hpsa: Correct double unlock of mutex
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blobcb11421f9cb83ec598e168620c36fc2a61cf560a
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <scsi/scsi_eh.h>
47 #include <scsi/scsi_dbg.h>
48 #include <linux/cciss_ioctl.h>
49 #include <linux/string.h>
50 #include <linux/bitmap.h>
51 #include <linux/atomic.h>
52 #include <linux/jiffies.h>
53 #include <linux/percpu-defs.h>
54 #include <linux/percpu.h>
55 #include <asm/unaligned.h>
56 #include <asm/div64.h>
57 #include "hpsa_cmd.h"
58 #include "hpsa.h"
60 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
61 #define HPSA_DRIVER_VERSION "3.4.10-0"
62 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63 #define HPSA "hpsa"
65 /* How long to wait for CISS doorbell communication */
66 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
67 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
68 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
69 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
70 #define MAX_IOCTL_CONFIG_WAIT 1000
72 /*define how many times we will try a command because of bus resets */
73 #define MAX_CMD_RETRIES 3
75 /* Embedded module documentation macros - see modules.h */
76 MODULE_AUTHOR("Hewlett-Packard Company");
77 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
78 HPSA_DRIVER_VERSION);
79 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
80 MODULE_VERSION(HPSA_DRIVER_VERSION);
81 MODULE_LICENSE("GPL");
83 static int hpsa_allow_any;
84 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
85 MODULE_PARM_DESC(hpsa_allow_any,
86 "Allow hpsa driver to access unknown HP Smart Array hardware");
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
134 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
135 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
136 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
137 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
138 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
139 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
140 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
141 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
142 {0,}
145 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
147 /* board_id = Subsystem Device ID & Vendor ID
148 * product = Marketing Name for the board
149 * access = Address of the struct of function pointers
151 static struct board_type products[] = {
152 {0x3241103C, "Smart Array P212", &SA5_access},
153 {0x3243103C, "Smart Array P410", &SA5_access},
154 {0x3245103C, "Smart Array P410i", &SA5_access},
155 {0x3247103C, "Smart Array P411", &SA5_access},
156 {0x3249103C, "Smart Array P812", &SA5_access},
157 {0x324A103C, "Smart Array P712m", &SA5_access},
158 {0x324B103C, "Smart Array P711m", &SA5_access},
159 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
160 {0x3350103C, "Smart Array P222", &SA5_access},
161 {0x3351103C, "Smart Array P420", &SA5_access},
162 {0x3352103C, "Smart Array P421", &SA5_access},
163 {0x3353103C, "Smart Array P822", &SA5_access},
164 {0x3354103C, "Smart Array P420i", &SA5_access},
165 {0x3355103C, "Smart Array P220i", &SA5_access},
166 {0x3356103C, "Smart Array P721m", &SA5_access},
167 {0x1921103C, "Smart Array P830i", &SA5_access},
168 {0x1922103C, "Smart Array P430", &SA5_access},
169 {0x1923103C, "Smart Array P431", &SA5_access},
170 {0x1924103C, "Smart Array P830", &SA5_access},
171 {0x1926103C, "Smart Array P731m", &SA5_access},
172 {0x1928103C, "Smart Array P230i", &SA5_access},
173 {0x1929103C, "Smart Array P530", &SA5_access},
174 {0x21BD103C, "Smart Array P244br", &SA5_access},
175 {0x21BE103C, "Smart Array P741m", &SA5_access},
176 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
177 {0x21C0103C, "Smart Array P440ar", &SA5_access},
178 {0x21C1103C, "Smart Array P840ar", &SA5_access},
179 {0x21C2103C, "Smart Array P440", &SA5_access},
180 {0x21C3103C, "Smart Array P441", &SA5_access},
181 {0x21C4103C, "Smart Array", &SA5_access},
182 {0x21C5103C, "Smart Array P841", &SA5_access},
183 {0x21C6103C, "Smart HBA H244br", &SA5_access},
184 {0x21C7103C, "Smart HBA H240", &SA5_access},
185 {0x21C8103C, "Smart HBA H241", &SA5_access},
186 {0x21C9103C, "Smart Array", &SA5_access},
187 {0x21CA103C, "Smart Array P246br", &SA5_access},
188 {0x21CB103C, "Smart Array P840", &SA5_access},
189 {0x21CC103C, "Smart Array", &SA5_access},
190 {0x21CD103C, "Smart Array", &SA5_access},
191 {0x21CE103C, "Smart HBA", &SA5_access},
192 {0x05809005, "SmartHBA-SA", &SA5_access},
193 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
194 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
195 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
196 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
197 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
198 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
201 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
202 static const struct scsi_cmnd hpsa_cmd_busy;
203 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
204 static const struct scsi_cmnd hpsa_cmd_idle;
205 static int number_of_controllers;
207 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
208 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
209 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
211 #ifdef CONFIG_COMPAT
212 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
213 void __user *arg);
214 #endif
216 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
217 static struct CommandList *cmd_alloc(struct ctlr_info *h);
218 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
219 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
220 struct scsi_cmnd *scmd);
221 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
222 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
223 int cmd_type);
224 static void hpsa_free_cmd_pool(struct ctlr_info *h);
225 #define VPD_PAGE (1 << 8)
227 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
228 static void hpsa_scan_start(struct Scsi_Host *);
229 static int hpsa_scan_finished(struct Scsi_Host *sh,
230 unsigned long elapsed_time);
231 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
233 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
234 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
235 static int hpsa_slave_alloc(struct scsi_device *sdev);
236 static int hpsa_slave_configure(struct scsi_device *sdev);
237 static void hpsa_slave_destroy(struct scsi_device *sdev);
239 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
240 static int check_for_unit_attention(struct ctlr_info *h,
241 struct CommandList *c);
242 static void check_ioctl_unit_attention(struct ctlr_info *h,
243 struct CommandList *c);
244 /* performant mode helper functions */
245 static void calc_bucket_map(int *bucket, int num_buckets,
246 int nsgs, int min_blocks, u32 *bucket_map);
247 static void hpsa_free_performant_mode(struct ctlr_info *h);
248 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
249 static inline u32 next_command(struct ctlr_info *h, u8 q);
250 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
251 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
252 u64 *cfg_offset);
253 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
254 unsigned long *memory_bar);
255 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
256 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
257 int wait_for_ready);
258 static inline void finish_cmd(struct CommandList *c);
259 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
260 #define BOARD_NOT_READY 0
261 #define BOARD_READY 1
262 static void hpsa_drain_accel_commands(struct ctlr_info *h);
263 static void hpsa_flush_cache(struct ctlr_info *h);
264 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
265 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
266 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
267 static void hpsa_command_resubmit_worker(struct work_struct *work);
268 static u32 lockup_detected(struct ctlr_info *h);
269 static int detect_controller_lockup(struct ctlr_info *h);
271 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
273 unsigned long *priv = shost_priv(sdev->host);
274 return (struct ctlr_info *) *priv;
277 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
279 unsigned long *priv = shost_priv(sh);
280 return (struct ctlr_info *) *priv;
283 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
285 return c->scsi_cmd == SCSI_CMD_IDLE;
288 static inline bool hpsa_is_pending_event(struct CommandList *c)
290 return c->abort_pending || c->reset_pending;
293 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
294 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
295 u8 *sense_key, u8 *asc, u8 *ascq)
297 struct scsi_sense_hdr sshdr;
298 bool rc;
300 *sense_key = -1;
301 *asc = -1;
302 *ascq = -1;
304 if (sense_data_len < 1)
305 return;
307 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
308 if (rc) {
309 *sense_key = sshdr.sense_key;
310 *asc = sshdr.asc;
311 *ascq = sshdr.ascq;
315 static int check_for_unit_attention(struct ctlr_info *h,
316 struct CommandList *c)
318 u8 sense_key, asc, ascq;
319 int sense_len;
321 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
322 sense_len = sizeof(c->err_info->SenseInfo);
323 else
324 sense_len = c->err_info->SenseLen;
326 decode_sense_data(c->err_info->SenseInfo, sense_len,
327 &sense_key, &asc, &ascq);
328 if (sense_key != UNIT_ATTENTION || asc == -1)
329 return 0;
331 switch (asc) {
332 case STATE_CHANGED:
333 dev_warn(&h->pdev->dev,
334 "%s: a state change detected, command retried\n",
335 h->devname);
336 break;
337 case LUN_FAILED:
338 dev_warn(&h->pdev->dev,
339 "%s: LUN failure detected\n", h->devname);
340 break;
341 case REPORT_LUNS_CHANGED:
342 dev_warn(&h->pdev->dev,
343 "%s: report LUN data changed\n", h->devname);
345 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
346 * target (array) devices.
348 break;
349 case POWER_OR_RESET:
350 dev_warn(&h->pdev->dev,
351 "%s: a power on or device reset detected\n",
352 h->devname);
353 break;
354 case UNIT_ATTENTION_CLEARED:
355 dev_warn(&h->pdev->dev,
356 "%s: unit attention cleared by another initiator\n",
357 h->devname);
358 break;
359 default:
360 dev_warn(&h->pdev->dev,
361 "%s: unknown unit attention detected\n",
362 h->devname);
363 break;
365 return 1;
368 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
370 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
371 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
372 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
373 return 0;
374 dev_warn(&h->pdev->dev, HPSA "device busy");
375 return 1;
378 static u32 lockup_detected(struct ctlr_info *h);
379 static ssize_t host_show_lockup_detected(struct device *dev,
380 struct device_attribute *attr, char *buf)
382 int ld;
383 struct ctlr_info *h;
384 struct Scsi_Host *shost = class_to_shost(dev);
386 h = shost_to_hba(shost);
387 ld = lockup_detected(h);
389 return sprintf(buf, "ld=%d\n", ld);
392 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
393 struct device_attribute *attr,
394 const char *buf, size_t count)
396 int status, len;
397 struct ctlr_info *h;
398 struct Scsi_Host *shost = class_to_shost(dev);
399 char tmpbuf[10];
401 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
402 return -EACCES;
403 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
404 strncpy(tmpbuf, buf, len);
405 tmpbuf[len] = '\0';
406 if (sscanf(tmpbuf, "%d", &status) != 1)
407 return -EINVAL;
408 h = shost_to_hba(shost);
409 h->acciopath_status = !!status;
410 dev_warn(&h->pdev->dev,
411 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
412 h->acciopath_status ? "enabled" : "disabled");
413 return count;
416 static ssize_t host_store_raid_offload_debug(struct device *dev,
417 struct device_attribute *attr,
418 const char *buf, size_t count)
420 int debug_level, len;
421 struct ctlr_info *h;
422 struct Scsi_Host *shost = class_to_shost(dev);
423 char tmpbuf[10];
425 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
426 return -EACCES;
427 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
428 strncpy(tmpbuf, buf, len);
429 tmpbuf[len] = '\0';
430 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
431 return -EINVAL;
432 if (debug_level < 0)
433 debug_level = 0;
434 h = shost_to_hba(shost);
435 h->raid_offload_debug = debug_level;
436 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
437 h->raid_offload_debug);
438 return count;
441 static ssize_t host_store_rescan(struct device *dev,
442 struct device_attribute *attr,
443 const char *buf, size_t count)
445 struct ctlr_info *h;
446 struct Scsi_Host *shost = class_to_shost(dev);
447 h = shost_to_hba(shost);
448 hpsa_scan_start(h->scsi_host);
449 return count;
452 static ssize_t host_show_firmware_revision(struct device *dev,
453 struct device_attribute *attr, char *buf)
455 struct ctlr_info *h;
456 struct Scsi_Host *shost = class_to_shost(dev);
457 unsigned char *fwrev;
459 h = shost_to_hba(shost);
460 if (!h->hba_inquiry_data)
461 return 0;
462 fwrev = &h->hba_inquiry_data[32];
463 return snprintf(buf, 20, "%c%c%c%c\n",
464 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
467 static ssize_t host_show_commands_outstanding(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct Scsi_Host *shost = class_to_shost(dev);
471 struct ctlr_info *h = shost_to_hba(shost);
473 return snprintf(buf, 20, "%d\n",
474 atomic_read(&h->commands_outstanding));
477 static ssize_t host_show_transport_mode(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
483 h = shost_to_hba(shost);
484 return snprintf(buf, 20, "%s\n",
485 h->transMethod & CFGTBL_Trans_Performant ?
486 "performant" : "simple");
489 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
490 struct device_attribute *attr, char *buf)
492 struct ctlr_info *h;
493 struct Scsi_Host *shost = class_to_shost(dev);
495 h = shost_to_hba(shost);
496 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
497 (h->acciopath_status == 1) ? "enabled" : "disabled");
500 /* List of controllers which cannot be hard reset on kexec with reset_devices */
501 static u32 unresettable_controller[] = {
502 0x324a103C, /* Smart Array P712m */
503 0x324b103C, /* Smart Array P711m */
504 0x3223103C, /* Smart Array P800 */
505 0x3234103C, /* Smart Array P400 */
506 0x3235103C, /* Smart Array P400i */
507 0x3211103C, /* Smart Array E200i */
508 0x3212103C, /* Smart Array E200 */
509 0x3213103C, /* Smart Array E200i */
510 0x3214103C, /* Smart Array E200i */
511 0x3215103C, /* Smart Array E200i */
512 0x3237103C, /* Smart Array E500 */
513 0x323D103C, /* Smart Array P700m */
514 0x40800E11, /* Smart Array 5i */
515 0x409C0E11, /* Smart Array 6400 */
516 0x409D0E11, /* Smart Array 6400 EM */
517 0x40700E11, /* Smart Array 5300 */
518 0x40820E11, /* Smart Array 532 */
519 0x40830E11, /* Smart Array 5312 */
520 0x409A0E11, /* Smart Array 641 */
521 0x409B0E11, /* Smart Array 642 */
522 0x40910E11, /* Smart Array 6i */
525 /* List of controllers which cannot even be soft reset */
526 static u32 soft_unresettable_controller[] = {
527 0x40800E11, /* Smart Array 5i */
528 0x40700E11, /* Smart Array 5300 */
529 0x40820E11, /* Smart Array 532 */
530 0x40830E11, /* Smart Array 5312 */
531 0x409A0E11, /* Smart Array 641 */
532 0x409B0E11, /* Smart Array 642 */
533 0x40910E11, /* Smart Array 6i */
534 /* Exclude 640x boards. These are two pci devices in one slot
535 * which share a battery backed cache module. One controls the
536 * cache, the other accesses the cache through the one that controls
537 * it. If we reset the one controlling the cache, the other will
538 * likely not be happy. Just forbid resetting this conjoined mess.
539 * The 640x isn't really supported by hpsa anyway.
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
545 static u32 needs_abort_tags_swizzled[] = {
546 0x323D103C, /* Smart Array P700m */
547 0x324a103C, /* Smart Array P712m */
548 0x324b103C, /* SmartArray P711m */
551 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
553 int i;
555 for (i = 0; i < nelems; i++)
556 if (a[i] == board_id)
557 return 1;
558 return 0;
561 static int ctlr_is_hard_resettable(u32 board_id)
563 return !board_id_in_array(unresettable_controller,
564 ARRAY_SIZE(unresettable_controller), board_id);
567 static int ctlr_is_soft_resettable(u32 board_id)
569 return !board_id_in_array(soft_unresettable_controller,
570 ARRAY_SIZE(soft_unresettable_controller), board_id);
573 static int ctlr_is_resettable(u32 board_id)
575 return ctlr_is_hard_resettable(board_id) ||
576 ctlr_is_soft_resettable(board_id);
579 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
581 return board_id_in_array(needs_abort_tags_swizzled,
582 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
585 static ssize_t host_show_resettable(struct device *dev,
586 struct device_attribute *attr, char *buf)
588 struct ctlr_info *h;
589 struct Scsi_Host *shost = class_to_shost(dev);
591 h = shost_to_hba(shost);
592 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
595 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
597 return (scsi3addr[3] & 0xC0) == 0x40;
600 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
601 "1(+0)ADM", "UNKNOWN"
603 #define HPSA_RAID_0 0
604 #define HPSA_RAID_4 1
605 #define HPSA_RAID_1 2 /* also used for RAID 10 */
606 #define HPSA_RAID_5 3 /* also used for RAID 50 */
607 #define HPSA_RAID_51 4
608 #define HPSA_RAID_6 5 /* also used for RAID 60 */
609 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
610 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
612 static ssize_t raid_level_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 ssize_t l = 0;
616 unsigned char rlevel;
617 struct ctlr_info *h;
618 struct scsi_device *sdev;
619 struct hpsa_scsi_dev_t *hdev;
620 unsigned long flags;
622 sdev = to_scsi_device(dev);
623 h = sdev_to_hba(sdev);
624 spin_lock_irqsave(&h->lock, flags);
625 hdev = sdev->hostdata;
626 if (!hdev) {
627 spin_unlock_irqrestore(&h->lock, flags);
628 return -ENODEV;
631 /* Is this even a logical drive? */
632 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
633 spin_unlock_irqrestore(&h->lock, flags);
634 l = snprintf(buf, PAGE_SIZE, "N/A\n");
635 return l;
638 rlevel = hdev->raid_level;
639 spin_unlock_irqrestore(&h->lock, flags);
640 if (rlevel > RAID_UNKNOWN)
641 rlevel = RAID_UNKNOWN;
642 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
643 return l;
646 static ssize_t lunid_show(struct device *dev,
647 struct device_attribute *attr, char *buf)
649 struct ctlr_info *h;
650 struct scsi_device *sdev;
651 struct hpsa_scsi_dev_t *hdev;
652 unsigned long flags;
653 unsigned char lunid[8];
655 sdev = to_scsi_device(dev);
656 h = sdev_to_hba(sdev);
657 spin_lock_irqsave(&h->lock, flags);
658 hdev = sdev->hostdata;
659 if (!hdev) {
660 spin_unlock_irqrestore(&h->lock, flags);
661 return -ENODEV;
663 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
664 spin_unlock_irqrestore(&h->lock, flags);
665 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
666 lunid[0], lunid[1], lunid[2], lunid[3],
667 lunid[4], lunid[5], lunid[6], lunid[7]);
670 static ssize_t unique_id_show(struct device *dev,
671 struct device_attribute *attr, char *buf)
673 struct ctlr_info *h;
674 struct scsi_device *sdev;
675 struct hpsa_scsi_dev_t *hdev;
676 unsigned long flags;
677 unsigned char sn[16];
679 sdev = to_scsi_device(dev);
680 h = sdev_to_hba(sdev);
681 spin_lock_irqsave(&h->lock, flags);
682 hdev = sdev->hostdata;
683 if (!hdev) {
684 spin_unlock_irqrestore(&h->lock, flags);
685 return -ENODEV;
687 memcpy(sn, hdev->device_id, sizeof(sn));
688 spin_unlock_irqrestore(&h->lock, flags);
689 return snprintf(buf, 16 * 2 + 2,
690 "%02X%02X%02X%02X%02X%02X%02X%02X"
691 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
692 sn[0], sn[1], sn[2], sn[3],
693 sn[4], sn[5], sn[6], sn[7],
694 sn[8], sn[9], sn[10], sn[11],
695 sn[12], sn[13], sn[14], sn[15]);
698 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
699 struct device_attribute *attr, char *buf)
701 struct ctlr_info *h;
702 struct scsi_device *sdev;
703 struct hpsa_scsi_dev_t *hdev;
704 unsigned long flags;
705 int offload_enabled;
707 sdev = to_scsi_device(dev);
708 h = sdev_to_hba(sdev);
709 spin_lock_irqsave(&h->lock, flags);
710 hdev = sdev->hostdata;
711 if (!hdev) {
712 spin_unlock_irqrestore(&h->lock, flags);
713 return -ENODEV;
715 offload_enabled = hdev->offload_enabled;
716 spin_unlock_irqrestore(&h->lock, flags);
717 return snprintf(buf, 20, "%d\n", offload_enabled);
720 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
721 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
722 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
723 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
724 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
725 host_show_hp_ssd_smart_path_enabled, NULL);
726 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
727 host_show_hp_ssd_smart_path_status,
728 host_store_hp_ssd_smart_path_status);
729 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
730 host_store_raid_offload_debug);
731 static DEVICE_ATTR(firmware_revision, S_IRUGO,
732 host_show_firmware_revision, NULL);
733 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
734 host_show_commands_outstanding, NULL);
735 static DEVICE_ATTR(transport_mode, S_IRUGO,
736 host_show_transport_mode, NULL);
737 static DEVICE_ATTR(resettable, S_IRUGO,
738 host_show_resettable, NULL);
739 static DEVICE_ATTR(lockup_detected, S_IRUGO,
740 host_show_lockup_detected, NULL);
742 static struct device_attribute *hpsa_sdev_attrs[] = {
743 &dev_attr_raid_level,
744 &dev_attr_lunid,
745 &dev_attr_unique_id,
746 &dev_attr_hp_ssd_smart_path_enabled,
747 &dev_attr_lockup_detected,
748 NULL,
751 static struct device_attribute *hpsa_shost_attrs[] = {
752 &dev_attr_rescan,
753 &dev_attr_firmware_revision,
754 &dev_attr_commands_outstanding,
755 &dev_attr_transport_mode,
756 &dev_attr_resettable,
757 &dev_attr_hp_ssd_smart_path_status,
758 &dev_attr_raid_offload_debug,
759 NULL,
762 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
763 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
765 static struct scsi_host_template hpsa_driver_template = {
766 .module = THIS_MODULE,
767 .name = HPSA,
768 .proc_name = HPSA,
769 .queuecommand = hpsa_scsi_queue_command,
770 .scan_start = hpsa_scan_start,
771 .scan_finished = hpsa_scan_finished,
772 .change_queue_depth = hpsa_change_queue_depth,
773 .this_id = -1,
774 .use_clustering = ENABLE_CLUSTERING,
775 .eh_abort_handler = hpsa_eh_abort_handler,
776 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
777 .ioctl = hpsa_ioctl,
778 .slave_alloc = hpsa_slave_alloc,
779 .slave_configure = hpsa_slave_configure,
780 .slave_destroy = hpsa_slave_destroy,
781 #ifdef CONFIG_COMPAT
782 .compat_ioctl = hpsa_compat_ioctl,
783 #endif
784 .sdev_attrs = hpsa_sdev_attrs,
785 .shost_attrs = hpsa_shost_attrs,
786 .max_sectors = 8192,
787 .no_write_same = 1,
790 static inline u32 next_command(struct ctlr_info *h, u8 q)
792 u32 a;
793 struct reply_queue_buffer *rq = &h->reply_queue[q];
795 if (h->transMethod & CFGTBL_Trans_io_accel1)
796 return h->access.command_completed(h, q);
798 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
799 return h->access.command_completed(h, q);
801 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
802 a = rq->head[rq->current_entry];
803 rq->current_entry++;
804 atomic_dec(&h->commands_outstanding);
805 } else {
806 a = FIFO_EMPTY;
808 /* Check for wraparound */
809 if (rq->current_entry == h->max_commands) {
810 rq->current_entry = 0;
811 rq->wraparound ^= 1;
813 return a;
817 * There are some special bits in the bus address of the
818 * command that we have to set for the controller to know
819 * how to process the command:
821 * Normal performant mode:
822 * bit 0: 1 means performant mode, 0 means simple mode.
823 * bits 1-3 = block fetch table entry
824 * bits 4-6 = command type (== 0)
826 * ioaccel1 mode:
827 * bit 0 = "performant mode" bit.
828 * bits 1-3 = block fetch table entry
829 * bits 4-6 = command type (== 110)
830 * (command type is needed because ioaccel1 mode
831 * commands are submitted through the same register as normal
832 * mode commands, so this is how the controller knows whether
833 * the command is normal mode or ioaccel1 mode.)
835 * ioaccel2 mode:
836 * bit 0 = "performant mode" bit.
837 * bits 1-4 = block fetch table entry (note extra bit)
838 * bits 4-6 = not needed, because ioaccel2 mode has
839 * a separate special register for submitting commands.
843 * set_performant_mode: Modify the tag for cciss performant
844 * set bit 0 for pull model, bits 3-1 for block fetch
845 * register number
847 #define DEFAULT_REPLY_QUEUE (-1)
848 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
849 int reply_queue)
851 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
852 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
853 if (unlikely(!h->msix_vector))
854 return;
855 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
856 c->Header.ReplyQueue =
857 raw_smp_processor_id() % h->nreply_queues;
858 else
859 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
863 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
864 struct CommandList *c,
865 int reply_queue)
867 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
870 * Tell the controller to post the reply to the queue for this
871 * processor. This seems to give the best I/O throughput.
873 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
874 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
875 else
876 cp->ReplyQueue = reply_queue % h->nreply_queues;
878 * Set the bits in the address sent down to include:
879 * - performant mode bit (bit 0)
880 * - pull count (bits 1-3)
881 * - command type (bits 4-6)
883 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
884 IOACCEL1_BUSADDR_CMDTYPE;
887 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
888 struct CommandList *c,
889 int reply_queue)
891 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
892 &h->ioaccel2_cmd_pool[c->cmdindex];
894 /* Tell the controller to post the reply to the queue for this
895 * processor. This seems to give the best I/O throughput.
897 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
898 cp->reply_queue = smp_processor_id() % h->nreply_queues;
899 else
900 cp->reply_queue = reply_queue % h->nreply_queues;
901 /* Set the bits in the address sent down to include:
902 * - performant mode bit not used in ioaccel mode 2
903 * - pull count (bits 0-3)
904 * - command type isn't needed for ioaccel2
906 c->busaddr |= h->ioaccel2_blockFetchTable[0];
909 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
910 struct CommandList *c,
911 int reply_queue)
913 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
916 * Tell the controller to post the reply to the queue for this
917 * processor. This seems to give the best I/O throughput.
919 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
920 cp->reply_queue = smp_processor_id() % h->nreply_queues;
921 else
922 cp->reply_queue = reply_queue % h->nreply_queues;
924 * Set the bits in the address sent down to include:
925 * - performant mode bit not used in ioaccel mode 2
926 * - pull count (bits 0-3)
927 * - command type isn't needed for ioaccel2
929 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
932 static int is_firmware_flash_cmd(u8 *cdb)
934 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
938 * During firmware flash, the heartbeat register may not update as frequently
939 * as it should. So we dial down lockup detection during firmware flash. and
940 * dial it back up when firmware flash completes.
