_irqsave(&h
->reset_lock
, flags
);
5710 if (h
->reset_in_progress
) {
5711 h
->drv_req_rescan
= 1;
5712 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5713 hpsa_scan_complete(h
);
5716 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5718 hpsa_update_scsi_devices(h
);
5720 hpsa_scan_complete(h
);
5723 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5725 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5732 else if (qdepth
> logical_drive
->queue_depth
)
5733 qdepth
= logical_drive
->queue_depth
;
5735 return scsi_change_queue_depth(sdev
, qdepth
);
5738 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5739 unsigned long elapsed_time
)
5741 struct ctlr_info
*h
= shost_to_hba(sh
);
5742 unsigned long flags
;
5745 spin_lock_irqsave(&h
->scan_lock
, flags
);
5746 finished
= h
->scan_finished
;
5747 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5751 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5753 struct Scsi_Host
*sh
;
5755 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5757 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5764 sh
->max_channel
= 3;
5765 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5766 sh
->max_lun
= HPSA_MAX_LUN
;
5767 sh
->max_id
= HPSA_MAX_LUN
;
5768 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5769 sh
->cmd_per_lun
= sh
->can_queue
;
5770 sh
->sg_tablesize
= h
->maxsgentries
;
5771 sh
->transportt
= hpsa_sas_transport_template
;
5772 sh
->hostdata
[0] = (unsigned long) h
;
5773 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5774 sh
->unique_id
= sh
->irq
;
5780 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5784 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5786 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5789 scsi_scan_host(h
->scsi_host
);
5794 * The block layer has already gone to the trouble of picking out a unique,
5795 * small-integer tag for this request. We use an offset from that value as
5796 * an index to select our command block. (The offset allows us to reserve the
5797 * low-numbered entries for our own uses.)
5799 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5801 int idx
= scmd
->request
->tag
;
5806 /* Offset to leave space for internal cmds. */
5807 return idx
+= HPSA_NRESERVED_CMDS
;
5811 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5812 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5814 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5815 struct CommandList
*c
, unsigned char lunaddr
[],
5820 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5821 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5822 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5823 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5826 /* no unmap needed here because no data xfer. */
5828 /* Check if the unit is already ready. */
5829 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5833 * The first command sent after reset will receive "unit attention" to
5834 * indicate that the LUN has been reset...this is actually what we're
5835 * looking for (but, success is good too).
5837 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5838 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5839 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5840 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5847 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5848 * returns zero when the unit is ready, and non-zero when giving up.
5850 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5851 struct CommandList
*c
,
5852 unsigned char lunaddr
[], int reply_queue
)
5856 int waittime
= 1; /* seconds */
5858 /* Send test unit ready until device ready, or give up. */
5859 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5862 * Wait for a bit. do this first, because if we send
5863 * the TUR right away, the reset will just abort it.
5865 msleep(1000 * waittime
);
5867 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5871 /* Increase wait time with each try, up to a point. */
5872 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5875 dev_warn(&h
->pdev
->dev
,
5876 "waiting %d secs for device to become ready.\n",
5883 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5884 unsigned char lunaddr
[],
5891 struct CommandList
*c
;
5896 * If no specific reply queue was requested, then send the TUR
5897 * repeatedly, requesting a reply on each reply queue; otherwise execute
5898 * the loop exactly once using only the specified queue.
5900 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5902 last_queue
= h
->nreply_queues
- 1;
5904 first_queue
= reply_queue
;
5905 last_queue
= reply_queue
;
5908 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5909 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5915 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5917 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5923 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5924 * complaining. Doing a host- or bus-reset can't do anything good here.
5926 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5929 struct ctlr_info
*h
;
5930 struct hpsa_scsi_dev_t
*dev
;
5933 unsigned long flags
;
5935 /* find the controller to which the command to be aborted was sent */
5936 h
= sdev_to_hba(scsicmd
->device
);
5937 if (h
== NULL
) /* paranoia */
5940 spin_lock_irqsave(&h
->reset_lock
, flags
);
5941 h
->reset_in_progress
= 1;
5942 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5944 if (lockup_detected(h
)) {
5946 goto return_reset_status
;
5949 dev
= scsicmd
->device
->hostdata
;
5951 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5953 goto return_reset_status
;
5956 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5958 goto return_reset_status
;
5961 /* if controller locked up, we can guarantee command won't complete */
5962 if (lockup_detected(h
)) {
5963 snprintf(msg
, sizeof(msg
),
5964 "cmd %d RESET FAILED, lockup detected",
5965 hpsa_get_cmd_index(scsicmd
));
5966 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5968 goto return_reset_status
;
5971 /* this reset request might be the result of a lockup; check */
5972 if (detect_controller_lockup(h
)) {
5973 snprintf(msg
, sizeof(msg
),
5974 "cmd %d RESET FAILED, new lockup detected",
5975 hpsa_get_cmd_index(scsicmd
));
5976 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5978 goto return_reset_status
;
5981 /* Do not attempt on controller */
5982 if (is_hba_lunid(dev
->scsi3addr
)) {
5984 goto return_reset_status
;
5987 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5988 reset_type
= HPSA_DEVICE_RESET_MSG
;
5990 reset_type
= HPSA_PHYS_TARGET_RESET
;
5992 sprintf(msg
, "resetting %s",
5993 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5994 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5996 /* send a reset to the SCSI LUN which the command was sent to */
5997 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5998 DEFAULT_REPLY_QUEUE
);
6004 sprintf(msg
, "reset %s %s",
6005 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
6006 rc
== SUCCESS
? "completed successfully" : "failed");
6007 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6009 return_reset_status
:
6010 spin_lock_irqsave(&h
->reset_lock
, flags
);
6011 h
->reset_in_progress
= 0;
6012 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6017 * For operations with an associated SCSI command, a command block is allocated
6018 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6019 * block request tag as an index into a table of entries. cmd_tagged_free() is
6020 * the complement, although cmd_free() may be called instead.
6022 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6023 struct scsi_cmnd
*scmd
)
6025 int idx
= hpsa_get_cmd_index(scmd
);
6026 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6028 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6029 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6030 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6031 /* The index value comes from the block layer, so if it's out of
6032 * bounds, it's probably not our bug.
6037 atomic_inc(&c
->refcount
);
6038 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6040 * We expect that the SCSI layer will hand us a unique tag
6041 * value. Thus, there should never be a collision here between
6042 * two requests...because if the selected command isn't idle
6043 * then someone is going to be very disappointed.
6045 dev_err(&h
->pdev
->dev
,
6046 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6048 if (c
->scsi_cmd
!= NULL
)
6049 scsi_print_command(c
->scsi_cmd
);
6050 scsi_print_command(scmd
);
6053 hpsa_cmd_partial_init(h
, idx
, c
);
6057 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6060 * Release our reference to the block. We don't need to do anything
6061 * else to free it, because it is accessed by index.
6063 (void)atomic_dec(&c
->refcount
);
6067 * For operations that cannot sleep, a command block is allocated at init,
6068 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6069 * which ones are free or in use. Lock must be held when calling this.
6070 * cmd_free() is the complement.
6071 * This function never gives up and returns NULL. If it hangs,
6072 * another thread must call cmd_free() to free some tags.
6075 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6077 struct CommandList
*c
;
6082 * There is some *extremely* small but non-zero chance that that
6083 * multiple threads could get in here, and one thread could
6084 * be scanning through the list of bits looking for a free
6085 * one, but the free ones are always behind him, and other
6086 * threads sneak in behind him and eat them before he can
6087 * get to them, so that while there is always a free one, a
6088 * very unlucky thread might be starved anyway, never able to
6089 * beat the other threads. In reality, this happens so
6090 * infrequently as to be indistinguishable from never.
6092 * Note that we start allocating commands before the SCSI host structure
6093 * is initialized. Since the search starts at bit zero, this
6094 * all works, since we have at least one command structure available;
6095 * however, it means that the structures with the low indexes have to be
6096 * reserved for driver-initiated requests, while requests from the block
6097 * layer will use the higher indexes.
6101 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6102 HPSA_NRESERVED_CMDS
,
6104 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6108 c
= h
->cmd_pool
+ i
;
6109 refcount
= atomic_inc_return(&c
->refcount
);
6110 if (unlikely(refcount
> 1)) {
6111 cmd_free(h
, c
); /* already in use */
6112 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6115 set_bit(i
& (BITS_PER_LONG
- 1),
6116 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6117 break; /* it's ours now. */
6119 hpsa_cmd_partial_init(h
, i
, c
);
6124 * This is the complementary operation to cmd_alloc(). Note, however, in some
6125 * corner cases it may also be used to free blocks allocated by
6126 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6127 * the clear-bit is harmless.
