2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <scsi/scsi_eh.h>
47 #include <scsi/scsi_dbg.h>
48 #include <linux/cciss_ioctl.h>
49 #include <linux/string.h>
50 #include <linux/bitmap.h>
51 #include <linux/atomic.h>
52 #include <linux/jiffies.h>
53 #include <linux/percpu-defs.h>
54 #include <linux/percpu.h>
55 #include <asm/unaligned.h>
56 #include <asm/div64.h>
60 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61 #define HPSA_DRIVER_VERSION "3.4.10-0"
62 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 /* How long to wait for CISS doorbell communication */
66 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
67 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
68 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
69 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
70 #define MAX_IOCTL_CONFIG_WAIT 1000
72 /*define how many times we will try a command because of bus resets */
73 #define MAX_CMD_RETRIES 3
75 /* Embedded module documentation macros - see modules.h */
76 MODULE_AUTHOR("Hewlett-Packard Company");
77 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
80 MODULE_VERSION(HPSA_DRIVER_VERSION
);
81 MODULE_LICENSE("GPL");
83 static int hpsa_allow_any
;
84 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
85 MODULE_PARM_DESC(hpsa_allow_any
,
86 "Allow hpsa driver to access unknown HP Smart Array hardware");
87 static int hpsa_simple_mode
;
88 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
89 MODULE_PARM_DESC(hpsa_simple_mode
,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id
[] = {
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
134 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
135 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
136 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
137 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
138 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
139 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
140 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
141 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
145 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
147 /* board_id = Subsystem Device ID & Vendor ID
148 * product = Marketing Name for the board
149 * access = Address of the struct of function pointers
151 static struct board_type products
[] = {
152 {0x3241103C, "Smart Array P212", &SA5_access
},
153 {0x3243103C, "Smart Array P410", &SA5_access
},
154 {0x3245103C, "Smart Array P410i", &SA5_access
},
155 {0x3247103C, "Smart Array P411", &SA5_access
},
156 {0x3249103C, "Smart Array P812", &SA5_access
},
157 {0x324A103C, "Smart Array P712m", &SA5_access
},
158 {0x324B103C, "Smart Array P711m", &SA5_access
},
159 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
160 {0x3350103C, "Smart Array P222", &SA5_access
},
161 {0x3351103C, "Smart Array P420", &SA5_access
},
162 {0x3352103C, "Smart Array P421", &SA5_access
},
163 {0x3353103C, "Smart Array P822", &SA5_access
},
164 {0x3354103C, "Smart Array P420i", &SA5_access
},
165 {0x3355103C, "Smart Array P220i", &SA5_access
},
166 {0x3356103C, "Smart Array P721m", &SA5_access
},
167 {0x1921103C, "Smart Array P830i", &SA5_access
},
168 {0x1922103C, "Smart Array P430", &SA5_access
},
169 {0x1923103C, "Smart Array P431", &SA5_access
},
170 {0x1924103C, "Smart Array P830", &SA5_access
},
171 {0x1926103C, "Smart Array P731m", &SA5_access
},
172 {0x1928103C, "Smart Array P230i", &SA5_access
},
173 {0x1929103C, "Smart Array P530", &SA5_access
},
174 {0x21BD103C, "Smart Array P244br", &SA5_access
},
175 {0x21BE103C, "Smart Array P741m", &SA5_access
},
176 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
177 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
178 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
179 {0x21C2103C, "Smart Array P440", &SA5_access
},
180 {0x21C3103C, "Smart Array P441", &SA5_access
},
181 {0x21C4103C, "Smart Array", &SA5_access
},
182 {0x21C5103C, "Smart Array P841", &SA5_access
},
183 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
184 {0x21C7103C, "Smart HBA H240", &SA5_access
},
185 {0x21C8103C, "Smart HBA H241", &SA5_access
},
186 {0x21C9103C, "Smart Array", &SA5_access
},
187 {0x21CA103C, "Smart Array P246br", &SA5_access
},
188 {0x21CB103C, "Smart Array P840", &SA5_access
},
189 {0x21CC103C, "Smart Array", &SA5_access
},
190 {0x21CD103C, "Smart Array", &SA5_access
},
191 {0x21CE103C, "Smart HBA", &SA5_access
},
192 {0x05809005, "SmartHBA-SA", &SA5_access
},
193 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
194 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
195 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
196 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
197 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
198 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
201 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
202 static const struct scsi_cmnd hpsa_cmd_busy
;
203 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
204 static const struct scsi_cmnd hpsa_cmd_idle
;
205 static int number_of_controllers
;
207 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
208 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
209 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
212 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
216 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
217 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
218 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
219 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
220 struct scsi_cmnd
*scmd
);
221 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
222 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
224 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
225 #define VPD_PAGE (1 << 8)
227 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
228 static void hpsa_scan_start(struct Scsi_Host
*);
229 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
230 unsigned long elapsed_time
);
231 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
233 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
234 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
235 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
236 static int hpsa_slave_configure(struct scsi_device
*sdev
);
237 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
239 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
240 static int check_for_unit_attention(struct ctlr_info
*h
,
241 struct CommandList
*c
);
242 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
243 struct CommandList
*c
);
244 /* performant mode helper functions */
245 static void calc_bucket_map(int *bucket
, int num_buckets
,
246 int nsgs
, int min_blocks
, u32
*bucket_map
);
247 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
248 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
249 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
250 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
251 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
253 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
254 unsigned long *memory_bar
);
255 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
256 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
258 static inline void finish_cmd(struct CommandList
*c
);
259 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
260 #define BOARD_NOT_READY 0
261 #define BOARD_READY 1
262 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
263 static void hpsa_flush_cache(struct ctlr_info
*h
);
264 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
265 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
266 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
267 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
268 static u32
lockup_detected(struct ctlr_info
*h
);
269 static int detect_controller_lockup(struct ctlr_info
*h
);
271 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
273 unsigned long *priv
= shost_priv(sdev
->host
);
274 return (struct ctlr_info
*) *priv
;
277 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
279 unsigned long *priv
= shost_priv(sh
);
280 return (struct ctlr_info
*) *priv
;
283 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
285 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
288 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
290 return c
->abort_pending
|| c
->reset_pending
;
293 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
294 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
295 u8
*sense_key
, u8
*asc
, u8
*ascq
)
297 struct scsi_sense_hdr sshdr
;
304 if (sense_data_len
< 1)
307 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
309 *sense_key
= sshdr
.sense_key
;
315 static int check_for_unit_attention(struct ctlr_info
*h
,
316 struct CommandList
*c
)
318 u8 sense_key
, asc
, ascq
;
321 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
322 sense_len
= sizeof(c
->err_info
->SenseInfo
);
324 sense_len
= c
->err_info
->SenseLen
;
326 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
327 &sense_key
, &asc
, &ascq
);
328 if (sense_key
!= UNIT_ATTENTION
|| asc
== -1)
333 dev_warn(&h
->pdev
->dev
,
334 "%s: a state change detected, command retried\n",
338 dev_warn(&h
->pdev
->dev
,
339 "%s: LUN failure detected\n", h
->devname
);
341 case REPORT_LUNS_CHANGED
:
342 dev_warn(&h
->pdev
->dev
,
343 "%s: report LUN data changed\n", h
->devname
);
345 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
346 * target (array) devices.
350 dev_warn(&h
->pdev
->dev
,
351 "%s: a power on or device reset detected\n",
354 case UNIT_ATTENTION_CLEARED
:
355 dev_warn(&h
->pdev
->dev
,
356 "%s: unit attention cleared by another initiator\n",
360 dev_warn(&h
->pdev
->dev
,
361 "%s: unknown unit attention detected\n",
368 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
370 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
371 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
372 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
374 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
378 static u32
lockup_detected(struct ctlr_info
*h
);
379 static ssize_t
host_show_lockup_detected(struct device
*dev
,
380 struct device_attribute
*attr
, char *buf
)
384 struct Scsi_Host
*shost
= class_to_shost(dev
);
386 h
= shost_to_hba(shost
);
387 ld
= lockup_detected(h
);
389 return sprintf(buf
, "ld=%d\n", ld
);
392 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
393 struct device_attribute
*attr
,
394 const char *buf
, size_t count
)
398 struct Scsi_Host
*shost
= class_to_shost(dev
);
401 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
403 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
404 strncpy(tmpbuf
, buf
, len
);
406 if (sscanf(tmpbuf
, "%d", &status
) != 1)
408 h
= shost_to_hba(shost
);
409 h
->acciopath_status
= !!status
;
410 dev_warn(&h
->pdev
->dev
,
411 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
412 h
->acciopath_status
? "enabled" : "disabled");
416 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
417 struct device_attribute
*attr
,
418 const char *buf
, size_t count
)
420 int debug_level
, len
;
422 struct Scsi_Host
*shost
= class_to_shost(dev
);
425 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
427 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
428 strncpy(tmpbuf
, buf
, len
);
430 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
434 h
= shost_to_hba(shost
);
435 h
->raid_offload_debug
= debug_level
;
436 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
437 h
->raid_offload_debug
);
441 static ssize_t
host_store_rescan(struct device
*dev
,
442 struct device_attribute
*attr
,
443 const char *buf
, size_t count
)
446 struct Scsi_Host
*shost
= class_to_shost(dev
);
447 h
= shost_to_hba(shost
);
448 hpsa_scan_start(h
->scsi_host
);
452 static ssize_t
host_show_firmware_revision(struct device
*dev
,
453 struct device_attribute
*attr
, char *buf
)
456 struct Scsi_Host
*shost
= class_to_shost(dev
);
457 unsigned char *fwrev
;
459 h
= shost_to_hba(shost
);
460 if (!h
->hba_inquiry_data
)
462 fwrev
= &h
->hba_inquiry_data
[32];
463 return snprintf(buf
, 20, "%c%c%c%c\n",
464 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
467 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
468 struct device_attribute
*attr
, char *buf
)
470 struct Scsi_Host
*shost
= class_to_shost(dev
);
471 struct ctlr_info
*h
= shost_to_hba(shost
);
473 return snprintf(buf
, 20, "%d\n",
474 atomic_read(&h
->commands_outstanding
));
477 static ssize_t
host_show_transport_mode(struct device
*dev
,
478 struct device_attribute
*attr
, char *buf
)
481 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 h
= shost_to_hba(shost
);
484 return snprintf(buf
, 20, "%s\n",
485 h
->transMethod
& CFGTBL_Trans_Performant
?
486 "performant" : "simple");
489 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
490 struct device_attribute
*attr
, char *buf
)
493 struct Scsi_Host
*shost
= class_to_shost(dev
);
495 h
= shost_to_hba(shost
);
496 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
497 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
500 /* List of controllers which cannot be hard reset on kexec with reset_devices */
501 static u32 unresettable_controller
[] = {
502 0x324a103C, /* Smart Array P712m */
503 0x324b103C, /* Smart Array P711m */
504 0x3223103C, /* Smart Array P800 */
505 0x3234103C, /* Smart Array P400 */
506 0x3235103C, /* Smart Array P400i */
507 0x3211103C, /* Smart Array E200i */
508 0x3212103C, /* Smart Array E200 */
509 0x3213103C, /* Smart Array E200i */
510 0x3214103C, /* Smart Array E200i */
511 0x3215103C, /* Smart Array E200i */
512 0x3237103C, /* Smart Array E500 */
513 0x323D103C, /* Smart Array P700m */
514 0x40800E11, /* Smart Array 5i */
515 0x409C0E11, /* Smart Array 6400 */
516 0x409D0E11, /* Smart Array 6400 EM */
517 0x40700E11, /* Smart Array 5300 */
518 0x40820E11, /* Smart Array 532 */
519 0x40830E11, /* Smart Array 5312 */
520 0x409A0E11, /* Smart Array 641 */
521 0x409B0E11, /* Smart Array 642 */
522 0x40910E11, /* Smart Array 6i */
525 /* List of controllers which cannot even be soft reset */
526 static u32 soft_unresettable_controller
[] = {
527 0x40800E11, /* Smart Array 5i */
528 0x40700E11, /* Smart Array 5300 */
529 0x40820E11, /* Smart Array 532 */
530 0x40830E11, /* Smart Array 5312 */
531 0x409A0E11, /* Smart Array 641 */
532 0x409B0E11, /* Smart Array 642 */
533 0x40910E11, /* Smart Array 6i */
534 /* Exclude 640x boards. These are two pci devices in one slot
535 * which share a battery backed cache module. One controls the
536 * cache, the other accesses the cache through the one that controls
537 * it. If we reset the one controlling the cache, the other will
538 * likely not be happy. Just forbid resetting this conjoined mess.
539 * The 640x isn't really supported by hpsa anyway.
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
545 static u32 needs_abort_tags_swizzled
[] = {
546 0x323D103C, /* Smart Array P700m */
547 0x324a103C, /* Smart Array P712m */
548 0x324b103C, /* SmartArray P711m */
551 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
555 for (i
= 0; i
< nelems
; i
++)
556 if (a
[i
] == board_id
)
561 static int ctlr_is_hard_resettable(u32 board_id
)
563 return !board_id_in_array(unresettable_controller
,
564 ARRAY_SIZE(unresettable_controller
), board_id
);
567 static int ctlr_is_soft_resettable(u32 board_id
)
569 return !board_id_in_array(soft_unresettable_controller
,
570 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
573 static int ctlr_is_resettable(u32 board_id
)
575 return ctlr_is_hard_resettable(board_id
) ||
576 ctlr_is_soft_resettable(board_id
);
579 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
581 return board_id_in_array(needs_abort_tags_swizzled
,
582 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
585 static ssize_t
host_show_resettable(struct device
*dev
,
586 struct device_attribute
*attr
, char *buf
)
589 struct Scsi_Host
*shost
= class_to_shost(dev
);
591 h
= shost_to_hba(shost
);
592 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
595 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
597 return (scsi3addr
[3] & 0xC0) == 0x40;
600 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
601 "1(+0)ADM", "UNKNOWN"
603 #define HPSA_RAID_0 0
604 #define HPSA_RAID_4 1
605 #define HPSA_RAID_1 2 /* also used for RAID 10 */
606 #define HPSA_RAID_5 3 /* also used for RAID 50 */
607 #define HPSA_RAID_51 4
608 #define HPSA_RAID_6 5 /* also used for RAID 60 */
609 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
610 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
612 static ssize_t
raid_level_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
616 unsigned char rlevel
;
618 struct scsi_device
*sdev
;
619 struct hpsa_scsi_dev_t
*hdev
;
622 sdev
= to_scsi_device(dev
);
623 h
= sdev_to_hba(sdev
);
624 spin_lock_irqsave(&h
->lock
, flags
);
625 hdev
= sdev
->hostdata
;
627 spin_unlock_irqrestore(&h
->lock
, flags
);
631 /* Is this even a logical drive? */
632 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
633 spin_unlock_irqrestore(&h
->lock
, flags
);
634 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
638 rlevel
= hdev
->raid_level
;
639 spin_unlock_irqrestore(&h
->lock
, flags
);
640 if (rlevel
> RAID_UNKNOWN
)
641 rlevel
= RAID_UNKNOWN
;
642 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
646 static ssize_t
lunid_show(struct device
*dev
,
647 struct device_attribute
*attr
, char *buf
)
650 struct scsi_device
*sdev
;
651 struct hpsa_scsi_dev_t
*hdev
;
653 unsigned char lunid
[8];
655 sdev
= to_scsi_device(dev
);
656 h
= sdev_to_hba(sdev
);
657 spin_lock_irqsave(&h
->lock
, flags
);
658 hdev
= sdev
->hostdata
;
660 spin_unlock_irqrestore(&h
->lock
, flags
);
663 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
664 spin_unlock_irqrestore(&h
->lock
, flags
);
665 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
666 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
667 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
670 static ssize_t
unique_id_show(struct device
*dev
,
671 struct device_attribute
*attr
, char *buf
)
674 struct scsi_device
*sdev
;
675 struct hpsa_scsi_dev_t
*hdev
;
677 unsigned char sn
[16];
679 sdev
= to_scsi_device(dev
);
680 h
= sdev_to_hba(sdev
);
681 spin_lock_irqsave(&h
->lock
, flags
);
682 hdev
= sdev
->hostdata
;
684 spin_unlock_irqrestore(&h
->lock
, flags
);
687 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
688 spin_unlock_irqrestore(&h
->lock
, flags
);
689 return snprintf(buf
, 16 * 2 + 2,
690 "%02X%02X%02X%02X%02X%02X%02X%02X"
691 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
692 sn
[0], sn
[1], sn
[2], sn
[3],
693 sn
[4], sn
[5], sn
[6], sn
[7],
694 sn
[8], sn
[9], sn
[10], sn
[11],
695 sn
[12], sn
[13], sn
[14], sn
[15]);
698 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
699 struct device_attribute
*attr
, char *buf
)
702 struct scsi_device
*sdev
;
703 struct hpsa_scsi_dev_t
*hdev
;
707 sdev
= to_scsi_device(dev
);
708 h
= sdev_to_hba(sdev
);
709 spin_lock_irqsave(&h
->lock
, flags
);
710 hdev
= sdev
->hostdata
;
712 spin_unlock_irqrestore(&h
->lock
, flags
);
715 offload_enabled
= hdev
->offload_enabled
;
716 spin_unlock_irqrestore(&h
->lock
, flags
);
717 return snprintf(buf
, 20, "%d\n", offload_enabled
);
720 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
721 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
722 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
723 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
724 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
725 host_show_hp_ssd_smart_path_enabled
, NULL
);
726 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
727 host_show_hp_ssd_smart_path_status
,
728 host_store_hp_ssd_smart_path_status
);
729 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
730 host_store_raid_offload_debug
);
731 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
732 host_show_firmware_revision
, NULL
);
733 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
734 host_show_commands_outstanding
, NULL
);
735 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
736 host_show_transport_mode
, NULL
);
737 static DEVICE_ATTR(resettable
, S_IRUGO
,
738 host_show_resettable
, NULL
);
739 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
740 host_show_lockup_detected
, NULL
);
742 static struct device_attribute
*hpsa_sdev_attrs
[] = {
743 &dev_attr_raid_level
,
746 &dev_attr_hp_ssd_smart_path_enabled
,
747 &dev_attr_lockup_detected
,
751 static struct device_attribute
*hpsa_shost_attrs
[] = {
753 &dev_attr_firmware_revision
,
754 &dev_attr_commands_outstanding
,
755 &dev_attr_transport_mode
,
756 &dev_attr_resettable
,
757 &dev_attr_hp_ssd_smart_path_status
,
758 &dev_attr_raid_offload_debug
,
762 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
763 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
765 static struct scsi_host_template hpsa_driver_template
= {
766 .module
= THIS_MODULE
,
769 .queuecommand
= hpsa_scsi_queue_command
,
770 .scan_start
= hpsa_scan_start
,
771 .scan_finished
= hpsa_scan_finished
,
772 .change_queue_depth
= hpsa_change_queue_depth
,
774 .use_clustering
= ENABLE_CLUSTERING
,
775 .eh_abort_handler
= hpsa_eh_abort_handler
,
776 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
778 .slave_alloc
= hpsa_slave_alloc
,
779 .slave_configure
= hpsa_slave_configure
,
780 .slave_destroy
= hpsa_slave_destroy
,
782 .compat_ioctl
= hpsa_compat_ioctl
,
784 .sdev_attrs
= hpsa_sdev_attrs
,
785 .shost_attrs
= hpsa_shost_attrs
,
790 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
793 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
795 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
796 return h
->access
.command_completed(h
, q
);
798 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
799 return h
->access
.command_completed(h
, q
);
801 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
802 a
= rq
->head
[rq
->current_entry
];
804 atomic_dec(&h
->commands_outstanding
);
808 /* Check for wraparound */
809 if (rq
->current_entry
== h
->max_commands
) {
810 rq
->current_entry
= 0;
817 * There are some special bits in the bus address of the
818 * command that we have to set for the controller to know
819 * how to process the command:
821 * Normal performant mode:
822 * bit 0: 1 means performant mode, 0 means simple mode.
823 * bits 1-3 = block fetch table entry
824 * bits 4-6 = command type (== 0)
827 * bit 0 = "performant mode" bit.
828 * bits 1-3 = block fetch table entry
829 * bits 4-6 = command type (== 110)
830 * (command type is needed because ioaccel1 mode
831 * commands are submitted through the same register as normal
832 * mode commands, so this is how the controller knows whether
833 * the command is normal mode or ioaccel1 mode.)
836 * bit 0 = "performant mode" bit.
837 * bits 1-4 = block fetch table entry (note extra bit)
838 * bits 4-6 = not needed, because ioaccel2 mode has
839 * a separate special register for submitting commands.
843 * set_performant_mode: Modify the tag for cciss performant
844 * set bit 0 for pull model, bits 3-1 for block fetch
847 #define DEFAULT_REPLY_QUEUE (-1)
848 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
851 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
852 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
853 if (unlikely(!h
->msix_vector
))
855 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
856 c
->Header
.ReplyQueue
=
857 raw_smp_processor_id() % h
->nreply_queues
;
859 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
863 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
864 struct CommandList
*c
,
867 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
870 * Tell the controller to post the reply to the queue for this
871 * processor. This seems to give the best I/O throughput.
873 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
874 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
876 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
878 * Set the bits in the address sent down to include:
879 * - performant mode bit (bit 0)
880 * - pull count (bits 1-3)
881 * - command type (bits 4-6)
883 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
884 IOACCEL1_BUSADDR_CMDTYPE
;
887 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
888 struct CommandList
*c
,
891 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
892 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
894 /* Tell the controller to post the reply to the queue for this
895 * processor. This seems to give the best I/O throughput.
897 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
898 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
900 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
901 /* Set the bits in the address sent down to include:
902 * - performant mode bit not used in ioaccel mode 2
903 * - pull count (bits 0-3)
904 * - command type isn't needed for ioaccel2
906 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
909 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
910 struct CommandList
*c
,
913 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
916 * Tell the controller to post the reply to the queue for this
917 * processor. This seems to give the best I/O throughput.
919 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
920 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
922 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
924 * Set the bits in the address sent down to include:
925 * - performant mode bit not used in ioaccel mode 2
926 * - pull count (bits 0-3)
927 * - command type isn't needed for ioaccel2
929 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
932 static int is_firmware_flash_cmd(u8
*cdb
)
934 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
938 * During firmware flash, the heartbeat register may not update as frequently
939 * as it should. So we dial down lockup detection during firmware flash. and
940 * dial it back up when firmware flash completes.
942 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
943 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
944 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
945 struct CommandList
*c
)
947 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
949 atomic_inc(&h
->firmware_flash_in_progress
);
950 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
953 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
954 struct CommandList
*c
)
956 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
957 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
958 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
961 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
962 struct CommandList
*c
, int reply_queue
)
964 dial_down_lockup_detection_during_fw_flash(h
, c
);
965 atomic_inc(&h
->commands_outstanding
);
966 switch (c
->cmd_type
) {
968 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
969 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
972 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
973 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
976 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
977 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
980 set_performant_mode(h
, c
, reply_queue
);
981 h
->access
.submit_command(h
, c
);
985 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
987 if (unlikely(hpsa_is_pending_event(c
)))
988 return finish_cmd(c
);
990 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
993 static inline int is_hba_lunid(unsigned char scsi3addr
[])
995 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
998 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1000 if (!h
->hba_inquiry_data
)
1002 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1007 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1008 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1010 /* finds an unused bus, target, lun for a new physical device
1011 * assumes h->devlock is held
1014 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1016 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1018 for (i
= 0; i
< h
->ndevices
; i
++) {
1019 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1020 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1023 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1024 if (i
< HPSA_MAX_DEVICES
) {
1033 static inline void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1034 struct hpsa_scsi_dev_t
*dev
, char *description
)
1036 dev_printk(level
, &h
->pdev
->dev
,
1037 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1038 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1040 scsi_device_type(dev
->devtype
),
1043 dev
->raid_level
> RAID_UNKNOWN
?
1044 "RAID-?" : raid_label
[dev
->raid_level
],
1045 dev
->offload_config
? '+' : '-',
1046 dev
->offload_enabled
? '+' : '-',
1050 /* Add an entry into h->dev[] array. */
1051 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
1052 struct hpsa_scsi_dev_t
*device
,
1053 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1055 /* assumes h->devlock is held */
1056 int n
= h
->ndevices
;
1058 unsigned char addr1
[8], addr2
[8];
1059 struct hpsa_scsi_dev_t
*sd
;
1061 if (n
>= HPSA_MAX_DEVICES
) {
1062 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1067 /* physical devices do not have lun or target assigned until now. */
1068 if (device
->lun
!= -1)
1069 /* Logical device, lun is already assigned. */
1072 /* If this device a non-zero lun of a multi-lun device
1073 * byte 4 of the 8-byte LUN addr will contain the logical
1074 * unit no, zero otherwise.
1076 if (device
->scsi3addr
[4] == 0) {
1077 /* This is not a non-zero lun of a multi-lun device */
1078 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1079 device
->bus
, &device
->target
, &device
->lun
) != 0)
1084 /* This is a non-zero lun of a multi-lun device.
1085 * Search through our list and find the device which
1086 * has the same 8 byte LUN address, excepting byte 4.
1087 * Assign the same bus and target for this new LUN.
1088 * Use the logical unit number from the firmware.