942 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
943 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
944 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
945 struct CommandList *c)
947 if (!is_firmware_flash_cmd(c->Request.CDB))
948 return;
949 atomic_inc(&h->firmware_flash_in_progress);
950 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
953 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
954 struct CommandList *c)
956 if (is_firmware_flash_cmd(c->Request.CDB) &&
957 atomic_dec_and_test(&h->firmware_flash_in_progress))
958 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
961 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
962 struct CommandList *c, int reply_queue)
964 dial_down_lockup_detection_during_fw_flash(h, c);
965 atomic_inc(&h->commands_outstanding);
966 switch (c->cmd_type) {
967 case CMD_IOACCEL1:
968 set_ioaccel1_performant_mode(h, c, reply_queue);
969 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
970 break;
971 case CMD_IOACCEL2:
972 set_ioaccel2_performant_mode(h, c, reply_queue);
973 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
974 break;
975 case IOACCEL2_TMF:
976 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
977 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
978 break;
979 default:
980 set_performant_mode(h, c, reply_queue);
981 h->access.submit_command(h, c);
985 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
987 if (unlikely(hpsa_is_pending_event(c)))
988 return finish_cmd(c);
990 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
993 static inline int is_hba_lunid(unsigned char scsi3addr[])
995 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
998 static inline int is_scsi_rev_5(struct ctlr_info *h)
1000 if (!h->hba_inquiry_data)
1001 return 0;
1002 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1003 return 1;
1004 return 0;
1007 static int hpsa_find_target_lun(struct ctlr_info *h,
1008 unsigned char scsi3addr[], int bus, int *target, int *lun)
1010 /* finds an unused bus, target, lun for a new physical device
1011 * assumes h->devlock is held
1013 int i, found = 0;
1014 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1016 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1018 for (i = 0; i < h->ndevices; i++) {
1019 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1020 __set_bit(h->dev[i]->target, lun_taken);
1023 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1024 if (i < HPSA_MAX_DEVICES) {
1025 /* *bus = 1; */
1026 *target = i;
1027 *lun = 0;
1028 found = 1;
1030 return !found;
1033 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1034 struct hpsa_scsi_dev_t *dev, char *description)
1036 dev_printk(level, &h->pdev->dev,
1037 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1038 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1039 description,
1040 scsi_device_type(dev->devtype),
1041 dev->vendor,
1042 dev->model,
1043 dev->raid_level > RAID_UNKNOWN ?
1044 "RAID-?" : raid_label[dev->raid_level],
1045 dev->offload_config ? '+' : '-',
1046 dev->offload_enabled ? '+' : '-',
1047 dev->expose_state);
1050 /* Add an entry into h->dev[] array. */
1051 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1052 struct hpsa_scsi_dev_t *device,
1053 struct hpsa_scsi_dev_t *added[], int *nadded)
1055 /* assumes h->devlock is held */
1056 int n = h->ndevices;
1057 int i;
1058 unsigned char addr1[8], addr2[8];
1059 struct hpsa_scsi_dev_t *sd;
1061 if (n >= HPSA_MAX_DEVICES) {
1062 dev_err(&h->pdev->dev, "too many devices, some will be "
1063 "inaccessible.\n");
1064 return -1;
1067 /* physical devices do not have lun or target assigned until now. */
1068 if (device->lun != -1)
1069 /* Logical device, lun is already assigned. */
1070 goto lun_assigned;
1072 /* If this device a non-zero lun of a multi-lun device
1073 * byte 4 of the 8-byte LUN addr will contain the logical
1074 * unit no, zero otherwise.
1076 if (device->scsi3addr[4] == 0) {
1077 /* This is not a non-zero lun of a multi-lun device */
1078 if (hpsa_find_target_lun(h, device->scsi3addr,
1079 device->bus, &device->target, &device->lun) != 0)
1080 return -1;
1081 goto lun_assigned;
1084 /* This is a non-zero lun of a multi-lun device.
1085 * Search through our list and find the device which
1086 * has the same 8 byte LUN address, excepting byte 4.
1087 * Assign the same bus and target for this new LUN.
1088 * Use the logical unit number from the firmware.
1090 memcpy(addr1, device->scsi3addr, 8);
1091 addr1[4] = 0;
1092 for (i = 0; i < n; i++) {
1093 sd = h->dev[i];
1094 memcpy(addr2, sd->scsi3addr, 8);
1095 addr2[4] = 0;
1096 /* differ only in byte 4? */
1097 if (memcmp(addr1, addr2, 8) == 0) {
1098 device->bus = sd->bus;
1099 device->target = sd->target;
1100 device->lun = device->scsi3addr[4];
1101 break;
1104 if (device->lun == -1) {
1105 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1106 " suspect firmware bug or unsupported hardware "
1107 "configuration.\n");
1108 return -1;
1111 lun_assigned:
1113 h->dev[n] = device;
1114 h->ndevices++;
1115 added[*nadded] = device;
1116 (*nadded)++;
1117 hpsa_show_dev_msg(KERN_INFO, h, device,
1118 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1119 device->offload_to_be_enabled = device->offload_enabled;
1120 device->offload_enabled = 0;
1121 return 0;
1124 /* Update an entry in h->dev[] array. */
1125 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1126 int entry, struct hpsa_scsi_dev_t *new_entry)
1128 int offload_enabled;
1129 /* assumes h->devlock is held */
1130 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1132 /* Raid level changed. */
1133 h->dev[entry]->raid_level = new_entry->raid_level;
1135 /* Raid offload parameters changed. Careful about the ordering. */
1136 if (new_entry->offload_config && new_entry->offload_enabled) {
1138 * if drive is newly offload_enabled, we want to copy the
1139 * raid map data first. If previously offload_enabled and
1140 * offload_config were set, raid map data had better be
1141 * the same as it was before. if raid map data is changed
1142 * then it had better be the case that
1143 * h->dev[entry]->offload_enabled is currently 0.
1145 h->dev[entry]->raid_map = new_entry->raid_map;
1146 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1148 if (new_entry->hba_ioaccel_enabled) {
1149 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1150 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1152 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1153 h->dev[entry]->offload_config = new_entry->offload_config;
1154 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1155 h->dev[entry]->queue_depth = new_entry->queue_depth;
1158 * We can turn off ioaccel offload now, but need to delay turning
1159 * it on until we can update h->dev[entry]->phys_disk[], but we
1160 * can't do that until all the devices are updated.
1162 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1163 if (!new_entry->offload_enabled)
1164 h->dev[entry]->offload_enabled = 0;
1166 offload_enabled = h->dev[entry]->offload_enabled;
1167 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1168 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1169 h->dev[entry]->offload_enabled = offload_enabled;
1172 /* Replace an entry from h->dev[] array. */
1173 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1174 int entry, struct hpsa_scsi_dev_t *new_entry,
1175 struct hpsa_scsi_dev_t *added[], int *nadded,
1176 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1178 /* assumes h->devlock is held */
1179 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1180 removed[*nremoved] = h->dev[entry];
1181 (*nremoved)++;
1184 * New physical devices won't have target/lun assigned yet
1185 * so we need to preserve the values in the slot we are replacing.
1187 if (new_entry->target == -1) {
1188 new_entry->target = h->dev[entry]->target;
1189 new_entry->lun = h->dev[entry]->lun;
1192 h->dev[entry] = new_entry;
1193 added[*nadded] = new_entry;
1194 (*nadded)++;
1195 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1196 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1197 new_entry->offload_enabled = 0;
1200 /* Remove an entry from h->dev[] array. */
1201 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1202 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1204 /* assumes h->devlock is held */
1205 int i;
1206 struct hpsa_scsi_dev_t *sd;
1208 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1210 sd = h->dev[entry];
1211 removed[*nremoved] = h->dev[entry];
1212 (*nremoved)++;
1214 for (i = entry; i < h->ndevices-1; i++)
1215 h->dev[i] = h->dev[i+1];
1216 h->ndevices--;
1217 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1220 #define SCSI3ADDR_EQ(a, b) ( \
1221 (a)[7] == (b)[7] && \
1222 (a)[6] == (b)[6] && \
1223 (a)[5] == (b)[5] && \
1224 (a)[4] == (b)[4] && \
1225 (a)[3] == (b)[3] && \
1226 (a)[2] == (b)[2] && \
1227 (a)[1] == (b)[1] && \
1228 (a)[0] == (b)[0])
1230 static void fixup_botched_add(struct ctlr_info *h,
1231 struct hpsa_scsi_dev_t *added)
1233 /* called when scsi_add_device fails in order to re-adjust
1234 * h->dev[] to match the mid layer's view.
1236 unsigned long flags;
1237 int i, j;
1239 spin_lock_irqsave(&h->lock, flags);
1240 for (i = 0; i < h->ndevices; i++) {
1241 if (h->dev[i] == added) {
1242 for (j = i; j < h->ndevices-1; j++)
1243 h->dev[j] = h->dev[j+1];
1244 h->ndevices--;
1245 break;
1248 spin_unlock_irqrestore(&h->lock, flags);
1249 kfree(added);
1252 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1253 struct hpsa_scsi_dev_t *dev2)
1255 /* we compare everything except lun and target as these
1256 * are not yet assigned. Compare parts likely
1257 * to differ first
1259 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1260 sizeof(dev1->scsi3addr)) != 0)
1261 return 0;
1262 if (memcmp(dev1->device_id, dev2->device_id,
1263 sizeof(dev1->device_id)) != 0)
1264 return 0;
1265 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1266 return 0;
1267 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1268 return 0;
1269 if (dev1->devtype != dev2->devtype)
1270 return 0;
1271 if (dev1->bus != dev2->bus)
1272 return 0;
1273 return 1;
1276 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1277 struct hpsa_scsi_dev_t *dev2)
1279 /* Device attributes that can change, but don't mean
1280 * that the device is a different device, nor that the OS
1281 * needs to be told anything about the change.
1283 if (dev1->raid_level != dev2->raid_level)
1284 return 1;
1285 if (dev1->offload_config != dev2->offload_config)
1286 return 1;
1287 if (dev1->offload_enabled != dev2->offload_enabled)
1288 return 1;
1289 if (dev1->queue_depth != dev2->queue_depth)
1290 return 1;
1291 return 0;
1294 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1295 * and return needle location in *index. If scsi3addr matches, but not
1296 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1297 * location in *index.
1298 * In the case of a minor device attribute change, such as RAID level, just
1299 * return DEVICE_UPDATED, along with the updated device's location in index.
1300 * If needle not found, return DEVICE_NOT_FOUND.
1302 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1303 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1304 int *index)
1306 int i;
1307 #define DEVICE_NOT_FOUND 0
1308 #define DEVICE_CHANGED 1
1309 #define DEVICE_SAME 2
1310 #define DEVICE_UPDATED 3
1311 for (i = 0; i < haystack_size; i++) {
1312 if (haystack[i] == NULL) /* previously removed. */
1313 continue;
1314 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1315 *index = i;
1316 if (device_is_the_same(needle, haystack[i])) {
1317 if (device_updated(needle, haystack[i]))
1318 return DEVICE_UPDATED;
1319 return DEVICE_SAME;
1320 } else {
1321 /* Keep offline devices offline */
1322 if (needle->volume_offline)
1323 return DEVICE_NOT_FOUND;
1324 return DEVICE_CHANGED;
1328 *index = -1;
1329 return DEVICE_NOT_FOUND;
1332 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1333 unsigned char scsi3addr[])
1335 struct offline_device_entry *device;
1336 unsigned long flags;
1338 /* Check to see if device is already on the list */
1339 spin_lock_irqsave(&h->offline_device_lock, flags);
1340 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1341 if (memcmp(device->scsi3addr, scsi3addr,
1342 sizeof(device->scsi3addr)) == 0) {
1343 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1344 return;
1347 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1349 /* Device is not on the list, add it. */
1350 device = kmalloc(sizeof(*device), GFP_KERNEL);
1351 if (!device) {
1352 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1353 return;
1355 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1356 spin_lock_irqsave(&h->offline_device_lock, flags);
1357 list_add_tail(&device->offline_list, &h->offline_device_list);
1358 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1361 /* Print a message explaining various offline volume states */
1362 static void hpsa_show_volume_status(struct ctlr_info *h,
1363 struct hpsa_scsi_dev_t *sd)
1365 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1366 dev_info(&h->pdev->dev,
1367 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1368 h->scsi_host->host_no,
1369 sd->bus, sd->target, sd->lun);
1370 switch (sd->volume_offline) {
1371 case HPSA_LV_OK:
1372 break;
1373 case HPSA_LV_UNDERGOING_ERASE:
1374 dev_info(&h->pdev->dev,
1375 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1376 h->scsi_host->host_no,
1377 sd->bus, sd->target, sd->lun);
1378 break;
1379 case HPSA_LV_UNDERGOING_RPI:
1380 dev_info(&h->pdev->dev,
1381 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1382 h->scsi_host->host_no,
1383 sd->bus, sd->target, sd->lun);
1384 break;
1385 case HPSA_LV_PENDING_RPI:
1386 dev_info(&h->pdev->dev,
1387 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1388 h->scsi_host->host_no,
1389 sd->bus, sd->target, sd->lun);
1390 break;
1391 case HPSA_LV_ENCRYPTED_NO_KEY:
1392 dev_info(&h->pdev->dev,
1393 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1394 h->scsi_host->host_no,
1395 sd->bus, sd->target, sd->lun);
1396 break;
1397 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1398 dev_info(&h->pdev->dev,
1399 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1400 h->scsi_host->host_no,
1401 sd->bus, sd->target, sd->lun);
1402 break;
1403 case HPSA_LV_UNDERGOING_ENCRYPTION:
1404 dev_info(&h->pdev->dev,
1405 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1406 h->scsi_host->host_no,
1407 sd->bus, sd->target, sd->lun);
1408 break;
1409 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1410 dev_info(&h->pdev->dev,
1411 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1412 h->scsi_host->host_no,
1413 sd->bus, sd->target, sd->lun);
1414 break;
1415 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1416 dev_info(&h->pdev->dev,
1417 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1418 h->scsi_host->host_no,
1419 sd->bus, sd->target, sd->lun);
1420 break;
1421 case HPSA_LV_PENDING_ENCRYPTION:
1422 dev_info(&h->pdev->dev,
1423 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1424 h->scsi_host->host_no,
1425 sd->bus, sd->target, sd->lun);
1426 break;
1427 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1428 dev_info(&h->pdev->dev,
1429 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1430 h->scsi_host->host_no,
1431 sd->bus, sd->target, sd->lun);
1432 break;
1437 * Figure the list of physical drive pointers for a logical drive with
1438 * raid offload configured.
1440 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1441 struct hpsa_scsi_dev_t *dev[], int ndevices,
1442 struct hpsa_scsi_dev_t *logical_drive)
1444 struct raid_map_data *map = &logical_drive->raid_map;
1445 struct raid_map_disk_data *dd = &map->data[0];
1446 int i, j;
1447 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1448 le16_to_cpu(map->metadata_disks_per_row);
1449 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1450 le16_to_cpu(map->layout_map_count) *
1451 total_disks_per_row;
1452 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1453 total_disks_per_row;
1454 int qdepth;
1456 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1457 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1459 logical_drive->nphysical_disks = nraid_map_entries;
1461 qdepth = 0;
1462 for (i = 0; i < nraid_map_entries; i++) {
1463 logical_drive->phys_disk[i] = NULL;
1464 if (!logical_drive->offload_config)
1465 continue;
1466 for (j = 0; j < ndevices; j++) {
1467 if (dev[j]->devtype != TYPE_DISK)
1468 continue;
1469 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1470 continue;
1471 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1472 continue;
1474 logical_drive->phys_disk[i] = dev[j];
1475 if (i < nphys_disk)
1476 qdepth = min(h->nr_cmds, qdepth +
1477 logical_drive->phys_disk[i]->queue_depth);
1478 break;
1482 * This can happen if a physical drive is removed and
1483 * the logical drive is degraded. In that case, the RAID
1484 * map data will refer to a physical disk which isn't actually
1485 * present. And in that case offload_enabled should already
1486 * be 0, but we'll turn it off here just in case
1488 if (!logical_drive->phys_disk[i]) {
1489 logical_drive->offload_enabled = 0;
1490 logical_drive->offload_to_be_enabled = 0;
1491 logical_drive->queue_depth = 8;
1494 if (nraid_map_entries)
1496 * This is correct for reads, too high for full stripe writes,
1497 * way too high for partial stripe writes
1499 logical_drive->queue_depth = qdepth;
1500 else
1501 logical_drive->queue_depth = h->nr_cmds;
1504 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1505 struct hpsa_scsi_dev_t *dev[], int ndevices)
1507 int i;
1509 for (i = 0; i < ndevices; i++) {
1510 if (dev[i]->devtype != TYPE_DISK)
1511 continue;
1512 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1513 continue;
1516 * If offload is currently enabled, the RAID map and
1517 * phys_disk[] assignment *better* not be changing
1518 * and since it isn't changing, we do not need to
1519 * update it.
1521 if (dev[i]->offload_enabled)
1522 continue;
1524 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1528 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1529 struct hpsa_scsi_dev_t *sd[], int nsds)
1531 /* sd contains scsi3 addresses and devtypes, and inquiry
1532 * data. This function takes what's in sd to be the current
1533 * reality and updates h->dev[] to reflect that reality.
1535 int i, entry, device_change, changes = 0;
1536 struct hpsa_scsi_dev_t *csd;
1537 unsigned long flags;
1538 struct hpsa_scsi_dev_t **added, **removed;
1539 int nadded, nremoved;
1540 struct Scsi_Host *sh = NULL;
1542 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1543 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1545 if (!added || !removed) {
1546 dev_warn(&h->pdev->dev, "out of memory in "
1547 "adjust_hpsa_scsi_table\n");
1548 goto free_and_out;
1551 spin_lock_irqsave(&h->devlock, flags);
1553 /* find any devices in h->dev[] that are not in
1554 * sd[] and remove them from h->dev[], and for any
1555 * devices which have changed, remove the old device
1556 * info and add the new device info.
1557 * If minor device attributes change, just update
1558 * the existing device structure.
1560 i = 0;
1561 nremoved = 0;
1562 nadded = 0;
1563 while (i < h->ndevices) {
1564 csd = h->dev[i];
1565 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1566 if (device_change == DEVICE_NOT_FOUND) {
1567 changes++;
1568 hpsa_scsi_remove_entry(h, hostno, i,
1569 removed, &nremoved);
1570 continue; /* remove ^^^, hence i not incremented */
1571 } else if (device_change == DEVICE_CHANGED) {
1572 changes++;
1573 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1574 added, &nadded, removed, &nremoved);
1575 /* Set it to NULL to prevent it from being freed
1576 * at the bottom of hpsa_update_scsi_devices()
1578 sd[entry] = NULL;
1579 } else if (device_change == DEVICE_UPDATED) {
1580 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1582 i++;
1585 /* Now, make sure every device listed in sd[] is also
1586 * listed in h->dev[], adding them if they aren't found
1589 for (i = 0; i < nsds; i++) {
1590 if (!sd[i]) /* if already added above. */
1591 continue;
1593 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1594 * as the SCSI mid-layer does not handle such devices well.
1595 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1596 * at 160Hz, and prevents the system from coming up.
1598 if (sd[i]->volume_offline) {
1599 hpsa_show_volume_status(h, sd[i]);
1600 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1601 continue;
1604 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1605 h->ndevices, &entry);
1606 if (device_change == DEVICE_NOT_FOUND) {
1607 changes++;
1608 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1609 added, &nadded) != 0)
1610 break;
1611 sd[i] = NULL; /* prevent from being freed later. */
1612 } else if (device_change == DEVICE_CHANGED) {
1613 /* should never happen... */
1614 changes++;
1615 dev_warn(&h->pdev->dev,
1616 "device unexpectedly changed.\n");
1617 /* but if it does happen, we just ignore that device */
1620 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1622 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1623 * any logical drives that need it enabled.
1625 for (i = 0; i < h->ndevices; i++)
1626 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1628 spin_unlock_irqrestore(&h->devlock, flags);
1630 /* Monitor devices which are in one of several NOT READY states to be
1631 * brought online later. This must be done without holding h->devlock,
1632 * so don't touch h->dev[]
1634 for (i = 0; i < nsds; i++) {
1635 if (!sd[i]) /* if already added above. */
1636 continue;
1637 if (sd[i]->volume_offline)
1638 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1641 /* Don't notify scsi mid layer of any changes the first time through
1642 * (or if there are no changes) scsi_scan_host will do it later the
1643 * first time through.
1645 if (hostno == -1 || !changes)
1646 goto free_and_out;
1648 sh = h->scsi_host;
1649 /* Notify scsi mid layer of any removed devices */
1650 for (i = 0; i < nremoved; i++) {
1651 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1652 struct scsi_device *sdev =
1653 scsi_device_lookup(sh, removed[i]->bus,
1654 removed[i]->target, removed[i]->lun);
1655 if (sdev != NULL) {
1656 scsi_remove_device(sdev);
1657 scsi_device_put(sdev);
1658 } else {
1660 * We don't expect to get here.
1661 * future cmds to this device will get selection
1662 * timeout as if the device was gone.
1664 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1665 "didn't find device for removal.");
1668 kfree(removed[i]);
1669 removed[i] = NULL;
1672 /* Notify scsi mid layer of any added devices */
1673 for (i = 0; i < nadded; i++) {
1674 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1675 continue;
1676 if (scsi_add_device(sh, added[i]->bus,
1677 added[i]->target, added[i]->lun) == 0)
1678 continue;
1679 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1680 "addition failed, device not added.");
1681 /* now we have to remove it from h->dev,
1682 * since it didn't get added to scsi mid layer
1684 fixup_botched_add(h, added[i]);
1685 added[i] = NULL;
1688 free_and_out:
1689 kfree(added);
1690 kfree(removed);
1694 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1695 * Assume's h->devlock is held.
1697 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1698 int bus, int target, int lun)
1700 int i;
1701 struct hpsa_scsi_dev_t *sd;
1703 for (i = 0; i < h->ndevices; i++) {
1704 sd = h->dev[i];
1705 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1706 return sd;
1708 return NULL;
1711 static int hpsa_slave_alloc(struct scsi_device *sdev)
1713 struct hpsa_scsi_dev_t *sd;
1714 unsigned long flags;
1715 struct ctlr_info *h;
1717 h = sdev_to_hba(sdev);
1718 spin_lock_irqsave(&h->devlock, flags);
1719 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1720 sdev_id(sdev), sdev->lun);
1721 if (likely(sd)) {
1722 atomic_set(&sd->ioaccel_cmds_out, 0);
1723 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1724 } else
1725 sdev->hostdata = NULL;
1726 spin_unlock_irqrestore(&h->devlock, flags);
1727 return 0;
1730 /* configure scsi device based on internal per-device structure */
1731 static int hpsa_slave_configure(struct scsi_device *sdev)
1733 struct hpsa_scsi_dev_t *sd;
1734 int queue_depth;
1736 sd = sdev->hostdata;
1737 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1739 if (sd)
1740 queue_depth = sd->queue_depth != 0 ?
1741 sd->queue_depth : sdev->host->can_queue;
1742 else
1743 queue_depth = sdev->host->can_queue;
1745 scsi_change_queue_depth(sdev, queue_depth);
1747 return 0;
1750 static void hpsa_slave_destroy(struct scsi_device *sdev)
1752 /* nothing to do. */
1755 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1757 int i;
1759 if (!h->ioaccel2_cmd_sg_list)
1760 return;
1761 for (i = 0; i < h->nr_cmds; i++) {
1762 kfree(h->ioaccel2_cmd_sg_list[i]);
1763 h->ioaccel2_cmd_sg_list[i] = NULL;
1765 kfree(h->ioaccel2_cmd_sg_list);
1766 h->ioaccel2_cmd_sg_list = NULL;
1769 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1771 int i;
1773 if (h->chainsize <= 0)
1774 return 0;
1776 h->ioaccel2_cmd_sg_list =
1777 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1778 GFP_KERNEL);
1779 if (!h->ioaccel2_cmd_sg_list)
1780 return -ENOMEM;
1781 for (i = 0; i < h->nr_cmds; i++) {
1782 h->ioaccel2_cmd_sg_list[i] =
1783 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1784 h->maxsgentries, GFP_KERNEL);
1785 if (!h->ioaccel2_cmd_sg_list[i])
1786 goto clean;
1788 return 0;
1790 clean:
1791 hpsa_free_ioaccel2_sg_chain_blocks(h);
1792 return -ENOMEM;
1795 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1797 int i;
1799 if (!h->cmd_sg_list)
1800 return;
1801 for (i = 0; i < h->nr_cmds; i++) {
1802 kfree(h->cmd_sg_list[i]);
1803 h->cmd_sg_list[i] = NULL;
1805 kfree(h->cmd_sg_list);
1806 h->cmd_sg_list = NULL;
1809 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1811 int i;
1813 if (h->chainsize <= 0)
1814 return 0;
1816 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1817 GFP_KERNEL);
1818 if (!h->cmd_sg_list) {
1819 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1820 return -ENOMEM;
1822 for (i = 0; i < h->nr_cmds; i++) {
1823 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1824 h->chainsize, GFP_KERNEL);
1825 if (!h->cmd_sg_list[i]) {
1826 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1827 goto clean;
1830 return 0;
1832 clean:
1833 hpsa_free_sg_chain_blocks(h);
1834 return -ENOMEM;
1837 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1838 struct io_accel2_cmd *cp, struct CommandList *c)
1840 struct ioaccel2_sg_element *chain_block;
1841 u64 temp64;
1842 u32 chain_size;
1844 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1845 chain_size = le32_to_cpu(cp->data_len);
1846 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1847 PCI_DMA_TODEVICE);
1848 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1849 /* prevent subsequent unmapping */
1850 cp->sg->address = 0;
1851 return -1;
1853 cp->sg->address = cpu_to_le64(temp64);
1854 return 0;
1857 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1858 struct io_accel2_cmd *cp)
1860 struct ioaccel2_sg_element *chain_sg;
1861 u64 temp64;
1862 u32 chain_size;
1864 chain_sg = cp->sg;
1865 temp64 = le64_to_cpu(chain_sg->address);
1866 chain_size = le32_to_cpu(cp->data_len);
1867 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1870 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1871 struct CommandList *c)
1873 struct SGDescriptor *chain_sg, *chain_block;
1874 u64 temp64;
1875 u32 chain_len;
1877 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1878 chain_block = h->cmd_sg_list[c->cmdindex];
1879 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1880 chain_len = sizeof(*chain_sg) *
1881 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1882 chain_sg->Len = cpu_to_le32(chain_len);
1883 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1884 PCI_DMA_TODEVICE);
1885 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1886 /* prevent subsequent unmapping */
1887 chain_sg->Addr = cpu_to_le64(0);
1888 return -1;
1890 chain_sg->Addr = cpu_to_le64(temp64);
1891 return 0;
1894 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1895 struct CommandList *c)
1897 struct SGDescriptor *chain_sg;
1899 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1900 return;
1902 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1903 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1904 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1908 /* Decode the various types of errors on ioaccel2 path.
1909 * Return 1 for any error that should generate a RAID path retry.
1910 * Return 0 for errors that don't require a RAID path retry.