6129 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6131 if (atomic_dec_and_test(&c
->refcount
)) {
6134 i
= c
- h
->cmd_pool
;
6135 clear_bit(i
& (BITS_PER_LONG
- 1),
6136 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6140 #ifdef CONFIG_COMPAT
6142 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6145 IOCTL32_Command_struct __user
*arg32
=
6146 (IOCTL32_Command_struct __user
*) arg
;
6147 IOCTL_Command_struct arg64
;
6148 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6152 memset(&arg64
, 0, sizeof(arg64
));
6154 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6155 sizeof(arg64
.LUN_info
));
6156 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6157 sizeof(arg64
.Request
));
6158 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6159 sizeof(arg64
.error_info
));
6160 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6161 err
|= get_user(cp
, &arg32
->buf
);
6162 arg64
.buf
= compat_ptr(cp
);
6163 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6168 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6171 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6172 sizeof(arg32
->error_info
));
6178 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6179 int cmd
, void __user
*arg
)
6181 BIG_IOCTL32_Command_struct __user
*arg32
=
6182 (BIG_IOCTL32_Command_struct __user
*) arg
;
6183 BIG_IOCTL_Command_struct arg64
;
6184 BIG_IOCTL_Command_struct __user
*p
=
6185 compat_alloc_user_space(sizeof(arg64
));
6189 memset(&arg64
, 0, sizeof(arg64
));
6191 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6192 sizeof(arg64
.LUN_info
));
6193 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6194 sizeof(arg64
.Request
));
6195 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6196 sizeof(arg64
.error_info
));
6197 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6198 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6199 err
|= get_user(cp
, &arg32
->buf
);
6200 arg64
.buf
= compat_ptr(cp
);
6201 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6206 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6209 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6210 sizeof(arg32
->error_info
));
6216 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6219 case CCISS_GETPCIINFO
:
6220 case CCISS_GETINTINFO
:
6221 case CCISS_SETINTINFO
:
6222 case CCISS_GETNODENAME
:
6223 case CCISS_SETNODENAME
:
6224 case CCISS_GETHEARTBEAT
:
6225 case CCISS_GETBUSTYPES
:
6226 case CCISS_GETFIRMVER
:
6227 case CCISS_GETDRIVVER
:
6228 case CCISS_REVALIDVOLS
:
6229 case CCISS_DEREGDISK
:
6230 case CCISS_REGNEWDISK
:
6232 case CCISS_RESCANDISK
:
6233 case CCISS_GETLUNINFO
:
6234 return hpsa_ioctl(dev
, cmd
, arg
);
6236 case CCISS_PASSTHRU32
:
6237 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6238 case CCISS_BIG_PASSTHRU32
:
6239 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6242 return -ENOIOCTLCMD
;
6247 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6249 struct hpsa_pci_info pciinfo
;
6253 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6254 pciinfo
.bus
= h
->pdev
->bus
->number
;
6255 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6256 pciinfo
.board_id
= h
->board_id
;
6257 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6262 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6264 DriverVer_type DriverVer
;
6265 unsigned char vmaj
, vmin
, vsubmin
;
6268 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6269 &vmaj
, &vmin
, &vsubmin
);
6271 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6272 "unrecognized.", HPSA_DRIVER_VERSION
);
6277 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6280 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6285 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6287 IOCTL_Command_struct iocommand
;
6288 struct CommandList
*c
;
6295 if (!capable(CAP_SYS_RAWIO
))
6297 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6299 if ((iocommand
.buf_size
< 1) &&
6300 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6303 if (iocommand
.buf_size
> 0) {
6304 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6307 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6308 /* Copy the data into the buffer we created */
6309 if (copy_from_user(buff
, iocommand
.buf
,
6310 iocommand
.buf_size
)) {
6315 memset(buff
, 0, iocommand
.buf_size
);
6320 /* Fill in the command type */
6321 c
->cmd_type
= CMD_IOCTL_PEND
;
6322 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6323 /* Fill in Command Header */
6324 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6325 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6326 c
->Header
.SGList
= 1;
6327 c
->Header
.SGTotal
= cpu_to_le16(1);
6328 } else { /* no buffers to fill */
6329 c
->Header
.SGList
= 0;
6330 c
->Header
.SGTotal
= cpu_to_le16(0);
6332 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6334 /* Fill in Request block */
6335 memcpy(&c
->Request
, &iocommand
.Request
,
6336 sizeof(c
->Request
));
6338 /* Fill in the scatter gather information */
6339 if (iocommand
.buf_size
> 0) {
6340 temp64
= pci_map_single(h
->pdev
, buff
,
6341 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6342 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6343 c
->SG
[0].Addr
= cpu_to_le64(0);
6344 c
->SG
[0].Len
= cpu_to_le32(0);
6348 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6349 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6350 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6352 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6354 if (iocommand
.buf_size
> 0)
6355 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6356 check_ioctl_unit_attention(h
, c
);
6362 /* Copy the error information out */
6363 memcpy(&iocommand
.error_info
, c
->err_info
,
6364 sizeof(iocommand
.error_info
));
6365 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6369 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6370 iocommand
.buf_size
> 0) {
6371 /* Copy the data out of the buffer we created */
6372 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6384 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6386 BIG_IOCTL_Command_struct
*ioc
;
6387 struct CommandList
*c
;
6388 unsigned char **buff
= NULL
;
6389 int *buff_size
= NULL
;
6395 BYTE __user
*data_ptr
;
6399 if (!capable(CAP_SYS_RAWIO
))
6401 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6406 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6410 if ((ioc
->buf_size
< 1) &&
6411 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6415 /* Check kmalloc limits using all SGs */
6416 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6420 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6424 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6429 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6434 left
= ioc
->buf_size
;
6435 data_ptr
= ioc
->buf
;
6437 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6438 buff_size
[sg_used
] = sz
;
6439 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6440 if (buff
[sg_used
] == NULL
) {
6444 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6445 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6450 memset(buff
[sg_used
], 0, sz
);
6457 c
->cmd_type
= CMD_IOCTL_PEND
;
6458 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6459 c
->Header
.ReplyQueue
= 0;
6460 c
->Header
.SGList
= (u8
) sg_used
;
6461 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6462 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6463 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6464 if (ioc
->buf_size
> 0) {
6466 for (i
= 0; i
< sg_used
; i
++) {
6467 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6468 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6469 if (dma_mapping_error(&h
->pdev
->dev
,
6470 (dma_addr_t
) temp64
)) {
6471 c
->SG
[i
].Addr
= cpu_to_le64(0);
6472 c
->SG
[i
].Len
= cpu_to_le32(0);
6473 hpsa_pci_unmap(h
->pdev
, c
, i
,
6474 PCI_DMA_BIDIRECTIONAL
);
6478 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6479 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6480 c
->SG
[i
].Ext
= cpu_to_le32(0);
6482 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6484 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6487 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6488 check_ioctl_unit_attention(h
, c
);
6494 /* Copy the error information out */
6495 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6496 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6500 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6503 /* Copy the data out of the buffer we created */
6504 BYTE __user
*ptr
= ioc
->buf
;
6505 for (i
= 0; i
< sg_used
; i
++) {
6506 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6510 ptr
+= buff_size
[i
];
6520 for (i
= 0; i
< sg_used
; i
++)
6529 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6530 struct CommandList
*c
)
6532 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6533 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6534 (void) check_for_unit_attention(h
, c
);
6540 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6542 struct ctlr_info
*h
;
6543 void __user
*argp
= (void __user
*)arg
;
6546 h
= sdev_to_hba(dev
);
6549 case CCISS_DEREGDISK
:
6550 case CCISS_REGNEWDISK
:
6552 hpsa_scan_start(h
->scsi_host
);
6554 case CCISS_GETPCIINFO
:
6555 return hpsa_getpciinfo_ioctl(h
, argp
);
6556 case CCISS_GETDRIVVER
:
6557 return hpsa_getdrivver_ioctl(h
, argp
);
6558 case CCISS_PASSTHRU
:
6559 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6561 rc
= hpsa_passthru_ioctl(h
, argp
);
6562 atomic_inc(&h
->passthru_cmds_avail
);
6564 case CCISS_BIG_PASSTHRU
:
6565 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6567 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6568 atomic_inc(&h
->passthru_cmds_avail
);
6575 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6578 struct CommandList
*c
;
6582 /* fill_cmd can't fail here, no data buffer to map */
6583 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6584 RAID_CTLR_LUNID
, TYPE_MSG
);
6585 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6587 enqueue_cmd_and_start_io(h
, c
);
6588 /* Don't wait for completion, the reset won't complete. Don't free
6589 * the command either. This is the last command we will send before
6590 * re-initializing everything, so it doesn't matter and won't leak.
6595 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6596 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6599 int pci_dir
= XFER_NONE
;
6601 c
->cmd_type
= CMD_IOCTL_PEND
;
6602 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6603 c
->Header
.ReplyQueue
= 0;
6604 if (buff
!= NULL
&& size
> 0) {
6605 c
->Header
.SGList
= 1;
6606 c
->Header
.SGTotal
= cpu_to_le16(1);
6608 c
->Header
.SGList
= 0;
6609 c
->Header
.SGTotal
= cpu_to_le16(0);
6611 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6613 if (cmd_type
== TYPE_CMD
) {
6616 /* are we trying to read a vital product page */
6617 if (page_code
& VPD_PAGE
) {
6618 c
->Request
.CDB
[1] = 0x01;
6619 c
->Request
.CDB
[2] = (page_code
& 0xff);
6621 c
->Request
.CDBLen
= 6;
6622 c
->Request
.type_attr_dir
=
6623 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6624 c
->Request
.Timeout
= 0;
6625 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6626 c
->Request
.CDB
[4] = size
& 0xFF;
6628 case RECEIVE_DIAGNOSTIC
:
6629 c
->Request
.CDBLen
= 6;
6630 c
->Request
.type_attr_dir
=
6631 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6632 c
->Request
.Timeout
= 0;
6633 c
->Request
.CDB
[0] = cmd
;
6634 c
->Request
.CDB
[1] = 1;
6635 c
->Request
.CDB
[2] = 1;
6636 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6637 c
->Request
.CDB
[4] = size
& 0xFF;
6639 case HPSA_REPORT_LOG
:
6640 case HPSA_REPORT_PHYS
:
6641 /* Talking to controller so It's a physical command
6642 mode = 00 target = 0. Nothing to write.
6644 c
->Request
.CDBLen
= 12;
6645 c
->Request
.type_attr_dir
=
6646 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6647 c
->Request
.Timeout
= 0;
6648 c
->Request
.CDB
[0] = cmd
;
6649 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6650 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6651 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6652 c
->Request
.CDB
[9] = size
& 0xFF;
6654 case BMIC_SENSE_DIAG_OPTIONS
:
6655 c
->Request
.CDBLen
= 16;
6656 c
->Request
.type_attr_dir
=
6657 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6658 c
->Request
.Timeout
= 0;
6659 /* Spec says this should be BMIC_WRITE */
6660 c
->Request
.CDB
[0] = BMIC_READ
;
6661 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6663 case BMIC_SET_DIAG_OPTIONS
:
6664 c
->Request
.CDBLen
= 16;
6665 c
->Request
.type_attr_dir
=
6666 TYPE_ATTR_DIR(cmd_type
,
6667 ATTR_SIMPLE
, XFER_WRITE
);
6668 c
->Request
.Timeout
= 0;
6669 c
->Request
.CDB
[0] = BMIC_WRITE
;
6670 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6672 case HPSA_CACHE_FLUSH
:
6673 c
->Request
.CDBLen
= 12;
6674 c
->Request
.type_attr_dir
=
6675 TYPE_ATTR_DIR(cmd_type
,
6676 ATTR_SIMPLE
, XFER_WRITE
);
6677 c
->Request
.Timeout
= 0;
6678 c
->Request
.CDB
[0] = BMIC_WRITE
;
6679 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6680 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6681 c
->Request
.CDB
[8] = size
& 0xFF;
6683 case TEST_UNIT_READY
:
6684 c
->Request
.CDBLen
= 6;
6685 c
->Request
.type_attr_dir
=
6686 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6687 c
->Request
.Timeout
= 0;
6689 case HPSA_GET_RAID_MAP
:
6690 c
->Request
.CDBLen
= 12;
6691 c
->Request
.type_attr_dir
=
6692 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6693 c
->Request
.Timeout
= 0;
6694 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6695 c
->Request
.CDB
[1] = cmd
;
6696 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6697 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6698 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6699 c
->Request
.CDB
[9] = size
& 0xFF;
6701 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6702 c
->Request
.CDBLen
= 10;
6703 c
->Request
.type_attr_dir
=
6704 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6705 c
->Request
.Timeout
= 0;
6706 c
->Request
.CDB
[0] = BMIC_READ
;
6707 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6708 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6709 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6711 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6712 c
->Request
.CDBLen
= 10;
6713 c
->Request
.type_attr_dir
=
6714 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6715 c
->Request
.Timeout
= 0;
6716 c
->Request
.CDB
[0] = BMIC_READ
;
6717 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6718 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6719 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6721 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6722 c
->Request
.CDBLen
= 10;
6723 c
->Request
.type_attr_dir
=
6724 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6725 c
->Request
.Timeout
= 0;
6726 c
->Request
.CDB
[0] = BMIC_READ
;
6727 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6728 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6729 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6731 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6732 c
->Request
.CDBLen
= 10;
6733 c
->Request
.type_attr_dir
=
6734 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6735 c
->Request
.Timeout
= 0;
6736 c
->Request
.CDB
[0] = BMIC_READ
;
6737 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6738 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6739 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6741 case BMIC_IDENTIFY_CONTROLLER
:
6742 c
->Request
.CDBLen
= 10;
6743 c
->Request
.type_attr_dir
=
6744 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6745 c
->Request
.Timeout
= 0;
6746 c
->Request
.CDB
[0] = BMIC_READ
;
6747 c
->Request
.CDB
[1] = 0;
6748 c
->Request
.CDB
[2] = 0;
6749 c
->Request
.CDB
[3] = 0;
6750 c
->Request
.CDB
[4] = 0;
6751 c
->Request
.CDB
[5] = 0;
6752 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6753 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6754 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6755 c
->Request
.CDB
[9] = 0;
6758 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6761 } else if (cmd_type
== TYPE_MSG
) {
6764 case HPSA_PHYS_TARGET_RESET
:
6765 c
->Request
.CDBLen
= 16;
6766 c
->Request
.type_attr_dir
=
6767 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6768 c
->Request
.Timeout
= 0; /* Don't time out */
6769 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6770 c
->Request
.CDB
[0] = HPSA_RESET
;
6771 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6772 /* Physical target reset needs no control bytes 4-7*/
6773 c
->Request
.CDB
[4] = 0x00;
6774 c
->Request
.CDB
[5] = 0x00;
6775 c
->Request
.CDB
[6] = 0x00;
6776 c
->Request
.CDB
[7] = 0x00;
6778 case HPSA_DEVICE_RESET_MSG
:
6779 c
->Request
.CDBLen
= 16;
6780 c
->Request
.type_attr_dir
=
6781 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6782 c
->Request
.Timeout
= 0; /* Don't time out */
6783 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6784 c
->Request
.CDB
[0] = cmd
;
6785 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6786 /* If bytes 4-7 are zero, it means reset the */
6788 c
->Request
.CDB
[4] = 0x00;
6789 c
->Request
.CDB
[5] = 0x00;
6790 c
->Request
.CDB
[6] = 0x00;
6791 c
->Request
.CDB
[7] = 0x00;
6794 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6799 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6803 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6805 pci_dir
= PCI_DMA_FROMDEVICE
;
6808 pci_dir
= PCI_DMA_TODEVICE
;
6811 pci_dir
= PCI_DMA_NONE
;
6814 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6816 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6822 * Map (physical) PCI mem into (virtual) kernel space
6824 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6826 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6827 ulong page_offs
= ((ulong
) base
) - page_base
;
6828 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6831 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6834 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6836 return h
->access
.command_completed(h
, q
);
6839 static inline bool interrupt_pending(struct ctlr_info
*h
)
6841 return h
->access
.intr_pending(h
);
6844 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6846 return (h
->access
.intr_pending(h
) == 0) ||
6847 (h
->interrupts_enabled
== 0);
6850 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6853 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6854 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6860 static inline void finish_cmd(struct CommandList
*c
)
6862 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6863 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6864 || c
->cmd_type
== CMD_IOACCEL2
))
6865 complete_scsi_command(c
);
6866 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6867 complete(c
->waiting
);
6870 /* process completion of an indexed ("direct lookup") command */
6871 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6875 struct CommandList
*c
;
6877 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6878 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6879 c
= h
->cmd_pool
+ tag_index
;
6884 /* Some controllers, like p400, will give us one interrupt
6885 * after a soft reset, even if we turned interrupts off.