1090 memcpy(addr1
, device
->scsi3addr
, 8);
1092 for (i
= 0; i
< n
; i
++) {
1094 memcpy(addr2
, sd
->scsi3addr
, 8);
1096 /* differ only in byte 4? */
1097 if (memcmp(addr1
, addr2
, 8) == 0) {
1098 device
->bus
= sd
->bus
;
1099 device
->target
= sd
->target
;
1100 device
->lun
= device
->scsi3addr
[4];
1104 if (device
->lun
== -1) {
1105 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1106 " suspect firmware bug or unsupported hardware "
1107 "configuration.\n");
1115 added
[*nadded
] = device
;
1117 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1118 device
->expose_state
& HPSA_SCSI_ADD
? "added" : "masked");
1119 device
->offload_to_be_enabled
= device
->offload_enabled
;
1120 device
->offload_enabled
= 0;
1124 /* Update an entry in h->dev[] array. */
1125 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
1126 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1128 int offload_enabled
;
1129 /* assumes h->devlock is held */
1130 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1132 /* Raid level changed. */
1133 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1135 /* Raid offload parameters changed. Careful about the ordering. */
1136 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1138 * if drive is newly offload_enabled, we want to copy the
1139 * raid map data first. If previously offload_enabled and
1140 * offload_config were set, raid map data had better be
1141 * the same as it was before. if raid map data is changed
1142 * then it had better be the case that
1143 * h->dev[entry]->offload_enabled is currently 0.
1145 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1146 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1148 if (new_entry
->hba_ioaccel_enabled
) {
1149 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1150 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1152 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1153 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1154 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1155 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1158 * We can turn off ioaccel offload now, but need to delay turning
1159 * it on until we can update h->dev[entry]->phys_disk[], but we
1160 * can't do that until all the devices are updated.
1162 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1163 if (!new_entry
->offload_enabled
)
1164 h
->dev
[entry
]->offload_enabled
= 0;
1166 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1167 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1168 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1169 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1172 /* Replace an entry from h->dev[] array. */
1173 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
1174 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1175 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1176 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1178 /* assumes h->devlock is held */
1179 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1180 removed
[*nremoved
] = h
->dev
[entry
];
1184 * New physical devices won't have target/lun assigned yet
1185 * so we need to preserve the values in the slot we are replacing.
1187 if (new_entry
->target
== -1) {
1188 new_entry
->target
= h
->dev
[entry
]->target
;
1189 new_entry
->lun
= h
->dev
[entry
]->lun
;
1192 h
->dev
[entry
] = new_entry
;
1193 added
[*nadded
] = new_entry
;
1195 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1196 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1197 new_entry
->offload_enabled
= 0;
1200 /* Remove an entry from h->dev[] array. */
1201 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
1202 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1204 /* assumes h->devlock is held */
1206 struct hpsa_scsi_dev_t
*sd
;
1208 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1211 removed
[*nremoved
] = h
->dev
[entry
];
1214 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1215 h
->dev
[i
] = h
->dev
[i
+1];
1217 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1220 #define SCSI3ADDR_EQ(a, b) ( \
1221 (a)[7] == (b)[7] && \
1222 (a)[6] == (b)[6] && \
1223 (a)[5] == (b)[5] && \
1224 (a)[4] == (b)[4] && \
1225 (a)[3] == (b)[3] && \
1226 (a)[2] == (b)[2] && \
1227 (a)[1] == (b)[1] && \
1230 static void fixup_botched_add(struct ctlr_info
*h
,
1231 struct hpsa_scsi_dev_t
*added
)
1233 /* called when scsi_add_device fails in order to re-adjust
1234 * h->dev[] to match the mid layer's view.
1236 unsigned long flags
;
1239 spin_lock_irqsave(&h
->lock
, flags
);
1240 for (i
= 0; i
< h
->ndevices
; i
++) {
1241 if (h
->dev
[i
] == added
) {
1242 for (j
= i
; j
< h
->ndevices
-1; j
++)
1243 h
->dev
[j
] = h
->dev
[j
+1];
1248 spin_unlock_irqrestore(&h
->lock
, flags
);
1252 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1253 struct hpsa_scsi_dev_t
*dev2
)
1255 /* we compare everything except lun and target as these
1256 * are not yet assigned. Compare parts likely
1259 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1260 sizeof(dev1
->scsi3addr
)) != 0)
1262 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1263 sizeof(dev1
->device_id
)) != 0)
1265 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1267 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1269 if (dev1
->devtype
!= dev2
->devtype
)
1271 if (dev1
->bus
!= dev2
->bus
)
1276 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1277 struct hpsa_scsi_dev_t
*dev2
)
1279 /* Device attributes that can change, but don't mean
1280 * that the device is a different device, nor that the OS
1281 * needs to be told anything about the change.
1283 if (dev1
->raid_level
!= dev2
->raid_level
)
1285 if (dev1
->offload_config
!= dev2
->offload_config
)
1287 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1289 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1294 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1295 * and return needle location in *index. If scsi3addr matches, but not
1296 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1297 * location in *index.
1298 * In the case of a minor device attribute change, such as RAID level, just
1299 * return DEVICE_UPDATED, along with the updated device's location in index.
1300 * If needle not found, return DEVICE_NOT_FOUND.
1302 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1303 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1307 #define DEVICE_NOT_FOUND 0
1308 #define DEVICE_CHANGED 1
1309 #define DEVICE_SAME 2
1310 #define DEVICE_UPDATED 3
1311 for (i
= 0; i
< haystack_size
; i
++) {
1312 if (haystack
[i
] == NULL
) /* previously removed. */
1314 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1316 if (device_is_the_same(needle
, haystack
[i
])) {
1317 if (device_updated(needle
, haystack
[i
]))
1318 return DEVICE_UPDATED
;
1321 /* Keep offline devices offline */
1322 if (needle
->volume_offline
)
1323 return DEVICE_NOT_FOUND
;
1324 return DEVICE_CHANGED
;
1329 return DEVICE_NOT_FOUND
;
1332 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1333 unsigned char scsi3addr
[])
1335 struct offline_device_entry
*device
;
1336 unsigned long flags
;
1338 /* Check to see if device is already on the list */
1339 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1340 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1341 if (memcmp(device
->scsi3addr
, scsi3addr
,
1342 sizeof(device
->scsi3addr
)) == 0) {
1343 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1347 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1349 /* Device is not on the list, add it. */
1350 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1352 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1355 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1356 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1357 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1358 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1361 /* Print a message explaining various offline volume states */
1362 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1363 struct hpsa_scsi_dev_t
*sd
)
1365 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1366 dev_info(&h
->pdev
->dev
,
1367 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1368 h
->scsi_host
->host_no
,
1369 sd
->bus
, sd
->target
, sd
->lun
);
1370 switch (sd
->volume_offline
) {
1373 case HPSA_LV_UNDERGOING_ERASE
:
1374 dev_info(&h
->pdev
->dev
,
1375 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1376 h
->scsi_host
->host_no
,
1377 sd
->bus
, sd
->target
, sd
->lun
);
1379 case HPSA_LV_UNDERGOING_RPI
:
1380 dev_info(&h
->pdev
->dev
,
1381 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1382 h
->scsi_host
->host_no
,
1383 sd
->bus
, sd
->target
, sd
->lun
);
1385 case HPSA_LV_PENDING_RPI
:
1386 dev_info(&h
->pdev
->dev
,
1387 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1388 h
->scsi_host
->host_no
,
1389 sd
->bus
, sd
->target
, sd
->lun
);
1391 case HPSA_LV_ENCRYPTED_NO_KEY
:
1392 dev_info(&h
->pdev
->dev
,
1393 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1394 h
->scsi_host
->host_no
,
1395 sd
->bus
, sd
->target
, sd
->lun
);
1397 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1398 dev_info(&h
->pdev
->dev
,
1399 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1400 h
->scsi_host
->host_no
,
1401 sd
->bus
, sd
->target
, sd
->lun
);
1403 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1404 dev_info(&h
->pdev
->dev
,
1405 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1406 h
->scsi_host
->host_no
,
1407 sd
->bus
, sd
->target
, sd
->lun
);
1409 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1410 dev_info(&h
->pdev
->dev
,
1411 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1412 h
->scsi_host
->host_no
,
1413 sd
->bus
, sd
->target
, sd
->lun
);
1415 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1416 dev_info(&h
->pdev
->dev
,
1417 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1418 h
->scsi_host
->host_no
,
1419 sd
->bus
, sd
->target
, sd
->lun
);
1421 case HPSA_LV_PENDING_ENCRYPTION
:
1422 dev_info(&h
->pdev
->dev
,
1423 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1424 h
->scsi_host
->host_no
,
1425 sd
->bus
, sd
->target
, sd
->lun
);
1427 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1428 dev_info(&h
->pdev
->dev
,
1429 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1430 h
->scsi_host
->host_no
,
1431 sd
->bus
, sd
->target
, sd
->lun
);
1437 * Figure the list of physical drive pointers for a logical drive with
1438 * raid offload configured.
1440 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1441 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1442 struct hpsa_scsi_dev_t
*logical_drive
)
1444 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1445 struct raid_map_disk_data
*dd
= &map
->data
[0];
1447 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1448 le16_to_cpu(map
->metadata_disks_per_row
);
1449 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1450 le16_to_cpu(map
->layout_map_count
) *
1451 total_disks_per_row
;
1452 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1453 total_disks_per_row
;
1456 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1457 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1459 logical_drive
->nphysical_disks
= nraid_map_entries
;
1462 for (i
= 0; i
< nraid_map_entries
; i
++) {
1463 logical_drive
->phys_disk
[i
] = NULL
;
1464 if (!logical_drive
->offload_config
)
1466 for (j
= 0; j
< ndevices
; j
++) {
1467 if (dev
[j
]->devtype
!= TYPE_DISK
)
1469 if (is_logical_dev_addr_mode(dev
[j
]->scsi3addr
))
1471 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1474 logical_drive
->phys_disk
[i
] = dev
[j
];
1476 qdepth
= min(h
->nr_cmds
, qdepth
+
1477 logical_drive
->phys_disk
[i
]->queue_depth
);
1482 * This can happen if a physical drive is removed and
1483 * the logical drive is degraded. In that case, the RAID
1484 * map data will refer to a physical disk which isn't actually
1485 * present. And in that case offload_enabled should already
1486 * be 0, but we'll turn it off here just in case
1488 if (!logical_drive
->phys_disk
[i
]) {
1489 logical_drive
->offload_enabled
= 0;
1490 logical_drive
->offload_to_be_enabled
= 0;
1491 logical_drive
->queue_depth
= 8;
1494 if (nraid_map_entries
)
1496 * This is correct for reads, too high for full stripe writes,
1497 * way too high for partial stripe writes
1499 logical_drive
->queue_depth
= qdepth
;
1501 logical_drive
->queue_depth
= h
->nr_cmds
;
1504 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1505 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1509 for (i
= 0; i
< ndevices
; i
++) {
1510 if (dev
[i
]->devtype
!= TYPE_DISK
)
1512 if (!is_logical_dev_addr_mode(dev
[i
]->scsi3addr
))
1516 * If offload is currently enabled, the RAID map and
1517 * phys_disk[] assignment *better* not be changing
1518 * and since it isn't changing, we do not need to
1521 if (dev
[i
]->offload_enabled
)
1524 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1528 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
1529 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1531 /* sd contains scsi3 addresses and devtypes, and inquiry
1532 * data. This function takes what's in sd to be the current
1533 * reality and updates h->dev[] to reflect that reality.
1535 int i
, entry
, device_change
, changes
= 0;
1536 struct hpsa_scsi_dev_t
*csd
;
1537 unsigned long flags
;
1538 struct hpsa_scsi_dev_t
**added
, **removed
;
1539 int nadded
, nremoved
;
1540 struct Scsi_Host
*sh
= NULL
;
1542 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1543 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1545 if (!added
|| !removed
) {
1546 dev_warn(&h
->pdev
->dev
, "out of memory in "
1547 "adjust_hpsa_scsi_table\n");
1551 spin_lock_irqsave(&h
->devlock
, flags
);
1553 /* find any devices in h->dev[] that are not in
1554 * sd[] and remove them from h->dev[], and for any
1555 * devices which have changed, remove the old device
1556 * info and add the new device info.
1557 * If minor device attributes change, just update
1558 * the existing device structure.
1563 while (i
< h
->ndevices
) {
1565 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1566 if (device_change
== DEVICE_NOT_FOUND
) {
1568 hpsa_scsi_remove_entry(h
, hostno
, i
,
1569 removed
, &nremoved
);
1570 continue; /* remove ^^^, hence i not incremented */
1571 } else if (device_change
== DEVICE_CHANGED
) {
1573 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
1574 added
, &nadded
, removed
, &nremoved
);
1575 /* Set it to NULL to prevent it from being freed
1576 * at the bottom of hpsa_update_scsi_devices()
1579 } else if (device_change
== DEVICE_UPDATED
) {
1580 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1585 /* Now, make sure every device listed in sd[] is also
1586 * listed in h->dev[], adding them if they aren't found
1589 for (i
= 0; i
< nsds
; i
++) {
1590 if (!sd
[i
]) /* if already added above. */
1593 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1594 * as the SCSI mid-layer does not handle such devices well.
1595 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1596 * at 160Hz, and prevents the system from coming up.
1598 if (sd
[i
]->volume_offline
) {
1599 hpsa_show_volume_status(h
, sd
[i
]);
1600 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1604 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1605 h
->ndevices
, &entry
);
1606 if (device_change
== DEVICE_NOT_FOUND
) {
1608 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1609 added
, &nadded
) != 0)
1611 sd
[i
] = NULL
; /* prevent from being freed later. */
1612 } else if (device_change
== DEVICE_CHANGED
) {
1613 /* should never happen... */
1615 dev_warn(&h
->pdev
->dev
,
1616 "device unexpectedly changed.\n");
1617 /* but if it does happen, we just ignore that device */
1620 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1622 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1623 * any logical drives that need it enabled.
1625 for (i
= 0; i
< h
->ndevices
; i
++)
1626 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1628 spin_unlock_irqrestore(&h
->devlock
, flags
);
1630 /* Monitor devices which are in one of several NOT READY states to be
1631 * brought online later. This must be done without holding h->devlock,
1632 * so don't touch h->dev[]
1634 for (i
= 0; i
< nsds
; i
++) {
1635 if (!sd
[i
]) /* if already added above. */
1637 if (sd
[i
]->volume_offline
)
1638 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1641 /* Don't notify scsi mid layer of any changes the first time through
1642 * (or if there are no changes) scsi_scan_host will do it later the
1643 * first time through.
1645 if (hostno
== -1 || !changes
)
1649 /* Notify scsi mid layer of any removed devices */
1650 for (i
= 0; i
< nremoved
; i
++) {
1651 if (removed
[i
]->expose_state
& HPSA_SCSI_ADD
) {
1652 struct scsi_device
*sdev
=
1653 scsi_device_lookup(sh
, removed
[i
]->bus
,
1654 removed
[i
]->target
, removed
[i
]->lun
);
1656 scsi_remove_device(sdev
);
1657 scsi_device_put(sdev
);
1660 * We don't expect to get here.
1661 * future cmds to this device will get selection
1662 * timeout as if the device was gone.
1664 hpsa_show_dev_msg(KERN_WARNING
, h
, removed
[i
],
1665 "didn't find device for removal.");
1672 /* Notify scsi mid layer of any added devices */
1673 for (i
= 0; i
< nadded
; i
++) {
1674 if (!(added
[i
]->expose_state
& HPSA_SCSI_ADD
))
1676 if (scsi_add_device(sh
, added
[i
]->bus
,
1677 added
[i
]->target
, added
[i
]->lun
) == 0)
1679 hpsa_show_dev_msg(KERN_WARNING
, h
, added
[i
],
1680 "addition failed, device not added.");
1681 /* now we have to remove it from h->dev,
1682 * since it didn't get added to scsi mid layer
1684 fixup_botched_add(h
, added
[i
]);
1694 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1695 * Assume's h->devlock is held.
1697 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1698 int bus
, int target
, int lun
)
1701 struct hpsa_scsi_dev_t
*sd
;
1703 for (i
= 0; i
< h
->ndevices
; i
++) {
1705 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1711 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1713 struct hpsa_scsi_dev_t
*sd
;
1714 unsigned long flags
;
1715 struct ctlr_info
*h
;
1717 h
= sdev_to_hba(sdev
);
1718 spin_lock_irqsave(&h
->devlock
, flags
);
1719 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1720 sdev_id(sdev
), sdev
->lun
);
1722 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1723 sdev
->hostdata
= (sd
->expose_state
& HPSA_SCSI_ADD
) ? sd
: NULL
;
1725 sdev
->hostdata
= NULL
;
1726 spin_unlock_irqrestore(&h
->devlock
, flags
);
1730 /* configure scsi device based on internal per-device structure */
1731 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1733 struct hpsa_scsi_dev_t
*sd
;
1736 sd
= sdev
->hostdata
;
1737 sdev
->no_uld_attach
= !sd
|| !(sd
->expose_state
& HPSA_ULD_ATTACH
);
1740 queue_depth
= sd
->queue_depth
!= 0 ?
1741 sd
->queue_depth
: sdev
->host
->can_queue
;
1743 queue_depth
= sdev
->host
->can_queue
;
1745 scsi_change_queue_depth(sdev
, queue_depth
);
1750 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1752 /* nothing to do. */
1755 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1759 if (!h
->ioaccel2_cmd_sg_list
)
1761 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1762 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1763 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1765 kfree(h
->ioaccel2_cmd_sg_list
);
1766 h
->ioaccel2_cmd_sg_list
= NULL
;
1769 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1773 if (h
->chainsize
<= 0)
1776 h
->ioaccel2_cmd_sg_list
=
1777 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
1779 if (!h
->ioaccel2_cmd_sg_list
)
1781 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1782 h
->ioaccel2_cmd_sg_list
[i
] =
1783 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
1784 h
->maxsgentries
, GFP_KERNEL
);
1785 if (!h
->ioaccel2_cmd_sg_list
[i
])
1791 hpsa_free_ioaccel2_sg_chain_blocks(h
);
1795 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1799 if (!h
->cmd_sg_list
)
1801 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1802 kfree(h
->cmd_sg_list
[i
]);
1803 h
->cmd_sg_list
[i
] = NULL
;
1805 kfree(h
->cmd_sg_list
);
1806 h
->cmd_sg_list
= NULL
;
1809 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
1813 if (h
->chainsize
<= 0)
1816 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1818 if (!h
->cmd_sg_list
) {
1819 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
1822 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1823 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1824 h
->chainsize
, GFP_KERNEL
);
1825 if (!h
->cmd_sg_list
[i
]) {
1826 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
1833 hpsa_free_sg_chain_blocks(h
);
1837 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1838 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
1840 struct ioaccel2_sg_element
*chain_block
;
1844 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
1845 chain_size
= le32_to_cpu(cp
->data_len
);
1846 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
1848 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1849 /* prevent subsequent unmapping */
1850 cp
->sg
->address
= 0;
1853 cp
->sg
->address
= cpu_to_le64(temp64
);
1857 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1858 struct io_accel2_cmd
*cp
)
1860 struct ioaccel2_sg_element
*chain_sg
;
1865 temp64
= le64_to_cpu(chain_sg
->address
);
1866 chain_size
= le32_to_cpu(cp
->data_len
);
1867 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
1870 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1871 struct CommandList
*c
)
1873 struct SGDescriptor
*chain_sg
, *chain_block
;
1877 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1878 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1879 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
1880 chain_len
= sizeof(*chain_sg
) *
1881 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
1882 chain_sg
->Len
= cpu_to_le32(chain_len
);
1883 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
1885 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1886 /* prevent subsequent unmapping */
1887 chain_sg
->Addr
= cpu_to_le64(0);
1890 chain_sg
->Addr
= cpu_to_le64(temp64
);
1894 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1895 struct CommandList
*c
)
1897 struct SGDescriptor
*chain_sg
;
1899 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
1902 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1903 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
1904 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
1908 /* Decode the various types of errors on ioaccel2 path.
1909 * Return 1 for any error that should generate a RAID path retry.
1910 * Return 0 for errors that don't require a RAID path retry.
1912 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
1913 struct CommandList
*c
,
1914 struct scsi_cmnd
*cmd
,
1915 struct io_accel2_cmd
*c2
)
1919 u32 ioaccel2_resid
= 0;
1921 switch (c2
->error_data
.serv_response
) {
1922 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
1923 switch (c2
->error_data
.status
) {
1924 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
1926 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
1927 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
1928 if (c2
->error_data
.data_present
!=
1929 IOACCEL2_SENSE_DATA_PRESENT
) {
1930 memset(cmd
->sense_buffer
, 0,
1931 SCSI_SENSE_BUFFERSIZE
);
1934 /* copy the sense data */
1935 data_len
= c2
->error_data
.sense_data_len
;
1936 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
1937 data_len
= SCSI_SENSE_BUFFERSIZE
;
1938 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
1940 sizeof(c2
->error_data
.sense_data_buff
);
1941 memcpy(cmd
->sense_buffer
,
1942 c2
->error_data
.sense_data_buff
, data_len
);
1945 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
1948 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
1951 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
1954 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
1962 case IOACCEL2_SERV_RESPONSE_FAILURE
:
1963 switch (c2
->error_data
.status
) {
1964 case IOACCEL2_STATUS_SR_IO_ERROR
:
1965 case IOACCEL2_STATUS_SR_IO_ABORTED
:
1966 case IOACCEL2_STATUS_SR_OVERRUN
:
1969 case IOACCEL2_STATUS_SR_UNDERRUN
:
1970 cmd
->result
= (DID_OK
<< 16); /* host byte */
1971 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1972 ioaccel2_resid
= get_unaligned_le32(
1973 &c2
->error_data
.resid_cnt
[0]);
1974 scsi_set_resid(cmd
, ioaccel2_resid
);
1976 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
1977 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
1978 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
1979 /* We will get an event from ctlr to trigger rescan */
1986 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
1988 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
1990 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
1993 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2000 return retry
; /* retry on raid path? */
2003 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2004 struct CommandList
*c
)
2006 bool do_wake
= false;
2009 * Prevent the following race in the abort handler:
2011 * 1. LLD is requested to abort a SCSI command
2012 * 2. The SCSI command completes
2013 * 3. The struct CommandList associated with step 2 is made available
2014 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2015 * 5. Abort handler follows scsi_cmnd->host_scribble and
2016 * finds struct CommandList and tries to aborts it
2017 * Now we have aborted the wrong command.
2019 * Reset c->scsi_cmd here so that the abort or reset handler will know
2020 * this command has completed. Then, check to see if the handler is
2021 * waiting for this command, and, if so, wake it.
2023 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2024 mb(); /* Declare command idle before checking for pending events. */
2025 if (c
->abort_pending
) {
2027 c
->abort_pending
= false;
2029 if (c
->reset_pending
) {
2030 unsigned long flags
;
2031 struct hpsa_scsi_dev_t
*dev
;
2034 * There appears to be a reset pending; lock the lock and
2035 * reconfirm. If so, then decrement the count of outstanding
2036 * commands and wake the reset command if this is the last one.
2038 spin_lock_irqsave(&h
->lock
, flags
);
2039 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2040 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2042 c
->reset_pending
= NULL
;
2043 spin_unlock_irqrestore(&h
->lock
, flags
);
2047 wake_up_all(&h
->event_sync_wait_queue
);
2050 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2051 struct CommandList
*c
)
2053 hpsa_cmd_resolve_events(h
, c
);
2054 cmd_tagged_free(h
, c
);
2057 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2058 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2060 hpsa_cmd_resolve_and_free(h
, c
);
2061 cmd
->scsi_done(cmd
);
2064 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2066 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2067 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2070 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2072 cmd
->result
= DID_ABORT
<< 16;
2075 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2076 struct scsi_cmnd
*cmd
)
2078 hpsa_set_scsi_cmd_aborted(cmd
);
2079 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2080 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2081 hpsa_cmd_resolve_and_free(h
, c
);
2084 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2085 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2086 struct hpsa_scsi_dev_t
*dev
)
2088 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2090 /* check for good status */
2091 if (likely(c2
->error_data
.serv_response
== 0 &&
2092 c2
->error_data
.status
== 0))
2093 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2096 * Any RAID offload error results in retry which will use
2097 * the normal I/O path so the controller can handle whatever's
2100 if (is_logical_dev_addr_mode(dev
->scsi3addr
) &&
2101 c2
->error_data
.serv_response
==
2102 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2103 if (c2
->error_data
.status
==
2104 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2105 dev
->offload_enabled
= 0;
2107 return hpsa_retry_cmd(h
, c
);
2110 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2111 return hpsa_retry_cmd(h
, c
);
2113 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2116 /* Returns 0 on success, < 0 otherwise. */
2117 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2118 struct CommandList
*cp
)
2120 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2122 switch (tmf_status
) {
2123 case CISS_TMF_COMPLETE
:
2125 * CISS_TMF_COMPLETE never happens, instead,
2126 * ei->CommandStatus == 0 for this case.
2128 case CISS_TMF_SUCCESS
:
2130 case CISS_TMF_INVALID_FRAME
:
2131 case CISS_TMF_NOT_SUPPORTED
:
2132 case CISS_TMF_FAILED
:
2133 case CISS_TMF_WRONG_LUN
:
2134 case CISS_TMF_OVERLAPPED_TAG
:
2137 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2144 static void complete_scsi_command(struct CommandList
*cp
)
2146 struct scsi_cmnd
*cmd
;
2147 struct ctlr_info
*h
;
2148 struct ErrorInfo
*ei
;
2149 struct hpsa_scsi_dev_t
*dev
;
2150 struct io_accel2_cmd
*c2
;
2153 u8 asc
; /* additional sense code */
2154 u8 ascq
; /* additional sense code qualifier */
2155 unsigned long sense_data_size
;
2160 dev
= cmd
->device
->hostdata
;
2161 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2163 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2164 if ((cp
->cmd_type
== CMD_SCSI
) &&
2165 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2166 hpsa_unmap_sg_chain_block(h
, cp
);
2168 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2169 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2170 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2172 cmd
->result
= (DID_OK
<< 16); /* host byte */
2173 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2175 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2176 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2179 * We check for lockup status here as it may be set for
2180 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2181 * fail_all_oustanding_cmds()
2183 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2184 /* DID_NO_CONNECT will prevent a retry */
2185 cmd
->result
= DID_NO_CONNECT
<< 16;
2186 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2189 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2190 if (cp
->reset_pending
)
2191 return hpsa_cmd_resolve_and_free(h
, cp
);
2192 if (cp
->abort_pending
)
2193 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2196 if (cp
->cmd_type
== CMD_IOACCEL2
)
2197 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2199 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2200 if (ei
->CommandStatus
== 0)
2201 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2203 /* For I/O accelerator commands, copy over some fields to the normal
2204 * CISS header used below for error handling.