1912 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1913 struct CommandList *c,
1914 struct scsi_cmnd *cmd,
1915 struct io_accel2_cmd *c2)
1917 int data_len;
1918 int retry = 0;
1919 u32 ioaccel2_resid = 0;
1921 switch (c2->error_data.serv_response) {
1922 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1923 switch (c2->error_data.status) {
1924 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1925 break;
1926 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1927 cmd->result |= SAM_STAT_CHECK_CONDITION;
1928 if (c2->error_data.data_present !=
1929 IOACCEL2_SENSE_DATA_PRESENT) {
1930 memset(cmd->sense_buffer, 0,
1931 SCSI_SENSE_BUFFERSIZE);
1932 break;
1934 /* copy the sense data */
1935 data_len = c2->error_data.sense_data_len;
1936 if (data_len > SCSI_SENSE_BUFFERSIZE)
1937 data_len = SCSI_SENSE_BUFFERSIZE;
1938 if (data_len > sizeof(c2->error_data.sense_data_buff))
1939 data_len =
1940 sizeof(c2->error_data.sense_data_buff);
1941 memcpy(cmd->sense_buffer,
1942 c2->error_data.sense_data_buff, data_len);
1943 retry = 1;
1944 break;
1945 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1946 retry = 1;
1947 break;
1948 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1949 retry = 1;
1950 break;
1951 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1952 retry = 1;
1953 break;
1954 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1955 retry = 1;
1956 break;
1957 default:
1958 retry = 1;
1959 break;
1961 break;
1962 case IOACCEL2_SERV_RESPONSE_FAILURE:
1963 switch (c2->error_data.status) {
1964 case IOACCEL2_STATUS_SR_IO_ERROR:
1965 case IOACCEL2_STATUS_SR_IO_ABORTED:
1966 case IOACCEL2_STATUS_SR_OVERRUN:
1967 retry = 1;
1968 break;
1969 case IOACCEL2_STATUS_SR_UNDERRUN:
1970 cmd->result = (DID_OK << 16); /* host byte */
1971 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1972 ioaccel2_resid = get_unaligned_le32(
1973 &c2->error_data.resid_cnt[0]);
1974 scsi_set_resid(cmd, ioaccel2_resid);
1975 break;
1976 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1977 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1978 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1979 /* We will get an event from ctlr to trigger rescan */
1980 retry = 1;
1981 break;
1982 default:
1983 retry = 1;
1985 break;
1986 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1987 break;
1988 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1989 break;
1990 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1991 retry = 1;
1992 break;
1993 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1994 break;
1995 default:
1996 retry = 1;
1997 break;
2000 return retry; /* retry on raid path? */
2003 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2004 struct CommandList *c)
2006 bool do_wake = false;
2009 * Prevent the following race in the abort handler:
2011 * 1. LLD is requested to abort a SCSI command
2012 * 2. The SCSI command completes
2013 * 3. The struct CommandList associated with step 2 is made available
2014 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2015 * 5. Abort handler follows scsi_cmnd->host_scribble and
2016 * finds struct CommandList and tries to aborts it
2017 * Now we have aborted the wrong command.
2019 * Reset c->scsi_cmd here so that the abort or reset handler will know
2020 * this command has completed. Then, check to see if the handler is
2021 * waiting for this command, and, if so, wake it.
2023 c->scsi_cmd = SCSI_CMD_IDLE;
2024 mb(); /* Declare command idle before checking for pending events. */
2025 if (c->abort_pending) {
2026 do_wake = true;
2027 c->abort_pending = false;
2029 if (c->reset_pending) {
2030 unsigned long flags;
2031 struct hpsa_scsi_dev_t *dev;
2034 * There appears to be a reset pending; lock the lock and
2035 * reconfirm. If so, then decrement the count of outstanding
2036 * commands and wake the reset command if this is the last one.
2038 spin_lock_irqsave(&h->lock, flags);
2039 dev = c->reset_pending; /* Re-fetch under the lock. */
2040 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2041 do_wake = true;
2042 c->reset_pending = NULL;
2043 spin_unlock_irqrestore(&h->lock, flags);
2046 if (do_wake)
2047 wake_up_all(&h->event_sync_wait_queue);
2050 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2051 struct CommandList *c)
2053 hpsa_cmd_resolve_events(h, c);
2054 cmd_tagged_free(h, c);
2057 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2058 struct CommandList *c, struct scsi_cmnd *cmd)
2060 hpsa_cmd_resolve_and_free(h, c);
2061 cmd->scsi_done(cmd);
2064 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2066 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2067 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2070 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2072 cmd->result = DID_ABORT << 16;
2075 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2076 struct scsi_cmnd *cmd)
2078 hpsa_set_scsi_cmd_aborted(cmd);
2079 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2080 c->Request.CDB, c->err_info->ScsiStatus);
2081 hpsa_cmd_resolve_and_free(h, c);
2084 static void process_ioaccel2_completion(struct ctlr_info *h,
2085 struct CommandList *c, struct scsi_cmnd *cmd,
2086 struct hpsa_scsi_dev_t *dev)
2088 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2090 /* check for good status */
2091 if (likely(c2->error_data.serv_response == 0 &&
2092 c2->error_data.status == 0))
2093 return hpsa_cmd_free_and_done(h, c, cmd);
2096 * Any RAID offload error results in retry which will use
2097 * the normal I/O path so the controller can handle whatever's
2098 * wrong.
2100 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2101 c2->error_data.serv_response ==
2102 IOACCEL2_SERV_RESPONSE_FAILURE) {
2103 if (c2->error_data.status ==
2104 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2105 dev->offload_enabled = 0;
2107 return hpsa_retry_cmd(h, c);
2110 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2111 return hpsa_retry_cmd(h, c);
2113 return hpsa_cmd_free_and_done(h, c, cmd);
2116 /* Returns 0 on success, < 0 otherwise. */
2117 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2118 struct CommandList *cp)
2120 u8 tmf_status = cp->err_info->ScsiStatus;
2122 switch (tmf_status) {
2123 case CISS_TMF_COMPLETE:
2125 * CISS_TMF_COMPLETE never happens, instead,
2126 * ei->CommandStatus == 0 for this case.
2128 case CISS_TMF_SUCCESS:
2129 return 0;
2130 case CISS_TMF_INVALID_FRAME:
2131 case CISS_TMF_NOT_SUPPORTED:
2132 case CISS_TMF_FAILED:
2133 case CISS_TMF_WRONG_LUN:
2134 case CISS_TMF_OVERLAPPED_TAG:
2135 break;
2136 default:
2137 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2138 tmf_status);
2139 break;
2141 return -tmf_status;
2144 static void complete_scsi_command(struct CommandList *cp)
2146 struct scsi_cmnd *cmd;
2147 struct ctlr_info *h;
2148 struct ErrorInfo *ei;
2149 struct hpsa_scsi_dev_t *dev;
2150 struct io_accel2_cmd *c2;
2152 u8 sense_key;
2153 u8 asc; /* additional sense code */
2154 u8 ascq; /* additional sense code qualifier */
2155 unsigned long sense_data_size;
2157 ei = cp->err_info;
2158 cmd = cp->scsi_cmd;
2159 h = cp->h;
2160 dev = cmd->device->hostdata;
2161 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2163 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2164 if ((cp->cmd_type == CMD_SCSI) &&
2165 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2166 hpsa_unmap_sg_chain_block(h, cp);
2168 if ((cp->cmd_type == CMD_IOACCEL2) &&
2169 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2170 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2172 cmd->result = (DID_OK << 16); /* host byte */
2173 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2175 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2176 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2179 * We check for lockup status here as it may be set for
2180 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2181 * fail_all_oustanding_cmds()
2183 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2184 /* DID_NO_CONNECT will prevent a retry */
2185 cmd->result = DID_NO_CONNECT << 16;
2186 return hpsa_cmd_free_and_done(h, cp, cmd);
2189 if ((unlikely(hpsa_is_pending_event(cp)))) {
2190 if (cp->reset_pending)
2191 return hpsa_cmd_resolve_and_free(h, cp);
2192 if (cp->abort_pending)
2193 return hpsa_cmd_abort_and_free(h, cp, cmd);
2196 if (cp->cmd_type == CMD_IOACCEL2)
2197 return process_ioaccel2_completion(h, cp, cmd, dev);
2199 scsi_set_resid(cmd, ei->ResidualCnt);
2200 if (ei->CommandStatus == 0)
2201 return hpsa_cmd_free_and_done(h, cp, cmd);
2203 /* For I/O accelerator commands, copy over some fields to the normal
2204 * CISS header used below for error handling.
2206 if (cp->cmd_type == CMD_IOACCEL1) {
2207 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2208 cp->Header.SGList = scsi_sg_count(cmd);
2209 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2210 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2211 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2212 cp->Header.tag = c->tag;
2213 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2214 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2216 /* Any RAID offload error results in retry which will use
2217 * the normal I/O path so the controller can handle whatever's
2218 * wrong.
2220 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2221 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2222 dev->offload_enabled = 0;
2223 return hpsa_retry_cmd(h, cp);
2227 /* an error has occurred */
2228 switch (ei->CommandStatus) {
2230 case CMD_TARGET_STATUS:
2231 cmd->result |= ei->ScsiStatus;
2232 /* copy the sense data */
2233 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2234 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2235 else
2236 sense_data_size = sizeof(ei->SenseInfo);
2237 if (ei->SenseLen < sense_data_size)
2238 sense_data_size = ei->SenseLen;
2239 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2240 if (ei->ScsiStatus)
2241 decode_sense_data(ei->SenseInfo, sense_data_size,
2242 &sense_key, &asc, &ascq);
2243 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2244 if (sense_key == ABORTED_COMMAND) {
2245 cmd->result |= DID_SOFT_ERROR << 16;
2246 break;
2248 break;
2250 /* Problem was not a check condition
2251 * Pass it up to the upper layers...
2253 if (ei->ScsiStatus) {
2254 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2255 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2256 "Returning result: 0x%x\n",
2257 cp, ei->ScsiStatus,
2258 sense_key, asc, ascq,
2259 cmd->result);
2260 } else { /* scsi status is zero??? How??? */
2261 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2262 "Returning no connection.\n", cp),
2264 /* Ordinarily, this case should never happen,
2265 * but there is a bug in some released firmware
2266 * revisions that allows it to happen if, for
2267 * example, a 4100 backplane loses power and
2268 * the tape drive is in it. We assume that
2269 * it's a fatal error of some kind because we
2270 * can't show that it wasn't. We will make it
2271 * look like selection timeout since that is
2272 * the most common reason for this to occur,
2273 * and it's severe enough.
2276 cmd->result = DID_NO_CONNECT << 16;
2278 break;
2280 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2281 break;
2282 case CMD_DATA_OVERRUN:
2283 dev_warn(&h->pdev->dev,
2284 "CDB %16phN data overrun\n", cp->Request.CDB);
2285 break;
2286 case CMD_INVALID: {
2287 /* print_bytes(cp, sizeof(*cp), 1, 0);
2288 print_cmd(cp); */
2289 /* We get CMD_INVALID if you address a non-existent device
2290 * instead of a selection timeout (no response). You will
2291 * see this if you yank out a drive, then try to access it.
2292 * This is kind of a shame because it means that any other
2293 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2294 * missing target. */
2295 cmd->result = DID_NO_CONNECT << 16;
2297 break;
2298 case CMD_PROTOCOL_ERR:
2299 cmd->result = DID_ERROR << 16;
2300 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2301 cp->Request.CDB);
2302 break;
2303 case CMD_HARDWARE_ERR:
2304 cmd->result = DID_ERROR << 16;
2305 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2306 cp->Request.CDB);
2307 break;
2308 case CMD_CONNECTION_LOST:
2309 cmd->result = DID_ERROR << 16;
2310 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2311 cp->Request.CDB);
2312 break;
2313 case CMD_ABORTED:
2314 /* Return now to avoid calling scsi_done(). */
2315 return hpsa_cmd_abort_and_free(h, cp, cmd);
2316 case CMD_ABORT_FAILED:
2317 cmd->result = DID_ERROR << 16;
2318 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2319 cp->Request.CDB);
2320 break;
2321 case CMD_UNSOLICITED_ABORT:
2322 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2323 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2324 cp->Request.CDB);
2325 break;
2326 case CMD_TIMEOUT:
2327 cmd->result = DID_TIME_OUT << 16;
2328 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2329 cp->Request.CDB);
2330 break;
2331 case CMD_UNABORTABLE:
2332 cmd->result = DID_ERROR << 16;
2333 dev_warn(&h->pdev->dev, "Command unabortable\n");
2334 break;
2335 case CMD_TMF_STATUS:
2336 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2337 cmd->result = DID_ERROR << 16;
2338 break;
2339 case CMD_IOACCEL_DISABLED:
2340 /* This only handles the direct pass-through case since RAID
2341 * offload is handled above. Just attempt a retry.
2343 cmd->result = DID_SOFT_ERROR << 16;
2344 dev_warn(&h->pdev->dev,
2345 "cp %p had HP SSD Smart Path error\n", cp);
2346 break;
2347 default:
2348 cmd->result = DID_ERROR << 16;
2349 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2350 cp, ei->CommandStatus);
2353 return hpsa_cmd_free_and_done(h, cp, cmd);
2356 static void hpsa_pci_unmap(struct pci_dev *pdev,
2357 struct CommandList *c, int sg_used, int data_direction)
2359 int i;
2361 for (i = 0; i < sg_used; i++)
2362 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2363 le32_to_cpu(c->SG[i].Len),
2364 data_direction);
2367 static int hpsa_map_one(struct pci_dev *pdev,
2368 struct CommandList *cp,
2369 unsigned char *buf,
2370 size_t buflen,
2371 int data_direction)
2373 u64 addr64;
2375 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2376 cp->Header.SGList = 0;
2377 cp->Header.SGTotal = cpu_to_le16(0);
2378 return 0;
2381 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2382 if (dma_mapping_error(&pdev->dev, addr64)) {
2383 /* Prevent subsequent unmap of something never mapped */
2384 cp->Header.SGList = 0;
2385 cp->Header.SGTotal = cpu_to_le16(0);
2386 return -1;
2388 cp->SG[0].Addr = cpu_to_le64(addr64);
2389 cp->SG[0].Len = cpu_to_le32(buflen);
2390 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2391 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2392 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2393 return 0;
2396 #define NO_TIMEOUT ((unsigned long) -1)
2397 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2398 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2399 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2401 DECLARE_COMPLETION_ONSTACK(wait);
2403 c->waiting = &wait;
2404 __enqueue_cmd_and_start_io(h, c, reply_queue);
2405 if (timeout_msecs == NO_TIMEOUT) {
2406 /* TODO: get rid of this no-timeout thing */
2407 wait_for_completion_io(&wait);
2408 return IO_OK;
2410 if (!wait_for_completion_io_timeout(&wait,
2411 msecs_to_jiffies(timeout_msecs))) {
2412 dev_warn(&h->pdev->dev, "Command timed out.\n");
2413 return -ETIMEDOUT;
2415 return IO_OK;
2418 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2419 int reply_queue, unsigned long timeout_msecs)
2421 if (unlikely(lockup_detected(h))) {
2422 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2423 return IO_OK;
2425 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2428 static u32 lockup_detected(struct ctlr_info *h)
2430 int cpu;
2431 u32 rc, *lockup_detected;
2433 cpu = get_cpu();
2434 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2435 rc = *lockup_detected;
2436 put_cpu();
2437 return rc;
2440 #define MAX_DRIVER_CMD_RETRIES 25
2441 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2442 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2444 int backoff_time = 10, retry_count = 0;
2445 int rc;
2447 do {
2448 memset(c->err_info, 0, sizeof(*c->err_info));
2449 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2450 timeout_msecs);
2451 if (rc)
2452 break;
2453 retry_count++;
2454 if (retry_count > 3) {
2455 msleep(backoff_time);
2456 if (backoff_time < 1000)
2457 backoff_time *= 2;
2459 } while ((check_for_unit_attention(h, c) ||
2460 check_for_busy(h, c)) &&
2461 retry_count <= MAX_DRIVER_CMD_RETRIES);
2462 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2463 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2464 rc = -EIO;
2465 return rc;
2468 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2469 struct CommandList *c)
2471 const u8 *cdb = c->Request.CDB;
2472 const u8 *lun = c->Header.LUN.LunAddrBytes;
2474 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2475 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2476 txt, lun[0], lun[1], lun[2], lun[3],
2477 lun[4], lun[5], lun[6], lun[7],
2478 cdb[0], cdb[1], cdb[2], cdb[3],
2479 cdb[4], cdb[5], cdb[6], cdb[7],
2480 cdb[8], cdb[9], cdb[10], cdb[11],
2481 cdb[12], cdb[13], cdb[14], cdb[15]);
2484 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2485 struct CommandList *cp)
2487 const struct ErrorInfo *ei = cp->err_info;
2488 struct device *d = &cp->h->pdev->dev;
2489 u8 sense_key, asc, ascq;
2490 int sense_len;
2492 switch (ei->CommandStatus) {
2493 case CMD_TARGET_STATUS:
2494 if (ei->SenseLen > sizeof(ei->SenseInfo))
2495 sense_len = sizeof(ei->SenseInfo);
2496 else
2497 sense_len = ei->SenseLen;
2498 decode_sense_data(ei->SenseInfo, sense_len,
2499 &sense_key, &asc, &ascq);
2500 hpsa_print_cmd(h, "SCSI status", cp);
2501 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2502 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2503 sense_key, asc, ascq);
2504 else
2505 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2506 if (ei->ScsiStatus == 0)
2507 dev_warn(d, "SCSI status is abnormally zero. "
2508 "(probably indicates selection timeout "
2509 "reported incorrectly due to a known "
2510 "firmware bug, circa July, 2001.)\n");
2511 break;
2512 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2513 break;
2514 case CMD_DATA_OVERRUN:
2515 hpsa_print_cmd(h, "overrun condition", cp);
2516 break;
2517 case CMD_INVALID: {
2518 /* controller unfortunately reports SCSI passthru's
2519 * to non-existent targets as invalid commands.
2521 hpsa_print_cmd(h, "invalid command", cp);
2522 dev_warn(d, "probably means device no longer present\n");
2524 break;
2525 case CMD_PROTOCOL_ERR:
2526 hpsa_print_cmd(h, "protocol error", cp);
2527 break;
2528 case CMD_HARDWARE_ERR:
2529 hpsa_print_cmd(h, "hardware error", cp);
2530 break;
2531 case CMD_CONNECTION_LOST:
2532 hpsa_print_cmd(h, "connection lost", cp);
2533 break;
2534 case CMD_ABORTED:
2535 hpsa_print_cmd(h, "aborted", cp);
2536 break;
2537 case CMD_ABORT_FAILED:
2538 hpsa_print_cmd(h, "abort failed", cp);
2539 break;
2540 case CMD_UNSOLICITED_ABORT:
2541 hpsa_print_cmd(h, "unsolicited abort", cp);
2542 break;
2543 case CMD_TIMEOUT:
2544 hpsa_print_cmd(h, "timed out", cp);
2545 break;
2546 case CMD_UNABORTABLE:
2547 hpsa_print_cmd(h, "unabortable", cp);
2548 break;
2549 case CMD_CTLR_LOCKUP:
2550 hpsa_print_cmd(h, "controller lockup detected", cp);
2551 break;
2552 default:
2553 hpsa_print_cmd(h, "unknown status", cp);
2554 dev_warn(d, "Unknown command status %x\n",
2555 ei->CommandStatus);
2559 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2560 u16 page, unsigned char *buf,
2561 unsigned char bufsize)
2563 int rc = IO_OK;
2564 struct CommandList *c;
2565 struct ErrorInfo *ei;
2567 c = cmd_alloc(h);
2569 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2570 page, scsi3addr, TYPE_CMD)) {
2571 rc = -1;
2572 goto out;
2574 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2575 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2576 if (rc)
2577 goto out;
2578 ei = c->err_info;
2579 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2580 hpsa_scsi_interpret_error(h, c);
2581 rc = -1;
2583 out:
2584 cmd_free(h, c);
2585 return rc;
2588 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2589 unsigned char *scsi3addr, unsigned char page,
2590 struct bmic_controller_parameters *buf, size_t bufsize)
2592 int rc = IO_OK;
2593 struct CommandList *c;
2594 struct ErrorInfo *ei;
2596 c = cmd_alloc(h);
2597 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2598 page, scsi3addr, TYPE_CMD)) {
2599 rc = -1;
2600 goto out;
2602 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2603 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2604 if (rc)
2605 goto out;
2606 ei = c->err_info;
2607 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2608 hpsa_scsi_interpret_error(h, c);
2609 rc = -1;
2611 out:
2612 cmd_free(h, c);
2613 return rc;
2616 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2617 u8 reset_type, int reply_queue)
2619 int rc = IO_OK;
2620 struct CommandList *c;
2621 struct ErrorInfo *ei;
2623 c = cmd_alloc(h);
2626 /* fill_cmd can't fail here, no data buffer to map. */
2627 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2628 scsi3addr, TYPE_MSG);
2629 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2630 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2631 if (rc) {
2632 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2633 goto out;
2635 /* no unmap needed here because no data xfer. */
2637 ei = c->err_info;
2638 if (ei->CommandStatus != 0) {
2639 hpsa_scsi_interpret_error(h, c);
2640 rc = -1;
2642 out:
2643 cmd_free(h, c);
2644 return rc;
2647 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2648 struct hpsa_scsi_dev_t *dev,
2649 unsigned char *scsi3addr)
2651 int i;
2652 bool match = false;
2653 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2654 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2656 if (hpsa_is_cmd_idle(c))
2657 return false;
2659 switch (c->cmd_type) {
2660 case CMD_SCSI:
2661 case CMD_IOCTL_PEND:
2662 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2663 sizeof(c->Header.LUN.LunAddrBytes));
2664 break;
2666 case CMD_IOACCEL1:
2667 case CMD_IOACCEL2:
2668 if (c->phys_disk == dev) {
2669 /* HBA mode match */
2670 match = true;
2671 } else {
2672 /* Possible RAID mode -- check each phys dev. */
2673 /* FIXME: Do we need to take out a lock here? If
2674 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2675 * instead. */
2676 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2677 /* FIXME: an alternate test might be
2679 * match = dev->phys_disk[i]->ioaccel_handle
2680 * == c2->scsi_nexus; */
2681 match = dev->phys_disk[i] == c->phys_disk;
2684 break;
2686 case IOACCEL2_TMF:
2687 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2688 match = dev->phys_disk[i]->ioaccel_handle ==
2689 le32_to_cpu(ac->it_nexus);
2691 break;
2693 case 0: /* The command is in the middle of being initialized. */
2694 match = false;
2695 break;
2697 default:
2698 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2699 c->cmd_type);
2700 BUG();
2703 return match;
2706 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2707 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2709 int i;
2710 int rc = 0;
2712 /* We can really only handle one reset at a time */
2713 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2714 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2715 return -EINTR;
2718 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2720 for (i = 0; i < h->nr_cmds; i++) {
2721 struct CommandList *c = h->cmd_pool + i;
2722 int refcount = atomic_inc_return(&c->refcount);
2724 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2725 unsigned long flags;
2728 * Mark the target command as having a reset pending,
2729 * then lock a lock so that the command cannot complete
2730 * while we're considering it. If the command is not
2731 * idle then count it; otherwise revoke the event.