6886 * Only need to check for this in the hpsa_xxx_discard_completions
6889 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6891 if (likely(!reset_devices
))
6894 if (likely(h
->interrupts_enabled
))
6897 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6898 "(known firmware bug.) Ignoring.\n");
6904 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6905 * Relies on (h-q[x] == x) being true for x such that
6906 * 0 <= x < MAX_REPLY_QUEUES.
6908 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6910 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6913 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6915 struct ctlr_info
*h
= queue_to_hba(queue
);
6916 u8 q
= *(u8
*) queue
;
6919 if (ignore_bogus_interrupt(h
))
6922 if (interrupt_not_for_us(h
))
6924 h
->last_intr_timestamp
= get_jiffies_64();
6925 while (interrupt_pending(h
)) {
6926 raw_tag
= get_next_completion(h
, q
);
6927 while (raw_tag
!= FIFO_EMPTY
)
6928 raw_tag
= next_command(h
, q
);
6933 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6935 struct ctlr_info
*h
= queue_to_hba(queue
);
6937 u8 q
= *(u8
*) queue
;
6939 if (ignore_bogus_interrupt(h
))
6942 h
->last_intr_timestamp
= get_jiffies_64();
6943 raw_tag
= get_next_completion(h
, q
);
6944 while (raw_tag
!= FIFO_EMPTY
)
6945 raw_tag
= next_command(h
, q
);
6949 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6951 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6953 u8 q
= *(u8
*) queue
;
6955 if (interrupt_not_for_us(h
))
6957 h
->last_intr_timestamp
= get_jiffies_64();
6958 while (interrupt_pending(h
)) {
6959 raw_tag
= get_next_completion(h
, q
);
6960 while (raw_tag
!= FIFO_EMPTY
) {
6961 process_indexed_cmd(h
, raw_tag
);
6962 raw_tag
= next_command(h
, q
);
6968 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6970 struct ctlr_info
*h
= queue_to_hba(queue
);
6972 u8 q
= *(u8
*) queue
;
6974 h
->last_intr_timestamp
= get_jiffies_64();
6975 raw_tag
= get_next_completion(h
, q
);
6976 while (raw_tag
!= FIFO_EMPTY
) {
6977 process_indexed_cmd(h
, raw_tag
);
6978 raw_tag
= next_command(h
, q
);
6983 /* Send a message CDB to the firmware. Careful, this only works
6984 * in simple mode, not performant mode due to the tag lookup.
6985 * We only ever use this immediately after a controller reset.
6987 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6991 struct CommandListHeader CommandHeader
;
6992 struct RequestBlock Request
;
6993 struct ErrDescriptor ErrorDescriptor
;
6995 struct Command
*cmd
;
6996 static const size_t cmd_sz
= sizeof(*cmd
) +
6997 sizeof(cmd
->ErrorDescriptor
);
7001 void __iomem
*vaddr
;
7004 vaddr
= pci_ioremap_bar(pdev
, 0);
7008 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7009 * CCISS commands, so they must be allocated from the lower 4GiB of
7012 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7018 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7024 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7025 * although there's no guarantee, we assume that the address is at
7026 * least 4-byte aligned (most likely, it's page-aligned).
7028 paddr32
= cpu_to_le32(paddr64
);
7030 cmd
->CommandHeader
.ReplyQueue
= 0;
7031 cmd
->CommandHeader
.SGList
= 0;
7032 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7033 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7034 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7036 cmd
->Request
.CDBLen
= 16;
7037 cmd
->Request
.type_attr_dir
=
7038 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7039 cmd
->Request
.Timeout
= 0; /* Don't time out */
7040 cmd
->Request
.CDB
[0] = opcode
;
7041 cmd
->Request
.CDB
[1] = type
;
7042 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7043 cmd
->ErrorDescriptor
.Addr
=
7044 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7045 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7047 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7049 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7050 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7051 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7053 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7058 /* we leak the DMA buffer here ... no choice since the controller could
7059 * still complete the command.
7061 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7062 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7067 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7069 if (tag
& HPSA_ERROR_BIT
) {
7070 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7075 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7080 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7082 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7083 void __iomem
*vaddr
, u32 use_doorbell
)
7087 /* For everything after the P600, the PCI power state method
7088 * of resetting the controller doesn't work, so we have this
7089 * other way using the doorbell register.
7091 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7092 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7094 /* PMC hardware guys tell us we need a 10 second delay after
7095 * doorbell reset and before any attempt to talk to the board
7096 * at all to ensure that this actually works and doesn't fall
7097 * over in some weird corner cases.
7100 } else { /* Try to do it the PCI power state way */
7102 /* Quoting from the Open CISS Specification: "The Power
7103 * Management Control/Status Register (CSR) controls the power
7104 * state of the device. The normal operating state is D0,
7105 * CSR=00h. The software off state is D3, CSR=03h. To reset
7106 * the controller, place the interface device in D3 then to D0,
7107 * this causes a secondary PCI reset which will reset the
7112 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7114 /* enter the D3hot power management state */
7115 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7121 /* enter the D0 power management state */
7122 rc
= pci_set_power_state(pdev
, PCI_D0
);
7127 * The P600 requires a small delay when changing states.
7128 * Otherwise we may think the board did not reset and we bail.
7129 * This for kdump only and is particular to the P600.
7136 static void init_driver_version(char *driver_version
, int len
)
7138 memset(driver_version
, 0, len
);
7139 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7142 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7144 char *driver_version
;
7145 int i
, size
= sizeof(cfgtable
->driver_version
);
7147 driver_version
= kmalloc(size
, GFP_KERNEL
);
7148 if (!driver_version
)
7151 init_driver_version(driver_version
, size
);
7152 for (i
= 0; i
< size
; i
++)
7153 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7154 kfree(driver_version
);
7158 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7159 unsigned char *driver_ver
)
7163 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7164 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7167 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7170 char *driver_ver
, *old_driver_ver
;
7171 int rc
, size
= sizeof(cfgtable
->driver_version
);
7173 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7174 if (!old_driver_ver
)
7176 driver_ver
= old_driver_ver
+ size
;
7178 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7179 * should have been changed, otherwise we know the reset failed.
7181 init_driver_version(old_driver_ver
, size
);
7182 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7183 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7184 kfree(old_driver_ver
);
7187 /* This does a hard reset of the controller using PCI power management
7188 * states or the using the doorbell register.
7190 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7194 u64 cfg_base_addr_index
;
7195 void __iomem
*vaddr
;
7196 unsigned long paddr
;
7197 u32 misc_fw_support
;
7199 struct CfgTable __iomem
*cfgtable
;
7201 u16 command_register
;
7203 /* For controllers as old as the P600, this is very nearly
7206 * pci_save_state(pci_dev);
7207 * pci_set_power_state(pci_dev, PCI_D3hot);
7208 * pci_set_power_state(pci_dev, PCI_D0);
7209 * pci_restore_state(pci_dev);
7211 * For controllers newer than the P600, the pci power state
7212 * method of resetting doesn't work so we have another way
7213 * using the doorbell register.
7216 if (!ctlr_is_resettable(board_id
)) {
7217 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7221 /* if controller is soft- but not hard resettable... */
7222 if (!ctlr_is_hard_resettable(board_id
))
7223 return -ENOTSUPP
; /* try soft reset later. */
7225 /* Save the PCI command register */
7226 pci_read_config_word(pdev
, 4, &command_register
);
7227 pci_save_state(pdev
);
7229 /* find the first memory BAR, so we can find the cfg table */
7230 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7233 vaddr
= remap_pci_mem(paddr
, 0x250);
7237 /* find cfgtable in order to check if reset via doorbell is supported */
7238 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7239 &cfg_base_addr_index
, &cfg_offset
);
7242 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7243 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7248 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7250 goto unmap_cfgtable
;
7252 /* If reset via doorbell register is supported, use that.
7253 * There are two such methods. Favor the newest method.
7255 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7256 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7258 use_doorbell
= DOORBELL_CTLR_RESET2
;
7260 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7262 dev_warn(&pdev
->dev
,
7263 "Soft reset not supported. Firmware update is required.\n");
7264 rc
= -ENOTSUPP
; /* try soft reset */
7265 goto unmap_cfgtable
;
7269 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7271 goto unmap_cfgtable
;
7273 pci_restore_state(pdev
);
7274 pci_write_config_word(pdev
, 4, command_register
);
7276 /* Some devices (notably the HP Smart Array 5i Controller)
7277 need a little pause here */
7278 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7280 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7282 dev_warn(&pdev
->dev
,
7283 "Failed waiting for board to become ready after hard reset\n");
7284 goto unmap_cfgtable
;
7287 rc
= controller_reset_failed(vaddr
);
7289 goto unmap_cfgtable
;
7291 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7292 "controller. Will try soft reset.\n");
7295 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7307 * We cannot read the structure directly, for portability we must use
7309 * This is for debug only.