2206 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2207 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2208 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2209 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2210 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2211 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2212 cp
->Header
.tag
= c
->tag
;
2213 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2214 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2216 /* Any RAID offload error results in retry which will use
2217 * the normal I/O path so the controller can handle whatever's
2220 if (is_logical_dev_addr_mode(dev
->scsi3addr
)) {
2221 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2222 dev
->offload_enabled
= 0;
2223 return hpsa_retry_cmd(h
, cp
);
2227 /* an error has occurred */
2228 switch (ei
->CommandStatus
) {
2230 case CMD_TARGET_STATUS
:
2231 cmd
->result
|= ei
->ScsiStatus
;
2232 /* copy the sense data */
2233 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2234 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2236 sense_data_size
= sizeof(ei
->SenseInfo
);
2237 if (ei
->SenseLen
< sense_data_size
)
2238 sense_data_size
= ei
->SenseLen
;
2239 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2241 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2242 &sense_key
, &asc
, &ascq
);
2243 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2244 if (sense_key
== ABORTED_COMMAND
) {
2245 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2250 /* Problem was not a check condition
2251 * Pass it up to the upper layers...
2253 if (ei
->ScsiStatus
) {
2254 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2255 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2256 "Returning result: 0x%x\n",
2258 sense_key
, asc
, ascq
,
2260 } else { /* scsi status is zero??? How??? */
2261 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2262 "Returning no connection.\n", cp
),
2264 /* Ordinarily, this case should never happen,
2265 * but there is a bug in some released firmware
2266 * revisions that allows it to happen if, for
2267 * example, a 4100 backplane loses power and
2268 * the tape drive is in it. We assume that
2269 * it's a fatal error of some kind because we
2270 * can't show that it wasn't. We will make it
2271 * look like selection timeout since that is
2272 * the most common reason for this to occur,
2273 * and it's severe enough.
2276 cmd
->result
= DID_NO_CONNECT
<< 16;
2280 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2282 case CMD_DATA_OVERRUN
:
2283 dev_warn(&h
->pdev
->dev
,
2284 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2287 /* print_bytes(cp, sizeof(*cp), 1, 0);
2289 /* We get CMD_INVALID if you address a non-existent device
2290 * instead of a selection timeout (no response). You will
2291 * see this if you yank out a drive, then try to access it.
2292 * This is kind of a shame because it means that any other
2293 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2294 * missing target. */
2295 cmd
->result
= DID_NO_CONNECT
<< 16;
2298 case CMD_PROTOCOL_ERR
:
2299 cmd
->result
= DID_ERROR
<< 16;
2300 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2303 case CMD_HARDWARE_ERR
:
2304 cmd
->result
= DID_ERROR
<< 16;
2305 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2308 case CMD_CONNECTION_LOST
:
2309 cmd
->result
= DID_ERROR
<< 16;
2310 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2314 /* Return now to avoid calling scsi_done(). */
2315 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2316 case CMD_ABORT_FAILED
:
2317 cmd
->result
= DID_ERROR
<< 16;
2318 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2321 case CMD_UNSOLICITED_ABORT
:
2322 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2323 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2327 cmd
->result
= DID_TIME_OUT
<< 16;
2328 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2331 case CMD_UNABORTABLE
:
2332 cmd
->result
= DID_ERROR
<< 16;
2333 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2335 case CMD_TMF_STATUS
:
2336 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2337 cmd
->result
= DID_ERROR
<< 16;
2339 case CMD_IOACCEL_DISABLED
:
2340 /* This only handles the direct pass-through case since RAID
2341 * offload is handled above. Just attempt a retry.
2343 cmd
->result
= DID_SOFT_ERROR
<< 16;
2344 dev_warn(&h
->pdev
->dev
,
2345 "cp %p had HP SSD Smart Path error\n", cp
);
2348 cmd
->result
= DID_ERROR
<< 16;
2349 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2350 cp
, ei
->CommandStatus
);
2353 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2356 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2357 struct CommandList
*c
, int sg_used
, int data_direction
)
2361 for (i
= 0; i
< sg_used
; i
++)
2362 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2363 le32_to_cpu(c
->SG
[i
].Len
),
2367 static int hpsa_map_one(struct pci_dev
*pdev
,
2368 struct CommandList
*cp
,
2375 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2376 cp
->Header
.SGList
= 0;
2377 cp
->Header
.SGTotal
= cpu_to_le16(0);
2381 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2382 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2383 /* Prevent subsequent unmap of something never mapped */
2384 cp
->Header
.SGList
= 0;
2385 cp
->Header
.SGTotal
= cpu_to_le16(0);
2388 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2389 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2390 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2391 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2392 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2396 #define NO_TIMEOUT ((unsigned long) -1)
2397 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2398 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2399 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2401 DECLARE_COMPLETION_ONSTACK(wait
);
2404 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2405 if (timeout_msecs
== NO_TIMEOUT
) {
2406 /* TODO: get rid of this no-timeout thing */
2407 wait_for_completion_io(&wait
);
2410 if (!wait_for_completion_io_timeout(&wait
,
2411 msecs_to_jiffies(timeout_msecs
))) {
2412 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2418 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2419 int reply_queue
, unsigned long timeout_msecs
)
2421 if (unlikely(lockup_detected(h
))) {
2422 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2425 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2428 static u32
lockup_detected(struct ctlr_info
*h
)
2431 u32 rc
, *lockup_detected
;
2434 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2435 rc
= *lockup_detected
;
2440 #define MAX_DRIVER_CMD_RETRIES 25
2441 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2442 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2444 int backoff_time
= 10, retry_count
= 0;
2448 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2449 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2454 if (retry_count
> 3) {
2455 msleep(backoff_time
);
2456 if (backoff_time
< 1000)
2459 } while ((check_for_unit_attention(h
, c
) ||
2460 check_for_busy(h
, c
)) &&
2461 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2462 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2463 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2468 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2469 struct CommandList
*c
)
2471 const u8
*cdb
= c
->Request
.CDB
;
2472 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2474 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2475 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2476 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2477 lun
[4], lun
[5], lun
[6], lun
[7],
2478 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2479 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2480 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2481 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2484 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2485 struct CommandList
*cp
)
2487 const struct ErrorInfo
*ei
= cp
->err_info
;
2488 struct device
*d
= &cp
->h
->pdev
->dev
;
2489 u8 sense_key
, asc
, ascq
;
2492 switch (ei
->CommandStatus
) {
2493 case CMD_TARGET_STATUS
:
2494 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2495 sense_len
= sizeof(ei
->SenseInfo
);
2497 sense_len
= ei
->SenseLen
;
2498 decode_sense_data(ei
->SenseInfo
, sense_len
,
2499 &sense_key
, &asc
, &ascq
);
2500 hpsa_print_cmd(h
, "SCSI status", cp
);
2501 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2502 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2503 sense_key
, asc
, ascq
);
2505 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2506 if (ei
->ScsiStatus
== 0)
2507 dev_warn(d
, "SCSI status is abnormally zero. "
2508 "(probably indicates selection timeout "
2509 "reported incorrectly due to a known "
2510 "firmware bug, circa July, 2001.)\n");
2512 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2514 case CMD_DATA_OVERRUN
:
2515 hpsa_print_cmd(h
, "overrun condition", cp
);
2518 /* controller unfortunately reports SCSI passthru's
2519 * to non-existent targets as invalid commands.
2521 hpsa_print_cmd(h
, "invalid command", cp
);
2522 dev_warn(d
, "probably means device no longer present\n");
2525 case CMD_PROTOCOL_ERR
:
2526 hpsa_print_cmd(h
, "protocol error", cp
);
2528 case CMD_HARDWARE_ERR
:
2529 hpsa_print_cmd(h
, "hardware error", cp
);
2531 case CMD_CONNECTION_LOST
:
2532 hpsa_print_cmd(h
, "connection lost", cp
);
2535 hpsa_print_cmd(h
, "aborted", cp
);
2537 case CMD_ABORT_FAILED
:
2538 hpsa_print_cmd(h
, "abort failed", cp
);
2540 case CMD_UNSOLICITED_ABORT
:
2541 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2544 hpsa_print_cmd(h
, "timed out", cp
);
2546 case CMD_UNABORTABLE
:
2547 hpsa_print_cmd(h
, "unabortable", cp
);
2549 case CMD_CTLR_LOCKUP
:
2550 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2553 hpsa_print_cmd(h
, "unknown status", cp
);
2554 dev_warn(d
, "Unknown command status %x\n",
2559 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2560 u16 page
, unsigned char *buf
,
2561 unsigned char bufsize
)
2564 struct CommandList
*c
;
2565 struct ErrorInfo
*ei
;
2569 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2570 page
, scsi3addr
, TYPE_CMD
)) {
2574 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2575 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2579 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2580 hpsa_scsi_interpret_error(h
, c
);
2588 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info
*h
,
2589 unsigned char *scsi3addr
, unsigned char page
,
2590 struct bmic_controller_parameters
*buf
, size_t bufsize
)
2593 struct CommandList
*c
;
2594 struct ErrorInfo
*ei
;
2597 if (fill_cmd(c
, BMIC_SENSE_CONTROLLER_PARAMETERS
, h
, buf
, bufsize
,
2598 page
, scsi3addr
, TYPE_CMD
)) {
2602 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2603 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2607 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2608 hpsa_scsi_interpret_error(h
, c
);
2616 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2617 u8 reset_type
, int reply_queue
)
2620 struct CommandList
*c
;
2621 struct ErrorInfo
*ei
;
2626 /* fill_cmd can't fail here, no data buffer to map. */
2627 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
2628 scsi3addr
, TYPE_MSG
);
2629 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to LUN reset */
2630 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2632 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2635 /* no unmap needed here because no data xfer. */
2638 if (ei
->CommandStatus
!= 0) {
2639 hpsa_scsi_interpret_error(h
, c
);
2647 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2648 struct hpsa_scsi_dev_t
*dev
,
2649 unsigned char *scsi3addr
)
2653 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2654 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2656 if (hpsa_is_cmd_idle(c
))
2659 switch (c
->cmd_type
) {
2661 case CMD_IOCTL_PEND
:
2662 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2663 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2668 if (c
->phys_disk
== dev
) {
2669 /* HBA mode match */
2672 /* Possible RAID mode -- check each phys dev. */
2673 /* FIXME: Do we need to take out a lock here? If
2674 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2676 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2677 /* FIXME: an alternate test might be
2679 * match = dev->phys_disk[i]->ioaccel_handle
2680 * == c2->scsi_nexus; */
2681 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2687 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2688 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2689 le32_to_cpu(ac
->it_nexus
);
2693 case 0: /* The command is in the middle of being initialized. */
2698 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2706 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2707 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2712 /* We can really only handle one reset at a time */
2713 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2714 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2718 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2720 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2721 struct CommandList
*c
= h
->cmd_pool
+ i
;
2722 int refcount
= atomic_inc_return(&c
->refcount
);
2724 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2725 unsigned long flags
;
2728 * Mark the target command as having a reset pending,
2729 * then lock a lock so that the command cannot complete
2730 * while we're considering it. If the command is not
2731 * idle then count it; otherwise revoke the event.
2733 c
->reset_pending
= dev
;
2734 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2735 if (!hpsa_is_cmd_idle(c
))
2736 atomic_inc(&dev
->reset_cmds_out
);
2738 c
->reset_pending
= NULL
;
2739 spin_unlock_irqrestore(&h
->lock
, flags
);
2745 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2747 wait_event(h
->event_sync_wait_queue
,
2748 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2749 lockup_detected(h
));
2751 if (unlikely(lockup_detected(h
))) {
2752 dev_warn(&h
->pdev
->dev
,
2753 "Controller lockup detected during reset wait\n");
2758 atomic_set(&dev
->reset_cmds_out
, 0);
2760 mutex_unlock(&h
->reset_mutex
);
2764 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2765 unsigned char *scsi3addr
, unsigned char *raid_level
)
2770 *raid_level
= RAID_UNKNOWN
;
2771 buf
= kzalloc(64, GFP_KERNEL
);
2774 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2776 *raid_level
= buf
[8];
2777 if (*raid_level
> RAID_UNKNOWN
)
2778 *raid_level
= RAID_UNKNOWN
;
2783 #define HPSA_MAP_DEBUG
2784 #ifdef HPSA_MAP_DEBUG
2785 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2786 struct raid_map_data
*map_buff
)
2788 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2790 u16 map_cnt
, row_cnt
, disks_per_row
;
2795 /* Show details only if debugging has been activated. */
2796 if (h
->raid_offload_debug
< 2)
2799 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
2800 le32_to_cpu(map_buff
->structure_size
));
2801 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
2802 le32_to_cpu(map_buff
->volume_blk_size
));
2803 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
2804 le64_to_cpu(map_buff
->volume_blk_cnt
));
2805 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
2806 map_buff
->phys_blk_shift
);
2807 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
2808 map_buff
->parity_rotation_shift
);
2809 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
2810 le16_to_cpu(map_buff
->strip_size
));
2811 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
2812 le64_to_cpu(map_buff
->disk_starting_blk
));
2813 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
2814 le64_to_cpu(map_buff
->disk_blk_cnt
));
2815 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
2816 le16_to_cpu(map_buff
->data_disks_per_row
));
2817 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
2818 le16_to_cpu(map_buff
->metadata_disks_per_row
));
2819 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
2820 le16_to_cpu(map_buff
->row_cnt
));
2821 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
2822 le16_to_cpu(map_buff
->layout_map_count
));
2823 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
2824 le16_to_cpu(map_buff
->flags
));
2825 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
2826 le16_to_cpu(map_buff
->flags
) &
2827 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
2828 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
2829 le16_to_cpu(map_buff
->dekindex
));
2830 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
2831 for (map
= 0; map
< map_cnt
; map
++) {
2832 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
2833 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
2834 for (row
= 0; row
< row_cnt
; row
++) {
2835 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
2837 le16_to_cpu(map_buff
->data_disks_per_row
);
2838 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2839 dev_info(&h
->pdev
->dev
,
2840 " D%02u: h=0x%04x xor=%u,%u\n",
2841 col
, dd
->ioaccel_handle
,
2842 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2844 le16_to_cpu(map_buff
->metadata_disks_per_row
);
2845 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2846 dev_info(&h
->pdev
->dev
,
2847 " M%02u: h=0x%04x xor=%u,%u\n",
2848 col
, dd
->ioaccel_handle
,
2849 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2854 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
2855 __attribute__((unused
)) int rc
,
2856 __attribute__((unused
)) struct raid_map_data
*map_buff
)
2861 static int hpsa_get_raid_map(struct ctlr_info
*h
,
2862 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2865 struct CommandList
*c
;
2866 struct ErrorInfo
*ei
;
2870 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
2871 sizeof(this_device
->raid_map
), 0,
2872 scsi3addr
, TYPE_CMD
)) {
2873 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
2877 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2878 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2882 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2883 hpsa_scsi_interpret_error(h
, c
);
2889 /* @todo in the future, dynamically allocate RAID map memory */
2890 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
2891 sizeof(this_device
->raid_map
)) {
2892 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
2895 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
2902 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
2903 unsigned char scsi3addr
[], u16 bmic_device_index
,
2904 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
2907 struct CommandList
*c
;
2908 struct ErrorInfo
*ei
;
2911 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
2912 0, RAID_CTLR_LUNID
, TYPE_CMD
);
2916 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
2917 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
2919 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
2922 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2923 hpsa_scsi_interpret_error(h
, c
);
2931 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
2932 unsigned char scsi3addr
[], u8 page
)
2937 unsigned char *buf
, bufsize
;
2939 buf
= kzalloc(256, GFP_KERNEL
);
2943 /* Get the size of the page list first */
2944 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2945 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2946 buf
, HPSA_VPD_HEADER_SZ
);
2948 goto exit_unsupported
;
2950 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
2951 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
2955 /* Get the whole VPD page list */
2956 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2957 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2960 goto exit_unsupported
;
2963 for (i
= 1; i
<= pages
; i
++)
2964 if (buf
[3 + i
] == page
)
2965 goto exit_supported
;
2974 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
2975 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2981 this_device
->offload_config
= 0;
2982 this_device
->offload_enabled
= 0;
2983 this_device
->offload_to_be_enabled
= 0;
2985 buf
= kzalloc(64, GFP_KERNEL
);
2988 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
2990 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2991 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
2995 #define IOACCEL_STATUS_BYTE 4
2996 #define OFFLOAD_CONFIGURED_BIT 0x01
2997 #define OFFLOAD_ENABLED_BIT 0x02
2998 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
2999 this_device
->offload_config
=
3000 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3001 if (this_device
->offload_config
) {
3002 this_device
->offload_enabled
=
3003 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3004 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3005 this_device
->offload_enabled
= 0;
3007 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3013 /* Get the device id from inquiry page 0x83 */
3014 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3015 unsigned char *device_id
, int buflen
)
3022 buf
= kzalloc(64, GFP_KERNEL
);
3025 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3027 memcpy(device_id
, &buf
[8], buflen
);
3032 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3033 void *buf
, int bufsize
,
3034 int extended_response
)
3037 struct CommandList
*c
;
3038 unsigned char scsi3addr
[8];
3039 struct ErrorInfo
*ei
;
3043 /* address the controller */
3044 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3045 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3046 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3050 if (extended_response
)
3051 c
->Request
.CDB
[1] = extended_response
;
3052 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3053 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3057 if (ei
->CommandStatus
!= 0 &&
3058 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3059 hpsa_scsi_interpret_error(h
, c
);
3062 struct ReportLUNdata
*rld
= buf
;
3064 if (rld
->extended_response_flag
!= extended_response
) {
3065 dev_err(&h
->pdev
->dev
,
3066 "report luns requested format %u, got %u\n",
3068 rld
->extended_response_flag
);
3077 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3078 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3080 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3081 HPSA_REPORT_PHYS_EXTENDED
);
3084 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3085 struct ReportLUNdata
*buf
, int bufsize
)
3087 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3090 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3091 int bus
, int target
, int lun
)
3094 device
->target
= target
;
3098 /* Use VPD inquiry to get details of volume status */
3099 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3100 unsigned char scsi3addr
[])
3107 buf
= kzalloc(64, GFP_KERNEL
);
3109 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3111 /* Does controller have VPD for logical volume status? */
3112 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3115 /* Get the size of the VPD return buffer */
3116 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3117 buf
, HPSA_VPD_HEADER_SZ
);
3122 /* Now get the whole VPD buffer */
3123 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3124 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3127 status
= buf
[4]; /* status byte */
3133 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3136 /* Determine offline status of a volume.
3139 * 0xff (offline for unknown reasons)
3140 * # (integer code indicating one of several NOT READY states
3141 * describing why a volume is to be kept offline)
3143 static int hpsa_volume_offline(struct ctlr_info
*h
,
3144 unsigned char scsi3addr
[])
3146 struct CommandList
*c
;
3147 unsigned char *sense
;
3148 u8 sense_key
, asc
, ascq
;
3153 #define ASC_LUN_NOT_READY 0x04
3154 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3155 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3159 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3160 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3165 sense
= c
->err_info
->SenseInfo
;
3166 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3167 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3169 sense_len
= c
->err_info
->SenseLen
;
3170 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3171 cmd_status
= c
->err_info
->CommandStatus
;
3172 scsi_status
= c
->err_info
->ScsiStatus
;
3174 /* Is the volume 'not ready'? */
3175 if (cmd_status
!= CMD_TARGET_STATUS
||
3176 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3177 sense_key
!= NOT_READY
||
3178 asc
!= ASC_LUN_NOT_READY
) {
3182 /* Determine the reason for not ready state */
3183 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3185 /* Keep volume offline in certain cases: */
3187 case HPSA_LV_UNDERGOING_ERASE
:
3188 case HPSA_LV_UNDERGOING_RPI
:
3189 case HPSA_LV_PENDING_RPI
:
3190 case HPSA_LV_ENCRYPTED_NO_KEY
:
3191 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3192 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3193 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3194 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3196 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3197 /* If VPD status page isn't available,
3198 * use ASC/ASCQ to determine state
3200 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3201 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3211 * Find out if a logical device supports aborts by simply trying one.
3212 * Smart Array may claim not to support aborts on logical drives, but
3213 * if a MSA2000 * is connected, the drives on that will be presented
3214 * by the Smart Array as logical drives, and aborts may be sent to
3215 * those devices successfully. So the simplest way to find out is
3216 * to simply try an abort and see how the device responds.
3218 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3219 unsigned char *scsi3addr
)
3221 struct CommandList
*c
;
3222 struct ErrorInfo
*ei
;
3225 u64 tag
= (u64
) -1; /* bogus tag */
3227 /* Assume that physical devices support aborts */
3228 if (!is_logical_dev_addr_mode(scsi3addr
))
3233 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3234 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3235 /* no unmap needed here because no data xfer. */
3237 switch (ei
->CommandStatus
) {
3241 case CMD_UNABORTABLE
:
3242 case CMD_ABORT_FAILED
:
3245 case CMD_TMF_STATUS
:
3246 rc
= hpsa_evaluate_tmf_status(h
, c
);
3256 static int hpsa_update_device_info(struct ctlr_info
*h
,
3257 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3258 unsigned char *is_OBDR_device
)
3261 #define OBDR_SIG_OFFSET 43
3262 #define OBDR_TAPE_SIG "$DR-10"
3263 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3264 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3266 unsigned char *inq_buff
;
3267 unsigned char *obdr_sig
;
3269 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3273 /* Do an inquiry to the device to see what it is. */
3274 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3275 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3276 /* Inquiry failed (msg printed already) */
3277 dev_err(&h
->pdev
->dev
,
3278 "hpsa_update_device_info: inquiry failed\n");
3282 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3283 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3284 memcpy(this_device
->vendor
, &inq_buff
[8],
3285 sizeof(this_device
->vendor
));
3286 memcpy(this_device
->model
, &inq_buff
[16],
3287 sizeof(this_device
->model
));
3288 memset(this_device
->device_id
, 0,
3289 sizeof(this_device
->device_id
));
3290 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
3291 sizeof(this_device
->device_id
));
3293 if (this_device
->devtype
== TYPE_DISK
&&
3294 is_logical_dev_addr_mode(scsi3addr
)) {
3297 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3298 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3299 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3300 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3301 if (volume_offline
< 0 || volume_offline
> 0xff)
3302 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3303 this_device
->volume_offline
= volume_offline
& 0xff;
3305 this_device
->raid_level
= RAID_UNKNOWN
;
3306 this_device
->offload_config
= 0;
3307 this_device
->offload_enabled
= 0;
3308 this_device
->offload_to_be_enabled
= 0;
3309 this_device
->hba_ioaccel_enabled
= 0;
3310 this_device
->volume_offline
= 0;
3311 this_device
->queue_depth
= h
->nr_cmds
;
3314 if (is_OBDR_device
) {
3315 /* See if this is a One-Button-Disaster-Recovery device
3316 * by looking for "$DR-10" at offset 43 in inquiry data.
3318 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3319 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3320 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3321 OBDR_SIG_LEN
) == 0);
3331 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3332 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3334 unsigned long flags
;
3337 * See if this device supports aborts. If we already know
3338 * the device, we already know if it supports aborts, otherwise
3339 * we have to find out if it supports aborts by trying one.
3341 spin_lock_irqsave(&h
->devlock
, flags
);
3342 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3343 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3344 entry
>= 0 && entry
< h
->ndevices
) {
3345 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3346 spin_unlock_irqrestore(&h
->devlock
, flags
);
3348 spin_unlock_irqrestore(&h
->devlock
, flags
);
3349 dev
->supports_aborts
=
3350 hpsa_device_supports_aborts(h
, scsi3addr
);
3351 if (dev
->supports_aborts
< 0)
3352 dev
->supports_aborts
= 0;
3356 static unsigned char *ext_target_model
[] = {
3366 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
3370 for (i
= 0; ext_target_model
[i
]; i
++)
3371 if (strncmp(device
->model
, ext_target_model
[i
],
3372 strlen(ext_target_model
[i
])) == 0)
3377 /* Helper function to assign bus, target, lun mapping of devices.
3378 * Puts non-external target logical volumes on bus 0, external target logical
3379 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3380 * Logical drive target and lun are assigned at this time, but
3381 * physical device lun and target assignment are deferred (assigned
3382 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3384 static void figure_bus_target_lun(struct ctlr_info
*h
,
3385 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3387 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
3389 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3390 /* physical device, target and lun filled in later */
3391 if (is_hba_lunid(lunaddrbytes
))
3392 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
3394 /* defer target, lun assignment for physical devices */
3395 hpsa_set_bus_target_lun(device
, 2, -1, -1);
3398 /* It's a logical device */
3399 if (is_ext_target(h
, device
)) {
3400 /* external target way, put logicals on bus 1
3401 * and match target/lun numbers box
3402 * reports, other smart array, bus 0, target 0, match lunid
3404 hpsa_set_bus_target_lun(device
,
3405 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
3408 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
3412 * If there is no lun 0 on a target, linux won't find any devices.
3413 * For the external targets (arrays), we have to manually detect the enclosure
3414 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3415 * it for some reason. *tmpdevice is the target we're adding,
3416 * this_device is a pointer into the current element of currentsd[]
3417 * that we're building up in update_scsi_devices(), below.
3418 * lunzerobits is a bitmap that tracks which targets already have a
3420 * Returns 1 if an enclosure was added, 0 if not.