2733 c->reset_pending = dev;
2734 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2735 if (!hpsa_is_cmd_idle(c))
2736 atomic_inc(&dev->reset_cmds_out);
2737 else
2738 c->reset_pending = NULL;
2739 spin_unlock_irqrestore(&h->lock, flags);
2742 cmd_free(h, c);
2745 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2746 if (!rc)
2747 wait_event(h->event_sync_wait_queue,
2748 atomic_read(&dev->reset_cmds_out) == 0 ||
2749 lockup_detected(h));
2751 if (unlikely(lockup_detected(h))) {
2752 dev_warn(&h->pdev->dev,
2753 "Controller lockup detected during reset wait\n");
2754 rc = -ENODEV;
2757 if (unlikely(rc))
2758 atomic_set(&dev->reset_cmds_out, 0);
2760 mutex_unlock(&h->reset_mutex);
2761 return rc;
2764 static void hpsa_get_raid_level(struct ctlr_info *h,
2765 unsigned char *scsi3addr, unsigned char *raid_level)
2767 int rc;
2768 unsigned char *buf;
2770 *raid_level = RAID_UNKNOWN;
2771 buf = kzalloc(64, GFP_KERNEL);
2772 if (!buf)
2773 return;
2774 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2775 if (rc == 0)
2776 *raid_level = buf[8];
2777 if (*raid_level > RAID_UNKNOWN)
2778 *raid_level = RAID_UNKNOWN;
2779 kfree(buf);
2780 return;
2783 #define HPSA_MAP_DEBUG
2784 #ifdef HPSA_MAP_DEBUG
2785 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2786 struct raid_map_data *map_buff)
2788 struct raid_map_disk_data *dd = &map_buff->data[0];
2789 int map, row, col;
2790 u16 map_cnt, row_cnt, disks_per_row;
2792 if (rc != 0)
2793 return;
2795 /* Show details only if debugging has been activated. */
2796 if (h->raid_offload_debug < 2)
2797 return;
2799 dev_info(&h->pdev->dev, "structure_size = %u\n",
2800 le32_to_cpu(map_buff->structure_size));
2801 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2802 le32_to_cpu(map_buff->volume_blk_size));
2803 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2804 le64_to_cpu(map_buff->volume_blk_cnt));
2805 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2806 map_buff->phys_blk_shift);
2807 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2808 map_buff->parity_rotation_shift);
2809 dev_info(&h->pdev->dev, "strip_size = %u\n",
2810 le16_to_cpu(map_buff->strip_size));
2811 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2812 le64_to_cpu(map_buff->disk_starting_blk));
2813 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2814 le64_to_cpu(map_buff->disk_blk_cnt));
2815 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2816 le16_to_cpu(map_buff->data_disks_per_row));
2817 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2818 le16_to_cpu(map_buff->metadata_disks_per_row));
2819 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2820 le16_to_cpu(map_buff->row_cnt));
2821 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2822 le16_to_cpu(map_buff->layout_map_count));
2823 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2824 le16_to_cpu(map_buff->flags));
2825 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2826 le16_to_cpu(map_buff->flags) &
2827 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2828 dev_info(&h->pdev->dev, "dekindex = %u\n",
2829 le16_to_cpu(map_buff->dekindex));
2830 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2831 for (map = 0; map < map_cnt; map++) {
2832 dev_info(&h->pdev->dev, "Map%u:\n", map);
2833 row_cnt = le16_to_cpu(map_buff->row_cnt);
2834 for (row = 0; row < row_cnt; row++) {
2835 dev_info(&h->pdev->dev, " Row%u:\n", row);
2836 disks_per_row =
2837 le16_to_cpu(map_buff->data_disks_per_row);
2838 for (col = 0; col < disks_per_row; col++, dd++)
2839 dev_info(&h->pdev->dev,
2840 " D%02u: h=0x%04x xor=%u,%u\n",
2841 col, dd->ioaccel_handle,
2842 dd->xor_mult[0], dd->xor_mult[1]);
2843 disks_per_row =
2844 le16_to_cpu(map_buff->metadata_disks_per_row);
2845 for (col = 0; col < disks_per_row; col++, dd++)
2846 dev_info(&h->pdev->dev,
2847 " M%02u: h=0x%04x xor=%u,%u\n",
2848 col, dd->ioaccel_handle,
2849 dd->xor_mult[0], dd->xor_mult[1]);
2853 #else
2854 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2855 __attribute__((unused)) int rc,
2856 __attribute__((unused)) struct raid_map_data *map_buff)
2859 #endif
2861 static int hpsa_get_raid_map(struct ctlr_info *h,
2862 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2864 int rc = 0;
2865 struct CommandList *c;
2866 struct ErrorInfo *ei;
2868 c = cmd_alloc(h);
2870 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2871 sizeof(this_device->raid_map), 0,
2872 scsi3addr, TYPE_CMD)) {
2873 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2874 cmd_free(h, c);
2875 return -1;
2877 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2878 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2879 if (rc)
2880 goto out;
2881 ei = c->err_info;
2882 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2883 hpsa_scsi_interpret_error(h, c);
2884 rc = -1;
2885 goto out;
2887 cmd_free(h, c);
2889 /* @todo in the future, dynamically allocate RAID map memory */
2890 if (le32_to_cpu(this_device->raid_map.structure_size) >
2891 sizeof(this_device->raid_map)) {
2892 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2893 rc = -1;
2895 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2896 return rc;
2897 out:
2898 cmd_free(h, c);
2899 return rc;
2902 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2903 unsigned char scsi3addr[], u16 bmic_device_index,
2904 struct bmic_identify_physical_device *buf, size_t bufsize)
2906 int rc = IO_OK;
2907 struct CommandList *c;
2908 struct ErrorInfo *ei;
2910 c = cmd_alloc(h);
2911 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2912 0, RAID_CTLR_LUNID, TYPE_CMD);
2913 if (rc)
2914 goto out;
2916 c->Request.CDB[2] = bmic_device_index & 0xff;
2917 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2919 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2920 NO_TIMEOUT);
2921 ei = c->err_info;
2922 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2923 hpsa_scsi_interpret_error(h, c);
2924 rc = -1;
2926 out:
2927 cmd_free(h, c);
2928 return rc;
2931 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2932 unsigned char scsi3addr[], u8 page)
2934 int rc;
2935 int i;
2936 int pages;
2937 unsigned char *buf, bufsize;
2939 buf = kzalloc(256, GFP_KERNEL);
2940 if (!buf)
2941 return 0;
2943 /* Get the size of the page list first */
2944 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2945 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2946 buf, HPSA_VPD_HEADER_SZ);
2947 if (rc != 0)
2948 goto exit_unsupported;
2949 pages = buf[3];
2950 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2951 bufsize = pages + HPSA_VPD_HEADER_SZ;
2952 else
2953 bufsize = 255;
2955 /* Get the whole VPD page list */
2956 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2957 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2958 buf, bufsize);
2959 if (rc != 0)
2960 goto exit_unsupported;
2962 pages = buf[3];
2963 for (i = 1; i <= pages; i++)
2964 if (buf[3 + i] == page)
2965 goto exit_supported;
2966 exit_unsupported:
2967 kfree(buf);
2968 return 0;
2969 exit_supported:
2970 kfree(buf);
2971 return 1;
2974 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2975 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2977 int rc;
2978 unsigned char *buf;
2979 u8 ioaccel_status;
2981 this_device->offload_config = 0;
2982 this_device->offload_enabled = 0;
2983 this_device->offload_to_be_enabled = 0;
2985 buf = kzalloc(64, GFP_KERNEL);
2986 if (!buf)
2987 return;
2988 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2989 goto out;
2990 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2991 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2992 if (rc != 0)
2993 goto out;
2995 #define IOACCEL_STATUS_BYTE 4
2996 #define OFFLOAD_CONFIGURED_BIT 0x01
2997 #define OFFLOAD_ENABLED_BIT 0x02
2998 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2999 this_device->offload_config =
3000 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3001 if (this_device->offload_config) {
3002 this_device->offload_enabled =
3003 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3004 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3005 this_device->offload_enabled = 0;
3007 this_device->offload_to_be_enabled = this_device->offload_enabled;
3008 out:
3009 kfree(buf);
3010 return;
3013 /* Get the device id from inquiry page 0x83 */
3014 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3015 unsigned char *device_id, int buflen)
3017 int rc;
3018 unsigned char *buf;
3020 if (buflen > 16)
3021 buflen = 16;
3022 buf = kzalloc(64, GFP_KERNEL);
3023 if (!buf)
3024 return -ENOMEM;
3025 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3026 if (rc == 0)
3027 memcpy(device_id, &buf[8], buflen);
3028 kfree(buf);
3029 return rc != 0;
3032 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3033 void *buf, int bufsize,
3034 int extended_response)
3036 int rc = IO_OK;
3037 struct CommandList *c;
3038 unsigned char scsi3addr[8];
3039 struct ErrorInfo *ei;
3041 c = cmd_alloc(h);
3043 /* address the controller */
3044 memset(scsi3addr, 0, sizeof(scsi3addr));
3045 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3046 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3047 rc = -1;
3048 goto out;
3050 if (extended_response)
3051 c->Request.CDB[1] = extended_response;
3052 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3053 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3054 if (rc)
3055 goto out;
3056 ei = c->err_info;
3057 if (ei->CommandStatus != 0 &&
3058 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3059 hpsa_scsi_interpret_error(h, c);
3060 rc = -1;
3061 } else {
3062 struct ReportLUNdata *rld = buf;
3064 if (rld->extended_response_flag != extended_response) {
3065 dev_err(&h->pdev->dev,
3066 "report luns requested format %u, got %u\n",
3067 extended_response,
3068 rld->extended_response_flag);
3069 rc = -1;
3072 out:
3073 cmd_free(h, c);
3074 return rc;
3077 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3078 struct ReportExtendedLUNdata *buf, int bufsize)
3080 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3081 HPSA_REPORT_PHYS_EXTENDED);
3084 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3085 struct ReportLUNdata *buf, int bufsize)
3087 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3090 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3091 int bus, int target, int lun)
3093 device->bus = bus;
3094 device->target = target;
3095 device->lun = lun;
3098 /* Use VPD inquiry to get details of volume status */
3099 static int hpsa_get_volume_status(struct ctlr_info *h,
3100 unsigned char scsi3addr[])
3102 int rc;
3103 int status;
3104 int size;
3105 unsigned char *buf;
3107 buf = kzalloc(64, GFP_KERNEL);
3108 if (!buf)
3109 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3111 /* Does controller have VPD for logical volume status? */
3112 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3113 goto exit_failed;
3115 /* Get the size of the VPD return buffer */
3116 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3117 buf, HPSA_VPD_HEADER_SZ);
3118 if (rc != 0)
3119 goto exit_failed;
3120 size = buf[3];
3122 /* Now get the whole VPD buffer */
3123 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3124 buf, size + HPSA_VPD_HEADER_SZ);
3125 if (rc != 0)
3126 goto exit_failed;
3127 status = buf[4]; /* status byte */
3129 kfree(buf);
3130 return status;
3131 exit_failed:
3132 kfree(buf);
3133 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3136 /* Determine offline status of a volume.
3137 * Return either:
3138 * 0 (not offline)
3139 * 0xff (offline for unknown reasons)
3140 * # (integer code indicating one of several NOT READY states
3141 * describing why a volume is to be kept offline)
3143 static int hpsa_volume_offline(struct ctlr_info *h,
3144 unsigned char scsi3addr[])
3146 struct CommandList *c;
3147 unsigned char *sense;
3148 u8 sense_key, asc, ascq;
3149 int sense_len;
3150 int rc, ldstat = 0;
3151 u16 cmd_status;
3152 u8 scsi_status;
3153 #define ASC_LUN_NOT_READY 0x04
3154 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3155 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3157 c = cmd_alloc(h);
3159 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3160 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3161 if (rc) {
3162 cmd_free(h, c);
3163 return 0;
3165 sense = c->err_info->SenseInfo;
3166 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3167 sense_len = sizeof(c->err_info->SenseInfo);
3168 else
3169 sense_len = c->err_info->SenseLen;
3170 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3171 cmd_status = c->err_info->CommandStatus;
3172 scsi_status = c->err_info->ScsiStatus;
3173 cmd_free(h, c);
3174 /* Is the volume 'not ready'? */
3175 if (cmd_status != CMD_TARGET_STATUS ||
3176 scsi_status != SAM_STAT_CHECK_CONDITION ||
3177 sense_key != NOT_READY ||
3178 asc != ASC_LUN_NOT_READY) {
3179 return 0;
3182 /* Determine the reason for not ready state */
3183 ldstat = hpsa_get_volume_status(h, scsi3addr);
3185 /* Keep volume offline in certain cases: */
3186 switch (ldstat) {
3187 case HPSA_LV_UNDERGOING_ERASE:
3188 case HPSA_LV_UNDERGOING_RPI:
3189 case HPSA_LV_PENDING_RPI:
3190 case HPSA_LV_ENCRYPTED_NO_KEY:
3191 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3192 case HPSA_LV_UNDERGOING_ENCRYPTION:
3193 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3194 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3195 return ldstat;
3196 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3197 /* If VPD status page isn't available,
3198 * use ASC/ASCQ to determine state
3200 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3201 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3202 return ldstat;
3203 break;
3204 default:
3205 break;
3207 return 0;
3211 * Find out if a logical device supports aborts by simply trying one.
3212 * Smart Array may claim not to support aborts on logical drives, but
3213 * if a MSA2000 * is connected, the drives on that will be presented
3214 * by the Smart Array as logical drives, and aborts may be sent to
3215 * those devices successfully. So the simplest way to find out is
3216 * to simply try an abort and see how the device responds.
3218 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3219 unsigned char *scsi3addr)
3221 struct CommandList *c;
3222 struct ErrorInfo *ei;
3223 int rc = 0;
3225 u64 tag = (u64) -1; /* bogus tag */
3227 /* Assume that physical devices support aborts */
3228 if (!is_logical_dev_addr_mode(scsi3addr))
3229 return 1;
3231 c = cmd_alloc(h);
3233 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3234 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3235 /* no unmap needed here because no data xfer. */
3236 ei = c->err_info;
3237 switch (ei->CommandStatus) {
3238 case CMD_INVALID:
3239 rc = 0;
3240 break;
3241 case CMD_UNABORTABLE:
3242 case CMD_ABORT_FAILED:
3243 rc = 1;
3244 break;
3245 case CMD_TMF_STATUS:
3246 rc = hpsa_evaluate_tmf_status(h, c);
3247 break;
3248 default:
3249 rc = 0;
3250 break;
3252 cmd_free(h, c);
3253 return rc;
3256 static int hpsa_update_device_info(struct ctlr_info *h,
3257 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3258 unsigned char *is_OBDR_device)
3261 #define OBDR_SIG_OFFSET 43
3262 #define OBDR_TAPE_SIG "$DR-10"
3263 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3264 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3266 unsigned char *inq_buff;
3267 unsigned char *obdr_sig;
3269 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3270 if (!inq_buff)
3271 goto bail_out;
3273 /* Do an inquiry to the device to see what it is. */
3274 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3275 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3276 /* Inquiry failed (msg printed already) */
3277 dev_err(&h->pdev->dev,
3278 "hpsa_update_device_info: inquiry failed\n");
3279 goto bail_out;
3282 this_device->devtype = (inq_buff[0] & 0x1f);
3283 memcpy(this_device->scsi3addr, scsi3addr, 8);
3284 memcpy(this_device->vendor, &inq_buff[8],
3285 sizeof(this_device->vendor));
3286 memcpy(this_device->model, &inq_buff[16],
3287 sizeof(this_device->model));
3288 memset(this_device->device_id, 0,
3289 sizeof(this_device->device_id));
3290 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3291 sizeof(this_device->device_id));
3293 if (this_device->devtype == TYPE_DISK &&
3294 is_logical_dev_addr_mode(scsi3addr)) {
3295 int volume_offline;
3297 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3298 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3299 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3300 volume_offline = hpsa_volume_offline(h, scsi3addr);
3301 if (volume_offline < 0 || volume_offline > 0xff)
3302 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3303 this_device->volume_offline = volume_offline & 0xff;
3304 } else {
3305 this_device->raid_level = RAID_UNKNOWN;
3306 this_device->offload_config = 0;
3307 this_device->offload_enabled = 0;
3308 this_device->offload_to_be_enabled = 0;
3309 this_device->hba_ioaccel_enabled = 0;
3310 this_device->volume_offline = 0;
3311 this_device->queue_depth = h->nr_cmds;
3314 if (is_OBDR_device) {
3315 /* See if this is a One-Button-Disaster-Recovery device
3316 * by looking for "$DR-10" at offset 43 in inquiry data.
3318 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3319 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3320 strncmp(obdr_sig, OBDR_TAPE_SIG,
3321 OBDR_SIG_LEN) == 0);
3323 kfree(inq_buff);
3324 return 0;
3326 bail_out:
3327 kfree(inq_buff);
3328 return 1;
3331 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3332 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3334 unsigned long flags;
3335 int rc, entry;
3337 * See if this device supports aborts. If we already know
3338 * the device, we already know if it supports aborts, otherwise
3339 * we have to find out if it supports aborts by trying one.
3341 spin_lock_irqsave(&h->devlock, flags);
3342 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3343 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3344 entry >= 0 && entry < h->ndevices) {
3345 dev->supports_aborts = h->dev[entry]->supports_aborts;
3346 spin_unlock_irqrestore(&h->devlock, flags);
3347 } else {
3348 spin_unlock_irqrestore(&h->devlock, flags);
3349 dev->supports_aborts =
3350 hpsa_device_supports_aborts(h, scsi3addr);
3351 if (dev->supports_aborts < 0)
3352 dev->supports_aborts = 0;
3356 static unsigned char *ext_target_model[] = {
3357 "MSA2012",
3358 "MSA2024",
3359 "MSA2312",
3360 "MSA2324",
3361 "P2000 G3 SAS",
3362 "MSA 2040 SAS",
3363 NULL,
3366 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3368 int i;
3370 for (i = 0; ext_target_model[i]; i++)
3371 if (strncmp(device->model, ext_target_model[i],
3372 strlen(ext_target_model[i])) == 0)
3373 return 1;
3374 return 0;
3377 /* Helper function to assign bus, target, lun mapping of devices.
3378 * Puts non-external target logical volumes on bus 0, external target logical
3379 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3380 * Logical drive target and lun are assigned at this time, but
3381 * physical device lun and target assignment are deferred (assigned
3382 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3384 static void figure_bus_target_lun(struct ctlr_info *h,
3385 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3387 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3389 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3390 /* physical device, target and lun filled in later */
3391 if (is_hba_lunid(lunaddrbytes))
3392 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3393 else
3394 /* defer target, lun assignment for physical devices */
3395 hpsa_set_bus_target_lun(device, 2, -1, -1);
3396 return;
3398 /* It's a logical device */
3399 if (is_ext_target(h, device)) {
3400 /* external target way, put logicals on bus 1
3401 * and match target/lun numbers box
3402 * reports, other smart array, bus 0, target 0, match lunid
3404 hpsa_set_bus_target_lun(device,
3405 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3406 return;
3408 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3412 * If there is no lun 0 on a target, linux won't find any devices.
3413 * For the external targets (arrays), we have to manually detect the enclosure
3414 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3415 * it for some reason. *tmpdevice is the target we're adding,
3416 * this_device is a pointer into the current element of currentsd[]
3417 * that we're building up in update_scsi_devices(), below.
3418 * lunzerobits is a bitmap that tracks which targets already have a
3419 * lun 0 assigned.
3420 * Returns 1 if an enclosure was added, 0 if not.
3422 static int add_ext_target_dev(struct ctlr_info *h,
3423 struct hpsa_scsi_dev_t *tmpdevice,
3424 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3425 unsigned long lunzerobits[], int *n_ext_target_devs)
3427 unsigned char scsi3addr[8];
3429 if (test_bit(tmpdevice->target, lunzerobits))
3430 return 0; /* There is already a lun 0 on this target. */
3432 if (!is_logical_dev_addr_mode(lunaddrbytes))
3433 return 0; /* It's the logical targets that may lack lun 0. */
3435 if (!is_ext_target(h, tmpdevice))
3436 return 0; /* Only external target devices have this problem. */
3438 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3439 return 0;
3441 memset(scsi3addr, 0, 8);
3442 scsi3addr[3] = tmpdevice->target;
3443 if (is_hba_lunid(scsi3addr))
3444 return 0; /* Don't add the RAID controller here. */
3446 if (is_scsi_rev_5(h))
3447 return 0; /* p1210m doesn't need to do this. */
3449 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3450 dev_warn(&h->pdev->dev, "Maximum number of external "
3451 "target devices exceeded. Check your hardware "
3452 "configuration.");
3453 return 0;
3456 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3457 return 0;
3458 (*n_ext_target_devs)++;
3459 hpsa_set_bus_target_lun(this_device,
3460 tmpdevice->bus, tmpdevice->target, 0);
3461 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3462 set_bit(tmpdevice->target, lunzerobits);
3463 return 1;
3467 * Get address of physical disk used for an ioaccel2 mode command:
3468 * 1. Extract ioaccel2 handle from the command.
3469 * 2. Find a matching ioaccel2 handle from list of physical disks.
3470 * 3. Return:
3471 * 1 and set scsi3addr to address of matching physical
3472 * 0 if no matching physical disk was found.
3474 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3475 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3477 struct io_accel2_cmd *c2 =
3478 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3479 unsigned long flags;
3480 int i;
3482 spin_lock_irqsave(&h->devlock, flags);
3483 for (i = 0; i < h->ndevices; i++)
3484 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3485 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3486 sizeof(h->dev[i]->scsi3addr));
3487 spin_unlock_irqrestore(&h->devlock, flags);
3488 return 1;
3490 spin_unlock_irqrestore(&h->devlock, flags);
3491 return 0;
3495 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3496 * logdev. The number of luns in physdev and logdev are returned in
3497 * *nphysicals and *nlogicals, respectively.
3498 * Returns 0 on success, -1 otherwise.
3500 static int hpsa_gather_lun_info(struct ctlr_info *h,
3501 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3502 struct ReportLUNdata *logdev, u32 *nlogicals)
3504 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3505 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3506 return -1;
3508 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3509 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3510 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3511 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3512 *nphysicals = HPSA_MAX_PHYS_LUN;
3514 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3515 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3516 return -1;
3518 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3519 /* Reject Logicals in excess of our max capability. */
3520 if (*nlogicals > HPSA_MAX_LUN) {
3521 dev_warn(&h->pdev->dev,
3522 "maximum logical LUNs (%d) exceeded. "
3523 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3524 *nlogicals - HPSA_MAX_LUN);
3525 *nlogicals = HPSA_MAX_LUN;
3527 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3528 dev_warn(&h->pdev->dev,
3529 "maximum logical + physical LUNs (%d) exceeded. "
3530 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3531 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3532 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3534 return 0;
3537 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3538 int i, int nphysicals, int nlogicals,
3539 struct ReportExtendedLUNdata *physdev_list,
3540 struct ReportLUNdata *logdev_list)
3542 /* Helper function, figure out where the LUN ID info is coming from
3543 * given index i, lists of physical and logical devices, where in
3544 * the list the raid controller is supposed to appear (first or last)
3547 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3548 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3550 if (i == raid_ctlr_position)
3551 return RAID_CTLR_LUNID;
3553 if (i < logicals_start)
3554 return &physdev_list->LUN[i -
3555 (raid_ctlr_position == 0)].lunid[0];
3557 if (i < last_device)
3558 return &logdev_list->LUN[i - nphysicals -
3559 (raid_ctlr_position == 0)][0];
3560 BUG();
3561 return NULL;
3564 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3566 int rc;
3567 int hba_mode_enabled;
3568 struct bmic_controller_parameters *ctlr_params;
3569 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3570 GFP_KERNEL);
3572 if (!ctlr_params)
3573 return -ENOMEM;
3574 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3575 sizeof(struct bmic_controller_parameters));
3576 if (rc) {
3577 kfree(ctlr_params);
3578 return rc;
3581 hba_mode_enabled =
3582 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3583 kfree(ctlr_params);
3584 return hba_mode_enabled;
3587 /* get physical drive ioaccel handle and queue depth */
3588 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3589 struct hpsa_scsi_dev_t *dev,
3590 u8 *lunaddrbytes,
3591 struct bmic_identify_physical_device *id_phys)
3593 int rc;
3594 struct ext_report_lun_entry *rle =
3595 (struct ext_report_lun_entry *) lunaddrbytes;
3597 dev->ioaccel_handle = rle->ioaccel_handle;
3598 if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3599 dev->hba_ioaccel_enabled = 1;
3600 memset(id_phys, 0, sizeof(*id_phys));
3601 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3602 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3603 sizeof(*id_phys));
3604 if (!rc)
3605 /* Reserve space for FW operations */
3606 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3607 #define DRIVE_QUEUE_DEPTH 7
3608 dev->queue_depth =
3609 le16_to_cpu(id_phys->current_queue_depth_limit) -
3610 DRIVE_CMDS_RESERVED_FOR_FW;
3611 else
3612 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3613 atomic_set(&dev->ioaccel_cmds_out, 0);
3614 atomic_set(&dev->reset_cmds_out, 0);
3617 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3619 /* the idea here is we could get notified
3620 * that some devices have changed, so we do a report
3621 * physical luns and report logical luns cmd, and adjust
3622 * our list of devices accordingly.
3624 * The scsi3addr's of devices won't change so long as the
3625 * adapter is not reset. That means we can rescan and
3626 * tell which devices we already know about, vs. new
3627 * devices, vs. disappearing devices.
3629 struct ReportExtendedLUNdata *physdev_list = NULL;
3630 struct ReportLUNdata *logdev_list = NULL;
3631 struct bmic_identify_physical_device *id_phys = NULL;
3632 u32 nphysicals = 0;
3633 u32 nlogicals = 0;
3634 u32 ndev_allocated = 0;
3635 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3636 int ncurrent = 0;
3637 int i, n_ext_target_devs, ndevs_to_allocate;
3638 int raid_ctlr_position;
3639 int rescan_hba_mode;
3640 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3642 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3643 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3644 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3645 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3646 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3648 if (!currentsd || !physdev_list || !logdev_list ||
3649 !tmpdevice || !id_phys) {
3650 dev_err(&h->pdev->dev, "out of memory\n");
3651 goto out;
3653 memset(lunzerobits, 0, sizeof(lunzerobits));
3655 rescan_hba_mode = hpsa_hba_mode_enabled(h);
3656 if (rescan_hba_mode < 0)
3657 goto out;
3659 if (!h->hba_mode_enabled && rescan_hba_mode)
3660 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3661 else if (h->hba_mode_enabled && !rescan_hba_mode)
3662 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3664 h->hba_mode_enabled = rescan_hba_mode;
3666 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3667 logdev_list, &nlogicals))
3668 goto out;
3670 /* We might see up to the maximum number of logical and physical disks
3671 * plus external target devices, and a device for the local RAID
3672 * controller.
3674 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3676 /* Allocate the per device structures */
3677 for (i = 0; i < ndevs_to_allocate; i++) {
3678 if (i >= HPSA_MAX_DEVICES) {
3679 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3680 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3681 ndevs_to_allocate - HPSA_MAX_DEVICES);
3682 break;
3685 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3686 if (!currentsd[i]) {
3687 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3688 __FILE__, __LINE__);
3689 goto out;
3691 ndev_allocated++;
3694 if (is_scsi_rev_5(h))
3695 raid_ctlr_position = 0;
3696 else
3697 raid_ctlr_position = nphysicals + nlogicals;
3699 /* adjust our table of devices */
3700 n_ext_target_devs = 0;
3701 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3702 u8 *lunaddrbytes, is_OBDR = 0;
3704 /* Figure out where the LUN ID info is coming from */
3705 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3706 i, nphysicals, nlogicals, physdev_list, logdev_list);
3708 /* skip masked non-disk devices */
3709 if (MASKED_DEVICE(lunaddrbytes))
3710 if (i < nphysicals + (raid_ctlr_position == 0) &&
3711 NON_DISK_PHYS_DEV(lunaddrbytes))
3712 continue;
3714 /* Get device type, vendor, model, device id */
3715 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3716 &is_OBDR))
3717 continue; /* skip it if we can't talk to it. */
3718 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3719 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3720 this_device = currentsd[ncurrent];
3723 * For external target devices, we have to insert a LUN 0 which
3724 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3725 * is nonetheless an enclosure device there. We have to
3726 * present that otherwise linux won't find anything if
3727 * there is no lun 0.
3729 if (add_ext_target_dev(h, tmpdevice, this_device,
3730 lunaddrbytes, lunzerobits,
3731 &n_ext_target_devs)) {
3732 ncurrent++;
3733 this_device = currentsd[ncurrent];
3736 *this_device = *tmpdevice;
3738 /* do not expose masked devices */
3739 if (MASKED_DEVICE(lunaddrbytes) &&
3740 i < nphysicals + (raid_ctlr_position == 0)) {
3741 if (h->hba_mode_enabled)
3742 dev_warn(&h->pdev->dev,
3743 "Masked physical device detected\n");
3744 this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3745 } else {
3746 this_device->expose_state =
3747 HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3750 switch (this_device->devtype) {
3751 case TYPE_ROM:
3752 /* We don't *really* support actual CD-ROM devices,
3753 * just "One Button Disaster Recovery" tape drive
3754 * which temporarily pretends to be a CD-ROM drive.
3755 * So we check that the device is really an OBDR tape
3756 * device by checking for "$DR-10" in bytes 43-48 of
3757 * the inquiry data.
3759 if (is_OBDR)
3760 ncurrent++;
3761 break;
3762 case TYPE_DISK:
3763 if (i >= nphysicals) {
3764 ncurrent++;
3765 break;
3768 if (h->hba_mode_enabled)
3769 /* never use raid mapper in HBA mode */
3770 this_device->offload_enabled = 0;
3771 else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3772 h->transMethod & CFGTBL_Trans_io_accel2))
3773 break;
3775 hpsa_get_ioaccel_drive_info(h, this_device,
3776 lunaddrbytes, id_phys);
3777 atomic_set(&this_device->ioaccel_cmds_out, 0);
3778 ncurrent++;
3779 break;
3780 case TYPE_TAPE:
3781 case TYPE_MEDIUM_CHANGER:
3782 ncurrent++;
3783 break;
3784 case TYPE_ENCLOSURE:
3785 if (h->hba_mode_enabled)
3786 ncurrent++;
3787 break;
3788 case TYPE_RAID:
3789 /* Only present the Smartarray HBA as a RAID controller.
3790 * If it's a RAID controller other than the HBA itself
3791 * (an external RAID controller, MSA500 or similar)
3792 * don't present it.