7311 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7317 dev_info(dev
, "Controller Configuration information\n");
7318 dev_info(dev
, "------------------------------------\n");
7319 for (i
= 0; i
< 4; i
++)
7320 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7321 temp_name
[4] = '\0';
7322 dev_info(dev
, " Signature = %s\n", temp_name
);
7323 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7324 dev_info(dev
, " Transport methods supported = 0x%x\n",
7325 readl(&(tb
->TransportSupport
)));
7326 dev_info(dev
, " Transport methods active = 0x%x\n",
7327 readl(&(tb
->TransportActive
)));
7328 dev_info(dev
, " Requested transport Method = 0x%x\n",
7329 readl(&(tb
->HostWrite
.TransportRequest
)));
7330 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7331 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7332 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7333 readl(&(tb
->HostWrite
.CoalIntCount
)));
7334 dev_info(dev
, " Max outstanding commands = %d\n",
7335 readl(&(tb
->CmdsOutMax
)));
7336 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7337 for (i
= 0; i
< 16; i
++)
7338 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7339 temp_name
[16] = '\0';
7340 dev_info(dev
, " Server Name = %s\n", temp_name
);
7341 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7342 readl(&(tb
->HeartBeat
)));
7343 #endif /* HPSA_DEBUG */
7346 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7348 int i
, offset
, mem_type
, bar_type
;
7350 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7353 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7354 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7355 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7358 mem_type
= pci_resource_flags(pdev
, i
) &
7359 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7361 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7362 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7363 offset
+= 4; /* 32 bit */
7365 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7368 default: /* reserved in PCI 2.2 */
7369 dev_warn(&pdev
->dev
,
7370 "base address is invalid\n");
7375 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7381 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7383 pci_free_irq_vectors(h
->pdev
);
7384 h
->msix_vectors
= 0;
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388 * controllers that are capable. If not, we use legacy INTx mode.
7390 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7392 unsigned int flags
= PCI_IRQ_LEGACY
;
7395 /* Some boards advertise MSI but don't really support it */
7396 switch (h
->board_id
) {
7403 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7404 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7406 h
->msix_vectors
= ret
;
7410 flags
|= PCI_IRQ_MSI
;
7414 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7420 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7424 u32 subsystem_vendor_id
, subsystem_device_id
;
7426 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7427 subsystem_device_id
= pdev
->subsystem_device
;
7428 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7429 subsystem_vendor_id
;
7432 *legacy_board
= false;
7433 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7434 if (*board_id
== products
[i
].board_id
) {
7435 if (products
[i
].access
!= &SA5A_access
&&
7436 products
[i
].access
!= &SA5B_access
)
7438 dev_warn(&pdev
->dev
,
7439 "legacy board ID: 0x%08x\n",
7442 *legacy_board
= true;
7446 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7448 *legacy_board
= true;
7449 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7453 unsigned long *memory_bar
)
7457 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7458 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7459 /* addressing mode bits already removed */
7460 *memory_bar
= pci_resource_start(pdev
, i
);
7461 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7465 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7469 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7475 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7477 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7479 for (i
= 0; i
< iterations
; i
++) {
7480 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7481 if (wait_for_ready
) {
7482 if (scratchpad
== HPSA_FIRMWARE_READY
)
7485 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7488 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7490 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7494 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7495 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7498 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7499 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7500 *cfg_base_addr
&= (u32
) 0x0000ffff;
7501 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7502 if (*cfg_base_addr_index
== -1) {
7503 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7509 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7511 if (h
->transtable
) {
7512 iounmap(h
->transtable
);
7513 h
->transtable
= NULL
;
7516 iounmap(h
->cfgtable
);
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7524 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7528 u64 cfg_base_addr_index
;
7532 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7533 &cfg_base_addr_index
, &cfg_offset
);
7536 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7537 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7539 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7542 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7545 /* Find performant mode table. */
7546 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7547 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7548 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7549 sizeof(*h
->transtable
));
7550 if (!h
->transtable
) {
7551 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7552 hpsa_free_cfgtables(h
);
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7560 #define MIN_MAX_COMMANDS 16
7561 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7563 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7565 /* Limit commands in memory limited kdump scenario. */
7566 if (reset_devices
&& h
->max_commands
> 32)
7567 h
->max_commands
= 32;
7569 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7570 dev_warn(&h
->pdev
->dev
,
7571 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7574 h
->max_commands
= MIN_MAX_COMMANDS
;
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579 * then we know that chained SG blocks work. (Original smart arrays did not
7580 * support chained SG blocks and would return zero for max sg entries.)
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7584 return h
->maxsgentries
> 512;
7587 /* Interrogate the hardware for some limits:
7588 * max commands, max SG elements without chaining, and with chaining,
7589 * SG chain block size, etc.
7591 static void hpsa_find_board_params(struct ctlr_info
*h
)
7593 hpsa_get_max_perf_mode_cmds(h
);
7594 h
->nr_cmds
= h
->max_commands
;
7595 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7596 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7597 if (hpsa_supports_chained_sg_blocks(h
)) {
7598 /* Limit in-command s/g elements to 32 save dma'able memory. */
7599 h
->max_cmd_sg_entries
= 32;
7600 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7601 h
->maxsgentries
--; /* save one for chain pointer */
7604 * Original smart arrays supported at most 31 s/g entries
7605 * embedded inline in the command (trying to use more
7606 * would lock up the controller)
7608 h
->max_cmd_sg_entries
= 31;
7609 h
->maxsgentries
= 31; /* default to traditional values */
7613 /* Find out what task management functions are supported and cache */
7614 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7615 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7616 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7617 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7618 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7619 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7620 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7625 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7626 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7636 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7637 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639 driver_support
|= ENABLE_SCSI_PREFETCH
;
7641 driver_support
|= ENABLE_UNIT_ATTN
;
7642 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7645 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7646 * in a prefetch beyond physical memory.
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7652 if (h
->board_id
!= 0x3225103C)
7654 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7655 dma_prefetch
|= 0x8000;
7656 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7663 unsigned long flags
;
7664 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7665 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7666 spin_lock_irqsave(&h
->lock
, flags
);
7667 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7668 spin_unlock_irqrestore(&h
->lock
, flags
);
7669 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7671 /* delay and try again */
7672 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7683 unsigned long flags
;
7685 /* under certain very rare conditions, this can take awhile.
7686 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687 * as we enter this code.)
7689 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7690 if (h
->remove_in_progress
)
7692 spin_lock_irqsave(&h
->lock
, flags
);
7693 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7694 spin_unlock_irqrestore(&h
->lock
, flags
);
7695 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7697 /* delay and try again */
7698 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7710 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7711 if (!(trans_support
& SIMPLE_MODE
))
7714 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7716 /* Update the field, and then ring the doorbell */
7717 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7718 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7719 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7720 if (hpsa_wait_for_mode_change_ack(h
))
7722 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7723 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7725 h
->transMethod
= CFGTBL_Trans_Simple
;
7728 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7735 hpsa_free_cfgtables(h
); /* pci_init 4 */
7736 iounmap(h
->vaddr
); /* pci_init 3 */
7738 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7740 * call pci_disable_device before pci_release_regions per
7741 * Documentation/PCI/pci.txt
7743 pci_disable_device(h
->pdev
); /* pci_init 1 */
7744 pci_release_regions(h
->pdev
); /* pci_init 2 */
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info
*h
)
7750 int prod_index
, err
;
7753 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7756 h
->product_name
= products
[prod_index
].product_name
;
7757 h
->access
= *(products
[prod_index
].access
);
7758 h
->legacy_board
= legacy_board
;
7759 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7760 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7762 err
= pci_enable_device(h
->pdev
);
7764 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7765 pci_disable_device(h
->pdev
);
7769 err
= pci_request_regions(h
->pdev
, HPSA
);
7771 dev_err(&h
->pdev
->dev
,
7772 "failed to obtain PCI resources\n");
7773 pci_disable_device(h
->pdev
);
7777 pci_set_master(h
->pdev
);
7779 err
= hpsa_interrupt_mode(h
);
7782 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7784 goto clean2
; /* intmode+region, pci */
7785 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7787 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7789 goto clean2
; /* intmode+region, pci */
7791 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7793 goto clean3
; /* vaddr, intmode+region, pci */
7794 err
= hpsa_find_cfgtables(h
);
7796 goto clean3
; /* vaddr, intmode+region, pci */
7797 hpsa_find_board_params(h
);
7799 if (!hpsa_CISS_signature_present(h
)) {
7801 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7803 hpsa_set_driver_support_bits(h
);
7804 hpsa_p600_dma_prefetch_quirk(h
);
7805 err
= hpsa_enter_simple_mode(h
);
7807 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7810 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7811 hpsa_free_cfgtables(h
);
7812 clean3
: /* vaddr, intmode+region, pci */
7815 clean2
: /* intmode+region, pci */
7816 hpsa_disable_interrupt_mode(h
);
7819 * call pci_disable_device before pci_release_regions per
7820 * Documentation/PCI/pci.txt
7822 pci_disable_device(h
->pdev
);
7823 pci_release_regions(h
->pdev
);
7827 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7831 #define HBA_INQUIRY_BYTE_COUNT 64
7832 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7833 if (!h
->hba_inquiry_data
)
7835 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7836 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7838 kfree(h
->hba_inquiry_data
);
7839 h
->hba_inquiry_data
= NULL
;
7843 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7846 void __iomem
*vaddr
;
7851 /* kdump kernel is loading, we don't know in which state is
7852 * the pci interface. The dev->enable_cnt is equal zero
7853 * so we call enable+disable, wait a while and switch it on.
7855 rc
= pci_enable_device(pdev
);
7857 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7860 pci_disable_device(pdev
);
7861 msleep(260); /* a randomly chosen number */
7862 rc
= pci_enable_device(pdev
);
7864 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7868 pci_set_master(pdev
);
7870 vaddr
= pci_ioremap_bar(pdev
, 0);
7871 if (vaddr
== NULL
) {
7875 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7878 /* Reset the controller with a PCI power-cycle or via doorbell */
7879 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7881 /* -ENOTSUPP here means we cannot reset the controller
7882 * but it's already (and still) up and running in
7883 * "performant mode". Or, it might be 640x, which can't reset
7884 * due to concerns about shared bbwc between 6402/6404 pair.