3422 static int add_ext_target_dev(struct ctlr_info
*h
,
3423 struct hpsa_scsi_dev_t
*tmpdevice
,
3424 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
3425 unsigned long lunzerobits
[], int *n_ext_target_devs
)
3427 unsigned char scsi3addr
[8];
3429 if (test_bit(tmpdevice
->target
, lunzerobits
))
3430 return 0; /* There is already a lun 0 on this target. */
3432 if (!is_logical_dev_addr_mode(lunaddrbytes
))
3433 return 0; /* It's the logical targets that may lack lun 0. */
3435 if (!is_ext_target(h
, tmpdevice
))
3436 return 0; /* Only external target devices have this problem. */
3438 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
3441 memset(scsi3addr
, 0, 8);
3442 scsi3addr
[3] = tmpdevice
->target
;
3443 if (is_hba_lunid(scsi3addr
))
3444 return 0; /* Don't add the RAID controller here. */
3446 if (is_scsi_rev_5(h
))
3447 return 0; /* p1210m doesn't need to do this. */
3449 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
3450 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
3451 "target devices exceeded. Check your hardware "
3456 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
3458 (*n_ext_target_devs
)++;
3459 hpsa_set_bus_target_lun(this_device
,
3460 tmpdevice
->bus
, tmpdevice
->target
, 0);
3461 hpsa_update_device_supports_aborts(h
, this_device
, scsi3addr
);
3462 set_bit(tmpdevice
->target
, lunzerobits
);
3467 * Get address of physical disk used for an ioaccel2 mode command:
3468 * 1. Extract ioaccel2 handle from the command.
3469 * 2. Find a matching ioaccel2 handle from list of physical disks.
3471 * 1 and set scsi3addr to address of matching physical
3472 * 0 if no matching physical disk was found.
3474 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3475 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3477 struct io_accel2_cmd
*c2
=
3478 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3479 unsigned long flags
;
3482 spin_lock_irqsave(&h
->devlock
, flags
);
3483 for (i
= 0; i
< h
->ndevices
; i
++)
3484 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3485 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3486 sizeof(h
->dev
[i
]->scsi3addr
));
3487 spin_unlock_irqrestore(&h
->devlock
, flags
);
3490 spin_unlock_irqrestore(&h
->devlock
, flags
);
3495 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3496 * logdev. The number of luns in physdev and logdev are returned in
3497 * *nphysicals and *nlogicals, respectively.
3498 * Returns 0 on success, -1 otherwise.
3500 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3501 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3502 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3504 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3505 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3508 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3509 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3510 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3511 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3512 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3514 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3515 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3518 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3519 /* Reject Logicals in excess of our max capability. */
3520 if (*nlogicals
> HPSA_MAX_LUN
) {
3521 dev_warn(&h
->pdev
->dev
,
3522 "maximum logical LUNs (%d) exceeded. "
3523 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3524 *nlogicals
- HPSA_MAX_LUN
);
3525 *nlogicals
= HPSA_MAX_LUN
;
3527 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3528 dev_warn(&h
->pdev
->dev
,
3529 "maximum logical + physical LUNs (%d) exceeded. "
3530 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3531 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3532 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3537 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3538 int i
, int nphysicals
, int nlogicals
,
3539 struct ReportExtendedLUNdata
*physdev_list
,
3540 struct ReportLUNdata
*logdev_list
)
3542 /* Helper function, figure out where the LUN ID info is coming from
3543 * given index i, lists of physical and logical devices, where in
3544 * the list the raid controller is supposed to appear (first or last)
3547 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3548 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3550 if (i
== raid_ctlr_position
)
3551 return RAID_CTLR_LUNID
;
3553 if (i
< logicals_start
)
3554 return &physdev_list
->LUN
[i
-
3555 (raid_ctlr_position
== 0)].lunid
[0];
3557 if (i
< last_device
)
3558 return &logdev_list
->LUN
[i
- nphysicals
-
3559 (raid_ctlr_position
== 0)][0];
3564 static int hpsa_hba_mode_enabled(struct ctlr_info
*h
)
3567 int hba_mode_enabled
;
3568 struct bmic_controller_parameters
*ctlr_params
;
3569 ctlr_params
= kzalloc(sizeof(struct bmic_controller_parameters
),
3574 rc
= hpsa_bmic_ctrl_mode_sense(h
, RAID_CTLR_LUNID
, 0, ctlr_params
,
3575 sizeof(struct bmic_controller_parameters
));
3582 ((ctlr_params
->nvram_flags
& HBA_MODE_ENABLED_FLAG
) != 0);
3584 return hba_mode_enabled
;
3587 /* get physical drive ioaccel handle and queue depth */
3588 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3589 struct hpsa_scsi_dev_t
*dev
,
3591 struct bmic_identify_physical_device
*id_phys
)
3594 struct ext_report_lun_entry
*rle
=
3595 (struct ext_report_lun_entry
*) lunaddrbytes
;
3597 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3598 if (PHYS_IOACCEL(lunaddrbytes
) && dev
->ioaccel_handle
)
3599 dev
->hba_ioaccel_enabled
= 1;
3600 memset(id_phys
, 0, sizeof(*id_phys
));
3601 rc
= hpsa_bmic_id_physical_device(h
, lunaddrbytes
,
3602 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
), id_phys
,
3605 /* Reserve space for FW operations */
3606 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3607 #define DRIVE_QUEUE_DEPTH 7
3609 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3610 DRIVE_CMDS_RESERVED_FOR_FW
;
3612 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3613 atomic_set(&dev
->ioaccel_cmds_out
, 0);
3614 atomic_set(&dev
->reset_cmds_out
, 0);
3617 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
3619 /* the idea here is we could get notified
3620 * that some devices have changed, so we do a report
3621 * physical luns and report logical luns cmd, and adjust
3622 * our list of devices accordingly.
3624 * The scsi3addr's of devices won't change so long as the
3625 * adapter is not reset. That means we can rescan and
3626 * tell which devices we already know about, vs. new
3627 * devices, vs. disappearing devices.
3629 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
3630 struct ReportLUNdata
*logdev_list
= NULL
;
3631 struct bmic_identify_physical_device
*id_phys
= NULL
;
3634 u32 ndev_allocated
= 0;
3635 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
3637 int i
, n_ext_target_devs
, ndevs_to_allocate
;
3638 int raid_ctlr_position
;
3639 int rescan_hba_mode
;
3640 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
3642 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
3643 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
3644 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
3645 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
3646 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3648 if (!currentsd
|| !physdev_list
|| !logdev_list
||
3649 !tmpdevice
|| !id_phys
) {
3650 dev_err(&h
->pdev
->dev
, "out of memory\n");
3653 memset(lunzerobits
, 0, sizeof(lunzerobits
));
3655 rescan_hba_mode
= hpsa_hba_mode_enabled(h
);
3656 if (rescan_hba_mode
< 0)
3659 if (!h
->hba_mode_enabled
&& rescan_hba_mode
)
3660 dev_warn(&h
->pdev
->dev
, "HBA mode enabled\n");
3661 else if (h
->hba_mode_enabled
&& !rescan_hba_mode
)
3662 dev_warn(&h
->pdev
->dev
, "HBA mode disabled\n");
3664 h
->hba_mode_enabled
= rescan_hba_mode
;
3666 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
3667 logdev_list
, &nlogicals
))
3670 /* We might see up to the maximum number of logical and physical disks
3671 * plus external target devices, and a device for the local RAID
3674 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
3676 /* Allocate the per device structures */
3677 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
3678 if (i
>= HPSA_MAX_DEVICES
) {
3679 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
3680 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
3681 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
3685 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
3686 if (!currentsd
[i
]) {
3687 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
3688 __FILE__
, __LINE__
);
3694 if (is_scsi_rev_5(h
))
3695 raid_ctlr_position
= 0;
3697 raid_ctlr_position
= nphysicals
+ nlogicals
;
3699 /* adjust our table of devices */
3700 n_ext_target_devs
= 0;
3701 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
3702 u8
*lunaddrbytes
, is_OBDR
= 0;
3704 /* Figure out where the LUN ID info is coming from */
3705 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
3706 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
3708 /* skip masked non-disk devices */
3709 if (MASKED_DEVICE(lunaddrbytes
))
3710 if (i
< nphysicals
+ (raid_ctlr_position
== 0) &&
3711 NON_DISK_PHYS_DEV(lunaddrbytes
))
3714 /* Get device type, vendor, model, device id */
3715 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
3717 continue; /* skip it if we can't talk to it. */
3718 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
3719 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
3720 this_device
= currentsd
[ncurrent
];
3723 * For external target devices, we have to insert a LUN 0 which
3724 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3725 * is nonetheless an enclosure device there. We have to
3726 * present that otherwise linux won't find anything if
3727 * there is no lun 0.
3729 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
3730 lunaddrbytes
, lunzerobits
,
3731 &n_ext_target_devs
)) {
3733 this_device
= currentsd
[ncurrent
];
3736 *this_device
= *tmpdevice
;
3738 /* do not expose masked devices */
3739 if (MASKED_DEVICE(lunaddrbytes
) &&
3740 i
< nphysicals
+ (raid_ctlr_position
== 0)) {
3741 if (h
->hba_mode_enabled
)
3742 dev_warn(&h
->pdev
->dev
,
3743 "Masked physical device detected\n");
3744 this_device
->expose_state
= HPSA_DO_NOT_EXPOSE
;
3746 this_device
->expose_state
=
3747 HPSA_SG_ATTACH
| HPSA_ULD_ATTACH
;
3750 switch (this_device
->devtype
) {
3752 /* We don't *really* support actual CD-ROM devices,
3753 * just "One Button Disaster Recovery" tape drive
3754 * which temporarily pretends to be a CD-ROM drive.
3755 * So we check that the device is really an OBDR tape
3756 * device by checking for "$DR-10" in bytes 43-48 of
3763 if (i
>= nphysicals
) {
3768 if (h
->hba_mode_enabled
)
3769 /* never use raid mapper in HBA mode */
3770 this_device
->offload_enabled
= 0;
3771 else if (!(h
->transMethod
& CFGTBL_Trans_io_accel1
||
3772 h
->transMethod
& CFGTBL_Trans_io_accel2
))
3775 hpsa_get_ioaccel_drive_info(h
, this_device
,
3776 lunaddrbytes
, id_phys
);
3777 atomic_set(&this_device
->ioaccel_cmds_out
, 0);
3781 case TYPE_MEDIUM_CHANGER
:
3784 case TYPE_ENCLOSURE
:
3785 if (h
->hba_mode_enabled
)
3789 /* Only present the Smartarray HBA as a RAID controller.
3790 * If it's a RAID controller other than the HBA itself
3791 * (an external RAID controller, MSA500 or similar)
3794 if (!is_hba_lunid(lunaddrbytes
))
3801 if (ncurrent
>= HPSA_MAX_DEVICES
)
3804 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
3807 for (i
= 0; i
< ndev_allocated
; i
++)
3808 kfree(currentsd
[i
]);
3810 kfree(physdev_list
);
3815 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
3816 struct scatterlist
*sg
)
3818 u64 addr64
= (u64
) sg_dma_address(sg
);
3819 unsigned int len
= sg_dma_len(sg
);
3821 desc
->Addr
= cpu_to_le64(addr64
);
3822 desc
->Len
= cpu_to_le32(len
);
3827 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3828 * dma mapping and fills in the scatter gather entries of the
3831 static int hpsa_scatter_gather(struct ctlr_info
*h
,
3832 struct CommandList
*cp
,
3833 struct scsi_cmnd
*cmd
)
3835 struct scatterlist
*sg
;
3836 int use_sg
, i
, sg_limit
, chained
, last_sg
;
3837 struct SGDescriptor
*curr_sg
;
3839 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
3841 use_sg
= scsi_dma_map(cmd
);
3846 goto sglist_finished
;
3849 * If the number of entries is greater than the max for a single list,
3850 * then we have a chained list; we will set up all but one entry in the
3851 * first list (the last entry is saved for link information);
3852 * otherwise, we don't have a chained list and we'll set up at each of
3853 * the entries in the one list.
3856 chained
= use_sg
> h
->max_cmd_sg_entries
;
3857 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
3858 last_sg
= scsi_sg_count(cmd
) - 1;
3859 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
3860 hpsa_set_sg_descriptor(curr_sg
, sg
);
3866 * Continue with the chained list. Set curr_sg to the chained
3867 * list. Modify the limit to the total count less the entries
3868 * we've already set up. Resume the scan at the list entry
3869 * where the previous loop left off.
3871 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
3872 sg_limit
= use_sg
- sg_limit
;
3873 for_each_sg(sg
, sg
, sg_limit
, i
) {
3874 hpsa_set_sg_descriptor(curr_sg
, sg
);
3879 /* Back the pointer up to the last entry and mark it as "last". */
3880 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3882 if (use_sg
+ chained
> h
->maxSG
)
3883 h
->maxSG
= use_sg
+ chained
;
3886 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
3887 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
3888 if (hpsa_map_sg_chain_block(h
, cp
)) {
3889 scsi_dma_unmap(cmd
);
3897 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
3898 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
3902 #define IO_ACCEL_INELIGIBLE (1)
3903 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
3909 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3916 if (*cdb_len
== 6) {
3917 block
= (((u32
) cdb
[2]) << 8) | cdb
[3];
3920 BUG_ON(*cdb_len
!= 12);
3921 block
= (((u32
) cdb
[2]) << 24) |
3922 (((u32
) cdb
[3]) << 16) |
3923 (((u32
) cdb
[4]) << 8) |
3926 (((u32
) cdb
[6]) << 24) |
3927 (((u32
) cdb
[7]) << 16) |
3928 (((u32
) cdb
[8]) << 8) |
3931 if (block_cnt
> 0xffff)
3932 return IO_ACCEL_INELIGIBLE
;
3934 cdb
[0] = is_write
? WRITE_10
: READ_10
;
3936 cdb
[2] = (u8
) (block
>> 24);
3937 cdb
[3] = (u8
) (block
>> 16);
3938 cdb
[4] = (u8
) (block
>> 8);
3939 cdb
[5] = (u8
) (block
);
3941 cdb
[7] = (u8
) (block_cnt
>> 8);
3942 cdb
[8] = (u8
) (block_cnt
);
3950 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
3951 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3952 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
3954 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3955 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
3957 unsigned int total_len
= 0;
3958 struct scatterlist
*sg
;
3961 struct SGDescriptor
*curr_sg
;
3962 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
3964 /* TODO: implement chaining support */
3965 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
3966 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3967 return IO_ACCEL_INELIGIBLE
;
3970 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
3972 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
3973 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3974 return IO_ACCEL_INELIGIBLE
;
3977 c
->cmd_type
= CMD_IOACCEL1
;
3979 /* Adjust the DMA address to point to the accelerated command buffer */
3980 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
3981 (c
->cmdindex
* sizeof(*cp
));
3982 BUG_ON(c
->busaddr
& 0x0000007F);
3984 use_sg
= scsi_dma_map(cmd
);
3986 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3992 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3993 addr64
= (u64
) sg_dma_address(sg
);
3994 len
= sg_dma_len(sg
);
3996 curr_sg
->Addr
= cpu_to_le64(addr64
);
3997 curr_sg
->Len
= cpu_to_le32(len
);
3998 curr_sg
->Ext
= cpu_to_le32(0);
4001 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4003 switch (cmd
->sc_data_direction
) {
4005 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4007 case DMA_FROM_DEVICE
:
4008 control
|= IOACCEL1_CONTROL_DATA_IN
;
4011 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4014 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4015 cmd
->sc_data_direction
);
4020 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4023 c
->Header
.SGList
= use_sg
;
4024 /* Fill out the command structure to submit */
4025 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4026 cp
->transfer_len
= cpu_to_le32(total_len
);
4027 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4028 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4029 cp
->control
= cpu_to_le32(control
);
4030 memcpy(cp
->CDB
, cdb
, cdb_len
);
4031 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4032 /* Tag was already set at init time. */
4033 enqueue_cmd_and_start_io(h
, c
);
4038 * Queue a command directly to a device behind the controller using the
4039 * I/O accelerator path.
4041 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4042 struct CommandList
*c
)
4044 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4045 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4049 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4050 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4054 * Set encryption parameters for the ioaccel2 request
4056 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4057 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4059 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4060 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4061 struct raid_map_data
*map
= &dev
->raid_map
;
4064 /* Are we doing encryption on this device */
4065 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4067 /* Set the data encryption key index. */
4068 cp
->dekindex
= map
->dekindex
;
4070 /* Set the encryption enable flag, encoded into direction field. */
4071 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4073 /* Set encryption tweak values based on logical block address
4074 * If block size is 512, tweak value is LBA.
4075 * For other block sizes, tweak is (LBA * block size)/ 512)
4077 switch (cmd
->cmnd
[0]) {
4078 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4081 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4085 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4088 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4092 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4095 dev_err(&h
->pdev
->dev
,
4096 "ERROR: %s: size (0x%x) not supported for encryption\n",
4097 __func__
, cmd
->cmnd
[0]);
4102 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4103 first_block
= first_block
*
4104 le32_to_cpu(map
->volume_blk_size
)/512;
4106 cp
->tweak_lower
= cpu_to_le32(first_block
);
4107 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4110 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4111 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4112 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4114 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4115 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4116 struct ioaccel2_sg_element
*curr_sg
;
4118 struct scatterlist
*sg
;
4123 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4125 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4126 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4127 return IO_ACCEL_INELIGIBLE
;
4130 c
->cmd_type
= CMD_IOACCEL2
;
4131 /* Adjust the DMA address to point to the accelerated command buffer */
4132 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4133 (c
->cmdindex
* sizeof(*cp
));
4134 BUG_ON(c
->busaddr
& 0x0000007F);
4136 memset(cp
, 0, sizeof(*cp
));
4137 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4139 use_sg
= scsi_dma_map(cmd
);
4141 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4147 if (use_sg
> h
->ioaccel_maxsg
) {
4148 addr64
= le64_to_cpu(
4149 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4150 curr_sg
->address
= cpu_to_le64(addr64
);
4151 curr_sg
->length
= 0;
4152 curr_sg
->reserved
[0] = 0;
4153 curr_sg
->reserved
[1] = 0;
4154 curr_sg
->reserved
[2] = 0;
4155 curr_sg
->chain_indicator
= 0x80;
4157 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4159 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4160 addr64
= (u64
) sg_dma_address(sg
);
4161 len
= sg_dma_len(sg
);
4163 curr_sg
->address
= cpu_to_le64(addr64
);
4164 curr_sg
->length
= cpu_to_le32(len
);
4165 curr_sg
->reserved
[0] = 0;
4166 curr_sg
->reserved
[1] = 0;
4167 curr_sg
->reserved
[2] = 0;
4168 curr_sg
->chain_indicator
= 0;
4172 switch (cmd
->sc_data_direction
) {
4174 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4175 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4177 case DMA_FROM_DEVICE
:
4178 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4179 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4182 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4183 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4186 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4187 cmd
->sc_data_direction
);
4192 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4193 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4196 /* Set encryption parameters, if necessary */
4197 set_encrypt_ioaccel2(h
, c
, cp
);
4199 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4200 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4201 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4203 cp
->data_len
= cpu_to_le32(total_len
);
4204 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4205 offsetof(struct io_accel2_cmd
, error_data
));
4206 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4208 /* fill in sg elements */
4209 if (use_sg
> h
->ioaccel_maxsg
) {
4211 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4212 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4213 scsi_dma_unmap(cmd
);
4217 cp
->sg_count
= (u8
) use_sg
;
4219 enqueue_cmd_and_start_io(h
, c
);
4224 * Queue a command to the correct I/O accelerator path.
4226 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4227 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4228 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4230 /* Try to honor the device's queue depth */
4231 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4232 phys_disk
->queue_depth
) {
4233 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4234 return IO_ACCEL_INELIGIBLE
;
4236 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4237 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4238 cdb
, cdb_len
, scsi3addr
,
4241 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4242 cdb
, cdb_len
, scsi3addr
,
4246 static void raid_map_helper(struct raid_map_data
*map
,
4247 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4249 if (offload_to_mirror
== 0) {
4250 /* use physical disk in the first mirrored group. */
4251 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4255 /* determine mirror group that *map_index indicates */
4256 *current_group
= *map_index
/
4257 le16_to_cpu(map
->data_disks_per_row
);
4258 if (offload_to_mirror
== *current_group
)
4260 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4261 /* select map index from next group */
4262 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4265 /* select map index from first group */
4266 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4269 } while (offload_to_mirror
!= *current_group
);
4273 * Attempt to perform offload RAID mapping for a logical volume I/O.
4275 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4276 struct CommandList
*c
)
4278 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4279 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4280 struct raid_map_data
*map
= &dev
->raid_map
;
4281 struct raid_map_disk_data
*dd
= &map
->data
[0];
4284 u64 first_block
, last_block
;
4287 u64 first_row
, last_row
;
4288 u32 first_row_offset
, last_row_offset
;
4289 u32 first_column
, last_column
;
4290 u64 r0_first_row
, r0_last_row
;
4291 u32 r5or6_blocks_per_row
;
4292 u64 r5or6_first_row
, r5or6_last_row
;
4293 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4294 u32 r5or6_first_column
, r5or6_last_column
;
4295 u32 total_disks_per_row
;
4297 u32 first_group
, last_group
, current_group
;
4305 #if BITS_PER_LONG == 32
4308 int offload_to_mirror
;
4310 /* check for valid opcode, get LBA and block count */
4311 switch (cmd
->cmnd
[0]) {
4316 (((u64
) cmd
->cmnd
[2]) << 8) |
4318 block_cnt
= cmd
->cmnd
[4];
4326 (((u64
) cmd
->cmnd
[2]) << 24) |
4327 (((u64
) cmd
->cmnd
[3]) << 16) |
4328 (((u64
) cmd
->cmnd
[4]) << 8) |
4331 (((u32
) cmd
->cmnd
[7]) << 8) |
4338 (((u64
) cmd
->cmnd
[2]) << 24) |
4339 (((u64
) cmd
->cmnd
[3]) << 16) |
4340 (((u64
) cmd
->cmnd
[4]) << 8) |
4343 (((u32
) cmd
->cmnd
[6]) << 24) |
4344 (((u32
) cmd
->cmnd
[7]) << 16) |
4345 (((u32
) cmd
->cmnd
[8]) << 8) |
4352 (((u64
) cmd
->cmnd
[2]) << 56) |
4353 (((u64
) cmd
->cmnd
[3]) << 48) |
4354 (((u64
) cmd
->cmnd
[4]) << 40) |
4355 (((u64
) cmd
->cmnd
[5]) << 32) |
4356 (((u64
) cmd
->cmnd
[6]) << 24) |
4357 (((u64
) cmd
->cmnd
[7]) << 16) |
4358 (((u64
) cmd
->cmnd
[8]) << 8) |
4361 (((u32
) cmd
->cmnd
[10]) << 24) |
4362 (((u32
) cmd
->cmnd
[11]) << 16) |
4363 (((u32
) cmd
->cmnd
[12]) << 8) |
4367 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4369 last_block
= first_block
+ block_cnt
- 1;
4371 /* check for write to non-RAID-0 */
4372 if (is_write
&& dev
->raid_level
!= 0)
4373 return IO_ACCEL_INELIGIBLE
;
4375 /* check for invalid block or wraparound */
4376 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4377 last_block
< first_block
)
4378 return IO_ACCEL_INELIGIBLE
;
4380 /* calculate stripe information for the request */
4381 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4382 le16_to_cpu(map
->strip_size
);
4383 strip_size
= le16_to_cpu(map
->strip_size
);
4384 #if BITS_PER_LONG == 32
4385 tmpdiv
= first_block
;
4386 (void) do_div(tmpdiv
, blocks_per_row
);
4388 tmpdiv
= last_block
;
4389 (void) do_div(tmpdiv
, blocks_per_row
);
4391 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4392 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4393 tmpdiv
= first_row_offset
;
4394 (void) do_div(tmpdiv
, strip_size
);
4395 first_column
= tmpdiv
;
4396 tmpdiv
= last_row_offset
;
4397 (void) do_div(tmpdiv
, strip_size
);
4398 last_column
= tmpdiv
;
4400 first_row
= first_block
/ blocks_per_row
;
4401 last_row
= last_block
/ blocks_per_row
;
4402 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4403 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4404 first_column
= first_row_offset
/ strip_size
;
4405 last_column
= last_row_offset
/ strip_size
;
4408 /* if this isn't a single row/column then give to the controller */
4409 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4410 return IO_ACCEL_INELIGIBLE
;
4412 /* proceeding with driver mapping */
4413 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4414 le16_to_cpu(map
->metadata_disks_per_row
);
4415 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4416 le16_to_cpu(map
->row_cnt
);
4417 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4419 switch (dev
->raid_level
) {
4421 break; /* nothing special to do */
4423 /* Handles load balance across RAID 1 members.
4424 * (2-drive R1 and R10 with even # of drives.)
4425 * Appropriate for SSDs, not optimal for HDDs
4427 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4428 if (dev
->offload_to_mirror
)
4429 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4430 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4433 /* Handles N-way mirrors (R1-ADM)
4434 * and R10 with # of drives divisible by 3.)
4436 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4438 offload_to_mirror
= dev
->offload_to_mirror
;
4439 raid_map_helper(map
, offload_to_mirror
,
4440 &map_index
, ¤t_group
);
4441 /* set mirror group to use next time */
4443 (offload_to_mirror
>=
4444 le16_to_cpu(map
->layout_map_count
) - 1)
4445 ? 0 : offload_to_mirror
+ 1;
4446 dev
->offload_to_mirror
= offload_to_mirror
;
4447 /* Avoid direct use of dev->offload_to_mirror within this
4448 * function since multiple threads might simultaneously
4449 * increment it beyond the range of dev->layout_map_count -1.