3794 if (!is_hba_lunid(lunaddrbytes))
3795 break;
3796 ncurrent++;
3797 break;
3798 default:
3799 break;
3801 if (ncurrent >= HPSA_MAX_DEVICES)
3802 break;
3804 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3805 out:
3806 kfree(tmpdevice);
3807 for (i = 0; i < ndev_allocated; i++)
3808 kfree(currentsd[i]);
3809 kfree(currentsd);
3810 kfree(physdev_list);
3811 kfree(logdev_list);
3812 kfree(id_phys);
3815 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3816 struct scatterlist *sg)
3818 u64 addr64 = (u64) sg_dma_address(sg);
3819 unsigned int len = sg_dma_len(sg);
3821 desc->Addr = cpu_to_le64(addr64);
3822 desc->Len = cpu_to_le32(len);
3823 desc->Ext = 0;
3827 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3828 * dma mapping and fills in the scatter gather entries of the
3829 * hpsa command, cp.
3831 static int hpsa_scatter_gather(struct ctlr_info *h,
3832 struct CommandList *cp,
3833 struct scsi_cmnd *cmd)
3835 struct scatterlist *sg;
3836 int use_sg, i, sg_limit, chained, last_sg;
3837 struct SGDescriptor *curr_sg;
3839 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3841 use_sg = scsi_dma_map(cmd);
3842 if (use_sg < 0)
3843 return use_sg;
3845 if (!use_sg)
3846 goto sglist_finished;
3849 * If the number of entries is greater than the max for a single list,
3850 * then we have a chained list; we will set up all but one entry in the
3851 * first list (the last entry is saved for link information);
3852 * otherwise, we don't have a chained list and we'll set up at each of
3853 * the entries in the one list.
3855 curr_sg = cp->SG;
3856 chained = use_sg > h->max_cmd_sg_entries;
3857 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3858 last_sg = scsi_sg_count(cmd) - 1;
3859 scsi_for_each_sg(cmd, sg, sg_limit, i) {
3860 hpsa_set_sg_descriptor(curr_sg, sg);
3861 curr_sg++;
3864 if (chained) {
3866 * Continue with the chained list. Set curr_sg to the chained
3867 * list. Modify the limit to the total count less the entries
3868 * we've already set up. Resume the scan at the list entry
3869 * where the previous loop left off.
3871 curr_sg = h->cmd_sg_list[cp->cmdindex];
3872 sg_limit = use_sg - sg_limit;
3873 for_each_sg(sg, sg, sg_limit, i) {
3874 hpsa_set_sg_descriptor(curr_sg, sg);
3875 curr_sg++;
3879 /* Back the pointer up to the last entry and mark it as "last". */
3880 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3882 if (use_sg + chained > h->maxSG)
3883 h->maxSG = use_sg + chained;
3885 if (chained) {
3886 cp->Header.SGList = h->max_cmd_sg_entries;
3887 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3888 if (hpsa_map_sg_chain_block(h, cp)) {
3889 scsi_dma_unmap(cmd);
3890 return -1;
3892 return 0;
3895 sglist_finished:
3897 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3898 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3899 return 0;
3902 #define IO_ACCEL_INELIGIBLE (1)
3903 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3905 int is_write = 0;
3906 u32 block;
3907 u32 block_cnt;
3909 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3910 switch (cdb[0]) {
3911 case WRITE_6:
3912 case WRITE_12:
3913 is_write = 1;
3914 case READ_6:
3915 case READ_12:
3916 if (*cdb_len == 6) {
3917 block = (((u32) cdb[2]) << 8) | cdb[3];
3918 block_cnt = cdb[4];
3919 } else {
3920 BUG_ON(*cdb_len != 12);
3921 block = (((u32) cdb[2]) << 24) |
3922 (((u32) cdb[3]) << 16) |
3923 (((u32) cdb[4]) << 8) |
3924 cdb[5];
3925 block_cnt =
3926 (((u32) cdb[6]) << 24) |
3927 (((u32) cdb[7]) << 16) |
3928 (((u32) cdb[8]) << 8) |
3929 cdb[9];
3931 if (block_cnt > 0xffff)
3932 return IO_ACCEL_INELIGIBLE;
3934 cdb[0] = is_write ? WRITE_10 : READ_10;
3935 cdb[1] = 0;
3936 cdb[2] = (u8) (block >> 24);
3937 cdb[3] = (u8) (block >> 16);
3938 cdb[4] = (u8) (block >> 8);
3939 cdb[5] = (u8) (block);
3940 cdb[6] = 0;
3941 cdb[7] = (u8) (block_cnt >> 8);
3942 cdb[8] = (u8) (block_cnt);
3943 cdb[9] = 0;
3944 *cdb_len = 10;
3945 break;
3947 return 0;
3950 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3951 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3952 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3954 struct scsi_cmnd *cmd = c->scsi_cmd;
3955 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3956 unsigned int len;
3957 unsigned int total_len = 0;
3958 struct scatterlist *sg;
3959 u64 addr64;
3960 int use_sg, i;
3961 struct SGDescriptor *curr_sg;
3962 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3964 /* TODO: implement chaining support */
3965 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3966 atomic_dec(&phys_disk->ioaccel_cmds_out);
3967 return IO_ACCEL_INELIGIBLE;
3970 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3972 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3973 atomic_dec(&phys_disk->ioaccel_cmds_out);
3974 return IO_ACCEL_INELIGIBLE;
3977 c->cmd_type = CMD_IOACCEL1;
3979 /* Adjust the DMA address to point to the accelerated command buffer */
3980 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3981 (c->cmdindex * sizeof(*cp));
3982 BUG_ON(c->busaddr & 0x0000007F);
3984 use_sg = scsi_dma_map(cmd);
3985 if (use_sg < 0) {
3986 atomic_dec(&phys_disk->ioaccel_cmds_out);
3987 return use_sg;
3990 if (use_sg) {
3991 curr_sg = cp->SG;
3992 scsi_for_each_sg(cmd, sg, use_sg, i) {
3993 addr64 = (u64) sg_dma_address(sg);
3994 len = sg_dma_len(sg);
3995 total_len += len;
3996 curr_sg->Addr = cpu_to_le64(addr64);
3997 curr_sg->Len = cpu_to_le32(len);
3998 curr_sg->Ext = cpu_to_le32(0);
3999 curr_sg++;
4001 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4003 switch (cmd->sc_data_direction) {
4004 case DMA_TO_DEVICE:
4005 control |= IOACCEL1_CONTROL_DATA_OUT;
4006 break;
4007 case DMA_FROM_DEVICE:
4008 control |= IOACCEL1_CONTROL_DATA_IN;
4009 break;
4010 case DMA_NONE:
4011 control |= IOACCEL1_CONTROL_NODATAXFER;
4012 break;
4013 default:
4014 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4015 cmd->sc_data_direction);
4016 BUG();
4017 break;
4019 } else {
4020 control |= IOACCEL1_CONTROL_NODATAXFER;
4023 c->Header.SGList = use_sg;
4024 /* Fill out the command structure to submit */
4025 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4026 cp->transfer_len = cpu_to_le32(total_len);
4027 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4028 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4029 cp->control = cpu_to_le32(control);
4030 memcpy(cp->CDB, cdb, cdb_len);
4031 memcpy(cp->CISS_LUN, scsi3addr, 8);
4032 /* Tag was already set at init time. */
4033 enqueue_cmd_and_start_io(h, c);
4034 return 0;
4038 * Queue a command directly to a device behind the controller using the
4039 * I/O accelerator path.
4041 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4042 struct CommandList *c)
4044 struct scsi_cmnd *cmd = c->scsi_cmd;
4045 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4047 c->phys_disk = dev;
4049 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4050 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4054 * Set encryption parameters for the ioaccel2 request
4056 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4057 struct CommandList *c, struct io_accel2_cmd *cp)
4059 struct scsi_cmnd *cmd = c->scsi_cmd;
4060 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4061 struct raid_map_data *map = &dev->raid_map;
4062 u64 first_block;
4064 /* Are we doing encryption on this device */
4065 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4066 return;
4067 /* Set the data encryption key index. */
4068 cp->dekindex = map->dekindex;
4070 /* Set the encryption enable flag, encoded into direction field. */
4071 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4073 /* Set encryption tweak values based on logical block address
4074 * If block size is 512, tweak value is LBA.
4075 * For other block sizes, tweak is (LBA * block size)/ 512)
4077 switch (cmd->cmnd[0]) {
4078 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4079 case WRITE_6:
4080 case READ_6:
4081 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4082 break;
4083 case WRITE_10:
4084 case READ_10:
4085 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4086 case WRITE_12:
4087 case READ_12:
4088 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4089 break;
4090 case WRITE_16:
4091 case READ_16:
4092 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4093 break;
4094 default:
4095 dev_err(&h->pdev->dev,
4096 "ERROR: %s: size (0x%x) not supported for encryption\n",
4097 __func__, cmd->cmnd[0]);
4098 BUG();
4099 break;
4102 if (le32_to_cpu(map->volume_blk_size) != 512)
4103 first_block = first_block *
4104 le32_to_cpu(map->volume_blk_size)/512;
4106 cp->tweak_lower = cpu_to_le32(first_block);
4107 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4110 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4111 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4112 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4114 struct scsi_cmnd *cmd = c->scsi_cmd;
4115 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4116 struct ioaccel2_sg_element *curr_sg;
4117 int use_sg, i;
4118 struct scatterlist *sg;
4119 u64 addr64;
4120 u32 len;
4121 u32 total_len = 0;
4123 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4125 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4126 atomic_dec(&phys_disk->ioaccel_cmds_out);
4127 return IO_ACCEL_INELIGIBLE;
4130 c->cmd_type = CMD_IOACCEL2;
4131 /* Adjust the DMA address to point to the accelerated command buffer */
4132 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4133 (c->cmdindex * sizeof(*cp));
4134 BUG_ON(c->busaddr & 0x0000007F);
4136 memset(cp, 0, sizeof(*cp));
4137 cp->IU_type = IOACCEL2_IU_TYPE;
4139 use_sg = scsi_dma_map(cmd);
4140 if (use_sg < 0) {
4141 atomic_dec(&phys_disk->ioaccel_cmds_out);
4142 return use_sg;
4145 if (use_sg) {
4146 curr_sg = cp->sg;
4147 if (use_sg > h->ioaccel_maxsg) {
4148 addr64 = le64_to_cpu(
4149 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4150 curr_sg->address = cpu_to_le64(addr64);
4151 curr_sg->length = 0;
4152 curr_sg->reserved[0] = 0;
4153 curr_sg->reserved[1] = 0;
4154 curr_sg->reserved[2] = 0;
4155 curr_sg->chain_indicator = 0x80;
4157 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4159 scsi_for_each_sg(cmd, sg, use_sg, i) {
4160 addr64 = (u64) sg_dma_address(sg);
4161 len = sg_dma_len(sg);
4162 total_len += len;
4163 curr_sg->address = cpu_to_le64(addr64);
4164 curr_sg->length = cpu_to_le32(len);
4165 curr_sg->reserved[0] = 0;
4166 curr_sg->reserved[1] = 0;
4167 curr_sg->reserved[2] = 0;
4168 curr_sg->chain_indicator = 0;
4169 curr_sg++;
4172 switch (cmd->sc_data_direction) {
4173 case DMA_TO_DEVICE:
4174 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4175 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4176 break;
4177 case DMA_FROM_DEVICE:
4178 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4179 cp->direction |= IOACCEL2_DIR_DATA_IN;
4180 break;
4181 case DMA_NONE:
4182 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4183 cp->direction |= IOACCEL2_DIR_NO_DATA;
4184 break;
4185 default:
4186 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4187 cmd->sc_data_direction);
4188 BUG();
4189 break;
4191 } else {
4192 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4193 cp->direction |= IOACCEL2_DIR_NO_DATA;
4196 /* Set encryption parameters, if necessary */
4197 set_encrypt_ioaccel2(h, c, cp);
4199 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4200 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4201 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4203 cp->data_len = cpu_to_le32(total_len);
4204 cp->err_ptr = cpu_to_le64(c->busaddr +
4205 offsetof(struct io_accel2_cmd, error_data));
4206 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4208 /* fill in sg elements */
4209 if (use_sg > h->ioaccel_maxsg) {
4210 cp->sg_count = 1;
4211 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4212 atomic_dec(&phys_disk->ioaccel_cmds_out);
4213 scsi_dma_unmap(cmd);
4214 return -1;
4216 } else
4217 cp->sg_count = (u8) use_sg;
4219 enqueue_cmd_and_start_io(h, c);
4220 return 0;
4224 * Queue a command to the correct I/O accelerator path.
4226 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4227 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4228 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4230 /* Try to honor the device's queue depth */
4231 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4232 phys_disk->queue_depth) {
4233 atomic_dec(&phys_disk->ioaccel_cmds_out);
4234 return IO_ACCEL_INELIGIBLE;
4236 if (h->transMethod & CFGTBL_Trans_io_accel1)
4237 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4238 cdb, cdb_len, scsi3addr,
4239 phys_disk);
4240 else
4241 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4242 cdb, cdb_len, scsi3addr,
4243 phys_disk);
4246 static void raid_map_helper(struct raid_map_data *map,
4247 int offload_to_mirror, u32 *map_index, u32 *current_group)
4249 if (offload_to_mirror == 0) {
4250 /* use physical disk in the first mirrored group. */
4251 *map_index %= le16_to_cpu(map->data_disks_per_row);
4252 return;
4254 do {
4255 /* determine mirror group that *map_index indicates */
4256 *current_group = *map_index /
4257 le16_to_cpu(map->data_disks_per_row);
4258 if (offload_to_mirror == *current_group)
4259 continue;
4260 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4261 /* select map index from next group */
4262 *map_index += le16_to_cpu(map->data_disks_per_row);
4263 (*current_group)++;
4264 } else {
4265 /* select map index from first group */
4266 *map_index %= le16_to_cpu(map->data_disks_per_row);
4267 *current_group = 0;
4269 } while (offload_to_mirror != *current_group);
4273 * Attempt to perform offload RAID mapping for a logical volume I/O.
4275 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4276 struct CommandList *c)
4278 struct scsi_cmnd *cmd = c->scsi_cmd;
4279 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4280 struct raid_map_data *map = &dev->raid_map;
4281 struct raid_map_disk_data *dd = &map->data[0];
4282 int is_write = 0;
4283 u32 map_index;
4284 u64 first_block, last_block;
4285 u32 block_cnt;
4286 u32 blocks_per_row;
4287 u64 first_row, last_row;
4288 u32 first_row_offset, last_row_offset;
4289 u32 first_column, last_column;
4290 u64 r0_first_row, r0_last_row;
4291 u32 r5or6_blocks_per_row;
4292 u64 r5or6_first_row, r5or6_last_row;
4293 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4294 u32 r5or6_first_column, r5or6_last_column;
4295 u32 total_disks_per_row;
4296 u32 stripesize;
4297 u32 first_group, last_group, current_group;
4298 u32 map_row;
4299 u32 disk_handle;
4300 u64 disk_block;
4301 u32 disk_block_cnt;
4302 u8 cdb[16];
4303 u8 cdb_len;
4304 u16 strip_size;
4305 #if BITS_PER_LONG == 32
4306 u64 tmpdiv;
4307 #endif
4308 int offload_to_mirror;
4310 /* check for valid opcode, get LBA and block count */
4311 switch (cmd->cmnd[0]) {
4312 case WRITE_6:
4313 is_write = 1;
4314 case READ_6:
4315 first_block =
4316 (((u64) cmd->cmnd[2]) << 8) |
4317 cmd->cmnd[3];
4318 block_cnt = cmd->cmnd[4];
4319 if (block_cnt == 0)
4320 block_cnt = 256;
4321 break;
4322 case WRITE_10:
4323 is_write = 1;
4324 case READ_10:
4325 first_block =
4326 (((u64) cmd->cmnd[2]) << 24) |
4327 (((u64) cmd->cmnd[3]) << 16) |
4328 (((u64) cmd->cmnd[4]) << 8) |
4329 cmd->cmnd[5];
4330 block_cnt =
4331 (((u32) cmd->cmnd[7]) << 8) |
4332 cmd->cmnd[8];
4333 break;
4334 case WRITE_12:
4335 is_write = 1;
4336 case READ_12:
4337 first_block =
4338 (((u64) cmd->cmnd[2]) << 24) |
4339 (((u64) cmd->cmnd[3]) << 16) |
4340 (((u64) cmd->cmnd[4]) << 8) |
4341 cmd->cmnd[5];
4342 block_cnt =
4343 (((u32) cmd->cmnd[6]) << 24) |
4344 (((u32) cmd->cmnd[7]) << 16) |
4345 (((u32) cmd->cmnd[8]) << 8) |
4346 cmd->cmnd[9];
4347 break;
4348 case WRITE_16:
4349 is_write = 1;
4350 case READ_16:
4351 first_block =
4352 (((u64) cmd->cmnd[2]) << 56) |
4353 (((u64) cmd->cmnd[3]) << 48) |
4354 (((u64) cmd->cmnd[4]) << 40) |
4355 (((u64) cmd->cmnd[5]) << 32) |
4356 (((u64) cmd->cmnd[6]) << 24) |
4357 (((u64) cmd->cmnd[7]) << 16) |
4358 (((u64) cmd->cmnd[8]) << 8) |
4359 cmd->cmnd[9];
4360 block_cnt =
4361 (((u32) cmd->cmnd[10]) << 24) |
4362 (((u32) cmd->cmnd[11]) << 16) |
4363 (((u32) cmd->cmnd[12]) << 8) |
4364 cmd->cmnd[13];
4365 break;
4366 default:
4367 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4369 last_block = first_block + block_cnt - 1;
4371 /* check for write to non-RAID-0 */
4372 if (is_write && dev->raid_level != 0)
4373 return IO_ACCEL_INELIGIBLE;
4375 /* check for invalid block or wraparound */
4376 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4377 last_block < first_block)
4378 return IO_ACCEL_INELIGIBLE;
4380 /* calculate stripe information for the request */
4381 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4382 le16_to_cpu(map->strip_size);
4383 strip_size = le16_to_cpu(map->strip_size);
4384 #if BITS_PER_LONG == 32
4385 tmpdiv = first_block;
4386 (void) do_div(tmpdiv, blocks_per_row);
4387 first_row = tmpdiv;
4388 tmpdiv = last_block;
4389 (void) do_div(tmpdiv, blocks_per_row);
4390 last_row = tmpdiv;
4391 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4392 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4393 tmpdiv = first_row_offset;
4394 (void) do_div(tmpdiv, strip_size);
4395 first_column = tmpdiv;
4396 tmpdiv = last_row_offset;
4397 (void) do_div(tmpdiv, strip_size);
4398 last_column = tmpdiv;
4399 #else
4400 first_row = first_block / blocks_per_row;
4401 last_row = last_block / blocks_per_row;
4402 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4403 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4404 first_column = first_row_offset / strip_size;
4405 last_column = last_row_offset / strip_size;
4406 #endif
4408 /* if this isn't a single row/column then give to the controller */
4409 if ((first_row != last_row) || (first_column != last_column))
4410 return IO_ACCEL_INELIGIBLE;
4412 /* proceeding with driver mapping */
4413 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4414 le16_to_cpu(map->metadata_disks_per_row);
4415 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4416 le16_to_cpu(map->row_cnt);
4417 map_index = (map_row * total_disks_per_row) + first_column;
4419 switch (dev->raid_level) {
4420 case HPSA_RAID_0:
4421 break; /* nothing special to do */
4422 case HPSA_RAID_1:
4423 /* Handles load balance across RAID 1 members.
4424 * (2-drive R1 and R10 with even # of drives.)
4425 * Appropriate for SSDs, not optimal for HDDs
4427 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4428 if (dev->offload_to_mirror)
4429 map_index += le16_to_cpu(map->data_disks_per_row);
4430 dev->offload_to_mirror = !dev->offload_to_mirror;
4431 break;
4432 case HPSA_RAID_ADM:
4433 /* Handles N-way mirrors (R1-ADM)
4434 * and R10 with # of drives divisible by 3.)
4436 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4438 offload_to_mirror = dev->offload_to_mirror;
4439 raid_map_helper(map, offload_to_mirror,
4440 &map_index, &current_group);
4441 /* set mirror group to use next time */
4442 offload_to_mirror =
4443 (offload_to_mirror >=
4444 le16_to_cpu(map->layout_map_count) - 1)
4445 ? 0 : offload_to_mirror + 1;
4446 dev->offload_to_mirror = offload_to_mirror;
4447 /* Avoid direct use of dev->offload_to_mirror within this
4448 * function since multiple threads might simultaneously
4449 * increment it beyond the range of dev->layout_map_count -1.
4451 break;
4452 case HPSA_RAID_5:
4453 case HPSA_RAID_6:
4454 if (le16_to_cpu(map->layout_map_count) <= 1)
4455 break;
4457 /* Verify first and last block are in same RAID group */
4458 r5or6_blocks_per_row =
4459 le16_to_cpu(map->strip_size) *
4460 le16_to_cpu(map->data_disks_per_row);
4461 BUG_ON(r5or6_blocks_per_row == 0);
4462 stripesize = r5or6_blocks_per_row *
4463 le16_to_cpu(map->layout_map_count);
4464 #if BITS_PER_LONG == 32
4465 tmpdiv = first_block;
4466 first_group = do_div(tmpdiv, stripesize);
4467 tmpdiv = first_group;
4468 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4469 first_group = tmpdiv;
4470 tmpdiv = last_block;
4471 last_group = do_div(tmpdiv, stripesize);
4472 tmpdiv = last_group;
4473 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4474 last_group = tmpdiv;
4475 #else
4476 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4477 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4478 #endif
4479 if (first_group != last_group)
4480 return IO_ACCEL_INELIGIBLE;
4482 /* Verify request is in a single row of RAID 5/6 */
4483 #if BITS_PER_LONG == 32
4484 tmpdiv = first_block;
4485 (void) do_div(tmpdiv, stripesize);
4486 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4487 tmpdiv = last_block;
4488 (void) do_div(tmpdiv, stripesize);
4489 r5or6_last_row = r0_last_row = tmpdiv;
4490 #else
4491 first_row = r5or6_first_row = r0_first_row =
4492 first_block / stripesize;
4493 r5or6_last_row = r0_last_row = last_block / stripesize;
4494 #endif
4495 if (r5or6_first_row != r5or6_last_row)
4496 return IO_ACCEL_INELIGIBLE;
4499 /* Verify request is in a single column */
4500 #if BITS_PER_LONG == 32
4501 tmpdiv = first_block;
4502 first_row_offset = do_div(tmpdiv, stripesize);
4503 tmpdiv = first_row_offset;
4504 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4505 r5or6_first_row_offset = first_row_offset;
4506 tmpdiv = last_block;
4507 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4508 tmpdiv = r5or6_last_row_offset;
4509 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4510 tmpdiv = r5or6_first_row_offset;
4511 (void) do_div(tmpdiv, map->strip_size);
4512 first_column = r5or6_first_column = tmpdiv;
4513 tmpdiv = r5or6_last_row_offset;
4514 (void) do_div(tmpdiv, map->strip_size);
4515 r5or6_last_column = tmpdiv;
4516 #else
4517 first_row_offset = r5or6_first_row_offset =
4518 (u32)((first_block % stripesize) %
4519 r5or6_blocks_per_row);
4521 r5or6_last_row_offset =
4522 (u32)((last_block % stripesize) %
4523 r5or6_blocks_per_row);
4525 first_column = r5or6_first_column =
4526 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4527 r5or6_last_column =
4528 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4529 #endif
4530 if (r5or6_first_column != r5or6_last_column)
4531 return IO_ACCEL_INELIGIBLE;
4533 /* Request is eligible */
4534 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4535 le16_to_cpu(map->row_cnt);
4537 map_index = (first_group *
4538 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4539 (map_row * total_disks_per_row) + first_column;
4540 break;
4541 default:
4542 return IO_ACCEL_INELIGIBLE;
4545 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4546 return IO_ACCEL_INELIGIBLE;
4548 c->phys_disk = dev->phys_disk[map_index];
4550 disk_handle = dd[map_index].ioaccel_handle;
4551 disk_block = le64_to_cpu(map->disk_starting_blk) +
4552 first_row * le16_to_cpu(map->strip_size) +
4553 (first_row_offset - first_column *
4554 le16_to_cpu(map->strip_size));
4555 disk_block_cnt = block_cnt;
4557 /* handle differing logical/physical block sizes */
4558 if (map->phys_blk_shift) {
4559 disk_block <<= map->phys_blk_shift;
4560 disk_block_cnt <<= map->phys_blk_shift;
4562 BUG_ON(disk_block_cnt > 0xffff);
4564 /* build the new CDB for the physical disk I/O */
4565 if (disk_block > 0xffffffff) {
4566 cdb[0] = is_write ? WRITE_16 : READ_16;
4567 cdb[1] = 0;
4568 cdb[2] = (u8) (disk_block >> 56);
4569 cdb[3] = (u8) (disk_block >> 48);
4570 cdb[4] = (u8) (disk_block >> 40);
4571 cdb[5] = (u8) (disk_block >> 32);
4572 cdb[6] = (u8) (disk_block >> 24);
4573 cdb[7] = (u8) (disk_block >> 16);
4574 cdb[8] = (u8) (disk_block >> 8);
4575 cdb[9] = (u8) (disk_block);
4576 cdb[10] = (u8) (disk_block_cnt >> 24);
4577 cdb[11] = (u8) (disk_block_cnt >> 16);
4578 cdb[12] = (u8) (disk_block_cnt >> 8);
4579 cdb[13] = (u8) (disk_block_cnt);
4580 cdb[14] = 0;
4581 cdb[15] = 0;
4582 cdb_len = 16;
4583 } else {
4584 cdb[0] = is_write ? WRITE_10 : READ_10;
4585 cdb[1] = 0;
4586 cdb[2] = (u8) (disk_block >> 24);
4587 cdb[3] = (u8) (disk_block >> 16);
4588 cdb[4] = (u8) (disk_block >> 8);
4589 cdb[5] = (u8) (disk_block);
4590 cdb[6] = 0;
4591 cdb[7] = (u8) (disk_block_cnt >> 8);
4592 cdb[8] = (u8) (disk_block_cnt);
4593 cdb[9] = 0;
4594 cdb_len = 10;
4596 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4597 dev->scsi3addr,
4598 dev->phys_disk[map_index]);
4602 * Submit commands down the "normal" RAID stack path
4603 * All callers to hpsa_ciss_submit must check lockup_detected
4604 * beforehand, before (opt.) and after calling cmd_alloc
4606 static int hpsa_ciss_submit(struct ctlr_info *h,
4607 struct CommandList *c, struct scsi_cmnd *cmd,
4608 unsigned char scsi3addr[])
4610 cmd->host_scribble = (unsigned char *) c;
4611 c->cmd_type = CMD_SCSI;
4612 c->scsi_cmd = cmd;
4613 c->Header.ReplyQueue = 0; /* unused in simple mode */
4614 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4615 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4617 /* Fill in the request block... */
4619 c->Request.Timeout = 0;
4620 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4621 c->Request.CDBLen = cmd->cmd_len;
4622 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4623 switch (cmd->sc_data_direction) {
4624 case DMA_TO_DEVICE:
4625 c->Request.type_attr_dir =
4626 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4627 break;
4628 case DMA_FROM_DEVICE:
4629 c->Request.type_attr_dir =
4630 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4631 break;
4632 case DMA_NONE:
4633 c->Request.type_attr_dir =
4634 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4635 break;
4636 case DMA_BIDIRECTIONAL:
4637 /* This can happen if a buggy application does a scsi passthru
4638 * and sets both inlen and outlen to non-zero. ( see
4639 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4642 c->Request.type_attr_dir =
4643 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4644 /* This is technically wrong, and hpsa controllers should
4645 * reject it with CMD_INVALID, which is the most correct
4646 * response, but non-fibre backends appear to let it
4647 * slide by, and give the same results as if this field
4648 * were set correctly. Either way is acceptable for
4649 * our purposes here.