7889 /* Now try to get the controller to respond to a no-op */
7890 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7891 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7892 if (hpsa_noop(pdev
) == 0)
7895 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7896 (i
< 11 ? "; re-trying" : ""));
7901 pci_disable_device(pdev
);
7905 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7907 kfree(h
->cmd_pool_bits
);
7908 h
->cmd_pool_bits
= NULL
;
7910 pci_free_consistent(h
->pdev
,
7911 h
->nr_cmds
* sizeof(struct CommandList
),
7913 h
->cmd_pool_dhandle
);
7915 h
->cmd_pool_dhandle
= 0;
7917 if (h
->errinfo_pool
) {
7918 pci_free_consistent(h
->pdev
,
7919 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7921 h
->errinfo_pool_dhandle
);
7922 h
->errinfo_pool
= NULL
;
7923 h
->errinfo_pool_dhandle
= 0;
7927 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7929 h
->cmd_pool_bits
= kzalloc(
7930 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7931 sizeof(unsigned long), GFP_KERNEL
);
7932 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7933 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7934 &(h
->cmd_pool_dhandle
));
7935 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7936 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7937 &(h
->errinfo_pool_dhandle
));
7938 if ((h
->cmd_pool_bits
== NULL
)
7939 || (h
->cmd_pool
== NULL
)
7940 || (h
->errinfo_pool
== NULL
)) {
7941 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7944 hpsa_preinitialize_commands(h
);
7947 hpsa_free_cmd_pool(h
);
7951 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7952 static void hpsa_free_irqs(struct ctlr_info
*h
)
7956 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
7957 /* Single reply queue, only one irq to free */
7958 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
7959 h
->q
[h
->intr_mode
] = 0;
7963 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7964 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
7967 for (; i
< MAX_REPLY_QUEUES
; i
++)
7971 /* returns 0 on success; cleans up and returns -Enn on error */
7972 static int hpsa_request_irqs(struct ctlr_info
*h
,
7973 irqreturn_t (*msixhandler
)(int, void *),
7974 irqreturn_t (*intxhandler
)(int, void *))
7979 * initialize h->q[x] = x so that interrupt handlers know which
7982 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7985 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
7986 /* If performant mode and MSI-X, use multiple reply queues */
7987 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7988 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7989 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
7995 dev_err(&h
->pdev
->dev
,
7996 "failed to get irq %d for %s\n",
7997 pci_irq_vector(h
->pdev
, i
), h
->devname
);
7998 for (j
= 0; j
< i
; j
++) {
7999 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8002 for (; j
< MAX_REPLY_QUEUES
; j
++)
8008 /* Use single reply pool */
8009 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8010 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8011 h
->msix_vectors
? "x" : "");
8012 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8015 &h
->q
[h
->intr_mode
]);
8017 sprintf(h
->intrname
[h
->intr_mode
],
8018 "%s-intx", h
->devname
);
8019 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8020 intxhandler
, IRQF_SHARED
,
8022 &h
->q
[h
->intr_mode
]);
8026 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8027 pci_irq_vector(h
->pdev
, 0), h
->devname
);
8034 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8037 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8039 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8040 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8042 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8046 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8047 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8049 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8050 "after soft reset.\n");
8057 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8061 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8062 if (!h
->reply_queue
[i
].head
)
8064 pci_free_consistent(h
->pdev
,
8065 h
->reply_queue_size
,
8066 h
->reply_queue
[i
].head
,
8067 h
->reply_queue
[i
].busaddr
);
8068 h
->reply_queue
[i
].head
= NULL
;
8069 h
->reply_queue
[i
].busaddr
= 0;
8071 h
->reply_queue_size
= 0;
8074 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8076 hpsa_free_performant_mode(h
); /* init_one 7 */
8077 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8078 hpsa_free_cmd_pool(h
); /* init_one 5 */
8079 hpsa_free_irqs(h
); /* init_one 4 */
8080 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8081 h
->scsi_host
= NULL
; /* init_one 3 */
8082 hpsa_free_pci_init(h
); /* init_one 2_5 */
8083 free_percpu(h
->lockup_detected
); /* init_one 2 */
8084 h
->lockup_detected
= NULL
; /* init_one 2 */
8085 if (h
->resubmit_wq
) {
8086 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8087 h
->resubmit_wq
= NULL
;
8089 if (h
->rescan_ctlr_wq
) {
8090 destroy_workqueue(h
->rescan_ctlr_wq
);
8091 h
->rescan_ctlr_wq
= NULL
;
8093 kfree(h
); /* init_one 1 */
8096 /* Called when controller lockup detected. */
8097 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8100 struct CommandList
*c
;
8103 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8104 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8105 c
= h
->cmd_pool
+ i
;
8106 refcount
= atomic_inc_return(&c
->refcount
);
8108 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8110 atomic_dec(&h
->commands_outstanding
);
8115 dev_warn(&h
->pdev
->dev
,
8116 "failed %d commands in fail_all\n", failcount
);
8119 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8123 for_each_online_cpu(cpu
) {
8124 u32
*lockup_detected
;
8125 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8126 *lockup_detected
= value
;
8128 wmb(); /* be sure the per-cpu variables are out to memory */
8131 static void controller_lockup_detected(struct ctlr_info
*h
)
8133 unsigned long flags
;
8134 u32 lockup_detected
;
8136 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8137 spin_lock_irqsave(&h
->lock
, flags
);
8138 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8139 if (!lockup_detected
) {
8140 /* no heartbeat, but controller gave us a zero. */
8141 dev_warn(&h
->pdev
->dev
,
8142 "lockup detected after %d but scratchpad register is zero\n",
8143 h
->heartbeat_sample_interval
/ HZ
);
8144 lockup_detected
= 0xffffffff;
8146 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8147 spin_unlock_irqrestore(&h
->lock
, flags
);
8148 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8149 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8150 if (lockup_detected
== 0xffff0000) {
8151 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8152 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8154 pci_disable_device(h
->pdev
);
8155 fail_all_outstanding_cmds(h
);
8158 static int detect_controller_lockup(struct ctlr_info
*h
)
8162 unsigned long flags
;
8164 now
= get_jiffies_64();
8165 /* If we've received an interrupt recently, we're ok. */
8166 if (time_after64(h
->last_intr_timestamp
+
8167 (h
->heartbeat_sample_interval
), now
))
8171 * If we've already checked the heartbeat recently, we're ok.
8172 * This could happen if someone sends us a signal. We
8173 * otherwise don't care about signals in this thread.
8175 if (time_after64(h
->last_heartbeat_timestamp
+
8176 (h
->heartbeat_sample_interval
), now
))
8179 /* If heartbeat has not changed since we last looked, we're not ok. */
8180 spin_lock_irqsave(&h
->lock
, flags
);
8181 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8182 spin_unlock_irqrestore(&h
->lock
, flags
);
8183 if (h
->last_heartbeat
== heartbeat
) {
8184 controller_lockup_detected(h
);
8189 h
->last_heartbeat
= heartbeat
;
8190 h
->last_heartbeat_timestamp
= now
;
8195 * Set ioaccel status for all ioaccel volumes.
8197 * Called from monitor controller worker (hpsa_event_monitor_worker)
8199 * A Volume (or Volumes that comprise an Array set may be undergoing a
8200 * transformation, so we will be turning off ioaccel for all volumes that
8201 * make up the Array.
8203 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8209 struct hpsa_scsi_dev_t
*device
;
8214 buf
= kmalloc(64, GFP_KERNEL
);
8219 * Run through current device list used during I/O requests.
8221 for (i
= 0; i
< h
->ndevices
; i
++) {
8226 if (!device
->scsi3addr
)
8228 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8229 HPSA_VPD_LV_IOACCEL_STATUS
))
8234 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8235 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8240 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8241 device
->offload_config
=
8242 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8243 if (device
->offload_config
)
8244 device
->offload_to_be_enabled
=
8245 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8248 * Immediately turn off ioaccel for any volume the
8249 * controller tells us to. Some of the reasons could be:
8250 * transformation - change to the LVs of an Array.
8251 * degraded volume - component failure
8253 * If ioaccel is to be re-enabled, re-enable later during the
8254 * scan operation so the driver can get a fresh raidmap
8255 * before turning ioaccel back on.
8258 if (!device
->offload_to_be_enabled
)
8259 device
->offload_enabled
= 0;
8265 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8269 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8272 /* Ask the controller to clear the events we're handling. */
8273 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8274 | CFGTBL_Trans_io_accel2
)) &&
8275 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8276 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8278 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8279 event_type
= "state change";
8280 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8281 event_type
= "configuration change";
8282 /* Stop sending new RAID offload reqs via the IO accelerator */
8283 scsi_block_requests(h
->scsi_host
);
8284 hpsa_set_ioaccel_status(h
);
8285 hpsa_drain_accel_commands(h
);
8286 /* Set 'accelerator path config change' bit */
8287 dev_warn(&h
->pdev
->dev
,
8288 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8289 h
->events
, event_type
);
8290 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8291 /* Set the "clear event notify field update" bit 6 */
8292 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8293 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8294 hpsa_wait_for_clear_event_notify_ack(h
);
8295 scsi_unblock_requests(h
->scsi_host
);
8297 /* Acknowledge controller notification events. */
8298 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8299 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8300 hpsa_wait_for_clear_event_notify_ack(h
);
8305 /* Check a register on the controller to see if there are configuration
8306 * changes (added/changed/removed logical drives, etc.) which mean that
8307 * we should rescan the controller for devices.
8308 * Also check flag for driver-initiated rescan.
8310 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8312 if (h
->drv_req_rescan
) {
8313 h
->drv_req_rescan
= 0;
8317 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8320 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8321 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8325 * Check if any of the offline devices have become ready
8327 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8329 unsigned long flags
;
8330 struct offline_device_entry
*d
;
8331 struct list_head
*this, *tmp
;
8333 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8334 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8335 d
= list_entry(this, struct offline_device_entry
,
8337 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8338 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8339 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8340 list_del(&d
->offline_list
);
8341 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8344 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8346 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8350 static int hpsa_luns_changed(struct ctlr_info
*h
)
8352 int rc
= 1; /* assume there are changes */
8353 struct ReportLUNdata
*logdev
= NULL
;
8355 /* if we can't find out if lun data has changed,
8356 * assume that it has.
8359 if (!h
->lastlogicals
)
8362 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8366 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8367 dev_warn(&h
->pdev
->dev
,
8368 "report luns failed, can't track lun changes.\n");
8371 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8372 dev_info(&h
->pdev
->dev
,
8373 "Lun changes detected.\n");
8374 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8377 rc
= 0; /* no changes detected. */
8383 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8385 struct Scsi_Host
*sh
= NULL
;
8386 unsigned long flags
;
8389 * Do the scan after the reset
8391 spin_lock_irqsave(&h
->reset_lock
, flags
);
8392 if (h
->reset_in_progress
) {
8393 h
->drv_req_rescan
= 1;
8394 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8397 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8399 sh
= scsi_host_get(h
->scsi_host
);
8401 hpsa_scan_start(sh
);
8403 h
->drv_req_rescan
= 0;
8408 * watch for controller events
8410 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8412 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8413 struct ctlr_info
, event_monitor_work
);
8414 unsigned long flags
;
8416 spin_lock_irqsave(&h
->lock
, flags
);
8417 if (h
->remove_in_progress
) {
8418 spin_unlock_irqrestore(&h
->lock
, flags
);
8421 spin_unlock_irqrestore(&h
->lock
, flags
);
8423 if (hpsa_ctlr_needs_rescan(h
)) {
8424 hpsa_ack_ctlr_events(h
);
8425 hpsa_perform_rescan(h
);
8428 spin_lock_irqsave(&h
->lock
, flags
);
8429 if (!h
->remove_in_progress
)
8430 schedule_delayed_work(&h
->event_monitor_work
,
8431 HPSA_EVENT_MONITOR_INTERVAL
);
8432 spin_unlock_irqrestore(&h
->lock
, flags
);
8435 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8437 unsigned long flags
;
8438 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8439 struct ctlr_info
, rescan_ctlr_work
);
8441 spin_lock_irqsave(&h
->lock
, flags
);
8442 if (h
->remove_in_progress
) {
8443 spin_unlock_irqrestore(&h
->lock
, flags
);
8446 spin_unlock_irqrestore(&h
->lock
, flags
);
8448 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8449 hpsa_perform_rescan(h
);
8450 } else if (h
->discovery_polling
) {
8451 if (hpsa_luns_changed(h
)) {
8452 dev_info(&h
->pdev
->dev
,
8453 "driver discovery polling rescan.\n");
8454 hpsa_perform_rescan(h
);
8457 spin_lock_irqsave(&h
->lock
, flags
);
8458 if (!h
->remove_in_progress
)
8459 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8460 h
->heartbeat_sample_interval
);
8461 spin_unlock_irqrestore(&h
->lock
, flags
);
8464 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8466 unsigned long flags
;
8467 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8468 struct ctlr_info
, monitor_ctlr_work
);
8470 detect_controller_lockup(h
);
8471 if (lockup_detected(h
))
8474 spin_lock_irqsave(&h
->lock
, flags
);
8475 if (!h
->remove_in_progress
)
8476 schedule_delayed_work(&h
->monitor_ctlr_work
,
8477 h
->heartbeat_sample_interval
);
8478 spin_unlock_irqrestore(&h
->lock
, flags
);
8481 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8484 struct workqueue_struct
*wq
= NULL
;
8486 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8488 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8493 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8496 struct ctlr_info
*h
;
8497 int try_soft_reset
= 0;
8498 unsigned long flags
;
8501 if (number_of_controllers
== 0)
8502 printk(KERN_INFO DRIVER_NAME
"\n");
8504 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8506 dev_warn(&pdev
->dev
, "Board ID not found\n");
8510 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8512 if (rc
!= -ENOTSUPP
)
8514 /* If the reset fails in a particular way (it has no way to do
8515 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8516 * a soft reset once we get the controller configured up to the
8517 * point that it can accept a command.