4454 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4457 /* Verify first and last block are in same RAID group */
4458 r5or6_blocks_per_row
=
4459 le16_to_cpu(map
->strip_size
) *
4460 le16_to_cpu(map
->data_disks_per_row
);
4461 BUG_ON(r5or6_blocks_per_row
== 0);
4462 stripesize
= r5or6_blocks_per_row
*
4463 le16_to_cpu(map
->layout_map_count
);
4464 #if BITS_PER_LONG == 32
4465 tmpdiv
= first_block
;
4466 first_group
= do_div(tmpdiv
, stripesize
);
4467 tmpdiv
= first_group
;
4468 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4469 first_group
= tmpdiv
;
4470 tmpdiv
= last_block
;
4471 last_group
= do_div(tmpdiv
, stripesize
);
4472 tmpdiv
= last_group
;
4473 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4474 last_group
= tmpdiv
;
4476 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4477 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4479 if (first_group
!= last_group
)
4480 return IO_ACCEL_INELIGIBLE
;
4482 /* Verify request is in a single row of RAID 5/6 */
4483 #if BITS_PER_LONG == 32
4484 tmpdiv
= first_block
;
4485 (void) do_div(tmpdiv
, stripesize
);
4486 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4487 tmpdiv
= last_block
;
4488 (void) do_div(tmpdiv
, stripesize
);
4489 r5or6_last_row
= r0_last_row
= tmpdiv
;
4491 first_row
= r5or6_first_row
= r0_first_row
=
4492 first_block
/ stripesize
;
4493 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4495 if (r5or6_first_row
!= r5or6_last_row
)
4496 return IO_ACCEL_INELIGIBLE
;
4499 /* Verify request is in a single column */
4500 #if BITS_PER_LONG == 32
4501 tmpdiv
= first_block
;
4502 first_row_offset
= do_div(tmpdiv
, stripesize
);
4503 tmpdiv
= first_row_offset
;
4504 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4505 r5or6_first_row_offset
= first_row_offset
;
4506 tmpdiv
= last_block
;
4507 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4508 tmpdiv
= r5or6_last_row_offset
;
4509 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4510 tmpdiv
= r5or6_first_row_offset
;
4511 (void) do_div(tmpdiv
, map
->strip_size
);
4512 first_column
= r5or6_first_column
= tmpdiv
;
4513 tmpdiv
= r5or6_last_row_offset
;
4514 (void) do_div(tmpdiv
, map
->strip_size
);
4515 r5or6_last_column
= tmpdiv
;
4517 first_row_offset
= r5or6_first_row_offset
=
4518 (u32
)((first_block
% stripesize
) %
4519 r5or6_blocks_per_row
);
4521 r5or6_last_row_offset
=
4522 (u32
)((last_block
% stripesize
) %
4523 r5or6_blocks_per_row
);
4525 first_column
= r5or6_first_column
=
4526 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4528 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4530 if (r5or6_first_column
!= r5or6_last_column
)
4531 return IO_ACCEL_INELIGIBLE
;
4533 /* Request is eligible */
4534 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4535 le16_to_cpu(map
->row_cnt
);
4537 map_index
= (first_group
*
4538 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4539 (map_row
* total_disks_per_row
) + first_column
;
4542 return IO_ACCEL_INELIGIBLE
;
4545 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4546 return IO_ACCEL_INELIGIBLE
;
4548 c
->phys_disk
= dev
->phys_disk
[map_index
];
4550 disk_handle
= dd
[map_index
].ioaccel_handle
;
4551 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4552 first_row
* le16_to_cpu(map
->strip_size
) +
4553 (first_row_offset
- first_column
*
4554 le16_to_cpu(map
->strip_size
));
4555 disk_block_cnt
= block_cnt
;
4557 /* handle differing logical/physical block sizes */
4558 if (map
->phys_blk_shift
) {
4559 disk_block
<<= map
->phys_blk_shift
;
4560 disk_block_cnt
<<= map
->phys_blk_shift
;
4562 BUG_ON(disk_block_cnt
> 0xffff);
4564 /* build the new CDB for the physical disk I/O */
4565 if (disk_block
> 0xffffffff) {
4566 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4568 cdb
[2] = (u8
) (disk_block
>> 56);
4569 cdb
[3] = (u8
) (disk_block
>> 48);
4570 cdb
[4] = (u8
) (disk_block
>> 40);
4571 cdb
[5] = (u8
) (disk_block
>> 32);
4572 cdb
[6] = (u8
) (disk_block
>> 24);
4573 cdb
[7] = (u8
) (disk_block
>> 16);
4574 cdb
[8] = (u8
) (disk_block
>> 8);
4575 cdb
[9] = (u8
) (disk_block
);
4576 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
4577 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
4578 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
4579 cdb
[13] = (u8
) (disk_block_cnt
);
4584 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4586 cdb
[2] = (u8
) (disk_block
>> 24);
4587 cdb
[3] = (u8
) (disk_block
>> 16);
4588 cdb
[4] = (u8
) (disk_block
>> 8);
4589 cdb
[5] = (u8
) (disk_block
);
4591 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
4592 cdb
[8] = (u8
) (disk_block_cnt
);
4596 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
4598 dev
->phys_disk
[map_index
]);
4602 * Submit commands down the "normal" RAID stack path
4603 * All callers to hpsa_ciss_submit must check lockup_detected
4604 * beforehand, before (opt.) and after calling cmd_alloc
4606 static int hpsa_ciss_submit(struct ctlr_info
*h
,
4607 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4608 unsigned char scsi3addr
[])
4610 cmd
->host_scribble
= (unsigned char *) c
;
4611 c
->cmd_type
= CMD_SCSI
;
4613 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4614 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
4615 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
4617 /* Fill in the request block... */
4619 c
->Request
.Timeout
= 0;
4620 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
4621 c
->Request
.CDBLen
= cmd
->cmd_len
;
4622 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
4623 switch (cmd
->sc_data_direction
) {
4625 c
->Request
.type_attr_dir
=
4626 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
4628 case DMA_FROM_DEVICE
:
4629 c
->Request
.type_attr_dir
=
4630 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
4633 c
->Request
.type_attr_dir
=
4634 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
4636 case DMA_BIDIRECTIONAL
:
4637 /* This can happen if a buggy application does a scsi passthru
4638 * and sets both inlen and outlen to non-zero. ( see
4639 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4642 c
->Request
.type_attr_dir
=
4643 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
4644 /* This is technically wrong, and hpsa controllers should
4645 * reject it with CMD_INVALID, which is the most correct
4646 * response, but non-fibre backends appear to let it
4647 * slide by, and give the same results as if this field
4648 * were set correctly. Either way is acceptable for
4649 * our purposes here.
4655 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4656 cmd
->sc_data_direction
);
4661 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
4662 hpsa_cmd_resolve_and_free(h
, c
);
4663 return SCSI_MLQUEUE_HOST_BUSY
;
4665 enqueue_cmd_and_start_io(h
, c
);
4666 /* the cmd'll come back via intr handler in complete_scsi_command() */
4670 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
4671 struct CommandList
*c
)
4673 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4675 /* Zero out all of commandlist except the last field, refcount */
4676 memset(c
, 0, offsetof(struct CommandList
, refcount
));
4677 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
4678 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4679 c
->err_info
= h
->errinfo_pool
+ index
;
4680 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4681 err_dma_handle
= h
->errinfo_pool_dhandle
4682 + index
* sizeof(*c
->err_info
);
4683 c
->cmdindex
= index
;
4684 c
->busaddr
= (u32
) cmd_dma_handle
;
4685 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
4686 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
4688 c
->scsi_cmd
= SCSI_CMD_IDLE
;
4691 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
4695 for (i
= 0; i
< h
->nr_cmds
; i
++) {
4696 struct CommandList
*c
= h
->cmd_pool
+ i
;
4698 hpsa_cmd_init(h
, i
, c
);
4699 atomic_set(&c
->refcount
, 0);
4703 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
4704 struct CommandList
*c
)
4706 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4708 BUG_ON(c
->cmdindex
!= index
);
4710 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
4711 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4712 c
->busaddr
= (u32
) cmd_dma_handle
;
4715 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
4716 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4717 unsigned char *scsi3addr
)
4719 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4720 int rc
= IO_ACCEL_INELIGIBLE
;
4722 cmd
->host_scribble
= (unsigned char *) c
;
4724 if (dev
->offload_enabled
) {
4725 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4726 c
->cmd_type
= CMD_SCSI
;
4728 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
4729 if (rc
< 0) /* scsi_dma_map failed. */
4730 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4731 } else if (dev
->hba_ioaccel_enabled
) {
4732 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4733 c
->cmd_type
= CMD_SCSI
;
4735 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
4736 if (rc
< 0) /* scsi_dma_map failed. */
4737 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4742 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
4744 struct scsi_cmnd
*cmd
;
4745 struct hpsa_scsi_dev_t
*dev
;
4746 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
4749 dev
= cmd
->device
->hostdata
;
4751 cmd
->result
= DID_NO_CONNECT
<< 16;
4752 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
4754 if (c
->reset_pending
)
4755 return hpsa_cmd_resolve_and_free(c
->h
, c
);
4756 if (c
->abort_pending
)
4757 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
4758 if (c
->cmd_type
== CMD_IOACCEL2
) {
4759 struct ctlr_info
*h
= c
->h
;
4760 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4763 if (c2
->error_data
.serv_response
==
4764 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
4765 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
4768 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4770 * If we get here, it means dma mapping failed.
4771 * Try again via scsi mid layer, which will
4772 * then get SCSI_MLQUEUE_HOST_BUSY.
4774 cmd
->result
= DID_IMM_RETRY
<< 16;
4775 return hpsa_cmd_free_and_done(h
, c
, cmd
);
4777 /* else, fall thru and resubmit down CISS path */
4780 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
4781 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
4783 * If we get here, it means dma mapping failed. Try
4784 * again via scsi mid layer, which will then get
4785 * SCSI_MLQUEUE_HOST_BUSY.
4787 * hpsa_ciss_submit will have already freed c
4788 * if it encountered a dma mapping failure.
4790 cmd
->result
= DID_IMM_RETRY
<< 16;
4791 cmd
->scsi_done(cmd
);
4795 /* Running in struct Scsi_Host->host_lock less mode */
4796 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
4798 struct ctlr_info
*h
;
4799 struct hpsa_scsi_dev_t
*dev
;
4800 unsigned char scsi3addr
[8];
4801 struct CommandList
*c
;
4804 /* Get the ptr to our adapter structure out of cmd->host. */
4805 h
= sdev_to_hba(cmd
->device
);
4807 BUG_ON(cmd
->request
->tag
< 0);
4809 dev
= cmd
->device
->hostdata
;
4811 cmd
->result
= DID_NO_CONNECT
<< 16;
4812 cmd
->scsi_done(cmd
);
4816 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
4818 if (unlikely(lockup_detected(h
))) {
4819 cmd
->result
= DID_NO_CONNECT
<< 16;
4820 cmd
->scsi_done(cmd
);
4823 c
= cmd_tagged_alloc(h
, cmd
);
4826 * Call alternate submit routine for I/O accelerated commands.
4827 * Retries always go down the normal I/O path.
4829 if (likely(cmd
->retries
== 0 &&
4830 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
4831 h
->acciopath_status
)) {
4832 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
4835 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4836 hpsa_cmd_resolve_and_free(h
, c
);
4837 return SCSI_MLQUEUE_HOST_BUSY
;
4840 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
4843 static void hpsa_scan_complete(struct ctlr_info
*h
)
4845 unsigned long flags
;
4847 spin_lock_irqsave(&h
->scan_lock
, flags
);
4848 h
->scan_finished
= 1;
4849 wake_up_all(&h
->scan_wait_queue
);
4850 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4853 static void hpsa_scan_start(struct Scsi_Host
*sh
)
4855 struct ctlr_info
*h
= shost_to_hba(sh
);
4856 unsigned long flags
;
4859 * Don't let rescans be initiated on a controller known to be locked
4860 * up. If the controller locks up *during* a rescan, that thread is
4861 * probably hosed, but at least we can prevent new rescan threads from
4862 * piling up on a locked up controller.
4864 if (unlikely(lockup_detected(h
)))
4865 return hpsa_scan_complete(h
);
4867 /* wait until any scan already in progress is finished. */
4869 spin_lock_irqsave(&h
->scan_lock
, flags
);
4870 if (h
->scan_finished
)
4872 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4873 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
4874 /* Note: We don't need to worry about a race between this
4875 * thread and driver unload because the midlayer will
4876 * have incremented the reference count, so unload won't
4877 * happen if we're in here.
4880 h
->scan_finished
= 0; /* mark scan as in progress */
4881 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4883 if (unlikely(lockup_detected(h
)))
4884 return hpsa_scan_complete(h
);
4886 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
4888 hpsa_scan_complete(h
);
4891 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
4893 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
4900 else if (qdepth
> logical_drive
->queue_depth
)
4901 qdepth
= logical_drive
->queue_depth
;
4903 return scsi_change_queue_depth(sdev
, qdepth
);
4906 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
4907 unsigned long elapsed_time
)
4909 struct ctlr_info
*h
= shost_to_hba(sh
);
4910 unsigned long flags
;
4913 spin_lock_irqsave(&h
->scan_lock
, flags
);
4914 finished
= h
->scan_finished
;
4915 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4919 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
4921 struct Scsi_Host
*sh
;
4924 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
4926 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
4933 sh
->max_channel
= 3;
4934 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
4935 sh
->max_lun
= HPSA_MAX_LUN
;
4936 sh
->max_id
= HPSA_MAX_LUN
;
4937 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
4938 sh
->cmd_per_lun
= sh
->can_queue
;
4939 sh
->sg_tablesize
= h
->maxsgentries
;
4940 sh
->hostdata
[0] = (unsigned long) h
;
4941 sh
->irq
= h
->intr
[h
->intr_mode
];
4942 sh
->unique_id
= sh
->irq
;
4943 error
= scsi_init_shared_tag_map(sh
, sh
->can_queue
);
4945 dev_err(&h
->pdev
->dev
,
4946 "%s: scsi_init_shared_tag_map failed for controller %d\n",
4955 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
4959 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
4961 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
4964 scsi_scan_host(h
->scsi_host
);
4969 * The block layer has already gone to the trouble of picking out a unique,
4970 * small-integer tag for this request. We use an offset from that value as
4971 * an index to select our command block. (The offset allows us to reserve the
4972 * low-numbered entries for our own uses.)
4974 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
4976 int idx
= scmd
->request
->tag
;
4981 /* Offset to leave space for internal cmds. */
4982 return idx
+= HPSA_NRESERVED_CMDS
;
4986 * Send a TEST_UNIT_READY command to the specified LUN using the specified
4987 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
4989 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
4990 struct CommandList
*c
, unsigned char lunaddr
[],
4995 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4996 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
4997 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
4998 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5001 /* no unmap needed here because no data xfer. */
5003 /* Check if the unit is already ready. */
5004 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5008 * The first command sent after reset will receive "unit attention" to
5009 * indicate that the LUN has been reset...this is actually what we're
5010 * looking for (but, success is good too).
5012 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5013 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5014 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5015 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5022 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5023 * returns zero when the unit is ready, and non-zero when giving up.
5025 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5026 struct CommandList
*c
,
5027 unsigned char lunaddr
[], int reply_queue
)
5031 int waittime
= 1; /* seconds */
5033 /* Send test unit ready until device ready, or give up. */
5034 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5037 * Wait for a bit. do this first, because if we send
5038 * the TUR right away, the reset will just abort it.
5040 msleep(1000 * waittime
);
5042 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5046 /* Increase wait time with each try, up to a point. */
5047 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5050 dev_warn(&h
->pdev
->dev
,
5051 "waiting %d secs for device to become ready.\n",
5058 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5059 unsigned char lunaddr
[],
5066 struct CommandList
*c
;
5071 * If no specific reply queue was requested, then send the TUR
5072 * repeatedly, requesting a reply on each reply queue; otherwise execute
5073 * the loop exactly once using only the specified queue.
5075 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5077 last_queue
= h
->nreply_queues
- 1;
5079 first_queue
= reply_queue
;
5080 last_queue
= reply_queue
;
5083 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5084 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5090 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5092 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5098 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5099 * complaining. Doing a host- or bus-reset can't do anything good here.
5101 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5104 struct ctlr_info
*h
;
5105 struct hpsa_scsi_dev_t
*dev
;
5108 /* find the controller to which the command to be aborted was sent */
5109 h
= sdev_to_hba(scsicmd
->device
);
5110 if (h
== NULL
) /* paranoia */
5113 if (lockup_detected(h
))
5116 dev
= scsicmd
->device
->hostdata
;
5118 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5122 /* if controller locked up, we can guarantee command won't complete */
5123 if (lockup_detected(h
)) {
5124 snprintf(msg
, sizeof(msg
),
5125 "cmd %d RESET FAILED, lockup detected",
5126 hpsa_get_cmd_index(scsicmd
));
5127 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5131 /* this reset request might be the result of a lockup; check */
5132 if (detect_controller_lockup(h
)) {
5133 snprintf(msg
, sizeof(msg
),
5134 "cmd %d RESET FAILED, new lockup detected",
5135 hpsa_get_cmd_index(scsicmd
));
5136 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5140 /* Do not attempt on controller */
5141 if (is_hba_lunid(dev
->scsi3addr
))
5144 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "resetting");
5146 /* send a reset to the SCSI LUN which the command was sent to */
5147 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, HPSA_RESET_TYPE_LUN
,
5148 DEFAULT_REPLY_QUEUE
);
5149 snprintf(msg
, sizeof(msg
), "reset %s",
5150 rc
== 0 ? "completed successfully" : "failed");
5151 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5152 return rc
== 0 ? SUCCESS
: FAILED
;
5155 static void swizzle_abort_tag(u8
*tag
)
5159 memcpy(original_tag
, tag
, 8);
5160 tag
[0] = original_tag
[3];
5161 tag
[1] = original_tag
[2];
5162 tag
[2] = original_tag
[1];
5163 tag
[3] = original_tag
[0];
5164 tag
[4] = original_tag
[7];
5165 tag
[5] = original_tag
[6];
5166 tag
[6] = original_tag
[5];
5167 tag
[7] = original_tag
[4];
5170 static void hpsa_get_tag(struct ctlr_info
*h
,
5171 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5174 if (c
->cmd_type
== CMD_IOACCEL1
) {
5175 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5176 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5177 tag
= le64_to_cpu(cm1
->tag
);
5178 *tagupper
= cpu_to_le32(tag
>> 32);
5179 *taglower
= cpu_to_le32(tag
);
5182 if (c
->cmd_type
== CMD_IOACCEL2
) {
5183 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5184 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5185 /* upper tag not used in ioaccel2 mode */
5186 memset(tagupper
, 0, sizeof(*tagupper
));
5187 *taglower
= cm2
->Tag
;
5190 tag
= le64_to_cpu(c
->Header
.tag
);
5191 *tagupper
= cpu_to_le32(tag
>> 32);
5192 *taglower
= cpu_to_le32(tag
);
5195 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5196 struct CommandList
*abort
, int reply_queue
)
5199 struct CommandList
*c
;
5200 struct ErrorInfo
*ei
;
5201 __le32 tagupper
, taglower
;
5205 /* fill_cmd can't fail here, no buffer to map */
5206 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5207 0, 0, scsi3addr
, TYPE_MSG
);
5208 if (h
->needs_abort_tags_swizzled
)
5209 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5210 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5211 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5212 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5213 __func__
, tagupper
, taglower
);
5214 /* no unmap needed here because no data xfer. */
5217 switch (ei
->CommandStatus
) {
5220 case CMD_TMF_STATUS
:
5221 rc
= hpsa_evaluate_tmf_status(h
, c
);
5223 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5227 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5228 __func__
, tagupper
, taglower
);
5229 hpsa_scsi_interpret_error(h
, c
);
5234 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5235 __func__
, tagupper
, taglower
);
5239 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5240 struct CommandList
*command_to_abort
, int reply_queue
)
5242 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5243 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5244 struct io_accel2_cmd
*c2a
=
5245 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5246 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5247 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5250 * We're overlaying struct hpsa_tmf_struct on top of something which
5251 * was allocated as a struct io_accel2_cmd, so we better be sure it
5252 * actually fits, and doesn't overrun the error info space.
5254 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5255 sizeof(struct io_accel2_cmd
));
5256 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5257 offsetof(struct hpsa_tmf_struct
, error_len
) +
5258 sizeof(ac
->error_len
));
5260 c
->cmd_type
= IOACCEL2_TMF
;
5261 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5263 /* Adjust the DMA address to point to the accelerated command buffer */
5264 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5265 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5266 BUG_ON(c
->busaddr
& 0x0000007F);
5268 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5269 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5270 ac
->reply_queue
= reply_queue
;
5271 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5272 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5273 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5274 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5275 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5276 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5277 offsetof(struct io_accel2_cmd
, error_data
));
5278 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5281 /* ioaccel2 path firmware cannot handle abort task requests.
5282 * Change abort requests to physical target reset, and send to the
5283 * address of the physical disk used for the ioaccel 2 command.
5284 * Return 0 on success (IO_OK)
5288 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5289 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5292 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5293 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5294 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5295 unsigned char *psa
= &phys_scsi3addr
[0];
5297 /* Get a pointer to the hpsa logical device. */
5298 scmd
= abort
->scsi_cmd
;
5299 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5301 dev_warn(&h
->pdev
->dev
,
5302 "Cannot abort: no device pointer for command.\n");
5303 return -1; /* not abortable */
5306 if (h
->raid_offload_debug
> 0)
5307 dev_info(&h
->pdev
->dev
,
5308 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5309 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5311 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5312 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5314 if (!dev
->offload_enabled
) {
5315 dev_warn(&h
->pdev
->dev
,
5316 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5317 return -1; /* not abortable */
5320 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5321 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5322 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5323 return -1; /* not abortable */
5326 /* send the reset */
5327 if (h
->raid_offload_debug
> 0)
5328 dev_info(&h
->pdev
->dev
,
5329 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5330 psa
[0], psa
[1], psa
[2], psa
[3],
5331 psa
[4], psa
[5], psa
[6], psa
[7]);
5332 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5334 dev_warn(&h
->pdev
->dev
,
5335 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5336 psa
[0], psa
[1], psa
[2], psa
[3],
5337 psa
[4], psa
[5], psa
[6], psa
[7]);
5338 return rc
; /* failed to reset */
5341 /* wait for device to recover */
5342 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5343 dev_warn(&h
->pdev
->dev
,
5344 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5345 psa
[0], psa
[1], psa
[2], psa
[3],
5346 psa
[4], psa
[5], psa
[6], psa
[7]);
5347 return -1; /* failed to recover */
5350 /* device recovered */
5351 dev_info(&h
->pdev
->dev
,
5352 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5353 psa
[0], psa
[1], psa
[2], psa
[3],
5354 psa
[4], psa
[5], psa
[6], psa
[7]);
5356 return rc
; /* success */
5359 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5360 struct CommandList
*abort
, int reply_queue
)
5363 struct CommandList
*c
;
5364 __le32 taglower
, tagupper
;
5365 struct hpsa_scsi_dev_t
*dev
;
5366 struct io_accel2_cmd
*c2
;
5368 dev
= abort
->scsi_cmd
->device
->hostdata
;
5369 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5373 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5374 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5375 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5376 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5377 dev_dbg(&h
->pdev
->dev
,
5378 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5379 __func__
, tagupper
, taglower
);
5380 /* no unmap needed here because no data xfer. */
5382 dev_dbg(&h
->pdev
->dev
,
5383 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5384 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5385 switch (c2
->error_data
.serv_response
) {
5386 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5387 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5390 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5391 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5392 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5396 dev_warn(&h
->pdev
->dev
,
5397 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5398 __func__
, tagupper
, taglower
,
5399 c2
->error_data
.serv_response
);
5403 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5404 tagupper
, taglower
);
5408 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5409 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5412 * ioccelerator mode 2 commands should be aborted via the
5413 * accelerated path, since RAID path is unaware of these commands,
5414 * but not all underlying firmware can handle abort TMF.
5415 * Change abort to physical device reset when abort TMF is unsupported.
5417 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5418 if (HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
)
5419 return hpsa_send_abort_ioaccel2(h
, abort
,
5422 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
,
5423 abort
, reply_queue
);
5425 return hpsa_send_abort(h
, scsi3addr
, abort
, reply_queue
);
5428 /* Find out which reply queue a command was meant to return on */
5429 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5430 struct CommandList
*c
)
5432 if (c
->cmd_type
== CMD_IOACCEL2
)
5433 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5434 return c
->Header
.ReplyQueue
;
5438 * Limit concurrency of abort commands to prevent
5439 * over-subscription of commands
5441 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5443 #define ABORT_CMD_WAIT_MSECS 5000
5444 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5445 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5446 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5449 /* Send an abort for the specified command.
5450 * If the device and controller support it,
5451 * send a task abort request.
5453 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5457 struct ctlr_info
*h
;
5458 struct hpsa_scsi_dev_t
*dev
;
5459 struct CommandList
*abort
; /* pointer to command to be aborted */
5460 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5461 char msg
[256]; /* For debug messaging. */
5463 __le32 tagupper
, taglower
;
5464 int refcount
, reply_queue
;
5469 if (sc
->device
== NULL
)
5472 /* Find the controller of the command to be aborted */
5473 h
= sdev_to_hba(sc
->device
);
5477 /* Find the device of the command to be aborted */
5478 dev
= sc
->device
->hostdata
;
5480 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5485 /* If controller locked up, we can guarantee command won't complete */
5486 if (lockup_detected(h
)) {
5487 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5488 "ABORT FAILED, lockup detected");
5492 /* This is a good time to check if controller lockup has occurred */
5493 if (detect_controller_lockup(h
)) {
5494 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5495 "ABORT FAILED, new lockup detected");
5499 /* Check that controller supports some kind of task abort */
5500 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5501 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5504 memset(msg
, 0, sizeof(msg
));
5505 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5506 h
->scsi_host
->host_no
, sc
->device
->channel
,
5507 sc
->device
->id
, sc
->device
->lun
,
5508 "Aborting command", sc
);
5510 /* Get SCSI command to be aborted */
5511 abort
= (struct CommandList
*) sc
->host_scribble
;
5512 if (abort
== NULL
) {
5513 /* This can happen if the command already completed. */
5516 refcount
= atomic_inc_return(&abort
->refcount
);
5517 if (refcount
== 1) { /* Command is done already. */
5522 /* Don't bother trying the abort if we know it won't work. */
5523 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5524 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5530 * Check that we're aborting the right command.