4652 break;
4654 default:
4655 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4656 cmd->sc_data_direction);
4657 BUG();
4658 break;
4661 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4662 hpsa_cmd_resolve_and_free(h, c);
4663 return SCSI_MLQUEUE_HOST_BUSY;
4665 enqueue_cmd_and_start_io(h, c);
4666 /* the cmd'll come back via intr handler in complete_scsi_command() */
4667 return 0;
4670 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4671 struct CommandList *c)
4673 dma_addr_t cmd_dma_handle, err_dma_handle;
4675 /* Zero out all of commandlist except the last field, refcount */
4676 memset(c, 0, offsetof(struct CommandList, refcount));
4677 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4678 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4679 c->err_info = h->errinfo_pool + index;
4680 memset(c->err_info, 0, sizeof(*c->err_info));
4681 err_dma_handle = h->errinfo_pool_dhandle
4682 + index * sizeof(*c->err_info);
4683 c->cmdindex = index;
4684 c->busaddr = (u32) cmd_dma_handle;
4685 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4686 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4687 c->h = h;
4688 c->scsi_cmd = SCSI_CMD_IDLE;
4691 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4693 int i;
4695 for (i = 0; i < h->nr_cmds; i++) {
4696 struct CommandList *c = h->cmd_pool + i;
4698 hpsa_cmd_init(h, i, c);
4699 atomic_set(&c->refcount, 0);
4703 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4704 struct CommandList *c)
4706 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4708 BUG_ON(c->cmdindex != index);
4710 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4711 memset(c->err_info, 0, sizeof(*c->err_info));
4712 c->busaddr = (u32) cmd_dma_handle;
4715 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4716 struct CommandList *c, struct scsi_cmnd *cmd,
4717 unsigned char *scsi3addr)
4719 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4720 int rc = IO_ACCEL_INELIGIBLE;
4722 cmd->host_scribble = (unsigned char *) c;
4724 if (dev->offload_enabled) {
4725 hpsa_cmd_init(h, c->cmdindex, c);
4726 c->cmd_type = CMD_SCSI;
4727 c->scsi_cmd = cmd;
4728 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4729 if (rc < 0) /* scsi_dma_map failed. */
4730 rc = SCSI_MLQUEUE_HOST_BUSY;
4731 } else if (dev->hba_ioaccel_enabled) {
4732 hpsa_cmd_init(h, c->cmdindex, c);
4733 c->cmd_type = CMD_SCSI;
4734 c->scsi_cmd = cmd;
4735 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4736 if (rc < 0) /* scsi_dma_map failed. */
4737 rc = SCSI_MLQUEUE_HOST_BUSY;
4739 return rc;
4742 static void hpsa_command_resubmit_worker(struct work_struct *work)
4744 struct scsi_cmnd *cmd;
4745 struct hpsa_scsi_dev_t *dev;
4746 struct CommandList *c = container_of(work, struct CommandList, work);
4748 cmd = c->scsi_cmd;
4749 dev = cmd->device->hostdata;
4750 if (!dev) {
4751 cmd->result = DID_NO_CONNECT << 16;
4752 return hpsa_cmd_free_and_done(c->h, c, cmd);
4754 if (c->reset_pending)
4755 return hpsa_cmd_resolve_and_free(c->h, c);
4756 if (c->abort_pending)
4757 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4758 if (c->cmd_type == CMD_IOACCEL2) {
4759 struct ctlr_info *h = c->h;
4760 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4761 int rc;
4763 if (c2->error_data.serv_response ==
4764 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4765 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4766 if (rc == 0)
4767 return;
4768 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4770 * If we get here, it means dma mapping failed.
4771 * Try again via scsi mid layer, which will
4772 * then get SCSI_MLQUEUE_HOST_BUSY.
4774 cmd->result = DID_IMM_RETRY << 16;
4775 return hpsa_cmd_free_and_done(h, c, cmd);
4777 /* else, fall thru and resubmit down CISS path */
4780 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4781 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4783 * If we get here, it means dma mapping failed. Try
4784 * again via scsi mid layer, which will then get
4785 * SCSI_MLQUEUE_HOST_BUSY.
4787 * hpsa_ciss_submit will have already freed c
4788 * if it encountered a dma mapping failure.
4790 cmd->result = DID_IMM_RETRY << 16;
4791 cmd->scsi_done(cmd);
4795 /* Running in struct Scsi_Host->host_lock less mode */
4796 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4798 struct ctlr_info *h;
4799 struct hpsa_scsi_dev_t *dev;
4800 unsigned char scsi3addr[8];
4801 struct CommandList *c;
4802 int rc = 0;
4804 /* Get the ptr to our adapter structure out of cmd->host. */
4805 h = sdev_to_hba(cmd->device);
4807 BUG_ON(cmd->request->tag < 0);
4809 dev = cmd->device->hostdata;
4810 if (!dev) {
4811 cmd->result = DID_NO_CONNECT << 16;
4812 cmd->scsi_done(cmd);
4813 return 0;
4816 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4818 if (unlikely(lockup_detected(h))) {
4819 cmd->result = DID_NO_CONNECT << 16;
4820 cmd->scsi_done(cmd);
4821 return 0;
4823 c = cmd_tagged_alloc(h, cmd);
4826 * Call alternate submit routine for I/O accelerated commands.
4827 * Retries always go down the normal I/O path.
4829 if (likely(cmd->retries == 0 &&
4830 cmd->request->cmd_type == REQ_TYPE_FS &&
4831 h->acciopath_status)) {
4832 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4833 if (rc == 0)
4834 return 0;
4835 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4836 hpsa_cmd_resolve_and_free(h, c);
4837 return SCSI_MLQUEUE_HOST_BUSY;
4840 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4843 static void hpsa_scan_complete(struct ctlr_info *h)
4845 unsigned long flags;
4847 spin_lock_irqsave(&h->scan_lock, flags);
4848 h->scan_finished = 1;
4849 wake_up_all(&h->scan_wait_queue);
4850 spin_unlock_irqrestore(&h->scan_lock, flags);
4853 static void hpsa_scan_start(struct Scsi_Host *sh)
4855 struct ctlr_info *h = shost_to_hba(sh);
4856 unsigned long flags;
4859 * Don't let rescans be initiated on a controller known to be locked
4860 * up. If the controller locks up *during* a rescan, that thread is
4861 * probably hosed, but at least we can prevent new rescan threads from
4862 * piling up on a locked up controller.
4864 if (unlikely(lockup_detected(h)))
4865 return hpsa_scan_complete(h);
4867 /* wait until any scan already in progress is finished. */
4868 while (1) {
4869 spin_lock_irqsave(&h->scan_lock, flags);
4870 if (h->scan_finished)
4871 break;
4872 spin_unlock_irqrestore(&h->scan_lock, flags);
4873 wait_event(h->scan_wait_queue, h->scan_finished);
4874 /* Note: We don't need to worry about a race between this
4875 * thread and driver unload because the midlayer will
4876 * have incremented the reference count, so unload won't
4877 * happen if we're in here.
4880 h->scan_finished = 0; /* mark scan as in progress */
4881 spin_unlock_irqrestore(&h->scan_lock, flags);
4883 if (unlikely(lockup_detected(h)))
4884 return hpsa_scan_complete(h);
4886 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4888 hpsa_scan_complete(h);
4891 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4893 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4895 if (!logical_drive)
4896 return -ENODEV;
4898 if (qdepth < 1)
4899 qdepth = 1;
4900 else if (qdepth > logical_drive->queue_depth)
4901 qdepth = logical_drive->queue_depth;
4903 return scsi_change_queue_depth(sdev, qdepth);
4906 static int hpsa_scan_finished(struct Scsi_Host *sh,
4907 unsigned long elapsed_time)
4909 struct ctlr_info *h = shost_to_hba(sh);
4910 unsigned long flags;
4911 int finished;
4913 spin_lock_irqsave(&h->scan_lock, flags);
4914 finished = h->scan_finished;
4915 spin_unlock_irqrestore(&h->scan_lock, flags);
4916 return finished;
4919 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4921 struct Scsi_Host *sh;
4922 int error;
4924 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4925 if (sh == NULL) {
4926 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4927 return -ENOMEM;
4930 sh->io_port = 0;
4931 sh->n_io_port = 0;
4932 sh->this_id = -1;
4933 sh->max_channel = 3;
4934 sh->max_cmd_len = MAX_COMMAND_SIZE;
4935 sh->max_lun = HPSA_MAX_LUN;
4936 sh->max_id = HPSA_MAX_LUN;
4937 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4938 sh->cmd_per_lun = sh->can_queue;
4939 sh->sg_tablesize = h->maxsgentries;
4940 sh->hostdata[0] = (unsigned long) h;
4941 sh->irq = h->intr[h->intr_mode];
4942 sh->unique_id = sh->irq;
4943 error = scsi_init_shared_tag_map(sh, sh->can_queue);
4944 if (error) {
4945 dev_err(&h->pdev->dev,
4946 "%s: scsi_init_shared_tag_map failed for controller %d\n",
4947 __func__, h->ctlr);
4948 scsi_host_put(sh);
4949 return error;
4951 h->scsi_host = sh;
4952 return 0;
4955 static int hpsa_scsi_add_host(struct ctlr_info *h)
4957 int rv;
4959 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
4960 if (rv) {
4961 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
4962 return rv;
4964 scsi_scan_host(h->scsi_host);
4965 return 0;
4969 * The block layer has already gone to the trouble of picking out a unique,
4970 * small-integer tag for this request. We use an offset from that value as
4971 * an index to select our command block. (The offset allows us to reserve the
4972 * low-numbered entries for our own uses.)
4974 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
4976 int idx = scmd->request->tag;
4978 if (idx < 0)
4979 return idx;
4981 /* Offset to leave space for internal cmds. */
4982 return idx += HPSA_NRESERVED_CMDS;
4986 * Send a TEST_UNIT_READY command to the specified LUN using the specified
4987 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
4989 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
4990 struct CommandList *c, unsigned char lunaddr[],
4991 int reply_queue)
4993 int rc;
4995 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4996 (void) fill_cmd(c, TEST_UNIT_READY, h,
4997 NULL, 0, 0, lunaddr, TYPE_CMD);
4998 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4999 if (rc)
5000 return rc;
5001 /* no unmap needed here because no data xfer. */
5003 /* Check if the unit is already ready. */
5004 if (c->err_info->CommandStatus == CMD_SUCCESS)
5005 return 0;
5008 * The first command sent after reset will receive "unit attention" to
5009 * indicate that the LUN has been reset...this is actually what we're
5010 * looking for (but, success is good too).
5012 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5013 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5014 (c->err_info->SenseInfo[2] == NO_SENSE ||
5015 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5016 return 0;
5018 return 1;
5022 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5023 * returns zero when the unit is ready, and non-zero when giving up.
5025 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5026 struct CommandList *c,
5027 unsigned char lunaddr[], int reply_queue)
5029 int rc;
5030 int count = 0;
5031 int waittime = 1; /* seconds */
5033 /* Send test unit ready until device ready, or give up. */
5034 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5037 * Wait for a bit. do this first, because if we send
5038 * the TUR right away, the reset will just abort it.
5040 msleep(1000 * waittime);
5042 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5043 if (!rc)
5044 break;
5046 /* Increase wait time with each try, up to a point. */
5047 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5048 waittime *= 2;
5050 dev_warn(&h->pdev->dev,
5051 "waiting %d secs for device to become ready.\n",
5052 waittime);
5055 return rc;
5058 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5059 unsigned char lunaddr[],
5060 int reply_queue)
5062 int first_queue;
5063 int last_queue;
5064 int rq;
5065 int rc = 0;
5066 struct CommandList *c;
5068 c = cmd_alloc(h);
5071 * If no specific reply queue was requested, then send the TUR
5072 * repeatedly, requesting a reply on each reply queue; otherwise execute
5073 * the loop exactly once using only the specified queue.
5075 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5076 first_queue = 0;
5077 last_queue = h->nreply_queues - 1;
5078 } else {
5079 first_queue = reply_queue;
5080 last_queue = reply_queue;
5083 for (rq = first_queue; rq <= last_queue; rq++) {
5084 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5085 if (rc)
5086 break;
5089 if (rc)
5090 dev_warn(&h->pdev->dev, "giving up on device.\n");
5091 else
5092 dev_warn(&h->pdev->dev, "device is ready.\n");
5094 cmd_free(h, c);
5095 return rc;
5098 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5099 * complaining. Doing a host- or bus-reset can't do anything good here.
5101 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5103 int rc;
5104 struct ctlr_info *h;
5105 struct hpsa_scsi_dev_t *dev;
5106 char msg[48];
5108 /* find the controller to which the command to be aborted was sent */
5109 h = sdev_to_hba(scsicmd->device);
5110 if (h == NULL) /* paranoia */
5111 return FAILED;
5113 if (lockup_detected(h))
5114 return FAILED;
5116 dev = scsicmd->device->hostdata;
5117 if (!dev) {
5118 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5119 return FAILED;
5122 /* if controller locked up, we can guarantee command won't complete */
5123 if (lockup_detected(h)) {
5124 snprintf(msg, sizeof(msg),
5125 "cmd %d RESET FAILED, lockup detected",
5126 hpsa_get_cmd_index(scsicmd));
5127 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5128 return FAILED;
5131 /* this reset request might be the result of a lockup; check */
5132 if (detect_controller_lockup(h)) {
5133 snprintf(msg, sizeof(msg),
5134 "cmd %d RESET FAILED, new lockup detected",
5135 hpsa_get_cmd_index(scsicmd));
5136 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5137 return FAILED;
5140 /* Do not attempt on controller */
5141 if (is_hba_lunid(dev->scsi3addr))
5142 return SUCCESS;
5144 hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5146 /* send a reset to the SCSI LUN which the command was sent to */
5147 rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5148 DEFAULT_REPLY_QUEUE);
5149 snprintf(msg, sizeof(msg), "reset %s",
5150 rc == 0 ? "completed successfully" : "failed");
5151 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5152 return rc == 0 ? SUCCESS : FAILED;
5155 static void swizzle_abort_tag(u8 *tag)
5157 u8 original_tag[8];
5159 memcpy(original_tag, tag, 8);
5160 tag[0] = original_tag[3];
5161 tag[1] = original_tag[2];
5162 tag[2] = original_tag[1];
5163 tag[3] = original_tag[0];
5164 tag[4] = original_tag[7];
5165 tag[5] = original_tag[6];
5166 tag[6] = original_tag[5];
5167 tag[7] = original_tag[4];
5170 static void hpsa_get_tag(struct ctlr_info *h,
5171 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5173 u64 tag;
5174 if (c->cmd_type == CMD_IOACCEL1) {
5175 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5176 &h->ioaccel_cmd_pool[c->cmdindex];
5177 tag = le64_to_cpu(cm1->tag);
5178 *tagupper = cpu_to_le32(tag >> 32);
5179 *taglower = cpu_to_le32(tag);
5180 return;
5182 if (c->cmd_type == CMD_IOACCEL2) {
5183 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5184 &h->ioaccel2_cmd_pool[c->cmdindex];
5185 /* upper tag not used in ioaccel2 mode */
5186 memset(tagupper, 0, sizeof(*tagupper));
5187 *taglower = cm2->Tag;
5188 return;
5190 tag = le64_to_cpu(c->Header.tag);
5191 *tagupper = cpu_to_le32(tag >> 32);
5192 *taglower = cpu_to_le32(tag);
5195 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5196 struct CommandList *abort, int reply_queue)
5198 int rc = IO_OK;
5199 struct CommandList *c;
5200 struct ErrorInfo *ei;
5201 __le32 tagupper, taglower;
5203 c = cmd_alloc(h);
5205 /* fill_cmd can't fail here, no buffer to map */
5206 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5207 0, 0, scsi3addr, TYPE_MSG);
5208 if (h->needs_abort_tags_swizzled)
5209 swizzle_abort_tag(&c->Request.CDB[4]);
5210 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5211 hpsa_get_tag(h, abort, &taglower, &tagupper);
5212 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5213 __func__, tagupper, taglower);
5214 /* no unmap needed here because no data xfer. */
5216 ei = c->err_info;
5217 switch (ei->CommandStatus) {
5218 case CMD_SUCCESS:
5219 break;
5220 case CMD_TMF_STATUS:
5221 rc = hpsa_evaluate_tmf_status(h, c);
5222 break;
5223 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5224 rc = -1;
5225 break;
5226 default:
5227 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5228 __func__, tagupper, taglower);
5229 hpsa_scsi_interpret_error(h, c);
5230 rc = -1;
5231 break;
5233 cmd_free(h, c);
5234 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5235 __func__, tagupper, taglower);
5236 return rc;
5239 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5240 struct CommandList *command_to_abort, int reply_queue)
5242 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5243 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5244 struct io_accel2_cmd *c2a =
5245 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5246 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5247 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5250 * We're overlaying struct hpsa_tmf_struct on top of something which
5251 * was allocated as a struct io_accel2_cmd, so we better be sure it
5252 * actually fits, and doesn't overrun the error info space.
5254 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5255 sizeof(struct io_accel2_cmd));
5256 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5257 offsetof(struct hpsa_tmf_struct, error_len) +
5258 sizeof(ac->error_len));
5260 c->cmd_type = IOACCEL2_TMF;
5261 c->scsi_cmd = SCSI_CMD_BUSY;
5263 /* Adjust the DMA address to point to the accelerated command buffer */
5264 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5265 (c->cmdindex * sizeof(struct io_accel2_cmd));
5266 BUG_ON(c->busaddr & 0x0000007F);
5268 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5269 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5270 ac->reply_queue = reply_queue;
5271 ac->tmf = IOACCEL2_TMF_ABORT;
5272 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5273 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5274 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5275 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5276 ac->error_ptr = cpu_to_le64(c->busaddr +
5277 offsetof(struct io_accel2_cmd, error_data));
5278 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5281 /* ioaccel2 path firmware cannot handle abort task requests.
5282 * Change abort requests to physical target reset, and send to the
5283 * address of the physical disk used for the ioaccel 2 command.
5284 * Return 0 on success (IO_OK)
5285 * -1 on failure
5288 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5289 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5291 int rc = IO_OK;
5292 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5293 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5294 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5295 unsigned char *psa = &phys_scsi3addr[0];
5297 /* Get a pointer to the hpsa logical device. */
5298 scmd = abort->scsi_cmd;
5299 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5300 if (dev == NULL) {
5301 dev_warn(&h->pdev->dev,
5302 "Cannot abort: no device pointer for command.\n");
5303 return -1; /* not abortable */
5306 if (h->raid_offload_debug > 0)
5307 dev_info(&h->pdev->dev,
5308 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5309 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5310 "Reset as abort",
5311 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5312 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5314 if (!dev->offload_enabled) {
5315 dev_warn(&h->pdev->dev,
5316 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5317 return -1; /* not abortable */
5320 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5321 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5322 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5323 return -1; /* not abortable */
5326 /* send the reset */
5327 if (h->raid_offload_debug > 0)
5328 dev_info(&h->pdev->dev,
5329 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5330 psa[0], psa[1], psa[2], psa[3],
5331 psa[4], psa[5], psa[6], psa[7]);
5332 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5333 if (rc != 0) {
5334 dev_warn(&h->pdev->dev,
5335 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5336 psa[0], psa[1], psa[2], psa[3],
5337 psa[4], psa[5], psa[6], psa[7]);
5338 return rc; /* failed to reset */
5341 /* wait for device to recover */
5342 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5343 dev_warn(&h->pdev->dev,
5344 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5345 psa[0], psa[1], psa[2], psa[3],
5346 psa[4], psa[5], psa[6], psa[7]);
5347 return -1; /* failed to recover */
5350 /* device recovered */
5351 dev_info(&h->pdev->dev,
5352 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5353 psa[0], psa[1], psa[2], psa[3],
5354 psa[4], psa[5], psa[6], psa[7]);
5356 return rc; /* success */
5359 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5360 struct CommandList *abort, int reply_queue)
5362 int rc = IO_OK;
5363 struct CommandList *c;
5364 __le32 taglower, tagupper;
5365 struct hpsa_scsi_dev_t *dev;
5366 struct io_accel2_cmd *c2;
5368 dev = abort->scsi_cmd->device->hostdata;
5369 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5370 return -1;
5372 c = cmd_alloc(h);
5373 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5374 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5375 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5376 hpsa_get_tag(h, abort, &taglower, &tagupper);
5377 dev_dbg(&h->pdev->dev,
5378 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5379 __func__, tagupper, taglower);
5380 /* no unmap needed here because no data xfer. */
5382 dev_dbg(&h->pdev->dev,
5383 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5384 __func__, tagupper, taglower, c2->error_data.serv_response);
5385 switch (c2->error_data.serv_response) {
5386 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5387 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5388 rc = 0;
5389 break;
5390 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5391 case IOACCEL2_SERV_RESPONSE_FAILURE:
5392 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5393 rc = -1;
5394 break;
5395 default:
5396 dev_warn(&h->pdev->dev,
5397 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5398 __func__, tagupper, taglower,
5399 c2->error_data.serv_response);
5400 rc = -1;
5402 cmd_free(h, c);
5403 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5404 tagupper, taglower);
5405 return rc;
5408 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5409 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5412 * ioccelerator mode 2 commands should be aborted via the
5413 * accelerated path, since RAID path is unaware of these commands,
5414 * but not all underlying firmware can handle abort TMF.
5415 * Change abort to physical device reset when abort TMF is unsupported.
5417 if (abort->cmd_type == CMD_IOACCEL2) {
5418 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5419 return hpsa_send_abort_ioaccel2(h, abort,
5420 reply_queue);
5421 else
5422 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5423 abort, reply_queue);
5425 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5428 /* Find out which reply queue a command was meant to return on */
5429 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5430 struct CommandList *c)
5432 if (c->cmd_type == CMD_IOACCEL2)
5433 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5434 return c->Header.ReplyQueue;
5438 * Limit concurrency of abort commands to prevent
5439 * over-subscription of commands
5441 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5443 #define ABORT_CMD_WAIT_MSECS 5000
5444 return !wait_event_timeout(h->abort_cmd_wait_queue,
5445 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5446 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5449 /* Send an abort for the specified command.
5450 * If the device and controller support it,
5451 * send a task abort request.
5453 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5456 int rc;
5457 struct ctlr_info *h;
5458 struct hpsa_scsi_dev_t *dev;
5459 struct CommandList *abort; /* pointer to command to be aborted */
5460 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5461 char msg[256]; /* For debug messaging. */
5462 int ml = 0;
5463 __le32 tagupper, taglower;
5464 int refcount, reply_queue;
5466 if (sc == NULL)
5467 return FAILED;
5469 if (sc->device == NULL)
5470 return FAILED;
5472 /* Find the controller of the command to be aborted */
5473 h = sdev_to_hba(sc->device);
5474 if (h == NULL)
5475 return FAILED;
5477 /* Find the device of the command to be aborted */
5478 dev = sc->device->hostdata;
5479 if (!dev) {
5480 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5481 msg);
5482 return FAILED;
5485 /* If controller locked up, we can guarantee command won't complete */
5486 if (lockup_detected(h)) {
5487 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5488 "ABORT FAILED, lockup detected");
5489 return FAILED;
5492 /* This is a good time to check if controller lockup has occurred */
5493 if (detect_controller_lockup(h)) {
5494 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5495 "ABORT FAILED, new lockup detected");
5496 return FAILED;
5499 /* Check that controller supports some kind of task abort */
5500 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5501 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5502 return FAILED;
5504 memset(msg, 0, sizeof(msg));
5505 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5506 h->scsi_host->host_no, sc->device->channel,
5507 sc->device->id, sc->device->lun,
5508 "Aborting command", sc);
5510 /* Get SCSI command to be aborted */
5511 abort = (struct CommandList *) sc->host_scribble;
5512 if (abort == NULL) {
5513 /* This can happen if the command already completed. */
5514 return SUCCESS;
5516 refcount = atomic_inc_return(&abort->refcount);
5517 if (refcount == 1) { /* Command is done already. */
5518 cmd_free(h, abort);
5519 return SUCCESS;
5522 /* Don't bother trying the abort if we know it won't work. */
5523 if (abort->cmd_type != CMD_IOACCEL2 &&
5524 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5525 cmd_free(h, abort);
5526 return FAILED;
5530 * Check that we're aborting the right command.
5531 * It's possible the CommandList already completed and got re-used.
5533 if (abort->scsi_cmd != sc) {
5534 cmd_free(h, abort);
5535 return SUCCESS;
5538 abort->abort_pending = true;
5539 hpsa_get_tag(h, abort, &taglower, &tagupper);
5540 reply_queue = hpsa_extract_reply_queue(h, abort);
5541 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5542 as = abort->scsi_cmd;
5543 if (as != NULL)
5544 ml += sprintf(msg+ml,
5545 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5546 as->cmd_len, as->cmnd[0], as->cmnd[1],
5547 as->serial_number);
5548 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5549 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5552 * Command is in flight, or possibly already completed
5553 * by the firmware (but not to the scsi mid layer) but we can't
5554 * distinguish which. Send the abort down.
5556 if (wait_for_available_abort_cmd(h)) {
5557 dev_warn(&h->pdev->dev,
5558 "%s FAILED, timeout waiting for an abort command to become available.\n",
5559 msg);
5560 cmd_free(h, abort);
5561 return FAILED;
5563 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5564 atomic_inc(&h->abort_cmds_available);
5565 wake_up_all(&h->abort_cmd_wait_queue);
5566 if (rc != 0) {
5567 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5568 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5569 "FAILED to abort command");
5570 cmd_free(h, abort);
5571 return FAILED;
5573 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5574 wait_event(h->event_sync_wait_queue,
5575 abort->scsi_cmd != sc || lockup_detected(h));
5576 cmd_free(h, abort);
5577 return !lockup_detected(h) ? SUCCESS : FAILED;
5581 * For operations with an associated SCSI command, a command block is allocated
5582 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5583 * block request tag as an index into a table of entries. cmd_tagged_free() is
5584 * the complement, although cmd_free() may be called instead.