8523 reinit_after_soft_reset
:
8525 /* Command structures must be aligned on a 32-byte boundary because
8526 * the 5 lower bits of the address are used by the hardware. and by
8527 * the driver. See comments in hpsa.h for more info.
8529 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8530 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8532 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8538 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8539 INIT_LIST_HEAD(&h
->offline_device_list
);
8540 spin_lock_init(&h
->lock
);
8541 spin_lock_init(&h
->offline_device_lock
);
8542 spin_lock_init(&h
->scan_lock
);
8543 spin_lock_init(&h
->reset_lock
);
8544 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8546 /* Allocate and clear per-cpu variable lockup_detected */
8547 h
->lockup_detected
= alloc_percpu(u32
);
8548 if (!h
->lockup_detected
) {
8549 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8551 goto clean1
; /* aer/h */
8553 set_lockup_detected_for_all_cpus(h
, 0);
8555 rc
= hpsa_pci_init(h
);
8557 goto clean2
; /* lu, aer/h */
8559 /* relies on h-> settings made by hpsa_pci_init, including
8560 * interrupt_mode h->intr */
8561 rc
= hpsa_scsi_host_alloc(h
);
8563 goto clean2_5
; /* pci, lu, aer/h */
8565 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8566 h
->ctlr
= number_of_controllers
;
8567 number_of_controllers
++;
8569 /* configure PCI DMA stuff */
8570 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8574 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8578 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8579 goto clean3
; /* shost, pci, lu, aer/h */
8583 /* make sure the board interrupts are off */
8584 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8586 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8588 goto clean3
; /* shost, pci, lu, aer/h */
8589 rc
= hpsa_alloc_cmd_pool(h
);
8591 goto clean4
; /* irq, shost, pci, lu, aer/h */
8592 rc
= hpsa_alloc_sg_chain_blocks(h
);
8594 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8595 init_waitqueue_head(&h
->scan_wait_queue
);
8596 init_waitqueue_head(&h
->event_sync_wait_queue
);
8597 mutex_init(&h
->reset_mutex
);
8598 h
->scan_finished
= 1; /* no scan currently in progress */
8599 h
->scan_waiting
= 0;
8601 pci_set_drvdata(pdev
, h
);
8604 spin_lock_init(&h
->devlock
);
8605 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8607 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8609 /* create the resubmit workqueue */
8610 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8611 if (!h
->rescan_ctlr_wq
) {
8616 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8617 if (!h
->resubmit_wq
) {
8619 goto clean7
; /* aer/h */
8623 * At this point, the controller is ready to take commands.
8624 * Now, if reset_devices and the hard reset didn't work, try
8625 * the soft reset and see if that works.
8627 if (try_soft_reset
) {
8629 /* This is kind of gross. We may or may not get a completion
8630 * from the soft reset command, and if we do, then the value
8631 * from the fifo may or may not be valid. So, we wait 10 secs
8632 * after the reset throwing away any completions we get during
8633 * that time. Unregister the interrupt handler and register
8634 * fake ones to scoop up any residual completions.
8636 spin_lock_irqsave(&h
->lock
, flags
);
8637 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8638 spin_unlock_irqrestore(&h
->lock
, flags
);
8640 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8641 hpsa_intx_discard_completions
);
8643 dev_warn(&h
->pdev
->dev
,
8644 "Failed to request_irq after soft reset.\n");
8646 * cannot goto clean7 or free_irqs will be called
8647 * again. Instead, do its work
8649 hpsa_free_performant_mode(h
); /* clean7 */
8650 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8651 hpsa_free_cmd_pool(h
); /* clean5 */
8653 * skip hpsa_free_irqs(h) clean4 since that
8654 * was just called before request_irqs failed
8659 rc
= hpsa_kdump_soft_reset(h
);
8661 /* Neither hard nor soft reset worked, we're hosed. */
8664 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8665 dev_info(&h
->pdev
->dev
,
8666 "Waiting for stale completions to drain.\n");
8667 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8669 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8671 rc
= controller_reset_failed(h
->cfgtable
);
8673 dev_info(&h
->pdev
->dev
,
8674 "Soft reset appears to have failed.\n");
8676 /* since the controller's reset, we have to go back and re-init
8677 * everything. Easiest to just forget what we've done and do it
8680 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8683 /* don't goto clean, we already unallocated */
8686 goto reinit_after_soft_reset
;
8689 /* Enable Accelerated IO path at driver layer */
8690 h
->acciopath_status
= 1;
8691 /* Disable discovery polling.*/
8692 h
->discovery_polling
= 0;
8695 /* Turn the interrupts on so we can service requests */
8696 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8698 hpsa_hba_inquiry(h
);
8700 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8701 if (!h
->lastlogicals
)
8702 dev_info(&h
->pdev
->dev
,
8703 "Can't track change to report lun data\n");
8705 /* hook into SCSI subsystem */
8706 rc
= hpsa_scsi_add_host(h
);
8708 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8710 /* Monitor the controller for firmware lockups */
8711 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8712 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8713 schedule_delayed_work(&h
->monitor_ctlr_work
,
8714 h
->heartbeat_sample_interval
);
8715 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8716 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8717 h
->heartbeat_sample_interval
);
8718 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8719 schedule_delayed_work(&h
->event_monitor_work
,
8720 HPSA_EVENT_MONITOR_INTERVAL
);
8723 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8724 hpsa_free_performant_mode(h
);
8725 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8726 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8727 hpsa_free_sg_chain_blocks(h
);
8728 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8729 hpsa_free_cmd_pool(h
);
8730 clean4
: /* irq, shost, pci, lu, aer/h */
8732 clean3
: /* shost, pci, lu, aer/h */
8733 scsi_host_put(h
->scsi_host
);
8734 h
->scsi_host
= NULL
;
8735 clean2_5
: /* pci, lu, aer/h */
8736 hpsa_free_pci_init(h
);
8737 clean2
: /* lu, aer/h */
8738 if (h
->lockup_detected
) {
8739 free_percpu(h
->lockup_detected
);
8740 h
->lockup_detected
= NULL
;
8742 clean1
: /* wq/aer/h */
8743 if (h
->resubmit_wq
) {
8744 destroy_workqueue(h
->resubmit_wq
);
8745 h
->resubmit_wq
= NULL
;
8747 if (h
->rescan_ctlr_wq
) {
8748 destroy_workqueue(h
->rescan_ctlr_wq
);
8749 h
->rescan_ctlr_wq
= NULL
;
8755 static void hpsa_flush_cache(struct ctlr_info
*h
)
8758 struct CommandList
*c
;
8761 if (unlikely(lockup_detected(h
)))
8763 flush_buf
= kzalloc(4, GFP_KERNEL
);
8769 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8770 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8773 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8774 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8777 if (c
->err_info
->CommandStatus
!= 0)
8779 dev_warn(&h
->pdev
->dev
,
8780 "error flushing cache on controller\n");
8785 /* Make controller gather fresh report lun data each time we
8786 * send down a report luns request
8788 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8791 struct CommandList
*c
;
8794 /* Don't bother trying to set diag options if locked up */
8795 if (unlikely(h
->lockup_detected
))
8798 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8804 /* first, get the current diag options settings */
8805 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8806 RAID_CTLR_LUNID
, TYPE_CMD
))
8809 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8810 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8811 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8814 /* Now, set the bit for disabling the RLD caching */
8815 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8817 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8818 RAID_CTLR_LUNID
, TYPE_CMD
))
8821 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8822 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8823 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8826 /* Now verify that it got set: */
8827 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8828 RAID_CTLR_LUNID
, TYPE_CMD
))
8831 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8832 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8833 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8836 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8840 dev_err(&h
->pdev
->dev
,
8841 "Error: failed to disable report lun data caching.\n");
8847 static void hpsa_shutdown(struct pci_dev
*pdev
)
8849 struct ctlr_info
*h
;
8851 h
= pci_get_drvdata(pdev
);
8852 /* Turn board interrupts off and send the flush cache command
8853 * sendcmd will turn off interrupt, and send the flush...
8854 * To write all data in the battery backed cache to disks
8856 hpsa_flush_cache(h
);
8857 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8858 hpsa_free_irqs(h
); /* init_one 4 */
8859 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8862 static void hpsa_free_device_info(struct ctlr_info
*h
)
8866 for (i
= 0; i
< h
->ndevices
; i
++) {
8872 static void hpsa_remove_one(struct pci_dev
*pdev
)
8874 struct ctlr_info
*h
;
8875 unsigned long flags
;
8877 if (pci_get_drvdata(pdev
) == NULL
) {
8878 dev_err(&pdev
->dev
, "unable to remove device\n");
8881 h
= pci_get_drvdata(pdev
);
8883 /* Get rid of any controller monitoring work items */
8884 spin_lock_irqsave(&h
->lock
, flags
);
8885 h
->remove_in_progress
= 1;
8886 spin_unlock_irqrestore(&h
->lock
, flags
);
8887 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8888 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8889 cancel_delayed_work_sync(&h
->event_monitor_work
);
8890 destroy_workqueue(h
->rescan_ctlr_wq
);
8891 destroy_workqueue(h
->resubmit_wq
);
8893 hpsa_delete_sas_host(h
);
8896 * Call before disabling interrupts.
8897 * scsi_remove_host can trigger I/O operations especially
8898 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8899 * operations which cannot complete and will hang the system.