5531 * It's possible the CommandList already completed and got re-used.
5533 if (abort
->scsi_cmd
!= sc
) {
5538 abort
->abort_pending
= true;
5539 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5540 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5541 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5542 as
= abort
->scsi_cmd
;
5544 ml
+= sprintf(msg
+ml
,
5545 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5546 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5548 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5549 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5552 * Command is in flight, or possibly already completed
5553 * by the firmware (but not to the scsi mid layer) but we can't
5554 * distinguish which. Send the abort down.
5556 if (wait_for_available_abort_cmd(h
)) {
5557 dev_warn(&h
->pdev
->dev
,
5558 "%s FAILED, timeout waiting for an abort command to become available.\n",
5563 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
, reply_queue
);
5564 atomic_inc(&h
->abort_cmds_available
);
5565 wake_up_all(&h
->abort_cmd_wait_queue
);
5567 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
5568 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5569 "FAILED to abort command");
5573 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
5574 wait_event(h
->event_sync_wait_queue
,
5575 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
5577 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
5581 * For operations with an associated SCSI command, a command block is allocated
5582 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5583 * block request tag as an index into a table of entries. cmd_tagged_free() is
5584 * the complement, although cmd_free() may be called instead.
5586 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5587 struct scsi_cmnd
*scmd
)
5589 int idx
= hpsa_get_cmd_index(scmd
);
5590 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5592 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5593 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5594 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5595 /* The index value comes from the block layer, so if it's out of
5596 * bounds, it's probably not our bug.
5601 atomic_inc(&c
->refcount
);
5602 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5604 * We expect that the SCSI layer will hand us a unique tag
5605 * value. Thus, there should never be a collision here between
5606 * two requests...because if the selected command isn't idle
5607 * then someone is going to be very disappointed.
5609 dev_err(&h
->pdev
->dev
,
5610 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5612 if (c
->scsi_cmd
!= NULL
)
5613 scsi_print_command(c
->scsi_cmd
);
5614 scsi_print_command(scmd
);
5617 hpsa_cmd_partial_init(h
, idx
, c
);
5621 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5624 * Release our reference to the block. We don't need to do anything
5625 * else to free it, because it is accessed by index. (There's no point
5626 * in checking the result of the decrement, since we cannot guarantee
5627 * that there isn't a concurrent abort which is also accessing it.)
5629 (void)atomic_dec(&c
->refcount
);
5633 * For operations that cannot sleep, a command block is allocated at init,
5634 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5635 * which ones are free or in use. Lock must be held when calling this.
5636 * cmd_free() is the complement.
5637 * This function never gives up and returns NULL. If it hangs,
5638 * another thread must call cmd_free() to free some tags.
5641 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5643 struct CommandList
*c
;
5648 * There is some *extremely* small but non-zero chance that that
5649 * multiple threads could get in here, and one thread could
5650 * be scanning through the list of bits looking for a free
5651 * one, but the free ones are always behind him, and other
5652 * threads sneak in behind him and eat them before he can
5653 * get to them, so that while there is always a free one, a
5654 * very unlucky thread might be starved anyway, never able to
5655 * beat the other threads. In reality, this happens so
5656 * infrequently as to be indistinguishable from never.
5658 * Note that we start allocating commands before the SCSI host structure
5659 * is initialized. Since the search starts at bit zero, this
5660 * all works, since we have at least one command structure available;
5661 * however, it means that the structures with the low indexes have to be
5662 * reserved for driver-initiated requests, while requests from the block
5663 * layer will use the higher indexes.
5667 i
= find_next_zero_bit(h
->cmd_pool_bits
,
5668 HPSA_NRESERVED_CMDS
,
5670 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
5674 c
= h
->cmd_pool
+ i
;
5675 refcount
= atomic_inc_return(&c
->refcount
);
5676 if (unlikely(refcount
> 1)) {
5677 cmd_free(h
, c
); /* already in use */
5678 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
5681 set_bit(i
& (BITS_PER_LONG
- 1),
5682 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5683 break; /* it's ours now. */
5685 hpsa_cmd_partial_init(h
, i
, c
);
5690 * This is the complementary operation to cmd_alloc(). Note, however, in some
5691 * corner cases it may also be used to free blocks allocated by
5692 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5693 * the clear-bit is harmless.
5695 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
5697 if (atomic_dec_and_test(&c
->refcount
)) {
5700 i
= c
- h
->cmd_pool
;
5701 clear_bit(i
& (BITS_PER_LONG
- 1),
5702 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5706 #ifdef CONFIG_COMPAT
5708 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
5711 IOCTL32_Command_struct __user
*arg32
=
5712 (IOCTL32_Command_struct __user
*) arg
;
5713 IOCTL_Command_struct arg64
;
5714 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
5718 memset(&arg64
, 0, sizeof(arg64
));
5720 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5721 sizeof(arg64
.LUN_info
));
5722 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5723 sizeof(arg64
.Request
));
5724 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5725 sizeof(arg64
.error_info
));
5726 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5727 err
|= get_user(cp
, &arg32
->buf
);
5728 arg64
.buf
= compat_ptr(cp
);
5729 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5734 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
5737 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5738 sizeof(arg32
->error_info
));
5744 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
5745 int cmd
, void __user
*arg
)
5747 BIG_IOCTL32_Command_struct __user
*arg32
=
5748 (BIG_IOCTL32_Command_struct __user
*) arg
;
5749 BIG_IOCTL_Command_struct arg64
;
5750 BIG_IOCTL_Command_struct __user
*p
=
5751 compat_alloc_user_space(sizeof(arg64
));
5755 memset(&arg64
, 0, sizeof(arg64
));
5757 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5758 sizeof(arg64
.LUN_info
));
5759 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5760 sizeof(arg64
.Request
));
5761 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5762 sizeof(arg64
.error_info
));
5763 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5764 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
5765 err
|= get_user(cp
, &arg32
->buf
);
5766 arg64
.buf
= compat_ptr(cp
);
5767 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5772 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
5775 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5776 sizeof(arg32
->error_info
));
5782 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
5785 case CCISS_GETPCIINFO
:
5786 case CCISS_GETINTINFO
:
5787 case CCISS_SETINTINFO
:
5788 case CCISS_GETNODENAME
:
5789 case CCISS_SETNODENAME
:
5790 case CCISS_GETHEARTBEAT
:
5791 case CCISS_GETBUSTYPES
:
5792 case CCISS_GETFIRMVER
:
5793 case CCISS_GETDRIVVER
:
5794 case CCISS_REVALIDVOLS
:
5795 case CCISS_DEREGDISK
:
5796 case CCISS_REGNEWDISK
:
5798 case CCISS_RESCANDISK
:
5799 case CCISS_GETLUNINFO
:
5800 return hpsa_ioctl(dev
, cmd
, arg
);
5802 case CCISS_PASSTHRU32
:
5803 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
5804 case CCISS_BIG_PASSTHRU32
:
5805 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
5808 return -ENOIOCTLCMD
;
5813 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5815 struct hpsa_pci_info pciinfo
;
5819 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
5820 pciinfo
.bus
= h
->pdev
->bus
->number
;
5821 pciinfo
.dev_fn
= h
->pdev
->devfn
;
5822 pciinfo
.board_id
= h
->board_id
;
5823 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
5828 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5830 DriverVer_type DriverVer
;
5831 unsigned char vmaj
, vmin
, vsubmin
;
5834 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
5835 &vmaj
, &vmin
, &vsubmin
);
5837 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
5838 "unrecognized.", HPSA_DRIVER_VERSION
);
5843 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
5846 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
5851 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5853 IOCTL_Command_struct iocommand
;
5854 struct CommandList
*c
;
5861 if (!capable(CAP_SYS_RAWIO
))
5863 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
5865 if ((iocommand
.buf_size
< 1) &&
5866 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
5869 if (iocommand
.buf_size
> 0) {
5870 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
5873 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
5874 /* Copy the data into the buffer we created */
5875 if (copy_from_user(buff
, iocommand
.buf
,
5876 iocommand
.buf_size
)) {
5881 memset(buff
, 0, iocommand
.buf_size
);
5886 /* Fill in the command type */
5887 c
->cmd_type
= CMD_IOCTL_PEND
;
5888 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5889 /* Fill in Command Header */
5890 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5891 if (iocommand
.buf_size
> 0) { /* buffer to fill */
5892 c
->Header
.SGList
= 1;
5893 c
->Header
.SGTotal
= cpu_to_le16(1);
5894 } else { /* no buffers to fill */
5895 c
->Header
.SGList
= 0;
5896 c
->Header
.SGTotal
= cpu_to_le16(0);
5898 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
5900 /* Fill in Request block */
5901 memcpy(&c
->Request
, &iocommand
.Request
,
5902 sizeof(c
->Request
));
5904 /* Fill in the scatter gather information */
5905 if (iocommand
.buf_size
> 0) {
5906 temp64
= pci_map_single(h
->pdev
, buff
,
5907 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
5908 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
5909 c
->SG
[0].Addr
= cpu_to_le64(0);
5910 c
->SG
[0].Len
= cpu_to_le32(0);
5914 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
5915 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
5916 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
5918 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
5919 if (iocommand
.buf_size
> 0)
5920 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
5921 check_ioctl_unit_attention(h
, c
);
5927 /* Copy the error information out */
5928 memcpy(&iocommand
.error_info
, c
->err_info
,
5929 sizeof(iocommand
.error_info
));
5930 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
5934 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
5935 iocommand
.buf_size
> 0) {
5936 /* Copy the data out of the buffer we created */
5937 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
5949 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5951 BIG_IOCTL_Command_struct
*ioc
;
5952 struct CommandList
*c
;
5953 unsigned char **buff
= NULL
;
5954 int *buff_size
= NULL
;
5960 BYTE __user
*data_ptr
;
5964 if (!capable(CAP_SYS_RAWIO
))
5966 ioc
= (BIG_IOCTL_Command_struct
*)
5967 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
5972 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
5976 if ((ioc
->buf_size
< 1) &&
5977 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
5981 /* Check kmalloc limits using all SGs */
5982 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
5986 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
5990 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
5995 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6000 left
= ioc
->buf_size
;
6001 data_ptr
= ioc
->buf
;
6003 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6004 buff_size
[sg_used
] = sz
;
6005 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6006 if (buff
[sg_used
] == NULL
) {
6010 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6011 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6016 memset(buff
[sg_used
], 0, sz
);
6023 c
->cmd_type
= CMD_IOCTL_PEND
;
6024 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6025 c
->Header
.ReplyQueue
= 0;
6026 c
->Header
.SGList
= (u8
) sg_used
;
6027 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6028 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6029 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6030 if (ioc
->buf_size
> 0) {
6032 for (i
= 0; i
< sg_used
; i
++) {
6033 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6034 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6035 if (dma_mapping_error(&h
->pdev
->dev
,
6036 (dma_addr_t
) temp64
)) {
6037 c
->SG
[i
].Addr
= cpu_to_le64(0);
6038 c
->SG
[i
].Len
= cpu_to_le32(0);
6039 hpsa_pci_unmap(h
->pdev
, c
, i
,
6040 PCI_DMA_BIDIRECTIONAL
);
6044 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6045 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6046 c
->SG
[i
].Ext
= cpu_to_le32(0);
6048 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6050 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6052 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6053 check_ioctl_unit_attention(h
, c
);
6059 /* Copy the error information out */
6060 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6061 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6065 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6068 /* Copy the data out of the buffer we created */
6069 BYTE __user
*ptr
= ioc
->buf
;
6070 for (i
= 0; i
< sg_used
; i
++) {
6071 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6075 ptr
+= buff_size
[i
];
6085 for (i
= 0; i
< sg_used
; i
++)
6094 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6095 struct CommandList
*c
)
6097 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6098 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6099 (void) check_for_unit_attention(h
, c
);
6105 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6107 struct ctlr_info
*h
;
6108 void __user
*argp
= (void __user
*)arg
;
6111 h
= sdev_to_hba(dev
);
6114 case CCISS_DEREGDISK
:
6115 case CCISS_REGNEWDISK
:
6117 hpsa_scan_start(h
->scsi_host
);
6119 case CCISS_GETPCIINFO
:
6120 return hpsa_getpciinfo_ioctl(h
, argp
);
6121 case CCISS_GETDRIVVER
:
6122 return hpsa_getdrivver_ioctl(h
, argp
);
6123 case CCISS_PASSTHRU
:
6124 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6126 rc
= hpsa_passthru_ioctl(h
, argp
);
6127 atomic_inc(&h
->passthru_cmds_avail
);
6129 case CCISS_BIG_PASSTHRU
:
6130 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6132 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6133 atomic_inc(&h
->passthru_cmds_avail
);
6140 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6143 struct CommandList
*c
;
6147 /* fill_cmd can't fail here, no data buffer to map */
6148 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6149 RAID_CTLR_LUNID
, TYPE_MSG
);
6150 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6152 enqueue_cmd_and_start_io(h
, c
);
6153 /* Don't wait for completion, the reset won't complete. Don't free
6154 * the command either. This is the last command we will send before
6155 * re-initializing everything, so it doesn't matter and won't leak.
6160 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6161 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6164 int pci_dir
= XFER_NONE
;
6165 u64 tag
; /* for commands to be aborted */
6167 c
->cmd_type
= CMD_IOCTL_PEND
;
6168 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6169 c
->Header
.ReplyQueue
= 0;
6170 if (buff
!= NULL
&& size
> 0) {
6171 c
->Header
.SGList
= 1;
6172 c
->Header
.SGTotal
= cpu_to_le16(1);
6174 c
->Header
.SGList
= 0;
6175 c
->Header
.SGTotal
= cpu_to_le16(0);
6177 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6179 if (cmd_type
== TYPE_CMD
) {
6182 /* are we trying to read a vital product page */
6183 if (page_code
& VPD_PAGE
) {
6184 c
->Request
.CDB
[1] = 0x01;
6185 c
->Request
.CDB
[2] = (page_code
& 0xff);
6187 c
->Request
.CDBLen
= 6;
6188 c
->Request
.type_attr_dir
=
6189 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6190 c
->Request
.Timeout
= 0;
6191 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6192 c
->Request
.CDB
[4] = size
& 0xFF;
6194 case HPSA_REPORT_LOG
:
6195 case HPSA_REPORT_PHYS
:
6196 /* Talking to controller so It's a physical command
6197 mode = 00 target = 0. Nothing to write.
6199 c
->Request
.CDBLen
= 12;
6200 c
->Request
.type_attr_dir
=
6201 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6202 c
->Request
.Timeout
= 0;
6203 c
->Request
.CDB
[0] = cmd
;
6204 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6205 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6206 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6207 c
->Request
.CDB
[9] = size
& 0xFF;
6209 case HPSA_CACHE_FLUSH
:
6210 c
->Request
.CDBLen
= 12;
6211 c
->Request
.type_attr_dir
=
6212 TYPE_ATTR_DIR(cmd_type
,
6213 ATTR_SIMPLE
, XFER_WRITE
);
6214 c
->Request
.Timeout
= 0;
6215 c
->Request
.CDB
[0] = BMIC_WRITE
;
6216 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6217 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6218 c
->Request
.CDB
[8] = size
& 0xFF;
6220 case TEST_UNIT_READY
:
6221 c
->Request
.CDBLen
= 6;
6222 c
->Request
.type_attr_dir
=
6223 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6224 c
->Request
.Timeout
= 0;
6226 case HPSA_GET_RAID_MAP
:
6227 c
->Request
.CDBLen
= 12;
6228 c
->Request
.type_attr_dir
=
6229 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6230 c
->Request
.Timeout
= 0;
6231 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6232 c
->Request
.CDB
[1] = cmd
;
6233 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6234 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6235 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6236 c
->Request
.CDB
[9] = size
& 0xFF;
6238 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6239 c
->Request
.CDBLen
= 10;
6240 c
->Request
.type_attr_dir
=
6241 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6242 c
->Request
.Timeout
= 0;
6243 c
->Request
.CDB
[0] = BMIC_READ
;
6244 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6245 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6246 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6248 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6249 c
->Request
.CDBLen
= 10;
6250 c
->Request
.type_attr_dir
=
6251 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6252 c
->Request
.Timeout
= 0;
6253 c
->Request
.CDB
[0] = BMIC_READ
;
6254 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6255 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6256 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6259 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6263 } else if (cmd_type
== TYPE_MSG
) {
6266 case HPSA_DEVICE_RESET_MSG
:
6267 c
->Request
.CDBLen
= 16;
6268 c
->Request
.type_attr_dir
=
6269 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6270 c
->Request
.Timeout
= 0; /* Don't time out */
6271 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6272 c
->Request
.CDB
[0] = cmd
;
6273 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6274 /* If bytes 4-7 are zero, it means reset the */
6276 c
->Request
.CDB
[4] = 0x00;
6277 c
->Request
.CDB
[5] = 0x00;
6278 c
->Request
.CDB
[6] = 0x00;
6279 c
->Request
.CDB
[7] = 0x00;
6281 case HPSA_ABORT_MSG
:
6282 memcpy(&tag
, buff
, sizeof(tag
));
6283 dev_dbg(&h
->pdev
->dev
,
6284 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6285 tag
, c
->Header
.tag
);
6286 c
->Request
.CDBLen
= 16;
6287 c
->Request
.type_attr_dir
=
6288 TYPE_ATTR_DIR(cmd_type
,
6289 ATTR_SIMPLE
, XFER_WRITE
);
6290 c
->Request
.Timeout
= 0; /* Don't time out */
6291 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6292 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6293 c
->Request
.CDB
[2] = 0x00; /* reserved */
6294 c
->Request
.CDB
[3] = 0x00; /* reserved */
6295 /* Tag to abort goes in CDB[4]-CDB[11] */
6296 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6297 c
->Request
.CDB
[12] = 0x00; /* reserved */
6298 c
->Request
.CDB
[13] = 0x00; /* reserved */
6299 c
->Request
.CDB
[14] = 0x00; /* reserved */
6300 c
->Request
.CDB
[15] = 0x00; /* reserved */
6303 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6308 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6312 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6314 pci_dir
= PCI_DMA_FROMDEVICE
;
6317 pci_dir
= PCI_DMA_TODEVICE
;
6320 pci_dir
= PCI_DMA_NONE
;
6323 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6325 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6331 * Map (physical) PCI mem into (virtual) kernel space
6333 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6335 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6336 ulong page_offs
= ((ulong
) base
) - page_base
;
6337 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6340 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6343 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6345 return h
->access
.command_completed(h
, q
);
6348 static inline bool interrupt_pending(struct ctlr_info
*h
)
6350 return h
->access
.intr_pending(h
);
6353 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6355 return (h
->access
.intr_pending(h
) == 0) ||
6356 (h
->interrupts_enabled
== 0);
6359 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6362 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6363 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6369 static inline void finish_cmd(struct CommandList
*c
)
6371 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6372 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6373 || c
->cmd_type
== CMD_IOACCEL2
))
6374 complete_scsi_command(c
);
6375 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6376 complete(c
->waiting
);
6380 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
6382 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6383 #define HPSA_SIMPLE_ERROR_BITS 0x03
6384 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
6385 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
6386 return tag
& ~HPSA_PERF_ERROR_BITS
;
6389 /* process completion of an indexed ("direct lookup") command */
6390 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6394 struct CommandList
*c
;
6396 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6397 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6398 c
= h
->cmd_pool
+ tag_index
;
6403 /* Some controllers, like p400, will give us one interrupt
6404 * after a soft reset, even if we turned interrupts off.
6405 * Only need to check for this in the hpsa_xxx_discard_completions
6408 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6410 if (likely(!reset_devices
))
6413 if (likely(h
->interrupts_enabled
))
6416 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6417 "(known firmware bug.) Ignoring.\n");
6423 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6424 * Relies on (h-q[x] == x) being true for x such that
6425 * 0 <= x < MAX_REPLY_QUEUES.
6427 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6429 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6432 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6434 struct ctlr_info
*h
= queue_to_hba(queue
);
6435 u8 q
= *(u8
*) queue
;
6438 if (ignore_bogus_interrupt(h
))
6441 if (interrupt_not_for_us(h
))
6443 h
->last_intr_timestamp
= get_jiffies_64();
6444 while (interrupt_pending(h
)) {
6445 raw_tag
= get_next_completion(h
, q
);
6446 while (raw_tag
!= FIFO_EMPTY
)
6447 raw_tag
= next_command(h
, q
);
6452 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6454 struct ctlr_info
*h
= queue_to_hba(queue
);
6456 u8 q
= *(u8
*) queue
;
6458 if (ignore_bogus_interrupt(h
))
6461 h
->last_intr_timestamp
= get_jiffies_64();
6462 raw_tag
= get_next_completion(h
, q
);
6463 while (raw_tag
!= FIFO_EMPTY
)
6464 raw_tag
= next_command(h
, q
);
6468 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6470 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6472 u8 q
= *(u8
*) queue
;
6474 if (interrupt_not_for_us(h
))
6476 h
->last_intr_timestamp
= get_jiffies_64();
6477 while (interrupt_pending(h
)) {
6478 raw_tag
= get_next_completion(h
, q
);
6479 while (raw_tag
!= FIFO_EMPTY
) {
6480 process_indexed_cmd(h
, raw_tag
);
6481 raw_tag
= next_command(h
, q
);
6487 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6489 struct ctlr_info
*h
= queue_to_hba(queue
);
6491 u8 q
= *(u8
*) queue
;
6493 h
->last_intr_timestamp
= get_jiffies_64();
6494 raw_tag
= get_next_completion(h
, q
);
6495 while (raw_tag
!= FIFO_EMPTY
) {
6496 process_indexed_cmd(h
, raw_tag
);
6497 raw_tag
= next_command(h
, q
);
6502 /* Send a message CDB to the firmware. Careful, this only works
6503 * in simple mode, not performant mode due to the tag lookup.
6504 * We only ever use this immediately after a controller reset.
6506 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6510 struct CommandListHeader CommandHeader
;
6511 struct RequestBlock Request
;
6512 struct ErrDescriptor ErrorDescriptor
;
6514 struct Command
*cmd
;
6515 static const size_t cmd_sz
= sizeof(*cmd
) +
6516 sizeof(cmd
->ErrorDescriptor
);
6520 void __iomem
*vaddr
;
6523 vaddr
= pci_ioremap_bar(pdev
, 0);
6527 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6528 * CCISS commands, so they must be allocated from the lower 4GiB of
6531 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6537 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6543 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6544 * although there's no guarantee, we assume that the address is at
6545 * least 4-byte aligned (most likely, it's page-aligned).
6547 paddr32
= cpu_to_le32(paddr64
);
6549 cmd
->CommandHeader
.ReplyQueue
= 0;
6550 cmd
->CommandHeader
.SGList
= 0;
6551 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6552 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6553 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6555 cmd
->Request
.CDBLen
= 16;
6556 cmd
->Request
.type_attr_dir
=
6557 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6558 cmd
->Request
.Timeout
= 0; /* Don't time out */
6559 cmd
->Request
.CDB
[0] = opcode
;
6560 cmd
->Request
.CDB
[1] = type
;
6561 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6562 cmd
->ErrorDescriptor
.Addr
=
6563 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6564 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6566 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6568 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6569 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6570 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6572 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6577 /* we leak the DMA buffer here ... no choice since the controller could
6578 * still complete the command.
6580 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6581 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6586 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6588 if (tag
& HPSA_ERROR_BIT
) {
6589 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6594 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6599 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6601 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6602 void __iomem
*vaddr
, u32 use_doorbell
)
6606 /* For everything after the P600, the PCI power state method
6607 * of resetting the controller doesn't work, so we have this
6608 * other way using the doorbell register.
6610 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
6611 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
6613 /* PMC hardware guys tell us we need a 10 second delay after
6614 * doorbell reset and before any attempt to talk to the board
6615 * at all to ensure that this actually works and doesn't fall
6616 * over in some weird corner cases.
6619 } else { /* Try to do it the PCI power state way */
6621 /* Quoting from the Open CISS Specification: "The Power
6622 * Management Control/Status Register (CSR) controls the power
6623 * state of the device. The normal operating state is D0,
6624 * CSR=00h. The software off state is D3, CSR=03h. To reset
6625 * the controller, place the interface device in D3 then to D0,
6626 * this causes a secondary PCI reset which will reset the
6631 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
6633 /* enter the D3hot power management state */
6634 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
6640 /* enter the D0 power management state */
6641 rc
= pci_set_power_state(pdev
, PCI_D0
);
6646 * The P600 requires a small delay when changing states.
6647 * Otherwise we may think the board did not reset and we bail.
6648 * This for kdump only and is particular to the P600.
6655 static void init_driver_version(char *driver_version
, int len
)
6657 memset(driver_version
, 0, len
);
6658 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
6661 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
6663 char *driver_version
;
6664 int i
, size
= sizeof(cfgtable
->driver_version
);
6666 driver_version
= kmalloc(size
, GFP_KERNEL
);
6667 if (!driver_version
)
6670 init_driver_version(driver_version
, size
);
6671 for (i
= 0; i
< size
; i
++)
6672 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
6673 kfree(driver_version
);
6677 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
6678 unsigned char *driver_ver
)
6682 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
6683 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
6686 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
6689 char *driver_ver
, *old_driver_ver
;
6690 int rc
, size
= sizeof(cfgtable
->driver_version
);
6692 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
6693 if (!old_driver_ver
)
6695 driver_ver
= old_driver_ver
+ size
;
6697 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6698 * should have been changed, otherwise we know the reset failed.