5586 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5587 struct scsi_cmnd *scmd)
5589 int idx = hpsa_get_cmd_index(scmd);
5590 struct CommandList *c = h->cmd_pool + idx;
5592 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5593 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5594 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5595 /* The index value comes from the block layer, so if it's out of
5596 * bounds, it's probably not our bug.
5598 BUG();
5601 atomic_inc(&c->refcount);
5602 if (unlikely(!hpsa_is_cmd_idle(c))) {
5604 * We expect that the SCSI layer will hand us a unique tag
5605 * value. Thus, there should never be a collision here between
5606 * two requests...because if the selected command isn't idle
5607 * then someone is going to be very disappointed.
5609 dev_err(&h->pdev->dev,
5610 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5611 idx);
5612 if (c->scsi_cmd != NULL)
5613 scsi_print_command(c->scsi_cmd);
5614 scsi_print_command(scmd);
5617 hpsa_cmd_partial_init(h, idx, c);
5618 return c;
5621 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5624 * Release our reference to the block. We don't need to do anything
5625 * else to free it, because it is accessed by index. (There's no point
5626 * in checking the result of the decrement, since we cannot guarantee
5627 * that there isn't a concurrent abort which is also accessing it.)
5629 (void)atomic_dec(&c->refcount);
5633 * For operations that cannot sleep, a command block is allocated at init,
5634 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5635 * which ones are free or in use. Lock must be held when calling this.
5636 * cmd_free() is the complement.
5637 * This function never gives up and returns NULL. If it hangs,
5638 * another thread must call cmd_free() to free some tags.
5641 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5643 struct CommandList *c;
5644 int refcount, i;
5645 int offset = 0;
5648 * There is some *extremely* small but non-zero chance that that
5649 * multiple threads could get in here, and one thread could
5650 * be scanning through the list of bits looking for a free
5651 * one, but the free ones are always behind him, and other
5652 * threads sneak in behind him and eat them before he can
5653 * get to them, so that while there is always a free one, a
5654 * very unlucky thread might be starved anyway, never able to
5655 * beat the other threads. In reality, this happens so
5656 * infrequently as to be indistinguishable from never.
5658 * Note that we start allocating commands before the SCSI host structure
5659 * is initialized. Since the search starts at bit zero, this
5660 * all works, since we have at least one command structure available;
5661 * however, it means that the structures with the low indexes have to be
5662 * reserved for driver-initiated requests, while requests from the block
5663 * layer will use the higher indexes.
5666 for (;;) {
5667 i = find_next_zero_bit(h->cmd_pool_bits,
5668 HPSA_NRESERVED_CMDS,
5669 offset);
5670 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5671 offset = 0;
5672 continue;
5674 c = h->cmd_pool + i;
5675 refcount = atomic_inc_return(&c->refcount);
5676 if (unlikely(refcount > 1)) {
5677 cmd_free(h, c); /* already in use */
5678 offset = (i + 1) % HPSA_NRESERVED_CMDS;
5679 continue;
5681 set_bit(i & (BITS_PER_LONG - 1),
5682 h->cmd_pool_bits + (i / BITS_PER_LONG));
5683 break; /* it's ours now. */
5685 hpsa_cmd_partial_init(h, i, c);
5686 return c;
5690 * This is the complementary operation to cmd_alloc(). Note, however, in some
5691 * corner cases it may also be used to free blocks allocated by
5692 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5693 * the clear-bit is harmless.
5695 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5697 if (atomic_dec_and_test(&c->refcount)) {
5698 int i;
5700 i = c - h->cmd_pool;
5701 clear_bit(i & (BITS_PER_LONG - 1),
5702 h->cmd_pool_bits + (i / BITS_PER_LONG));
5706 #ifdef CONFIG_COMPAT
5708 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5709 void __user *arg)
5711 IOCTL32_Command_struct __user *arg32 =
5712 (IOCTL32_Command_struct __user *) arg;
5713 IOCTL_Command_struct arg64;
5714 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5715 int err;
5716 u32 cp;
5718 memset(&arg64, 0, sizeof(arg64));
5719 err = 0;
5720 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5721 sizeof(arg64.LUN_info));
5722 err |= copy_from_user(&arg64.Request, &arg32->Request,
5723 sizeof(arg64.Request));
5724 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5725 sizeof(arg64.error_info));
5726 err |= get_user(arg64.buf_size, &arg32->buf_size);
5727 err |= get_user(cp, &arg32->buf);
5728 arg64.buf = compat_ptr(cp);
5729 err |= copy_to_user(p, &arg64, sizeof(arg64));
5731 if (err)
5732 return -EFAULT;
5734 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5735 if (err)
5736 return err;
5737 err |= copy_in_user(&arg32->error_info, &p->error_info,
5738 sizeof(arg32->error_info));
5739 if (err)
5740 return -EFAULT;
5741 return err;
5744 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5745 int cmd, void __user *arg)
5747 BIG_IOCTL32_Command_struct __user *arg32 =
5748 (BIG_IOCTL32_Command_struct __user *) arg;
5749 BIG_IOCTL_Command_struct arg64;
5750 BIG_IOCTL_Command_struct __user *p =
5751 compat_alloc_user_space(sizeof(arg64));
5752 int err;
5753 u32 cp;
5755 memset(&arg64, 0, sizeof(arg64));
5756 err = 0;
5757 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5758 sizeof(arg64.LUN_info));
5759 err |= copy_from_user(&arg64.Request, &arg32->Request,
5760 sizeof(arg64.Request));
5761 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5762 sizeof(arg64.error_info));
5763 err |= get_user(arg64.buf_size, &arg32->buf_size);
5764 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5765 err |= get_user(cp, &arg32->buf);
5766 arg64.buf = compat_ptr(cp);
5767 err |= copy_to_user(p, &arg64, sizeof(arg64));
5769 if (err)
5770 return -EFAULT;
5772 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5773 if (err)
5774 return err;
5775 err |= copy_in_user(&arg32->error_info, &p->error_info,
5776 sizeof(arg32->error_info));
5777 if (err)
5778 return -EFAULT;
5779 return err;
5782 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5784 switch (cmd) {
5785 case CCISS_GETPCIINFO:
5786 case CCISS_GETINTINFO:
5787 case CCISS_SETINTINFO:
5788 case CCISS_GETNODENAME:
5789 case CCISS_SETNODENAME:
5790 case CCISS_GETHEARTBEAT:
5791 case CCISS_GETBUSTYPES:
5792 case CCISS_GETFIRMVER:
5793 case CCISS_GETDRIVVER:
5794 case CCISS_REVALIDVOLS:
5795 case CCISS_DEREGDISK:
5796 case CCISS_REGNEWDISK:
5797 case CCISS_REGNEWD:
5798 case CCISS_RESCANDISK:
5799 case CCISS_GETLUNINFO:
5800 return hpsa_ioctl(dev, cmd, arg);
5802 case CCISS_PASSTHRU32:
5803 return hpsa_ioctl32_passthru(dev, cmd, arg);
5804 case CCISS_BIG_PASSTHRU32:
5805 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5807 default:
5808 return -ENOIOCTLCMD;
5811 #endif
5813 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5815 struct hpsa_pci_info pciinfo;
5817 if (!argp)
5818 return -EINVAL;
5819 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5820 pciinfo.bus = h->pdev->bus->number;
5821 pciinfo.dev_fn = h->pdev->devfn;
5822 pciinfo.board_id = h->board_id;
5823 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5824 return -EFAULT;
5825 return 0;
5828 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5830 DriverVer_type DriverVer;
5831 unsigned char vmaj, vmin, vsubmin;
5832 int rc;
5834 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5835 &vmaj, &vmin, &vsubmin);
5836 if (rc != 3) {
5837 dev_info(&h->pdev->dev, "driver version string '%s' "
5838 "unrecognized.", HPSA_DRIVER_VERSION);
5839 vmaj = 0;
5840 vmin = 0;
5841 vsubmin = 0;
5843 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5844 if (!argp)
5845 return -EINVAL;
5846 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5847 return -EFAULT;
5848 return 0;
5851 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5853 IOCTL_Command_struct iocommand;
5854 struct CommandList *c;
5855 char *buff = NULL;
5856 u64 temp64;
5857 int rc = 0;
5859 if (!argp)
5860 return -EINVAL;
5861 if (!capable(CAP_SYS_RAWIO))
5862 return -EPERM;
5863 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5864 return -EFAULT;
5865 if ((iocommand.buf_size < 1) &&
5866 (iocommand.Request.Type.Direction != XFER_NONE)) {
5867 return -EINVAL;
5869 if (iocommand.buf_size > 0) {
5870 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5871 if (buff == NULL)
5872 return -ENOMEM;
5873 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5874 /* Copy the data into the buffer we created */
5875 if (copy_from_user(buff, iocommand.buf,
5876 iocommand.buf_size)) {
5877 rc = -EFAULT;
5878 goto out_kfree;
5880 } else {
5881 memset(buff, 0, iocommand.buf_size);
5884 c = cmd_alloc(h);
5886 /* Fill in the command type */
5887 c->cmd_type = CMD_IOCTL_PEND;
5888 c->scsi_cmd = SCSI_CMD_BUSY;
5889 /* Fill in Command Header */
5890 c->Header.ReplyQueue = 0; /* unused in simple mode */
5891 if (iocommand.buf_size > 0) { /* buffer to fill */
5892 c->Header.SGList = 1;
5893 c->Header.SGTotal = cpu_to_le16(1);
5894 } else { /* no buffers to fill */
5895 c->Header.SGList = 0;
5896 c->Header.SGTotal = cpu_to_le16(0);
5898 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5900 /* Fill in Request block */
5901 memcpy(&c->Request, &iocommand.Request,
5902 sizeof(c->Request));
5904 /* Fill in the scatter gather information */
5905 if (iocommand.buf_size > 0) {
5906 temp64 = pci_map_single(h->pdev, buff,
5907 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5908 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5909 c->SG[0].Addr = cpu_to_le64(0);
5910 c->SG[0].Len = cpu_to_le32(0);
5911 rc = -ENOMEM;
5912 goto out;
5914 c->SG[0].Addr = cpu_to_le64(temp64);
5915 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5916 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5918 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5919 if (iocommand.buf_size > 0)
5920 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5921 check_ioctl_unit_attention(h, c);
5922 if (rc) {
5923 rc = -EIO;
5924 goto out;
5927 /* Copy the error information out */
5928 memcpy(&iocommand.error_info, c->err_info,
5929 sizeof(iocommand.error_info));
5930 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5931 rc = -EFAULT;
5932 goto out;
5934 if ((iocommand.Request.Type.Direction & XFER_READ) &&
5935 iocommand.buf_size > 0) {
5936 /* Copy the data out of the buffer we created */
5937 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5938 rc = -EFAULT;
5939 goto out;
5942 out:
5943 cmd_free(h, c);
5944 out_kfree:
5945 kfree(buff);
5946 return rc;
5949 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5951 BIG_IOCTL_Command_struct *ioc;
5952 struct CommandList *c;
5953 unsigned char **buff = NULL;
5954 int *buff_size = NULL;
5955 u64 temp64;
5956 BYTE sg_used = 0;
5957 int status = 0;
5958 u32 left;
5959 u32 sz;
5960 BYTE __user *data_ptr;
5962 if (!argp)
5963 return -EINVAL;
5964 if (!capable(CAP_SYS_RAWIO))
5965 return -EPERM;
5966 ioc = (BIG_IOCTL_Command_struct *)
5967 kmalloc(sizeof(*ioc), GFP_KERNEL);
5968 if (!ioc) {
5969 status = -ENOMEM;
5970 goto cleanup1;
5972 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5973 status = -EFAULT;
5974 goto cleanup1;
5976 if ((ioc->buf_size < 1) &&
5977 (ioc->Request.Type.Direction != XFER_NONE)) {
5978 status = -EINVAL;
5979 goto cleanup1;
5981 /* Check kmalloc limits using all SGs */
5982 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5983 status = -EINVAL;
5984 goto cleanup1;
5986 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5987 status = -EINVAL;
5988 goto cleanup1;
5990 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5991 if (!buff) {
5992 status = -ENOMEM;
5993 goto cleanup1;
5995 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5996 if (!buff_size) {
5997 status = -ENOMEM;
5998 goto cleanup1;
6000 left = ioc->buf_size;
6001 data_ptr = ioc->buf;
6002 while (left) {
6003 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6004 buff_size[sg_used] = sz;
6005 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6006 if (buff[sg_used] == NULL) {
6007 status = -ENOMEM;
6008 goto cleanup1;
6010 if (ioc->Request.Type.Direction & XFER_WRITE) {
6011 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6012 status = -EFAULT;
6013 goto cleanup1;
6015 } else
6016 memset(buff[sg_used], 0, sz);
6017 left -= sz;
6018 data_ptr += sz;
6019 sg_used++;
6021 c = cmd_alloc(h);
6023 c->cmd_type = CMD_IOCTL_PEND;
6024 c->scsi_cmd = SCSI_CMD_BUSY;
6025 c->Header.ReplyQueue = 0;
6026 c->Header.SGList = (u8) sg_used;
6027 c->Header.SGTotal = cpu_to_le16(sg_used);
6028 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6029 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6030 if (ioc->buf_size > 0) {
6031 int i;
6032 for (i = 0; i < sg_used; i++) {
6033 temp64 = pci_map_single(h->pdev, buff[i],
6034 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6035 if (dma_mapping_error(&h->pdev->dev,
6036 (dma_addr_t) temp64)) {
6037 c->SG[i].Addr = cpu_to_le64(0);
6038 c->SG[i].Len = cpu_to_le32(0);
6039 hpsa_pci_unmap(h->pdev, c, i,
6040 PCI_DMA_BIDIRECTIONAL);
6041 status = -ENOMEM;
6042 goto cleanup0;
6044 c->SG[i].Addr = cpu_to_le64(temp64);
6045 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6046 c->SG[i].Ext = cpu_to_le32(0);
6048 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6050 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6051 if (sg_used)
6052 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6053 check_ioctl_unit_attention(h, c);
6054 if (status) {
6055 status = -EIO;
6056 goto cleanup0;
6059 /* Copy the error information out */
6060 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6061 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6062 status = -EFAULT;
6063 goto cleanup0;
6065 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6066 int i;
6068 /* Copy the data out of the buffer we created */
6069 BYTE __user *ptr = ioc->buf;
6070 for (i = 0; i < sg_used; i++) {
6071 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6072 status = -EFAULT;
6073 goto cleanup0;
6075 ptr += buff_size[i];
6078 status = 0;
6079 cleanup0:
6080 cmd_free(h, c);
6081 cleanup1:
6082 if (buff) {
6083 int i;
6085 for (i = 0; i < sg_used; i++)
6086 kfree(buff[i]);
6087 kfree(buff);
6089 kfree(buff_size);
6090 kfree(ioc);
6091 return status;
6094 static void check_ioctl_unit_attention(struct ctlr_info *h,
6095 struct CommandList *c)
6097 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6098 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6099 (void) check_for_unit_attention(h, c);
6103 * ioctl
6105 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6107 struct ctlr_info *h;
6108 void __user *argp = (void __user *)arg;
6109 int rc;
6111 h = sdev_to_hba(dev);
6113 switch (cmd) {
6114 case CCISS_DEREGDISK:
6115 case CCISS_REGNEWDISK:
6116 case CCISS_REGNEWD:
6117 hpsa_scan_start(h->scsi_host);
6118 return 0;
6119 case CCISS_GETPCIINFO:
6120 return hpsa_getpciinfo_ioctl(h, argp);
6121 case CCISS_GETDRIVVER:
6122 return hpsa_getdrivver_ioctl(h, argp);
6123 case CCISS_PASSTHRU:
6124 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6125 return -EAGAIN;
6126 rc = hpsa_passthru_ioctl(h, argp);
6127 atomic_inc(&h->passthru_cmds_avail);
6128 return rc;
6129 case CCISS_BIG_PASSTHRU:
6130 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6131 return -EAGAIN;
6132 rc = hpsa_big_passthru_ioctl(h, argp);
6133 atomic_inc(&h->passthru_cmds_avail);
6134 return rc;
6135 default:
6136 return -ENOTTY;
6140 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6141 u8 reset_type)
6143 struct CommandList *c;
6145 c = cmd_alloc(h);
6147 /* fill_cmd can't fail here, no data buffer to map */
6148 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6149 RAID_CTLR_LUNID, TYPE_MSG);
6150 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6151 c->waiting = NULL;
6152 enqueue_cmd_and_start_io(h, c);
6153 /* Don't wait for completion, the reset won't complete. Don't free
6154 * the command either. This is the last command we will send before
6155 * re-initializing everything, so it doesn't matter and won't leak.
6157 return;
6160 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6161 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6162 int cmd_type)
6164 int pci_dir = XFER_NONE;
6165 u64 tag; /* for commands to be aborted */
6167 c->cmd_type = CMD_IOCTL_PEND;
6168 c->scsi_cmd = SCSI_CMD_BUSY;
6169 c->Header.ReplyQueue = 0;
6170 if (buff != NULL && size > 0) {
6171 c->Header.SGList = 1;
6172 c->Header.SGTotal = cpu_to_le16(1);
6173 } else {
6174 c->Header.SGList = 0;
6175 c->Header.SGTotal = cpu_to_le16(0);
6177 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6179 if (cmd_type == TYPE_CMD) {
6180 switch (cmd) {
6181 case HPSA_INQUIRY:
6182 /* are we trying to read a vital product page */
6183 if (page_code & VPD_PAGE) {
6184 c->Request.CDB[1] = 0x01;
6185 c->Request.CDB[2] = (page_code & 0xff);
6187 c->Request.CDBLen = 6;
6188 c->Request.type_attr_dir =
6189 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6190 c->Request.Timeout = 0;
6191 c->Request.CDB[0] = HPSA_INQUIRY;
6192 c->Request.CDB[4] = size & 0xFF;
6193 break;
6194 case HPSA_REPORT_LOG:
6195 case HPSA_REPORT_PHYS:
6196 /* Talking to controller so It's a physical command
6197 mode = 00 target = 0. Nothing to write.
6199 c->Request.CDBLen = 12;
6200 c->Request.type_attr_dir =
6201 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6202 c->Request.Timeout = 0;
6203 c->Request.CDB[0] = cmd;
6204 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6205 c->Request.CDB[7] = (size >> 16) & 0xFF;
6206 c->Request.CDB[8] = (size >> 8) & 0xFF;
6207 c->Request.CDB[9] = size & 0xFF;
6208 break;
6209 case HPSA_CACHE_FLUSH:
6210 c->Request.CDBLen = 12;
6211 c->Request.type_attr_dir =
6212 TYPE_ATTR_DIR(cmd_type,
6213 ATTR_SIMPLE, XFER_WRITE);
6214 c->Request.Timeout = 0;
6215 c->Request.CDB[0] = BMIC_WRITE;
6216 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6217 c->Request.CDB[7] = (size >> 8) & 0xFF;
6218 c->Request.CDB[8] = size & 0xFF;
6219 break;
6220 case TEST_UNIT_READY:
6221 c->Request.CDBLen = 6;
6222 c->Request.type_attr_dir =
6223 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6224 c->Request.Timeout = 0;
6225 break;
6226 case HPSA_GET_RAID_MAP:
6227 c->Request.CDBLen = 12;
6228 c->Request.type_attr_dir =
6229 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6230 c->Request.Timeout = 0;
6231 c->Request.CDB[0] = HPSA_CISS_READ;
6232 c->Request.CDB[1] = cmd;
6233 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6234 c->Request.CDB[7] = (size >> 16) & 0xFF;
6235 c->Request.CDB[8] = (size >> 8) & 0xFF;
6236 c->Request.CDB[9] = size & 0xFF;
6237 break;
6238 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6239 c->Request.CDBLen = 10;
6240 c->Request.type_attr_dir =
6241 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6242 c->Request.Timeout = 0;
6243 c->Request.CDB[0] = BMIC_READ;
6244 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6245 c->Request.CDB[7] = (size >> 16) & 0xFF;
6246 c->Request.CDB[8] = (size >> 8) & 0xFF;
6247 break;
6248 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6249 c->Request.CDBLen = 10;
6250 c->Request.type_attr_dir =
6251 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6252 c->Request.Timeout = 0;
6253 c->Request.CDB[0] = BMIC_READ;
6254 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6255 c->Request.CDB[7] = (size >> 16) & 0xFF;
6256 c->Request.CDB[8] = (size >> 8) & 0XFF;
6257 break;
6258 default:
6259 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6260 BUG();
6261 return -1;
6263 } else if (cmd_type == TYPE_MSG) {
6264 switch (cmd) {
6266 case HPSA_DEVICE_RESET_MSG:
6267 c->Request.CDBLen = 16;
6268 c->Request.type_attr_dir =
6269 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6270 c->Request.Timeout = 0; /* Don't time out */
6271 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6272 c->Request.CDB[0] = cmd;
6273 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6274 /* If bytes 4-7 are zero, it means reset the */
6275 /* LunID device */
6276 c->Request.CDB[4] = 0x00;
6277 c->Request.CDB[5] = 0x00;
6278 c->Request.CDB[6] = 0x00;
6279 c->Request.CDB[7] = 0x00;
6280 break;
6281 case HPSA_ABORT_MSG:
6282 memcpy(&tag, buff, sizeof(tag));
6283 dev_dbg(&h->pdev->dev,
6284 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6285 tag, c->Header.tag);
6286 c->Request.CDBLen = 16;
6287 c->Request.type_attr_dir =
6288 TYPE_ATTR_DIR(cmd_type,
6289 ATTR_SIMPLE, XFER_WRITE);
6290 c->Request.Timeout = 0; /* Don't time out */
6291 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6292 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6293 c->Request.CDB[2] = 0x00; /* reserved */
6294 c->Request.CDB[3] = 0x00; /* reserved */
6295 /* Tag to abort goes in CDB[4]-CDB[11] */
6296 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6297 c->Request.CDB[12] = 0x00; /* reserved */
6298 c->Request.CDB[13] = 0x00; /* reserved */
6299 c->Request.CDB[14] = 0x00; /* reserved */
6300 c->Request.CDB[15] = 0x00; /* reserved */
6301 break;
6302 default:
6303 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6304 cmd);
6305 BUG();
6307 } else {
6308 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6309 BUG();
6312 switch (GET_DIR(c->Request.type_attr_dir)) {
6313 case XFER_READ:
6314 pci_dir = PCI_DMA_FROMDEVICE;
6315 break;
6316 case XFER_WRITE:
6317 pci_dir = PCI_DMA_TODEVICE;
6318 break;
6319 case XFER_NONE:
6320 pci_dir = PCI_DMA_NONE;
6321 break;
6322 default:
6323 pci_dir = PCI_DMA_BIDIRECTIONAL;
6325 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6326 return -1;
6327 return 0;
6331 * Map (physical) PCI mem into (virtual) kernel space
6333 static void __iomem *remap_pci_mem(ulong base, ulong size)
6335 ulong page_base = ((ulong) base) & PAGE_MASK;
6336 ulong page_offs = ((ulong) base) - page_base;
6337 void __iomem *page_remapped = ioremap_nocache(page_base,
6338 page_offs + size);
6340 return page_remapped ? (page_remapped + page_offs) : NULL;
6343 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6345 return h->access.command_completed(h, q);
6348 static inline bool interrupt_pending(struct ctlr_info *h)
6350 return h->access.intr_pending(h);
6353 static inline long interrupt_not_for_us(struct ctlr_info *h)
6355 return (h->access.intr_pending(h) == 0) ||
6356 (h->interrupts_enabled == 0);
6359 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6360 u32 raw_tag)
6362 if (unlikely(tag_index >= h->nr_cmds)) {
6363 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6364 return 1;
6366 return 0;
6369 static inline void finish_cmd(struct CommandList *c)
6371 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6372 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6373 || c->cmd_type == CMD_IOACCEL2))
6374 complete_scsi_command(c);
6375 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6376 complete(c->waiting);
6380 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6382 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6383 #define HPSA_SIMPLE_ERROR_BITS 0x03
6384 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6385 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6386 return tag & ~HPSA_PERF_ERROR_BITS;
6389 /* process completion of an indexed ("direct lookup") command */
6390 static inline void process_indexed_cmd(struct ctlr_info *h,
6391 u32 raw_tag)
6393 u32 tag_index;
6394 struct CommandList *c;
6396 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6397 if (!bad_tag(h, tag_index, raw_tag)) {
6398 c = h->cmd_pool + tag_index;
6399 finish_cmd(c);
6403 /* Some controllers, like p400, will give us one interrupt
6404 * after a soft reset, even if we turned interrupts off.
6405 * Only need to check for this in the hpsa_xxx_discard_completions
6406 * functions.
6408 static int ignore_bogus_interrupt(struct ctlr_info *h)
6410 if (likely(!reset_devices))
6411 return 0;
6413 if (likely(h->interrupts_enabled))
6414 return 0;
6416 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6417 "(known firmware bug.) Ignoring.\n");
6419 return 1;
6423 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6424 * Relies on (h-q[x] == x) being true for x such that
6425 * 0 <= x < MAX_REPLY_QUEUES.
6427 static struct ctlr_info *queue_to_hba(u8 *queue)
6429 return container_of((queue - *queue), struct ctlr_info, q[0]);
6432 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6434 struct ctlr_info *h = queue_to_hba(queue);
6435 u8 q = *(u8 *) queue;
6436 u32 raw_tag;
6438 if (ignore_bogus_interrupt(h))
6439 return IRQ_NONE;
6441 if (interrupt_not_for_us(h))
6442 return IRQ_NONE;
6443 h->last_intr_timestamp = get_jiffies_64();
6444 while (interrupt_pending(h)) {
6445 raw_tag = get_next_completion(h, q);
6446 while (raw_tag != FIFO_EMPTY)
6447 raw_tag = next_command(h, q);
6449 return IRQ_HANDLED;
6452 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6454 struct ctlr_info *h = queue_to_hba(queue);
6455 u32 raw_tag;
6456 u8 q = *(u8 *) queue;
6458 if (ignore_bogus_interrupt(h))
6459 return IRQ_NONE;
6461 h->last_intr_timestamp = get_jiffies_64();
6462 raw_tag = get_next_completion(h, q);
6463 while (raw_tag != FIFO_EMPTY)
6464 raw_tag = next_command(h, q);
6465 return IRQ_HANDLED;
6468 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6470 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6471 u32 raw_tag;
6472 u8 q = *(u8 *) queue;
6474 if (interrupt_not_for_us(h))
6475 return IRQ_NONE;
6476 h->last_intr_timestamp = get_jiffies_64();
6477 while (interrupt_pending(h)) {
6478 raw_tag = get_next_completion(h, q);
6479 while (raw_tag != FIFO_EMPTY) {
6480 process_indexed_cmd(h, raw_tag);
6481 raw_tag = next_command(h, q);
6484 return IRQ_HANDLED;
6487 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6489 struct ctlr_info *h = queue_to_hba(queue);
6490 u32 raw_tag;
6491 u8 q = *(u8 *) queue;
6493 h->last_intr_timestamp = get_jiffies_64();
6494 raw_tag = get_next_completion(h, q);
6495 while (raw_tag != FIFO_EMPTY) {
6496 process_indexed_cmd(h, raw_tag);
6497 raw_tag = next_command(h, q);
6499 return IRQ_HANDLED;
6502 /* Send a message CDB to the firmware. Careful, this only works
6503 * in simple mode, not performant mode due to the tag lookup.