8902 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8903 /* includes hpsa_free_irqs - init_one 4 */
8904 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8905 hpsa_shutdown(pdev
);
8907 hpsa_free_device_info(h
); /* scan */
8909 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8910 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8911 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8912 hpsa_free_performant_mode(h
); /* init_one 7 */
8913 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8914 hpsa_free_cmd_pool(h
); /* init_one 5 */
8915 kfree(h
->lastlogicals
);
8917 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8919 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8920 h
->scsi_host
= NULL
; /* init_one 3 */
8922 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8923 hpsa_free_pci_init(h
); /* init_one 2.5 */
8925 free_percpu(h
->lockup_detected
); /* init_one 2 */
8926 h
->lockup_detected
= NULL
; /* init_one 2 */
8927 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8929 kfree(h
); /* init_one 1 */
8932 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8933 __attribute__((unused
)) pm_message_t state
)
8938 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8943 static struct pci_driver hpsa_pci_driver
= {
8945 .probe
= hpsa_init_one
,
8946 .remove
= hpsa_remove_one
,
8947 .id_table
= hpsa_pci_device_id
, /* id_table */
8948 .shutdown
= hpsa_shutdown
,
8949 .suspend
= hpsa_suspend
,
8950 .resume
= hpsa_resume
,
8953 /* Fill in bucket_map[], given nsgs (the max number of
8954 * scatter gather elements supported) and bucket[],
8955 * which is an array of 8 integers. The bucket[] array
8956 * contains 8 different DMA transfer sizes (in 16
8957 * byte increments) which the controller uses to fetch
8958 * commands. This function fills in bucket_map[], which
8959 * maps a given number of scatter gather elements to one of
8960 * the 8 DMA transfer sizes. The point of it is to allow the
8961 * controller to only do as much DMA as needed to fetch the
8962 * command, with the DMA transfer size encoded in the lower
8963 * bits of the command address.
8965 static void calc_bucket_map(int bucket
[], int num_buckets
,
8966 int nsgs
, int min_blocks
, u32
*bucket_map
)
8970 /* Note, bucket_map must have nsgs+1 entries. */
8971 for (i
= 0; i
<= nsgs
; i
++) {
8972 /* Compute size of a command with i SG entries */
8973 size
= i
+ min_blocks
;
8974 b
= num_buckets
; /* Assume the biggest bucket */
8975 /* Find the bucket that is just big enough */
8976 for (j
= 0; j
< num_buckets
; j
++) {
8977 if (bucket
[j
] >= size
) {
8982 /* for a command with i SG entries, use bucket b. */
8988 * return -ENODEV on err, 0 on success (or no action)
8989 * allocates numerous items that must be freed later
8991 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8994 unsigned long register_value
;
8995 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8996 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8997 CFGTBL_Trans_enable_directed_msix
|
8998 (trans_support
& (CFGTBL_Trans_io_accel1
|
8999 CFGTBL_Trans_io_accel2
));
9000 struct access_method access
= SA5_performant_access
;
9002 /* This is a bit complicated. There are 8 registers on
9003 * the controller which we write to to tell it 8 different
9004 * sizes of commands which there may be. It's a way of
9005 * reducing the DMA done to fetch each command. Encoded into
9006 * each command's tag are 3 bits which communicate to the controller
9007 * which of the eight sizes that command fits within. The size of
9008 * each command depends on how many scatter gather entries there are.
9009 * Each SG entry requires 16 bytes. The eight registers are programmed
9010 * with the number of 16-byte blocks a command of that size requires.
9011 * The smallest command possible requires 5 such 16 byte blocks.
9012 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9013 * blocks. Note, this only extends to the SG entries contained
9014 * within the command block, and does not extend to chained blocks
9015 * of SG elements. bft[] contains the eight values we write to
9016 * the registers. They are not evenly distributed, but have more
9017 * sizes for small commands, and fewer sizes for larger commands.
9019 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9020 #define MIN_IOACCEL2_BFT_ENTRY 5
9021 #define HPSA_IOACCEL2_HEADER_SZ 4
9022 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9023 13, 14, 15, 16, 17, 18, 19,
9024 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9025 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9026 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9027 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9028 16 * MIN_IOACCEL2_BFT_ENTRY
);
9029 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9030 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9031 /* 5 = 1 s/g entry or 4k
9032 * 6 = 2 s/g entry or 8k
9033 * 8 = 4 s/g entry or 16k
9034 * 10 = 6 s/g entry or 24k
9037 /* If the controller supports either ioaccel method then
9038 * we can also use the RAID stack submit path that does not
9039 * perform the superfluous readl() after each command submission.
9041 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9042 access
= SA5_performant_access_no_read
;
9044 /* Controller spec: zero out this buffer. */
9045 for (i
= 0; i
< h
->nreply_queues
; i
++)
9046 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9048 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9049 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9050 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9051 for (i
= 0; i
< 8; i
++)
9052 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9054 /* size of controller ring buffer */
9055 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9056 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9057 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9058 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9060 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9061 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9062 writel(h
->reply_queue
[i
].busaddr
,
9063 &h
->transtable
->RepQAddr
[i
].lower
);
9066 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9067 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9069 * enable outbound interrupt coalescing in accelerator mode;
9071 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9072 access
= SA5_ioaccel_mode1_access
;
9073 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9074 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9076 if (trans_support
& CFGTBL_Trans_io_accel2
)
9077 access
= SA5_ioaccel_mode2_access
;
9078 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9079 if (hpsa_wait_for_mode_change_ack(h
)) {
9080 dev_err(&h
->pdev
->dev
,
9081 "performant mode problem - doorbell timeout\n");
9084 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9085 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9086 dev_err(&h
->pdev
->dev
,
9087 "performant mode problem - transport not active\n");
9090 /* Change the access methods to the performant access methods */
9092 h
->transMethod
= transMethod
;
9094 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9095 (trans_support
& CFGTBL_Trans_io_accel2
)))
9098 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9099 /* Set up I/O accelerator mode */
9100 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9101 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9102 h
->reply_queue
[i
].current_entry
=
9103 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9105 bft
[7] = h
->ioaccel_maxsg
+ 8;
9106 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9107 h
->ioaccel1_blockFetchTable
);
9109 /* initialize all reply queue entries to unused */
9110 for (i
= 0; i
< h
->nreply_queues
; i
++)
9111 memset(h
->reply_queue
[i
].head
,
9112 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9113 h
->reply_queue_size
);
9115 /* set all the constant fields in the accelerator command
9116 * frames once at init time to save CPU cycles later.
9118 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9119 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9121 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9122 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9123 (i
* sizeof(struct ErrorInfo
)));
9124 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9125 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9126 cp
->host_context_flags
=
9127 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9128 cp
->timeout_sec
= 0;
9131 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9133 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9134 (i
* sizeof(struct io_accel1_cmd
)));
9136 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9137 u64 cfg_offset
, cfg_base_addr_index
;
9138 u32 bft2_offset
, cfg_base_addr
;
9141 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9142 &cfg_base_addr_index
, &cfg_offset
);
9143 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9144 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9145 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9146 4, h
->ioaccel2_blockFetchTable
);
9147 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9148 BUILD_BUG_ON(offsetof(struct CfgTable
,
9149 io_accel_request_size_offset
) != 0xb8);
9150 h
->ioaccel2_bft2_regs
=
9151 remap_pci_mem(pci_resource_start(h
->pdev
,
9152 cfg_base_addr_index
) +
9153 cfg_offset
+ bft2_offset
,
9155 sizeof(*h
->ioaccel2_bft2_regs
));
9156 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9157 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9159 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9160 if (hpsa_wait_for_mode_change_ack(h
)) {
9161 dev_err(&h
->pdev
->dev
,
9162 "performant mode problem - enabling ioaccel mode\n");
9168 /* Free ioaccel1 mode command blocks and block fetch table */
9169 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9171 if (h
->ioaccel_cmd_pool
) {
9172 pci_free_consistent(h
->pdev
,
9173 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9174 h
->ioaccel_cmd_pool
,
9175 h
->ioaccel_cmd_pool_dhandle
);
9176 h
->ioaccel_cmd_pool
= NULL
;
9177 h
->ioaccel_cmd_pool_dhandle
= 0;
9179 kfree(h
->ioaccel1_blockFetchTable
);
9180 h
->ioaccel1_blockFetchTable
= NULL
;
9183 /* Allocate ioaccel1 mode command blocks and block fetch table */
9184 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9187 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9188 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9189 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9191 /* Command structures must be aligned on a 128-byte boundary
9192 * because the 7 lower bits of the address are used by the
9195 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9196 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9197 h
->ioaccel_cmd_pool
=
9198 pci_alloc_consistent(h
->pdev
,
9199 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9200 &(h
->ioaccel_cmd_pool_dhandle
));
9202 h
->ioaccel1_blockFetchTable
=
9203 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9204 sizeof(u32
)), GFP_KERNEL
);
9206 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9207 (h
->ioaccel1_blockFetchTable
== NULL
))
9210 memset(h
->ioaccel_cmd_pool
, 0,
9211 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9215 hpsa_free_ioaccel1_cmd_and_bft(h
);
9219 /* Free ioaccel2 mode command blocks and block fetch table */
9220 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9222 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9224 if (h
->ioaccel2_cmd_pool
) {
9225 pci_free_consistent(h
->pdev
,
9226 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9227 h
->ioaccel2_cmd_pool
,
9228 h
->ioaccel2_cmd_pool_dhandle
);
9229 h
->ioaccel2_cmd_pool
= NULL
;
9230 h
->ioaccel2_cmd_pool_dhandle
= 0;
9232 kfree(h
->ioaccel2_blockFetchTable
);
9233 h
->ioaccel2_blockFetchTable
= NULL
;
9236 /* Allocate ioaccel2 mode command blocks and block fetch table */
9237 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9241 /* Allocate ioaccel2 mode command blocks and block fetch table */
9244 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9245 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9246 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9248 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9249 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9250 h
->ioaccel2_cmd_pool
=
9251 pci_alloc_consistent(h
->pdev
,
9252 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9253 &(h
->ioaccel2_cmd_pool_dhandle
));
9255 h
->ioaccel2_blockFetchTable
=
9256 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9257 sizeof(u32
)), GFP_KERNEL
);
9259 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9260 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9265 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9269 memset(h
->ioaccel2_cmd_pool
, 0,
9270 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9274 hpsa_free_ioaccel2_cmd_and_bft(h