6700 init_driver_version(old_driver_ver
, size
);
6701 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
6702 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
6703 kfree(old_driver_ver
);
6706 /* This does a hard reset of the controller using PCI power management
6707 * states or the using the doorbell register.
6709 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
6713 u64 cfg_base_addr_index
;
6714 void __iomem
*vaddr
;
6715 unsigned long paddr
;
6716 u32 misc_fw_support
;
6718 struct CfgTable __iomem
*cfgtable
;
6720 u16 command_register
;
6722 /* For controllers as old as the P600, this is very nearly
6725 * pci_save_state(pci_dev);
6726 * pci_set_power_state(pci_dev, PCI_D3hot);
6727 * pci_set_power_state(pci_dev, PCI_D0);
6728 * pci_restore_state(pci_dev);
6730 * For controllers newer than the P600, the pci power state
6731 * method of resetting doesn't work so we have another way
6732 * using the doorbell register.
6735 if (!ctlr_is_resettable(board_id
)) {
6736 dev_warn(&pdev
->dev
, "Controller not resettable\n");
6740 /* if controller is soft- but not hard resettable... */
6741 if (!ctlr_is_hard_resettable(board_id
))
6742 return -ENOTSUPP
; /* try soft reset later. */
6744 /* Save the PCI command register */
6745 pci_read_config_word(pdev
, 4, &command_register
);
6746 pci_save_state(pdev
);
6748 /* find the first memory BAR, so we can find the cfg table */
6749 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
6752 vaddr
= remap_pci_mem(paddr
, 0x250);
6756 /* find cfgtable in order to check if reset via doorbell is supported */
6757 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
6758 &cfg_base_addr_index
, &cfg_offset
);
6761 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
6762 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
6767 rc
= write_driver_ver_to_cfgtable(cfgtable
);
6769 goto unmap_cfgtable
;
6771 /* If reset via doorbell register is supported, use that.
6772 * There are two such methods. Favor the newest method.
6774 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
6775 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
6777 use_doorbell
= DOORBELL_CTLR_RESET2
;
6779 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
6781 dev_warn(&pdev
->dev
,
6782 "Soft reset not supported. Firmware update is required.\n");
6783 rc
= -ENOTSUPP
; /* try soft reset */
6784 goto unmap_cfgtable
;
6788 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
6790 goto unmap_cfgtable
;
6792 pci_restore_state(pdev
);
6793 pci_write_config_word(pdev
, 4, command_register
);
6795 /* Some devices (notably the HP Smart Array 5i Controller)
6796 need a little pause here */
6797 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
6799 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
6801 dev_warn(&pdev
->dev
,
6802 "Failed waiting for board to become ready after hard reset\n");
6803 goto unmap_cfgtable
;
6806 rc
= controller_reset_failed(vaddr
);
6808 goto unmap_cfgtable
;
6810 dev_warn(&pdev
->dev
, "Unable to successfully reset "
6811 "controller. Will try soft reset.\n");
6814 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
6826 * We cannot read the structure directly, for portability we must use
6828 * This is for debug only.
6830 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
6836 dev_info(dev
, "Controller Configuration information\n");
6837 dev_info(dev
, "------------------------------------\n");
6838 for (i
= 0; i
< 4; i
++)
6839 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
6840 temp_name
[4] = '\0';
6841 dev_info(dev
, " Signature = %s\n", temp_name
);
6842 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
6843 dev_info(dev
, " Transport methods supported = 0x%x\n",
6844 readl(&(tb
->TransportSupport
)));
6845 dev_info(dev
, " Transport methods active = 0x%x\n",
6846 readl(&(tb
->TransportActive
)));
6847 dev_info(dev
, " Requested transport Method = 0x%x\n",
6848 readl(&(tb
->HostWrite
.TransportRequest
)));
6849 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
6850 readl(&(tb
->HostWrite
.CoalIntDelay
)));
6851 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
6852 readl(&(tb
->HostWrite
.CoalIntCount
)));
6853 dev_info(dev
, " Max outstanding commands = %d\n",
6854 readl(&(tb
->CmdsOutMax
)));
6855 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
6856 for (i
= 0; i
< 16; i
++)
6857 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
6858 temp_name
[16] = '\0';
6859 dev_info(dev
, " Server Name = %s\n", temp_name
);
6860 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
6861 readl(&(tb
->HeartBeat
)));
6862 #endif /* HPSA_DEBUG */
6865 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
6867 int i
, offset
, mem_type
, bar_type
;
6869 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
6872 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
6873 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
6874 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
6877 mem_type
= pci_resource_flags(pdev
, i
) &
6878 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
6880 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
6881 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
6882 offset
+= 4; /* 32 bit */
6884 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
6887 default: /* reserved in PCI 2.2 */
6888 dev_warn(&pdev
->dev
,
6889 "base address is invalid\n");
6894 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
6900 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
6902 if (h
->msix_vector
) {
6903 if (h
->pdev
->msix_enabled
)
6904 pci_disable_msix(h
->pdev
);
6906 } else if (h
->msi_vector
) {
6907 if (h
->pdev
->msi_enabled
)
6908 pci_disable_msi(h
->pdev
);
6913 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6914 * controllers that are capable. If not, we use legacy INTx mode.
6916 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
6918 #ifdef CONFIG_PCI_MSI
6920 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
6922 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
6923 hpsa_msix_entries
[i
].vector
= 0;
6924 hpsa_msix_entries
[i
].entry
= i
;
6927 /* Some boards advertise MSI but don't really support it */
6928 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
6929 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
6930 goto default_int_mode
;
6931 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
6932 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
6933 h
->msix_vector
= MAX_REPLY_QUEUES
;
6934 if (h
->msix_vector
> num_online_cpus())
6935 h
->msix_vector
= num_online_cpus();
6936 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
6939 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
6941 goto single_msi_mode
;
6942 } else if (err
< h
->msix_vector
) {
6943 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
6944 "available\n", err
);
6946 h
->msix_vector
= err
;
6947 for (i
= 0; i
< h
->msix_vector
; i
++)
6948 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
6952 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
6953 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
6954 if (!pci_enable_msi(h
->pdev
))
6957 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
6960 #endif /* CONFIG_PCI_MSI */
6961 /* if we get here we're going to use the default interrupt mode */
6962 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
6965 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
6968 u32 subsystem_vendor_id
, subsystem_device_id
;
6970 subsystem_vendor_id
= pdev
->subsystem_vendor
;
6971 subsystem_device_id
= pdev
->subsystem_device
;
6972 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
6973 subsystem_vendor_id
;
6975 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
6976 if (*board_id
== products
[i
].board_id
)
6979 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
6980 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
6982 dev_warn(&pdev
->dev
, "unrecognized board ID: "
6983 "0x%08x, ignoring.\n", *board_id
);
6986 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
6989 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
6990 unsigned long *memory_bar
)
6994 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
6995 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
6996 /* addressing mode bits already removed */
6997 *memory_bar
= pci_resource_start(pdev
, i
);
6998 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7002 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7006 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7012 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7014 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7016 for (i
= 0; i
< iterations
; i
++) {
7017 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7018 if (wait_for_ready
) {
7019 if (scratchpad
== HPSA_FIRMWARE_READY
)
7022 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7025 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7027 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7031 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7032 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7035 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7036 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7037 *cfg_base_addr
&= (u32
) 0x0000ffff;
7038 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7039 if (*cfg_base_addr_index
== -1) {
7040 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7046 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7048 if (h
->transtable
) {
7049 iounmap(h
->transtable
);
7050 h
->transtable
= NULL
;
7053 iounmap(h
->cfgtable
);
7058 /* Find and map CISS config table and transfer table
7059 + * several items must be unmapped (freed) later
7061 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7065 u64 cfg_base_addr_index
;
7069 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7070 &cfg_base_addr_index
, &cfg_offset
);
7073 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7074 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7076 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7079 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7082 /* Find performant mode table. */
7083 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7084 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7085 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7086 sizeof(*h
->transtable
));
7087 if (!h
->transtable
) {
7088 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7089 hpsa_free_cfgtables(h
);
7095 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7097 #define MIN_MAX_COMMANDS 16
7098 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7100 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7102 /* Limit commands in memory limited kdump scenario. */
7103 if (reset_devices
&& h
->max_commands
> 32)
7104 h
->max_commands
= 32;
7106 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7107 dev_warn(&h
->pdev
->dev
,
7108 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7111 h
->max_commands
= MIN_MAX_COMMANDS
;
7115 /* If the controller reports that the total max sg entries is greater than 512,
7116 * then we know that chained SG blocks work. (Original smart arrays did not
7117 * support chained SG blocks and would return zero for max sg entries.)
7119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7121 return h
->maxsgentries
> 512;
7124 /* Interrogate the hardware for some limits:
7125 * max commands, max SG elements without chaining, and with chaining,
7126 * SG chain block size, etc.
7128 static void hpsa_find_board_params(struct ctlr_info
*h
)
7130 hpsa_get_max_perf_mode_cmds(h
);
7131 h
->nr_cmds
= h
->max_commands
;
7132 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7133 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7134 if (hpsa_supports_chained_sg_blocks(h
)) {
7135 /* Limit in-command s/g elements to 32 save dma'able memory. */
7136 h
->max_cmd_sg_entries
= 32;
7137 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7138 h
->maxsgentries
--; /* save one for chain pointer */
7141 * Original smart arrays supported at most 31 s/g entries
7142 * embedded inline in the command (trying to use more
7143 * would lock up the controller)
7145 h
->max_cmd_sg_entries
= 31;
7146 h
->maxsgentries
= 31; /* default to traditional values */
7150 /* Find out what task management functions are supported and cache */
7151 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7152 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7153 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7154 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7155 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7156 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7157 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7160 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7162 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7163 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7169 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7173 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7174 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7176 driver_support
|= ENABLE_SCSI_PREFETCH
;
7178 driver_support
|= ENABLE_UNIT_ATTN
;
7179 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7182 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7183 * in a prefetch beyond physical memory.
7185 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7189 if (h
->board_id
!= 0x3225103C)
7191 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7192 dma_prefetch
|= 0x8000;
7193 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7196 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7200 unsigned long flags
;
7201 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7202 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7203 spin_lock_irqsave(&h
->lock
, flags
);
7204 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7205 spin_unlock_irqrestore(&h
->lock
, flags
);
7206 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7208 /* delay and try again */
7209 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7216 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7220 unsigned long flags
;
7222 /* under certain very rare conditions, this can take awhile.
7223 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7224 * as we enter this code.)
7226 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7227 if (h
->remove_in_progress
)
7229 spin_lock_irqsave(&h
->lock
, flags
);
7230 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7231 spin_unlock_irqrestore(&h
->lock
, flags
);
7232 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7234 /* delay and try again */
7235 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7242 /* return -ENODEV or other reason on error, 0 on success */
7243 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7247 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7248 if (!(trans_support
& SIMPLE_MODE
))
7251 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7253 /* Update the field, and then ring the doorbell */
7254 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7255 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7256 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7257 if (hpsa_wait_for_mode_change_ack(h
))
7259 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7260 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7262 h
->transMethod
= CFGTBL_Trans_Simple
;
7265 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7269 /* free items allocated or mapped by hpsa_pci_init */
7270 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7272 hpsa_free_cfgtables(h
); /* pci_init 4 */
7273 iounmap(h
->vaddr
); /* pci_init 3 */
7275 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7277 * call pci_disable_device before pci_release_regions per
7278 * Documentation/PCI/pci.txt
7280 pci_disable_device(h
->pdev
); /* pci_init 1 */
7281 pci_release_regions(h
->pdev
); /* pci_init 2 */
7284 /* several items must be freed later */
7285 static int hpsa_pci_init(struct ctlr_info
*h
)
7287 int prod_index
, err
;
7289 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7292 h
->product_name
= products
[prod_index
].product_name
;
7293 h
->access
= *(products
[prod_index
].access
);
7295 h
->needs_abort_tags_swizzled
=
7296 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7298 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7299 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7301 err
= pci_enable_device(h
->pdev
);
7303 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7304 pci_disable_device(h
->pdev
);
7308 err
= pci_request_regions(h
->pdev
, HPSA
);
7310 dev_err(&h
->pdev
->dev
,
7311 "failed to obtain PCI resources\n");
7312 pci_disable_device(h
->pdev
);
7316 pci_set_master(h
->pdev
);
7318 hpsa_interrupt_mode(h
);
7319 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7321 goto clean2
; /* intmode+region, pci */
7322 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7324 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7326 goto clean2
; /* intmode+region, pci */
7328 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7330 goto clean3
; /* vaddr, intmode+region, pci */
7331 err
= hpsa_find_cfgtables(h
);
7333 goto clean3
; /* vaddr, intmode+region, pci */
7334 hpsa_find_board_params(h
);
7336 if (!hpsa_CISS_signature_present(h
)) {
7338 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7340 hpsa_set_driver_support_bits(h
);
7341 hpsa_p600_dma_prefetch_quirk(h
);
7342 err
= hpsa_enter_simple_mode(h
);
7344 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7347 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7348 hpsa_free_cfgtables(h
);
7349 clean3
: /* vaddr, intmode+region, pci */
7352 clean2
: /* intmode+region, pci */
7353 hpsa_disable_interrupt_mode(h
);
7355 * call pci_disable_device before pci_release_regions per
7356 * Documentation/PCI/pci.txt
7358 pci_disable_device(h
->pdev
);
7359 pci_release_regions(h
->pdev
);
7363 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7367 #define HBA_INQUIRY_BYTE_COUNT 64
7368 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7369 if (!h
->hba_inquiry_data
)
7371 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7372 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7374 kfree(h
->hba_inquiry_data
);
7375 h
->hba_inquiry_data
= NULL
;
7379 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7382 void __iomem
*vaddr
;
7387 /* kdump kernel is loading, we don't know in which state is
7388 * the pci interface. The dev->enable_cnt is equal zero
7389 * so we call enable+disable, wait a while and switch it on.
7391 rc
= pci_enable_device(pdev
);
7393 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7396 pci_disable_device(pdev
);
7397 msleep(260); /* a randomly chosen number */
7398 rc
= pci_enable_device(pdev
);
7400 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7404 pci_set_master(pdev
);
7406 vaddr
= pci_ioremap_bar(pdev
, 0);
7407 if (vaddr
== NULL
) {
7411 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7414 /* Reset the controller with a PCI power-cycle or via doorbell */
7415 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7417 /* -ENOTSUPP here means we cannot reset the controller
7418 * but it's already (and still) up and running in
7419 * "performant mode". Or, it might be 640x, which can't reset
7420 * due to concerns about shared bbwc between 6402/6404 pair.
7425 /* Now try to get the controller to respond to a no-op */
7426 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7427 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7428 if (hpsa_noop(pdev
) == 0)
7431 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7432 (i
< 11 ? "; re-trying" : ""));
7437 pci_disable_device(pdev
);
7441 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7443 kfree(h
->cmd_pool_bits
);
7444 h
->cmd_pool_bits
= NULL
;
7446 pci_free_consistent(h
->pdev
,
7447 h
->nr_cmds
* sizeof(struct CommandList
),
7449 h
->cmd_pool_dhandle
);
7451 h
->cmd_pool_dhandle
= 0;
7453 if (h
->errinfo_pool
) {
7454 pci_free_consistent(h
->pdev
,
7455 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7457 h
->errinfo_pool_dhandle
);
7458 h
->errinfo_pool
= NULL
;
7459 h
->errinfo_pool_dhandle
= 0;
7463 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7465 h
->cmd_pool_bits
= kzalloc(
7466 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7467 sizeof(unsigned long), GFP_KERNEL
);
7468 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7469 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7470 &(h
->cmd_pool_dhandle
));
7471 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7472 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7473 &(h
->errinfo_pool_dhandle
));
7474 if ((h
->cmd_pool_bits
== NULL
)
7475 || (h
->cmd_pool
== NULL
)
7476 || (h
->errinfo_pool
== NULL
)) {
7477 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7480 hpsa_preinitialize_commands(h
);
7483 hpsa_free_cmd_pool(h
);
7487 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7491 cpu
= cpumask_first(cpu_online_mask
);
7492 for (i
= 0; i
< h
->msix_vector
; i
++) {
7493 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7494 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7498 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7499 static void hpsa_free_irqs(struct ctlr_info
*h
)
7503 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7504 /* Single reply queue, only one irq to free */
7506 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7507 free_irq(h
->intr
[i
], &h
->q
[i
]);
7512 for (i
= 0; i
< h
->msix_vector
; i
++) {
7513 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7514 free_irq(h
->intr
[i
], &h
->q
[i
]);
7517 for (; i
< MAX_REPLY_QUEUES
; i
++)
7521 /* returns 0 on success; cleans up and returns -Enn on error */
7522 static int hpsa_request_irqs(struct ctlr_info
*h
,
7523 irqreturn_t (*msixhandler
)(int, void *),
7524 irqreturn_t (*intxhandler
)(int, void *))
7529 * initialize h->q[x] = x so that interrupt handlers know which
7532 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7535 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
7536 /* If performant mode and MSI-X, use multiple reply queues */
7537 for (i
= 0; i
< h
->msix_vector
; i
++) {
7538 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7539 rc
= request_irq(h
->intr
[i
], msixhandler
,
7545 dev_err(&h
->pdev
->dev
,
7546 "failed to get irq %d for %s\n",
7547 h
->intr
[i
], h
->devname
);
7548 for (j
= 0; j
< i
; j
++) {
7549 free_irq(h
->intr
[j
], &h
->q
[j
]);
7552 for (; j
< MAX_REPLY_QUEUES
; j
++)
7557 hpsa_irq_affinity_hints(h
);
7559 /* Use single reply pool */
7560 if (h
->msix_vector
> 0 || h
->msi_vector
) {
7562 sprintf(h
->intrname
[h
->intr_mode
],
7563 "%s-msix", h
->devname
);
7565 sprintf(h
->intrname
[h
->intr_mode
],
7566 "%s-msi", h
->devname
);
7567 rc
= request_irq(h
->intr
[h
->intr_mode
],
7569 h
->intrname
[h
->intr_mode
],
7570 &h
->q
[h
->intr_mode
]);
7572 sprintf(h
->intrname
[h
->intr_mode
],
7573 "%s-intx", h
->devname
);
7574 rc
= request_irq(h
->intr
[h
->intr_mode
],
7575 intxhandler
, IRQF_SHARED
,
7576 h
->intrname
[h
->intr_mode
],
7577 &h
->q
[h
->intr_mode
]);
7579 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
7582 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7583 h
->intr
[h
->intr_mode
], h
->devname
);
7590 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7593 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7595 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7596 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7598 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7602 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7603 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7605 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
7606 "after soft reset.\n");
7613 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
7617 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7618 if (!h
->reply_queue
[i
].head
)
7620 pci_free_consistent(h
->pdev
,
7621 h
->reply_queue_size
,
7622 h
->reply_queue
[i
].head
,
7623 h
->reply_queue
[i
].busaddr
);
7624 h
->reply_queue
[i
].head
= NULL
;
7625 h
->reply_queue
[i
].busaddr
= 0;
7627 h
->reply_queue_size
= 0;
7630 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
7632 hpsa_free_performant_mode(h
); /* init_one 7 */
7633 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
7634 hpsa_free_cmd_pool(h
); /* init_one 5 */
7635 hpsa_free_irqs(h
); /* init_one 4 */
7636 scsi_host_put(h
->scsi_host
); /* init_one 3 */
7637 h
->scsi_host
= NULL
; /* init_one 3 */
7638 hpsa_free_pci_init(h
); /* init_one 2_5 */
7639 free_percpu(h
->lockup_detected
); /* init_one 2 */
7640 h
->lockup_detected
= NULL
; /* init_one 2 */
7641 if (h
->resubmit_wq
) {
7642 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
7643 h
->resubmit_wq
= NULL
;
7645 if (h
->rescan_ctlr_wq
) {
7646 destroy_workqueue(h
->rescan_ctlr_wq
);
7647 h
->rescan_ctlr_wq
= NULL
;
7649 kfree(h
); /* init_one 1 */
7652 /* Called when controller lockup detected. */
7653 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
7656 struct CommandList
*c
;
7659 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
7660 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7661 c
= h
->cmd_pool
+ i
;
7662 refcount
= atomic_inc_return(&c
->refcount
);
7664 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
7666 atomic_dec(&h
->commands_outstanding
);
7671 dev_warn(&h
->pdev
->dev
,
7672 "failed %d commands in fail_all\n", failcount
);
7675 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
7679 for_each_online_cpu(cpu
) {
7680 u32
*lockup_detected
;
7681 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
7682 *lockup_detected
= value
;
7684 wmb(); /* be sure the per-cpu variables are out to memory */
7687 static void controller_lockup_detected(struct ctlr_info
*h
)
7689 unsigned long flags
;
7690 u32 lockup_detected
;
7692 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7693 spin_lock_irqsave(&h
->lock
, flags
);
7694 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7695 if (!lockup_detected
) {
7696 /* no heartbeat, but controller gave us a zero. */
7697 dev_warn(&h
->pdev
->dev
,
7698 "lockup detected after %d but scratchpad register is zero\n",
7699 h
->heartbeat_sample_interval
/ HZ
);
7700 lockup_detected
= 0xffffffff;
7702 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
7703 spin_unlock_irqrestore(&h
->lock
, flags
);
7704 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
7705 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
7706 pci_disable_device(h
->pdev
);
7707 fail_all_outstanding_cmds(h
);
7710 static int detect_controller_lockup(struct ctlr_info
*h
)
7714 unsigned long flags
;
7716 now
= get_jiffies_64();
7717 /* If we've received an interrupt recently, we're ok. */
7718 if (time_after64(h
->last_intr_timestamp
+
7719 (h
->heartbeat_sample_interval
), now
))
7723 * If we've already checked the heartbeat recently, we're ok.
7724 * This could happen if someone sends us a signal. We
7725 * otherwise don't care about signals in this thread.
7727 if (time_after64(h
->last_heartbeat_timestamp
+
7728 (h
->heartbeat_sample_interval
), now
))
7731 /* If heartbeat has not changed since we last looked, we're not ok. */
7732 spin_lock_irqsave(&h
->lock
, flags
);
7733 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
7734 spin_unlock_irqrestore(&h
->lock
, flags
);
7735 if (h
->last_heartbeat
== heartbeat
) {
7736 controller_lockup_detected(h
);
7741 h
->last_heartbeat
= heartbeat
;
7742 h
->last_heartbeat_timestamp
= now
;
7746 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
7751 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7754 /* Ask the controller to clear the events we're handling. */
7755 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
7756 | CFGTBL_Trans_io_accel2
)) &&
7757 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
7758 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
7760 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
7761 event_type
= "state change";
7762 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
7763 event_type
= "configuration change";
7764 /* Stop sending new RAID offload reqs via the IO accelerator */
7765 scsi_block_requests(h
->scsi_host
);
7766 for (i
= 0; i
< h
->ndevices
; i
++)
7767 h
->dev
[i
]->offload_enabled
= 0;
7768 hpsa_drain_accel_commands(h
);
7769 /* Set 'accelerator path config change' bit */
7770 dev_warn(&h
->pdev
->dev
,
7771 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7772 h
->events
, event_type
);
7773 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7774 /* Set the "clear event notify field update" bit 6 */
7775 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7776 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7777 hpsa_wait_for_clear_event_notify_ack(h
);
7778 scsi_unblock_requests(h
->scsi_host
);
7780 /* Acknowledge controller notification events. */
7781 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7782 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7783 hpsa_wait_for_clear_event_notify_ack(h
);
7785 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7786 hpsa_wait_for_mode_change_ack(h
);
7792 /* Check a register on the controller to see if there are configuration
7793 * changes (added/changed/removed logical drives, etc.) which mean that
7794 * we should rescan the controller for devices.
7795 * Also check flag for driver-initiated rescan.
7797 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
7799 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7802 h
->events
= readl(&(h
->cfgtable
->event_notify
));
7803 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
7807 * Check if any of the offline devices have become ready
7809 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
7811 unsigned long flags
;
7812 struct offline_device_entry
*d
;
7813 struct list_head
*this, *tmp
;
7815 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7816 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
7817 d
= list_entry(this, struct offline_device_entry
,
7819 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7820 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
7821 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7822 list_del(&d
->offline_list
);
7823 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7826 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7828 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7832 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
7834 unsigned long flags
;
7835 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7836 struct ctlr_info
, rescan_ctlr_work
);
7839 if (h
->remove_in_progress
)
7842 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
7843 scsi_host_get(h
->scsi_host
);
7844 hpsa_ack_ctlr_events(h
);
7845 hpsa_scan_start(h
->scsi_host
);
7846 scsi_host_put(h
->scsi_host
);
7848 spin_lock_irqsave(&h
->lock
, flags
);
7849 if (!h
->remove_in_progress
)
7850 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
7851 h
->heartbeat_sample_interval
);
7852 spin_unlock_irqrestore(&h
->lock
, flags
);
7855 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
7857 unsigned long flags
;
7858 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7859 struct ctlr_info
, monitor_ctlr_work
);
7861 detect_controller_lockup(h
);
7862 if (lockup_detected(h
))
7865 spin_lock_irqsave(&h
->lock
, flags
);
7866 if (!h
->remove_in_progress
)
7867 schedule_delayed_work(&h
->monitor_ctlr_work
,
7868 h
->heartbeat_sample_interval
);
7869 spin_unlock_irqrestore(&h
->lock
, flags
);
7872 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
7875 struct workqueue_struct
*wq
= NULL
;
7877 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
7879 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
7884 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7887 struct ctlr_info
*h
;
7888 int try_soft_reset
= 0;
7889 unsigned long flags
;
7892 if (number_of_controllers
== 0)
7893 printk(KERN_INFO DRIVER_NAME
"\n");
7895 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
7897 dev_warn(&pdev
->dev
, "Board ID not found\n");
7901 rc
= hpsa_init_reset_devices(pdev
, board_id
);
7903 if (rc
!= -ENOTSUPP
)
7905 /* If the reset fails in a particular way (it has no way to do
7906 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7907 * a soft reset once we get the controller configured up to the
7908 * point that it can accept a command.