);
9278 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9279 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9281 kfree(h
->blockFetchTable
);
9282 h
->blockFetchTable
= NULL
;
9283 hpsa_free_reply_queues(h
);
9284 hpsa_free_ioaccel1_cmd_and_bft(h
);
9285 hpsa_free_ioaccel2_cmd_and_bft(h
);
9288 /* return -ENODEV on error, 0 on success (or no action)
9289 * allocates numerous items that must be freed later
9291 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9294 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9295 CFGTBL_Trans_use_short_tags
;
9298 if (hpsa_simple_mode
)
9301 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9302 if (!(trans_support
& PERFORMANT_MODE
))
9305 /* Check for I/O accelerator mode support */
9306 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9307 transMethod
|= CFGTBL_Trans_io_accel1
|
9308 CFGTBL_Trans_enable_directed_msix
;
9309 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9312 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9313 transMethod
|= CFGTBL_Trans_io_accel2
|
9314 CFGTBL_Trans_enable_directed_msix
;
9315 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9320 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9321 hpsa_get_max_perf_mode_cmds(h
);
9322 /* Performant mode ring buffer and supporting data structures */
9323 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9325 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9326 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9327 h
->reply_queue_size
,
9328 &(h
->reply_queue
[i
].busaddr
));
9329 if (!h
->reply_queue
[i
].head
) {
9331 goto clean1
; /* rq, ioaccel */
9333 h
->reply_queue
[i
].size
= h
->max_commands
;
9334 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9335 h
->reply_queue
[i
].current_entry
= 0;
9338 /* Need a block fetch table for performant mode */
9339 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9340 sizeof(u32
)), GFP_KERNEL
);
9341 if (!h
->blockFetchTable
) {
9343 goto clean1
; /* rq, ioaccel */
9346 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9348 goto clean2
; /* bft, rq, ioaccel */
9351 clean2
: /* bft, rq, ioaccel */
9352 kfree(h
->blockFetchTable
);
9353 h
->blockFetchTable
= NULL
;
9354 clean1
: /* rq, ioaccel */
9355 hpsa_free_reply_queues(h
);
9356 hpsa_free_ioaccel1_cmd_and_bft(h
);
9357 hpsa_free_ioaccel2_cmd_and_bft(h
);
9361 static int is_accelerated_cmd(struct CommandList
*c
)
9363 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9366 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9368 struct CommandList
*c
= NULL
;
9369 int i
, accel_cmds_out
;
9372 do { /* wait for all outstanding ioaccel commands to drain out */
9374 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9375 c
= h
->cmd_pool
+ i
;
9376 refcount
= atomic_inc_return(&c
->refcount
);
9377 if (refcount
> 1) /* Command is allocated */
9378 accel_cmds_out
+= is_accelerated_cmd(c
);
9381 if (accel_cmds_out
<= 0)
9387 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9388 struct hpsa_sas_port
*hpsa_sas_port
)
9390 struct hpsa_sas_phy
*hpsa_sas_phy
;
9391 struct sas_phy
*phy
;
9393 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9397 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9398 hpsa_sas_port
->next_phy_index
);
9400 kfree(hpsa_sas_phy
);
9404 hpsa_sas_port
->next_phy_index
++;
9405 hpsa_sas_phy
->phy
= phy
;
9406 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9408 return hpsa_sas_phy
;
9411 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9413 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9415 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9416 if (hpsa_sas_phy
->added_to_port
)
9417 list_del(&hpsa_sas_phy
->phy_list_entry
);
9418 sas_phy_delete(phy
);
9419 kfree(hpsa_sas_phy
);
9422 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9425 struct hpsa_sas_port
*hpsa_sas_port
;
9426 struct sas_phy
*phy
;
9427 struct sas_identify
*identify
;
9429 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9430 phy
= hpsa_sas_phy
->phy
;
9432 identify
= &phy
->identify
;
9433 memset(identify
, 0, sizeof(*identify
));
9434 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9435 identify
->device_type
= SAS_END_DEVICE
;
9436 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9437 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9438 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9439 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9440 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9441 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9442 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9444 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9448 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9449 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9450 &hpsa_sas_port
->phy_list_head
);
9451 hpsa_sas_phy
->added_to_port
= true;
9457 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9458 struct sas_rphy
*rphy
)
9460 struct sas_identify
*identify
;
9462 identify
= &rphy
->identify
;
9463 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9464 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9465 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9467 return sas_rphy_add(rphy
);
9470 static struct hpsa_sas_port
9471 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9475 struct hpsa_sas_port
*hpsa_sas_port
;
9476 struct sas_port
*port
;
9478 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9482 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9483 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9485 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9487 goto free_hpsa_port
;
9489 rc
= sas_port_add(port
);
9493 hpsa_sas_port
->port
= port
;
9494 hpsa_sas_port
->sas_address
= sas_address
;
9495 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9496 &hpsa_sas_node
->port_list_head
);
9498 return hpsa_sas_port
;
9501 sas_port_free(port
);
9503 kfree(hpsa_sas_port
);
9508 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9510 struct hpsa_sas_phy
*hpsa_sas_phy
;
9511 struct hpsa_sas_phy
*next
;
9513 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9514 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9515 hpsa_free_sas_phy(hpsa_sas_phy
);
9517 sas_port_delete(hpsa_sas_port
->port
);
9518 list_del(&hpsa_sas_port
->port_list_entry
);
9519 kfree(hpsa_sas_port
);
9522 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9524 struct hpsa_sas_node
*hpsa_sas_node
;
9526 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9527 if (hpsa_sas_node
) {
9528 hpsa_sas_node
->parent_dev
= parent_dev
;
9529 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9532 return hpsa_sas_node
;
9535 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9537 struct hpsa_sas_port
*hpsa_sas_port
;
9538 struct hpsa_sas_port
*next
;
9543 list_for_each_entry_safe(hpsa_sas_port
, next
,
9544 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9545 hpsa_free_sas_port(hpsa_sas_port
);
9547 kfree(hpsa_sas_node
);
9550 static struct hpsa_scsi_dev_t
9551 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9552 struct sas_rphy
*rphy
)
9555 struct hpsa_scsi_dev_t
*device
;
9557 for (i
= 0; i
< h
->ndevices
; i
++) {
9559 if (!device
->sas_port
)
9561 if (device
->sas_port
->rphy
== rphy
)
9568 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9571 struct device
*parent_dev
;
9572 struct hpsa_sas_node
*hpsa_sas_node
;
9573 struct hpsa_sas_port
*hpsa_sas_port
;
9574 struct hpsa_sas_phy
*hpsa_sas_phy
;
9576 parent_dev
= &h
->scsi_host
->shost_dev
;
9578 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9582 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9583 if (!hpsa_sas_port
) {
9588 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9589 if (!hpsa_sas_phy
) {
9594 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9598 h
->sas_host
= hpsa_sas_node
;
9603 hpsa_free_sas_phy(hpsa_sas_phy
);
9605 hpsa_free_sas_port(hpsa_sas_port
);
9607 hpsa_free_sas_node(hpsa_sas_node
);
9612 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9614 hpsa_free_sas_node(h
->sas_host
);
9617 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9618 struct hpsa_scsi_dev_t
*device
)
9621 struct hpsa_sas_port
*hpsa_sas_port
;
9622 struct sas_rphy
*rphy
;
9624 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9628 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9634 hpsa_sas_port
->rphy
= rphy
;
9635 device
->sas_port
= hpsa_sas_port
;
9637 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9644 hpsa_free_sas_port(hpsa_sas_port
);
9645 device
->sas_port
= NULL
;
9650 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9652 if (device
->sas_port
) {
9653 hpsa_free_sas_port(device
->sas_port
);
9654 device
->sas_port
= NULL
;
9659 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9665 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9667 *identifier
= rphy
->identify
.sas_address
;
9672 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9678 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9684 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9690 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9696 hpsa_sas_phy_release(struct sas_phy
*phy
)
9701 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9706 static struct sas_function_template hpsa_sas_transport_functions
= {
9707 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9708 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9709 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9710 .phy_reset
= hpsa_sas_phy_reset
,
9711 .phy_enable
= hpsa_sas_phy_enable
,
9712 .phy_setup
= hpsa_sas_phy_setup
,
9713 .phy_release
= hpsa_sas_phy_release
,
9714 .set_phy_speed
= hpsa_sas_phy_speed
,
9718 * This is it. Register the PCI driver information for the cards we control
9719 * the OS will call our registered routines when it finds one of our cards.
9721 static int __init
hpsa_init(void)
9725 hpsa_sas_transport_template
=
9726 sas_attach_transport(&hpsa_sas_transport_functions
);
9727 if (!hpsa_sas_transport_template
)
9730 rc
= pci_register_driver(&hpsa_pci_driver
);
9733 sas_release_transport(hpsa_sas_transport_template
);
9738 static void __exit
hpsa_cleanup(void)
9740 pci_unregister_driver(&hpsa_pci_driver
);
9741 sas_release_transport(hpsa_sas_transport_template
);
9744 static void __attribute__((unused
)) verify_offsets(void)
9746 #define VERIFY_OFFSET(member, offset) \
9747 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9749 VERIFY_OFFSET(structure_size
, 0);
9750 VERIFY_OFFSET(volume_blk_size
, 4);
9751 VERIFY_OFFSET(volume_blk_cnt
, 8);
9752 VERIFY_OFFSET(phys_blk_shift
, 16);
9753 VERIFY_OFFSET(parity_rotation_shift
, 17);
9754 VERIFY_OFFSET(strip_size
, 18);
9755 VERIFY_OFFSET(disk_starting_blk
, 20);
9756 VERIFY_OFFSET(disk_blk_cnt
, 28);
9757 VERIFY_OFFSET(data_disks_per_row
, 36);
9758 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9759 VERIFY_OFFSET(row_cnt
, 40);
9760 VERIFY_OFFSET(layout_map_count
, 42);
9761 VERIFY_OFFSET(flags
, 44);
9762 VERIFY_OFFSET(dekindex
, 46);
9763 /* VERIFY_OFFSET(reserved, 48 */
9764 VERIFY_OFFSET(data
, 64);
9766 #undef VERIFY_OFFSET
9768 #define VERIFY_OFFSET(member, offset) \
9769 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9771 VERIFY_OFFSET(IU_type
, 0);
9772 VERIFY_OFFSET(direction
, 1);
9773 VERIFY_OFFSET(reply_queue
, 2);
9774 /* VERIFY_OFFSET(reserved1, 3); */
9775 VERIFY_OFFSET(scsi_nexus
, 4);
9776 VERIFY_OFFSET(Tag
, 8);
9777 VERIFY_OFFSET(cdb
, 16);
9778 VERIFY_OFFSET(cciss_lun
, 32);
9779 VERIFY_OFFSET(data_len
, 40);
9780 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9781 VERIFY_OFFSET(sg_count
, 45);
9782 /* VERIFY_OFFSET(reserved3 */
9783 VERIFY_OFFSET(err_ptr
, 48);
9784 VERIFY_OFFSET(err_len
, 56);
9785 /* VERIFY_OFFSET(reserved4 */
9786 VERIFY_OFFSET(sg
, 64);
9788 #undef VERIFY_OFFSET
9790 #define VERIFY_OFFSET(member, offset) \
9791 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9793 VERIFY_OFFSET(dev_handle
, 0x00);
9794 VERIFY_OFFSET(reserved1
, 0x02);
9795 VERIFY_OFFSET(function
, 0x03);
9796 VERIFY_OFFSET(reserved2
, 0x04);
9797 VERIFY_OFFSET(err_info
, 0x0C);
9798 VERIFY_OFFSET(reserved3
, 0x10);
9799 VERIFY_OFFSET(err_info_len
, 0x12);
9800 VERIFY_OFFSET(reserved4
, 0x13);
9801 VERIFY_OFFSET(sgl_offset
, 0x14);
9802 VERIFY_OFFSET(reserved5
, 0x15);
9803 VERIFY_OFFSET(transfer_len
, 0x1C);
9804 VERIFY_OFFSET(reserved6
, 0x20);
9805 VERIFY_OFFSET(io_flags
, 0x24);
9806 VERIFY_OFFSET(reserved7
, 0x26);
9807 VERIFY_OFFSET(LUN
, 0x34);
9808 VERIFY_OFFSET(control
, 0x3C);
9809 VERIFY_OFFSET(CDB
, 0x40);
9810 VERIFY_OFFSET(reserved8
, 0x50);
9811 VERIFY_OFFSET(host_context_flags
, 0x60);
9812 VERIFY_OFFSET(timeout_sec
, 0x62);
9813 VERIFY_OFFSET(ReplyQueue
, 0x64);
9814 VERIFY_OFFSET(reserved9
, 0x65);
9815 VERIFY_OFFSET(tag
, 0x68);
9816 VERIFY_OFFSET(host_addr
, 0x70);
9817 VERIFY_OFFSET(CISS_LUN
, 0x78);
9818 VERIFY_OFFSET(SG
, 0x78 + 8);
9819 #undef VERIFY_OFFSET
9822 module_init(hpsa_init
);
9823 module_exit(hpsa_cleanup
);