7914 reinit_after_soft_reset
:
7916 /* Command structures must be aligned on a 32-byte boundary because
7917 * the 5 lower bits of the address are used by the hardware. and by
7918 * the driver. See comments in hpsa.h for more info.
7920 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
7921 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
7923 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
7929 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
7930 INIT_LIST_HEAD(&h
->offline_device_list
);
7931 spin_lock_init(&h
->lock
);
7932 spin_lock_init(&h
->offline_device_lock
);
7933 spin_lock_init(&h
->scan_lock
);
7934 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
7935 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
7937 /* Allocate and clear per-cpu variable lockup_detected */
7938 h
->lockup_detected
= alloc_percpu(u32
);
7939 if (!h
->lockup_detected
) {
7940 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
7942 goto clean1
; /* aer/h */
7944 set_lockup_detected_for_all_cpus(h
, 0);
7946 rc
= hpsa_pci_init(h
);
7948 goto clean2
; /* lu, aer/h */
7950 /* relies on h-> settings made by hpsa_pci_init, including
7951 * interrupt_mode h->intr */
7952 rc
= hpsa_scsi_host_alloc(h
);
7954 goto clean2_5
; /* pci, lu, aer/h */
7956 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
7957 h
->ctlr
= number_of_controllers
;
7958 number_of_controllers
++;
7960 /* configure PCI DMA stuff */
7961 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
7965 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
7969 dev_err(&pdev
->dev
, "no suitable DMA available\n");
7970 goto clean3
; /* shost, pci, lu, aer/h */
7974 /* make sure the board interrupts are off */
7975 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7977 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
7979 goto clean3
; /* shost, pci, lu, aer/h */
7980 rc
= hpsa_alloc_cmd_pool(h
);
7982 goto clean4
; /* irq, shost, pci, lu, aer/h */
7983 rc
= hpsa_alloc_sg_chain_blocks(h
);
7985 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
7986 init_waitqueue_head(&h
->scan_wait_queue
);
7987 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
7988 init_waitqueue_head(&h
->event_sync_wait_queue
);
7989 mutex_init(&h
->reset_mutex
);
7990 h
->scan_finished
= 1; /* no scan currently in progress */
7992 pci_set_drvdata(pdev
, h
);
7994 h
->hba_mode_enabled
= 0;
7996 spin_lock_init(&h
->devlock
);
7997 rc
= hpsa_put_ctlr_into_performant_mode(h
);
7999 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8001 /* hook into SCSI subsystem */
8002 rc
= hpsa_scsi_add_host(h
);
8004 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8006 /* create the resubmit workqueue */
8007 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8008 if (!h
->rescan_ctlr_wq
) {
8013 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8014 if (!h
->resubmit_wq
) {
8016 goto clean7
; /* aer/h */
8020 * At this point, the controller is ready to take commands.
8021 * Now, if reset_devices and the hard reset didn't work, try
8022 * the soft reset and see if that works.
8024 if (try_soft_reset
) {
8026 /* This is kind of gross. We may or may not get a completion
8027 * from the soft reset command, and if we do, then the value
8028 * from the fifo may or may not be valid. So, we wait 10 secs
8029 * after the reset throwing away any completions we get during
8030 * that time. Unregister the interrupt handler and register
8031 * fake ones to scoop up any residual completions.
8033 spin_lock_irqsave(&h
->lock
, flags
);
8034 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8035 spin_unlock_irqrestore(&h
->lock
, flags
);
8037 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8038 hpsa_intx_discard_completions
);
8040 dev_warn(&h
->pdev
->dev
,
8041 "Failed to request_irq after soft reset.\n");
8043 * cannot goto clean7 or free_irqs will be called
8044 * again. Instead, do its work
8046 hpsa_free_performant_mode(h
); /* clean7 */
8047 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8048 hpsa_free_cmd_pool(h
); /* clean5 */
8050 * skip hpsa_free_irqs(h) clean4 since that
8051 * was just called before request_irqs failed
8056 rc
= hpsa_kdump_soft_reset(h
);
8058 /* Neither hard nor soft reset worked, we're hosed. */
8061 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8062 dev_info(&h
->pdev
->dev
,
8063 "Waiting for stale completions to drain.\n");
8064 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8066 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8068 rc
= controller_reset_failed(h
->cfgtable
);
8070 dev_info(&h
->pdev
->dev
,
8071 "Soft reset appears to have failed.\n");
8073 /* since the controller's reset, we have to go back and re-init
8074 * everything. Easiest to just forget what we've done and do it
8077 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8080 /* don't goto clean, we already unallocated */
8083 goto reinit_after_soft_reset
;
8086 /* Enable Accelerated IO path at driver layer */
8087 h
->acciopath_status
= 1;
8090 /* Turn the interrupts on so we can service requests */
8091 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8093 hpsa_hba_inquiry(h
);
8095 /* Monitor the controller for firmware lockups */
8096 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8097 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8098 schedule_delayed_work(&h
->monitor_ctlr_work
,
8099 h
->heartbeat_sample_interval
);
8100 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8101 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8102 h
->heartbeat_sample_interval
);
8105 clean9
: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8106 kfree(h
->hba_inquiry_data
);
8107 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8108 hpsa_free_performant_mode(h
);
8109 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8110 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8111 hpsa_free_sg_chain_blocks(h
);
8112 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8113 hpsa_free_cmd_pool(h
);
8114 clean4
: /* irq, shost, pci, lu, aer/h */
8116 clean3
: /* shost, pci, lu, aer/h */
8117 scsi_host_put(h
->scsi_host
);
8118 h
->scsi_host
= NULL
;
8119 clean2_5
: /* pci, lu, aer/h */
8120 hpsa_free_pci_init(h
);
8121 clean2
: /* lu, aer/h */
8122 if (h
->lockup_detected
) {
8123 free_percpu(h
->lockup_detected
);
8124 h
->lockup_detected
= NULL
;
8126 clean1
: /* wq/aer/h */
8127 if (h
->resubmit_wq
) {
8128 destroy_workqueue(h
->resubmit_wq
);
8129 h
->resubmit_wq
= NULL
;
8131 if (h
->rescan_ctlr_wq
) {
8132 destroy_workqueue(h
->rescan_ctlr_wq
);
8133 h
->rescan_ctlr_wq
= NULL
;
8139 static void hpsa_flush_cache(struct ctlr_info
*h
)
8142 struct CommandList
*c
;
8145 if (unlikely(lockup_detected(h
)))
8147 flush_buf
= kzalloc(4, GFP_KERNEL
);
8153 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8154 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8157 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8158 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8161 if (c
->err_info
->CommandStatus
!= 0)
8163 dev_warn(&h
->pdev
->dev
,
8164 "error flushing cache on controller\n");
8169 static void hpsa_shutdown(struct pci_dev
*pdev
)
8171 struct ctlr_info
*h
;
8173 h
= pci_get_drvdata(pdev
);
8174 /* Turn board interrupts off and send the flush cache command
8175 * sendcmd will turn off interrupt, and send the flush...
8176 * To write all data in the battery backed cache to disks
8178 hpsa_flush_cache(h
);
8179 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8180 hpsa_free_irqs(h
); /* init_one 4 */
8181 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8184 static void hpsa_free_device_info(struct ctlr_info
*h
)
8188 for (i
= 0; i
< h
->ndevices
; i
++) {
8194 static void hpsa_remove_one(struct pci_dev
*pdev
)
8196 struct ctlr_info
*h
;
8197 unsigned long flags
;
8199 if (pci_get_drvdata(pdev
) == NULL
) {
8200 dev_err(&pdev
->dev
, "unable to remove device\n");
8203 h
= pci_get_drvdata(pdev
);
8205 /* Get rid of any controller monitoring work items */
8206 spin_lock_irqsave(&h
->lock
, flags
);
8207 h
->remove_in_progress
= 1;
8208 spin_unlock_irqrestore(&h
->lock
, flags
);
8209 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8210 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8211 destroy_workqueue(h
->rescan_ctlr_wq
);
8212 destroy_workqueue(h
->resubmit_wq
);
8214 /* includes hpsa_free_irqs - init_one 4 */
8215 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8216 hpsa_shutdown(pdev
);
8218 hpsa_free_device_info(h
); /* scan */
8220 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8221 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8223 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8224 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8225 hpsa_free_performant_mode(h
); /* init_one 7 */
8226 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8227 hpsa_free_cmd_pool(h
); /* init_one 5 */
8229 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8231 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8232 h
->scsi_host
= NULL
; /* init_one 3 */
8234 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8235 hpsa_free_pci_init(h
); /* init_one 2.5 */
8237 free_percpu(h
->lockup_detected
); /* init_one 2 */
8238 h
->lockup_detected
= NULL
; /* init_one 2 */
8239 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8240 kfree(h
); /* init_one 1 */
8243 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8244 __attribute__((unused
)) pm_message_t state
)
8249 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8254 static struct pci_driver hpsa_pci_driver
= {
8256 .probe
= hpsa_init_one
,
8257 .remove
= hpsa_remove_one
,
8258 .id_table
= hpsa_pci_device_id
, /* id_table */
8259 .shutdown
= hpsa_shutdown
,
8260 .suspend
= hpsa_suspend
,
8261 .resume
= hpsa_resume
,
8264 /* Fill in bucket_map[], given nsgs (the max number of
8265 * scatter gather elements supported) and bucket[],
8266 * which is an array of 8 integers. The bucket[] array
8267 * contains 8 different DMA transfer sizes (in 16
8268 * byte increments) which the controller uses to fetch
8269 * commands. This function fills in bucket_map[], which
8270 * maps a given number of scatter gather elements to one of
8271 * the 8 DMA transfer sizes. The point of it is to allow the
8272 * controller to only do as much DMA as needed to fetch the
8273 * command, with the DMA transfer size encoded in the lower
8274 * bits of the command address.
8276 static void calc_bucket_map(int bucket
[], int num_buckets
,
8277 int nsgs
, int min_blocks
, u32
*bucket_map
)
8281 /* Note, bucket_map must have nsgs+1 entries. */
8282 for (i
= 0; i
<= nsgs
; i
++) {
8283 /* Compute size of a command with i SG entries */
8284 size
= i
+ min_blocks
;
8285 b
= num_buckets
; /* Assume the biggest bucket */
8286 /* Find the bucket that is just big enough */
8287 for (j
= 0; j
< num_buckets
; j
++) {
8288 if (bucket
[j
] >= size
) {
8293 /* for a command with i SG entries, use bucket b. */
8299 * return -ENODEV on err, 0 on success (or no action)
8300 * allocates numerous items that must be freed later
8302 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8305 unsigned long register_value
;
8306 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8307 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8308 CFGTBL_Trans_enable_directed_msix
|
8309 (trans_support
& (CFGTBL_Trans_io_accel1
|
8310 CFGTBL_Trans_io_accel2
));
8311 struct access_method access
= SA5_performant_access
;
8313 /* This is a bit complicated. There are 8 registers on
8314 * the controller which we write to to tell it 8 different
8315 * sizes of commands which there may be. It's a way of
8316 * reducing the DMA done to fetch each command. Encoded into
8317 * each command's tag are 3 bits which communicate to the controller
8318 * which of the eight sizes that command fits within. The size of
8319 * each command depends on how many scatter gather entries there are.
8320 * Each SG entry requires 16 bytes. The eight registers are programmed
8321 * with the number of 16-byte blocks a command of that size requires.
8322 * The smallest command possible requires 5 such 16 byte blocks.
8323 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8324 * blocks. Note, this only extends to the SG entries contained
8325 * within the command block, and does not extend to chained blocks
8326 * of SG elements. bft[] contains the eight values we write to
8327 * the registers. They are not evenly distributed, but have more
8328 * sizes for small commands, and fewer sizes for larger commands.
8330 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8331 #define MIN_IOACCEL2_BFT_ENTRY 5
8332 #define HPSA_IOACCEL2_HEADER_SZ 4
8333 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8334 13, 14, 15, 16, 17, 18, 19,
8335 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8336 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8337 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8338 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8339 16 * MIN_IOACCEL2_BFT_ENTRY
);
8340 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8341 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8342 /* 5 = 1 s/g entry or 4k
8343 * 6 = 2 s/g entry or 8k
8344 * 8 = 4 s/g entry or 16k
8345 * 10 = 6 s/g entry or 24k
8348 /* If the controller supports either ioaccel method then
8349 * we can also use the RAID stack submit path that does not
8350 * perform the superfluous readl() after each command submission.
8352 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8353 access
= SA5_performant_access_no_read
;
8355 /* Controller spec: zero out this buffer. */
8356 for (i
= 0; i
< h
->nreply_queues
; i
++)
8357 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8359 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8360 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8361 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8362 for (i
= 0; i
< 8; i
++)
8363 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8365 /* size of controller ring buffer */
8366 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8367 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8368 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8369 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8371 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8372 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8373 writel(h
->reply_queue
[i
].busaddr
,
8374 &h
->transtable
->RepQAddr
[i
].lower
);
8377 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8378 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8380 * enable outbound interrupt coalescing in accelerator mode;
8382 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8383 access
= SA5_ioaccel_mode1_access
;
8384 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8385 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8387 if (trans_support
& CFGTBL_Trans_io_accel2
) {
8388 access
= SA5_ioaccel_mode2_access
;
8389 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8390 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8393 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8394 if (hpsa_wait_for_mode_change_ack(h
)) {
8395 dev_err(&h
->pdev
->dev
,
8396 "performant mode problem - doorbell timeout\n");
8399 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8400 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8401 dev_err(&h
->pdev
->dev
,
8402 "performant mode problem - transport not active\n");
8405 /* Change the access methods to the performant access methods */
8407 h
->transMethod
= transMethod
;
8409 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8410 (trans_support
& CFGTBL_Trans_io_accel2
)))
8413 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8414 /* Set up I/O accelerator mode */
8415 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8416 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8417 h
->reply_queue
[i
].current_entry
=
8418 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8420 bft
[7] = h
->ioaccel_maxsg
+ 8;
8421 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8422 h
->ioaccel1_blockFetchTable
);
8424 /* initialize all reply queue entries to unused */
8425 for (i
= 0; i
< h
->nreply_queues
; i
++)
8426 memset(h
->reply_queue
[i
].head
,
8427 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8428 h
->reply_queue_size
);
8430 /* set all the constant fields in the accelerator command
8431 * frames once at init time to save CPU cycles later.
8433 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8434 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8436 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8437 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8438 (i
* sizeof(struct ErrorInfo
)));
8439 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8440 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8441 cp
->host_context_flags
=
8442 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8443 cp
->timeout_sec
= 0;
8446 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8448 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8449 (i
* sizeof(struct io_accel1_cmd
)));
8451 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8452 u64 cfg_offset
, cfg_base_addr_index
;
8453 u32 bft2_offset
, cfg_base_addr
;
8456 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8457 &cfg_base_addr_index
, &cfg_offset
);
8458 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8459 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8460 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8461 4, h
->ioaccel2_blockFetchTable
);
8462 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8463 BUILD_BUG_ON(offsetof(struct CfgTable
,
8464 io_accel_request_size_offset
) != 0xb8);
8465 h
->ioaccel2_bft2_regs
=
8466 remap_pci_mem(pci_resource_start(h
->pdev
,
8467 cfg_base_addr_index
) +
8468 cfg_offset
+ bft2_offset
,
8470 sizeof(*h
->ioaccel2_bft2_regs
));
8471 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8472 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
8474 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8475 if (hpsa_wait_for_mode_change_ack(h
)) {
8476 dev_err(&h
->pdev
->dev
,
8477 "performant mode problem - enabling ioaccel mode\n");
8483 /* Free ioaccel1 mode command blocks and block fetch table */
8484 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8486 if (h
->ioaccel_cmd_pool
) {
8487 pci_free_consistent(h
->pdev
,
8488 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8489 h
->ioaccel_cmd_pool
,
8490 h
->ioaccel_cmd_pool_dhandle
);
8491 h
->ioaccel_cmd_pool
= NULL
;
8492 h
->ioaccel_cmd_pool_dhandle
= 0;
8494 kfree(h
->ioaccel1_blockFetchTable
);
8495 h
->ioaccel1_blockFetchTable
= NULL
;
8498 /* Allocate ioaccel1 mode command blocks and block fetch table */
8499 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8502 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8503 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
8504 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
8506 /* Command structures must be aligned on a 128-byte boundary
8507 * because the 7 lower bits of the address are used by the
8510 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
8511 IOACCEL1_COMMANDLIST_ALIGNMENT
);
8512 h
->ioaccel_cmd_pool
=
8513 pci_alloc_consistent(h
->pdev
,
8514 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8515 &(h
->ioaccel_cmd_pool_dhandle
));
8517 h
->ioaccel1_blockFetchTable
=
8518 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8519 sizeof(u32
)), GFP_KERNEL
);
8521 if ((h
->ioaccel_cmd_pool
== NULL
) ||
8522 (h
->ioaccel1_blockFetchTable
== NULL
))
8525 memset(h
->ioaccel_cmd_pool
, 0,
8526 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
8530 hpsa_free_ioaccel1_cmd_and_bft(h
);
8534 /* Free ioaccel2 mode command blocks and block fetch table */
8535 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8537 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8539 if (h
->ioaccel2_cmd_pool
) {
8540 pci_free_consistent(h
->pdev
,
8541 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8542 h
->ioaccel2_cmd_pool
,
8543 h
->ioaccel2_cmd_pool_dhandle
);
8544 h
->ioaccel2_cmd_pool
= NULL
;
8545 h
->ioaccel2_cmd_pool_dhandle
= 0;
8547 kfree(h
->ioaccel2_blockFetchTable
);
8548 h
->ioaccel2_blockFetchTable
= NULL
;
8551 /* Allocate ioaccel2 mode command blocks and block fetch table */
8552 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8556 /* Allocate ioaccel2 mode command blocks and block fetch table */
8559 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8560 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
8561 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
8563 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
8564 IOACCEL2_COMMANDLIST_ALIGNMENT
);
8565 h
->ioaccel2_cmd_pool
=
8566 pci_alloc_consistent(h
->pdev
,
8567 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8568 &(h
->ioaccel2_cmd_pool_dhandle
));
8570 h
->ioaccel2_blockFetchTable
=
8571 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8572 sizeof(u32
)), GFP_KERNEL
);
8574 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
8575 (h
->ioaccel2_blockFetchTable
== NULL
)) {
8580 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
8584 memset(h
->ioaccel2_cmd_pool
, 0,
8585 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
8589 hpsa_free_ioaccel2_cmd_and_bft(h
);
8593 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8594 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
8596 kfree(h
->blockFetchTable
);
8597 h
->blockFetchTable
= NULL
;
8598 hpsa_free_reply_queues(h
);
8599 hpsa_free_ioaccel1_cmd_and_bft(h
);
8600 hpsa_free_ioaccel2_cmd_and_bft(h
);
8603 /* return -ENODEV on error, 0 on success (or no action)
8604 * allocates numerous items that must be freed later
8606 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
8609 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8610 CFGTBL_Trans_use_short_tags
;
8613 if (hpsa_simple_mode
)
8616 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
8617 if (!(trans_support
& PERFORMANT_MODE
))
8620 /* Check for I/O accelerator mode support */
8621 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8622 transMethod
|= CFGTBL_Trans_io_accel1
|
8623 CFGTBL_Trans_enable_directed_msix
;
8624 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
8627 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8628 transMethod
|= CFGTBL_Trans_io_accel2
|
8629 CFGTBL_Trans_enable_directed_msix
;
8630 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
8635 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
8636 hpsa_get_max_perf_mode_cmds(h
);
8637 /* Performant mode ring buffer and supporting data structures */
8638 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
8640 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8641 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
8642 h
->reply_queue_size
,
8643 &(h
->reply_queue
[i
].busaddr
));
8644 if (!h
->reply_queue
[i
].head
) {
8646 goto clean1
; /* rq, ioaccel */
8648 h
->reply_queue
[i
].size
= h
->max_commands
;
8649 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
8650 h
->reply_queue
[i
].current_entry
= 0;
8653 /* Need a block fetch table for performant mode */
8654 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
8655 sizeof(u32
)), GFP_KERNEL
);
8656 if (!h
->blockFetchTable
) {
8658 goto clean1
; /* rq, ioaccel */
8661 rc
= hpsa_enter_performant_mode(h
, trans_support
);
8663 goto clean2
; /* bft, rq, ioaccel */
8666 clean2
: /* bft, rq, ioaccel */
8667 kfree(h
->blockFetchTable
);
8668 h
->blockFetchTable
= NULL
;
8669 clean1
: /* rq, ioaccel */
8670 hpsa_free_reply_queues(h
);
8671 hpsa_free_ioaccel1_cmd_and_bft(h
);
8672 hpsa_free_ioaccel2_cmd_and_bft(h
);
8676 static int is_accelerated_cmd(struct CommandList
*c
)
8678 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
8681 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
8683 struct CommandList
*c
= NULL
;
8684 int i
, accel_cmds_out
;
8687 do { /* wait for all outstanding ioaccel commands to drain out */
8689 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8690 c
= h
->cmd_pool
+ i
;
8691 refcount
= atomic_inc_return(&c
->refcount
);
8692 if (refcount
> 1) /* Command is allocated */
8693 accel_cmds_out
+= is_accelerated_cmd(c
);
8696 if (accel_cmds_out
<= 0)
8703 * This is it. Register the PCI driver information for the cards we control
8704 * the OS will call our registered routines when it finds one of our cards.
8706 static int __init
hpsa_init(void)
8708 return pci_register_driver(&hpsa_pci_driver
);
8711 static void __exit
hpsa_cleanup(void)
8713 pci_unregister_driver(&hpsa_pci_driver
);
8716 static void __attribute__((unused
)) verify_offsets(void)
8718 #define VERIFY_OFFSET(member, offset) \
8719 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8721 VERIFY_OFFSET(structure_size
, 0);
8722 VERIFY_OFFSET(volume_blk_size
, 4);
8723 VERIFY_OFFSET(volume_blk_cnt
, 8);
8724 VERIFY_OFFSET(phys_blk_shift
, 16);
8725 VERIFY_OFFSET(parity_rotation_shift
, 17);
8726 VERIFY_OFFSET(strip_size
, 18);
8727 VERIFY_OFFSET(disk_starting_blk
, 20);
8728 VERIFY_OFFSET(disk_blk_cnt
, 28);
8729 VERIFY_OFFSET(data_disks_per_row
, 36);
8730 VERIFY_OFFSET(metadata_disks_per_row
, 38);
8731 VERIFY_OFFSET(row_cnt
, 40);
8732 VERIFY_OFFSET(layout_map_count
, 42);
8733 VERIFY_OFFSET(flags
, 44);
8734 VERIFY_OFFSET(dekindex
, 46);
8735 /* VERIFY_OFFSET(reserved, 48 */
8736 VERIFY_OFFSET(data
, 64);
8738 #undef VERIFY_OFFSET
8740 #define VERIFY_OFFSET(member, offset) \
8741 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8743 VERIFY_OFFSET(IU_type
, 0);
8744 VERIFY_OFFSET(direction
, 1);
8745 VERIFY_OFFSET(reply_queue
, 2);
8746 /* VERIFY_OFFSET(reserved1, 3); */
8747 VERIFY_OFFSET(scsi_nexus
, 4);
8748 VERIFY_OFFSET(Tag
, 8);
8749 VERIFY_OFFSET(cdb
, 16);
8750 VERIFY_OFFSET(cciss_lun
, 32);
8751 VERIFY_OFFSET(data_len
, 40);
8752 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
8753 VERIFY_OFFSET(sg_count
, 45);
8754 /* VERIFY_OFFSET(reserved3 */
8755 VERIFY_OFFSET(err_ptr
, 48);
8756 VERIFY_OFFSET(err_len
, 56);
8757 /* VERIFY_OFFSET(reserved4 */
8758 VERIFY_OFFSET(sg
, 64);
8760 #undef VERIFY_OFFSET
8762 #define VERIFY_OFFSET(member, offset) \
8763 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8765 VERIFY_OFFSET(dev_handle
, 0x00);
8766 VERIFY_OFFSET(reserved1
, 0x02);
8767 VERIFY_OFFSET(function
, 0x03);
8768 VERIFY_OFFSET(reserved2
, 0x04);
8769 VERIFY_OFFSET(err_info
, 0x0C);
8770 VERIFY_OFFSET(reserved3
, 0x10);
8771 VERIFY_OFFSET(err_info_len
, 0x12);
8772 VERIFY_OFFSET(reserved4
, 0x13);
8773 VERIFY_OFFSET(sgl_offset
, 0x14);
8774 VERIFY_OFFSET(reserved5
, 0x15);
8775 VERIFY_OFFSET(transfer_len
, 0x1C);
8776 VERIFY_OFFSET(reserved6
, 0x20);
8777 VERIFY_OFFSET(io_flags
, 0x24);
8778 VERIFY_OFFSET(reserved7
, 0x26);
8779 VERIFY_OFFSET(LUN
, 0x34);
8780 VERIFY_OFFSET(control
, 0x3C);
8781 VERIFY_OFFSET(CDB
, 0x40);
8782 VERIFY_OFFSET(reserved8
, 0x50);
8783 VERIFY_OFFSET(host_context_flags
, 0x60);
8784 VERIFY_OFFSET(timeout_sec
, 0x62);
8785 VERIFY_OFFSET(ReplyQueue
, 0x64);
8786 VERIFY_OFFSET(reserved9
, 0x65);
8787 VERIFY_OFFSET(tag
, 0x68);
8788 VERIFY_OFFSET(host_addr
, 0x70);
8789 VERIFY_OFFSET(CISS_LUN
, 0x78);
8790 VERIFY_OFFSET(SG
, 0x78 + 8);
8791 #undef VERIFY_OFFSET
8794 module_init(hpsa_init
);
8795 module_exit(hpsa_cleanup
);