6504 * We only ever use this immediately after a controller reset.
6506 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6507 unsigned char type)
6509 struct Command {
6510 struct CommandListHeader CommandHeader;
6511 struct RequestBlock Request;
6512 struct ErrDescriptor ErrorDescriptor;
6514 struct Command *cmd;
6515 static const size_t cmd_sz = sizeof(*cmd) +
6516 sizeof(cmd->ErrorDescriptor);
6517 dma_addr_t paddr64;
6518 __le32 paddr32;
6519 u32 tag;
6520 void __iomem *vaddr;
6521 int i, err;
6523 vaddr = pci_ioremap_bar(pdev, 0);
6524 if (vaddr == NULL)
6525 return -ENOMEM;
6527 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6528 * CCISS commands, so they must be allocated from the lower 4GiB of
6529 * memory.
6531 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6532 if (err) {
6533 iounmap(vaddr);
6534 return err;
6537 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6538 if (cmd == NULL) {
6539 iounmap(vaddr);
6540 return -ENOMEM;
6543 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6544 * although there's no guarantee, we assume that the address is at
6545 * least 4-byte aligned (most likely, it's page-aligned).
6547 paddr32 = cpu_to_le32(paddr64);
6549 cmd->CommandHeader.ReplyQueue = 0;
6550 cmd->CommandHeader.SGList = 0;
6551 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6552 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6553 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6555 cmd->Request.CDBLen = 16;
6556 cmd->Request.type_attr_dir =
6557 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6558 cmd->Request.Timeout = 0; /* Don't time out */
6559 cmd->Request.CDB[0] = opcode;
6560 cmd->Request.CDB[1] = type;
6561 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6562 cmd->ErrorDescriptor.Addr =
6563 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6564 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6566 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6568 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6569 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6570 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6571 break;
6572 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6575 iounmap(vaddr);
6577 /* we leak the DMA buffer here ... no choice since the controller could
6578 * still complete the command.
6580 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6581 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6582 opcode, type);
6583 return -ETIMEDOUT;
6586 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6588 if (tag & HPSA_ERROR_BIT) {
6589 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6590 opcode, type);
6591 return -EIO;
6594 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6595 opcode, type);
6596 return 0;
6599 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6601 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6602 void __iomem *vaddr, u32 use_doorbell)
6605 if (use_doorbell) {
6606 /* For everything after the P600, the PCI power state method
6607 * of resetting the controller doesn't work, so we have this
6608 * other way using the doorbell register.
6610 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6611 writel(use_doorbell, vaddr + SA5_DOORBELL);
6613 /* PMC hardware guys tell us we need a 10 second delay after
6614 * doorbell reset and before any attempt to talk to the board
6615 * at all to ensure that this actually works and doesn't fall
6616 * over in some weird corner cases.
6618 msleep(10000);
6619 } else { /* Try to do it the PCI power state way */
6621 /* Quoting from the Open CISS Specification: "The Power
6622 * Management Control/Status Register (CSR) controls the power
6623 * state of the device. The normal operating state is D0,
6624 * CSR=00h. The software off state is D3, CSR=03h. To reset
6625 * the controller, place the interface device in D3 then to D0,
6626 * this causes a secondary PCI reset which will reset the
6627 * controller." */
6629 int rc = 0;
6631 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6633 /* enter the D3hot power management state */
6634 rc = pci_set_power_state(pdev, PCI_D3hot);
6635 if (rc)
6636 return rc;
6638 msleep(500);
6640 /* enter the D0 power management state */
6641 rc = pci_set_power_state(pdev, PCI_D0);
6642 if (rc)
6643 return rc;
6646 * The P600 requires a small delay when changing states.
6647 * Otherwise we may think the board did not reset and we bail.
6648 * This for kdump only and is particular to the P600.
6650 msleep(500);
6652 return 0;
6655 static void init_driver_version(char *driver_version, int len)
6657 memset(driver_version, 0, len);
6658 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6661 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6663 char *driver_version;
6664 int i, size = sizeof(cfgtable->driver_version);
6666 driver_version = kmalloc(size, GFP_KERNEL);
6667 if (!driver_version)
6668 return -ENOMEM;
6670 init_driver_version(driver_version, size);
6671 for (i = 0; i < size; i++)
6672 writeb(driver_version[i], &cfgtable->driver_version[i]);
6673 kfree(driver_version);
6674 return 0;
6677 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6678 unsigned char *driver_ver)
6680 int i;
6682 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6683 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6686 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6689 char *driver_ver, *old_driver_ver;
6690 int rc, size = sizeof(cfgtable->driver_version);
6692 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6693 if (!old_driver_ver)
6694 return -ENOMEM;
6695 driver_ver = old_driver_ver + size;
6697 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6698 * should have been changed, otherwise we know the reset failed.
6700 init_driver_version(old_driver_ver, size);
6701 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6702 rc = !memcmp(driver_ver, old_driver_ver, size);
6703 kfree(old_driver_ver);
6704 return rc;
6706 /* This does a hard reset of the controller using PCI power management
6707 * states or the using the doorbell register.
6709 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6711 u64 cfg_offset;
6712 u32 cfg_base_addr;
6713 u64 cfg_base_addr_index;
6714 void __iomem *vaddr;
6715 unsigned long paddr;
6716 u32 misc_fw_support;
6717 int rc;
6718 struct CfgTable __iomem *cfgtable;
6719 u32 use_doorbell;
6720 u16 command_register;
6722 /* For controllers as old as the P600, this is very nearly
6723 * the same thing as
6725 * pci_save_state(pci_dev);
6726 * pci_set_power_state(pci_dev, PCI_D3hot);
6727 * pci_set_power_state(pci_dev, PCI_D0);
6728 * pci_restore_state(pci_dev);
6730 * For controllers newer than the P600, the pci power state
6731 * method of resetting doesn't work so we have another way
6732 * using the doorbell register.
6735 if (!ctlr_is_resettable(board_id)) {
6736 dev_warn(&pdev->dev, "Controller not resettable\n");
6737 return -ENODEV;
6740 /* if controller is soft- but not hard resettable... */
6741 if (!ctlr_is_hard_resettable(board_id))
6742 return -ENOTSUPP; /* try soft reset later. */
6744 /* Save the PCI command register */
6745 pci_read_config_word(pdev, 4, &command_register);
6746 pci_save_state(pdev);
6748 /* find the first memory BAR, so we can find the cfg table */
6749 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6750 if (rc)
6751 return rc;
6752 vaddr = remap_pci_mem(paddr, 0x250);
6753 if (!vaddr)
6754 return -ENOMEM;
6756 /* find cfgtable in order to check if reset via doorbell is supported */
6757 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6758 &cfg_base_addr_index, &cfg_offset);
6759 if (rc)
6760 goto unmap_vaddr;
6761 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6762 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6763 if (!cfgtable) {
6764 rc = -ENOMEM;
6765 goto unmap_vaddr;
6767 rc = write_driver_ver_to_cfgtable(cfgtable);
6768 if (rc)
6769 goto unmap_cfgtable;
6771 /* If reset via doorbell register is supported, use that.
6772 * There are two such methods. Favor the newest method.
6774 misc_fw_support = readl(&cfgtable->misc_fw_support);
6775 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6776 if (use_doorbell) {
6777 use_doorbell = DOORBELL_CTLR_RESET2;
6778 } else {
6779 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6780 if (use_doorbell) {
6781 dev_warn(&pdev->dev,
6782 "Soft reset not supported. Firmware update is required.\n");
6783 rc = -ENOTSUPP; /* try soft reset */
6784 goto unmap_cfgtable;
6788 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6789 if (rc)
6790 goto unmap_cfgtable;
6792 pci_restore_state(pdev);
6793 pci_write_config_word(pdev, 4, command_register);
6795 /* Some devices (notably the HP Smart Array 5i Controller)
6796 need a little pause here */
6797 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6799 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6800 if (rc) {
6801 dev_warn(&pdev->dev,
6802 "Failed waiting for board to become ready after hard reset\n");
6803 goto unmap_cfgtable;
6806 rc = controller_reset_failed(vaddr);
6807 if (rc < 0)
6808 goto unmap_cfgtable;
6809 if (rc) {
6810 dev_warn(&pdev->dev, "Unable to successfully reset "
6811 "controller. Will try soft reset.\n");
6812 rc = -ENOTSUPP;
6813 } else {
6814 dev_info(&pdev->dev, "board ready after hard reset.\n");
6817 unmap_cfgtable:
6818 iounmap(cfgtable);
6820 unmap_vaddr:
6821 iounmap(vaddr);
6822 return rc;
6826 * We cannot read the structure directly, for portability we must use
6827 * the io functions.
6828 * This is for debug only.
6830 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6832 #ifdef HPSA_DEBUG
6833 int i;
6834 char temp_name[17];
6836 dev_info(dev, "Controller Configuration information\n");
6837 dev_info(dev, "------------------------------------\n");
6838 for (i = 0; i < 4; i++)
6839 temp_name[i] = readb(&(tb->Signature[i]));
6840 temp_name[4] = '\0';
6841 dev_info(dev, " Signature = %s\n", temp_name);
6842 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6843 dev_info(dev, " Transport methods supported = 0x%x\n",
6844 readl(&(tb->TransportSupport)));
6845 dev_info(dev, " Transport methods active = 0x%x\n",
6846 readl(&(tb->TransportActive)));
6847 dev_info(dev, " Requested transport Method = 0x%x\n",
6848 readl(&(tb->HostWrite.TransportRequest)));
6849 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6850 readl(&(tb->HostWrite.CoalIntDelay)));
6851 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6852 readl(&(tb->HostWrite.CoalIntCount)));
6853 dev_info(dev, " Max outstanding commands = %d\n",
6854 readl(&(tb->CmdsOutMax)));
6855 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6856 for (i = 0; i < 16; i++)
6857 temp_name[i] = readb(&(tb->ServerName[i]));
6858 temp_name[16] = '\0';
6859 dev_info(dev, " Server Name = %s\n", temp_name);
6860 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6861 readl(&(tb->HeartBeat)));
6862 #endif /* HPSA_DEBUG */
6865 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6867 int i, offset, mem_type, bar_type;
6869 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6870 return 0;
6871 offset = 0;
6872 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6873 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6874 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6875 offset += 4;
6876 else {
6877 mem_type = pci_resource_flags(pdev, i) &
6878 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6879 switch (mem_type) {
6880 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6881 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6882 offset += 4; /* 32 bit */
6883 break;
6884 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6885 offset += 8;
6886 break;
6887 default: /* reserved in PCI 2.2 */
6888 dev_warn(&pdev->dev,
6889 "base address is invalid\n");
6890 return -1;
6891 break;
6894 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6895 return i + 1;
6897 return -1;
6900 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6902 if (h->msix_vector) {
6903 if (h->pdev->msix_enabled)
6904 pci_disable_msix(h->pdev);
6905 h->msix_vector = 0;
6906 } else if (h->msi_vector) {
6907 if (h->pdev->msi_enabled)
6908 pci_disable_msi(h->pdev);
6909 h->msi_vector = 0;
6913 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6914 * controllers that are capable. If not, we use legacy INTx mode.
6916 static void hpsa_interrupt_mode(struct ctlr_info *h)
6918 #ifdef CONFIG_PCI_MSI
6919 int err, i;
6920 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6922 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6923 hpsa_msix_entries[i].vector = 0;
6924 hpsa_msix_entries[i].entry = i;
6927 /* Some boards advertise MSI but don't really support it */
6928 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6929 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6930 goto default_int_mode;
6931 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6932 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6933 h->msix_vector = MAX_REPLY_QUEUES;
6934 if (h->msix_vector > num_online_cpus())
6935 h->msix_vector = num_online_cpus();
6936 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6937 1, h->msix_vector);
6938 if (err < 0) {
6939 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6940 h->msix_vector = 0;
6941 goto single_msi_mode;
6942 } else if (err < h->msix_vector) {
6943 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6944 "available\n", err);
6946 h->msix_vector = err;
6947 for (i = 0; i < h->msix_vector; i++)
6948 h->intr[i] = hpsa_msix_entries[i].vector;
6949 return;
6951 single_msi_mode:
6952 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6953 dev_info(&h->pdev->dev, "MSI capable controller\n");
6954 if (!pci_enable_msi(h->pdev))
6955 h->msi_vector = 1;
6956 else
6957 dev_warn(&h->pdev->dev, "MSI init failed\n");
6959 default_int_mode:
6960 #endif /* CONFIG_PCI_MSI */
6961 /* if we get here we're going to use the default interrupt mode */
6962 h->intr[h->intr_mode] = h->pdev->irq;
6965 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6967 int i;
6968 u32 subsystem_vendor_id, subsystem_device_id;
6970 subsystem_vendor_id = pdev->subsystem_vendor;
6971 subsystem_device_id = pdev->subsystem_device;
6972 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6973 subsystem_vendor_id;
6975 for (i = 0; i < ARRAY_SIZE(products); i++)
6976 if (*board_id == products[i].board_id)
6977 return i;
6979 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6980 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6981 !hpsa_allow_any) {
6982 dev_warn(&pdev->dev, "unrecognized board ID: "
6983 "0x%08x, ignoring.\n", *board_id);
6984 return -ENODEV;
6986 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6989 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6990 unsigned long *memory_bar)
6992 int i;
6994 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6995 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6996 /* addressing mode bits already removed */
6997 *memory_bar = pci_resource_start(pdev, i);
6998 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6999 *memory_bar);
7000 return 0;
7002 dev_warn(&pdev->dev, "no memory BAR found\n");
7003 return -ENODEV;
7006 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7007 int wait_for_ready)
7009 int i, iterations;
7010 u32 scratchpad;
7011 if (wait_for_ready)
7012 iterations = HPSA_BOARD_READY_ITERATIONS;
7013 else
7014 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7016 for (i = 0; i < iterations; i++) {
7017 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7018 if (wait_for_ready) {
7019 if (scratchpad == HPSA_FIRMWARE_READY)
7020 return 0;
7021 } else {
7022 if (scratchpad != HPSA_FIRMWARE_READY)
7023 return 0;
7025 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7027 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7028 return -ENODEV;
7031 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7032 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7033 u64 *cfg_offset)
7035 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7036 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7037 *cfg_base_addr &= (u32) 0x0000ffff;
7038 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7039 if (*cfg_base_addr_index == -1) {
7040 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7041 return -ENODEV;
7043 return 0;
7046 static void hpsa_free_cfgtables(struct ctlr_info *h)
7048 if (h->transtable) {
7049 iounmap(h->transtable);
7050 h->transtable = NULL;
7052 if (h->cfgtable) {
7053 iounmap(h->cfgtable);
7054 h->cfgtable = NULL;
7058 /* Find and map CISS config table and transfer table
7059 + * several items must be unmapped (freed) later
7060 + * */
7061 static int hpsa_find_cfgtables(struct ctlr_info *h)
7063 u64 cfg_offset;
7064 u32 cfg_base_addr;
7065 u64 cfg_base_addr_index;
7066 u32 trans_offset;
7067 int rc;
7069 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7070 &cfg_base_addr_index, &cfg_offset);
7071 if (rc)
7072 return rc;
7073 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7074 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7075 if (!h->cfgtable) {
7076 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7077 return -ENOMEM;
7079 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7080 if (rc)
7081 return rc;
7082 /* Find performant mode table. */
7083 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7084 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7085 cfg_base_addr_index)+cfg_offset+trans_offset,
7086 sizeof(*h->transtable));
7087 if (!h->transtable) {
7088 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7089 hpsa_free_cfgtables(h);
7090 return -ENOMEM;
7092 return 0;
7095 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7097 #define MIN_MAX_COMMANDS 16
7098 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7100 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7102 /* Limit commands in memory limited kdump scenario. */
7103 if (reset_devices && h->max_commands > 32)
7104 h->max_commands = 32;
7106 if (h->max_commands < MIN_MAX_COMMANDS) {
7107 dev_warn(&h->pdev->dev,
7108 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7109 h->max_commands,
7110 MIN_MAX_COMMANDS);
7111 h->max_commands = MIN_MAX_COMMANDS;
7115 /* If the controller reports that the total max sg entries is greater than 512,
7116 * then we know that chained SG blocks work. (Original smart arrays did not
7117 * support chained SG blocks and would return zero for max sg entries.)
7119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7121 return h->maxsgentries > 512;
7124 /* Interrogate the hardware for some limits:
7125 * max commands, max SG elements without chaining, and with chaining,
7126 * SG chain block size, etc.
7128 static void hpsa_find_board_params(struct ctlr_info *h)
7130 hpsa_get_max_perf_mode_cmds(h);
7131 h->nr_cmds = h->max_commands;
7132 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7133 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7134 if (hpsa_supports_chained_sg_blocks(h)) {
7135 /* Limit in-command s/g elements to 32 save dma'able memory. */
7136 h->max_cmd_sg_entries = 32;
7137 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7138 h->maxsgentries--; /* save one for chain pointer */
7139 } else {
7141 * Original smart arrays supported at most 31 s/g entries
7142 * embedded inline in the command (trying to use more
7143 * would lock up the controller)
7145 h->max_cmd_sg_entries = 31;
7146 h->maxsgentries = 31; /* default to traditional values */
7147 h->chainsize = 0;
7150 /* Find out what task management functions are supported and cache */
7151 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7152 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7153 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7154 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7155 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7156 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7157 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7160 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7162 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7163 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7164 return false;
7166 return true;
7169 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7171 u32 driver_support;
7173 driver_support = readl(&(h->cfgtable->driver_support));
7174 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7175 #ifdef CONFIG_X86
7176 driver_support |= ENABLE_SCSI_PREFETCH;
7177 #endif
7178 driver_support |= ENABLE_UNIT_ATTN;
7179 writel(driver_support, &(h->cfgtable->driver_support));
7182 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7183 * in a prefetch beyond physical memory.
7185 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7187 u32 dma_prefetch;
7189 if (h->board_id != 0x3225103C)
7190 return;
7191 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7192 dma_prefetch |= 0x8000;
7193 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7196 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7198 int i;
7199 u32 doorbell_value;
7200 unsigned long flags;
7201 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7202 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7203 spin_lock_irqsave(&h->lock, flags);
7204 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7205 spin_unlock_irqrestore(&h->lock, flags);
7206 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7207 goto done;
7208 /* delay and try again */
7209 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7211 return -ENODEV;
7212 done:
7213 return 0;
7216 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7218 int i;
7219 u32 doorbell_value;
7220 unsigned long flags;
7222 /* under certain very rare conditions, this can take awhile.
7223 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7224 * as we enter this code.)
7226 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7227 if (h->remove_in_progress)
7228 goto done;
7229 spin_lock_irqsave(&h->lock, flags);
7230 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7231 spin_unlock_irqrestore(&h->lock, flags);
7232 if (!(doorbell_value & CFGTBL_ChangeReq))
7233 goto done;
7234 /* delay and try again */
7235 msleep(MODE_CHANGE_WAIT_INTERVAL);
7237 return -ENODEV;
7238 done:
7239 return 0;
7242 /* return -ENODEV or other reason on error, 0 on success */
7243 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7245 u32 trans_support;
7247 trans_support = readl(&(h->cfgtable->TransportSupport));
7248 if (!(trans_support & SIMPLE_MODE))
7249 return -ENOTSUPP;
7251 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7253 /* Update the field, and then ring the doorbell */
7254 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7255 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7256 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7257 if (hpsa_wait_for_mode_change_ack(h))
7258 goto error;
7259 print_cfg_table(&h->pdev->dev, h->cfgtable);
7260 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7261 goto error;
7262 h->transMethod = CFGTBL_Trans_Simple;
7263 return 0;
7264 error:
7265 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7266 return -ENODEV;
7269 /* free items allocated or mapped by hpsa_pci_init */
7270 static void hpsa_free_pci_init(struct ctlr_info *h)
7272 hpsa_free_cfgtables(h); /* pci_init 4 */
7273 iounmap(h->vaddr); /* pci_init 3 */
7274 h->vaddr = NULL;
7275 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7277 * call pci_disable_device before pci_release_regions per
7278 * Documentation/PCI/pci.txt
7280 pci_disable_device(h->pdev); /* pci_init 1 */
7281 pci_release_regions(h->pdev); /* pci_init 2 */
7284 /* several items must be freed later */
7285 static int hpsa_pci_init(struct ctlr_info *h)
7287 int prod_index, err;
7289 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7290 if (prod_index < 0)
7291 return prod_index;
7292 h->product_name = products[prod_index].product_name;
7293 h->access = *(products[prod_index].access);
7295 h->needs_abort_tags_swizzled =
7296 ctlr_needs_abort_tags_swizzled(h->board_id);
7298 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7299 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7301 err = pci_enable_device(h->pdev);
7302 if (err) {
7303 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7304 pci_disable_device(h->pdev);
7305 return err;
7308 err = pci_request_regions(h->pdev, HPSA);
7309 if (err) {
7310 dev_err(&h->pdev->dev,
7311 "failed to obtain PCI resources\n");
7312 pci_disable_device(h->pdev);
7313 return err;
7316 pci_set_master(h->pdev);
7318 hpsa_interrupt_mode(h);
7319 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7320 if (err)
7321 goto clean2; /* intmode+region, pci */
7322 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7323 if (!h->vaddr) {
7324 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7325 err = -ENOMEM;
7326 goto clean2; /* intmode+region, pci */
7328 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7329 if (err)
7330 goto clean3; /* vaddr, intmode+region, pci */
7331 err = hpsa_find_cfgtables(h);
7332 if (err)
7333 goto clean3; /* vaddr, intmode+region, pci */
7334 hpsa_find_board_params(h);
7336 if (!hpsa_CISS_signature_present(h)) {
7337 err = -ENODEV;
7338 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7340 hpsa_set_driver_support_bits(h);
7341 hpsa_p600_dma_prefetch_quirk(h);
7342 err = hpsa_enter_simple_mode(h);
7343 if (err)
7344 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7345 return 0;
7347 clean4: /* cfgtables, vaddr, intmode+region, pci */
7348 hpsa_free_cfgtables(h);
7349 clean3: /* vaddr, intmode+region, pci */
7350 iounmap(h->vaddr);
7351 h->vaddr = NULL;
7352 clean2: /* intmode+region, pci */
7353 hpsa_disable_interrupt_mode(h);
7355 * call pci_disable_device before pci_release_regions per
7356 * Documentation/PCI/pci.txt
7358 pci_disable_device(h->pdev);
7359 pci_release_regions(h->pdev);
7360 return err;
7363 static void hpsa_hba_inquiry(struct ctlr_info *h)
7365 int rc;
7367 #define HBA_INQUIRY_BYTE_COUNT 64
7368 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7369 if (!h->hba_inquiry_data)
7370 return;
7371 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7372 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7373 if (rc != 0) {
7374 kfree(h->hba_inquiry_data);
7375 h->hba_inquiry_data = NULL;
7379 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7381 int rc, i;
7382 void __iomem *vaddr;
7384 if (!reset_devices)
7385 return 0;
7387 /* kdump kernel is loading, we don't know in which state is
7388 * the pci interface. The dev->enable_cnt is equal zero
7389 * so we call enable+disable, wait a while and switch it on.
7391 rc = pci_enable_device(pdev);
7392 if (rc) {
7393 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7394 return -ENODEV;
7396 pci_disable_device(pdev);
7397 msleep(260); /* a randomly chosen number */
7398 rc = pci_enable_device(pdev);
7399 if (rc) {
7400 dev_warn(&pdev->dev, "failed to enable device.\n");
7401 return -ENODEV;
7404 pci_set_master(pdev);
7406 vaddr = pci_ioremap_bar(pdev, 0);
7407 if (vaddr == NULL) {
7408 rc = -ENOMEM;
7409 goto out_disable;
7411 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7412 iounmap(vaddr);
7414 /* Reset the controller with a PCI power-cycle or via doorbell */
7415 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7417 /* -ENOTSUPP here means we cannot reset the controller
7418 * but it's already (and still) up and running in
7419 * "performant mode". Or, it might be 640x, which can't reset
7420 * due to concerns about shared bbwc between 6402/6404 pair.
7422 if (rc)
7423 goto out_disable;
7425 /* Now try to get the controller to respond to a no-op */
7426 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7427 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7428 if (hpsa_noop(pdev) == 0)
7429 break;
7430 else
7431 dev_warn(&pdev->dev, "no-op failed%s\n",
7432 (i < 11 ? "; re-trying" : ""));
7435 out_disable:
7437 pci_disable_device(pdev);
7438 return rc;
7441 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7443 kfree(h->cmd_pool_bits);
7444 h->cmd_pool_bits = NULL;
7445 if (h->cmd_pool) {
7446 pci_free_consistent(h->pdev,
7447 h->nr_cmds * sizeof(struct CommandList),
7448 h->cmd_pool,
7449 h->cmd_pool_dhandle);
7450 h->cmd_pool = NULL;
7451 h->cmd_pool_dhandle = 0;
7453 if (h->errinfo_pool) {
7454 pci_free_consistent(h->pdev,
7455 h->nr_cmds * sizeof(struct ErrorInfo),
7456 h->errinfo_pool,
7457 h->errinfo_pool_dhandle);
7458 h->errinfo_pool = NULL;
7459 h->errinfo_pool_dhandle = 0;
7463 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7465 h->cmd_pool_bits = kzalloc(
7466 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7467 sizeof(unsigned long), GFP_KERNEL);
7468 h->cmd_pool = pci_alloc_consistent(h->pdev,
7469 h->nr_cmds * sizeof(*h->cmd_pool),
7470 &(h->cmd_pool_dhandle));
7471 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7472 h->nr_cmds * sizeof(*h->errinfo_pool),
7473 &(h->errinfo_pool_dhandle));
7474 if ((h->cmd_pool_bits == NULL)
7475 || (h->cmd_pool == NULL)
7476 || (h->errinfo_pool == NULL)) {
7477 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7478 goto clean_up;
7480 hpsa_preinitialize_commands(h);
7481 return 0;
7482 clean_up:
7483 hpsa_free_cmd_pool(h);
7484 return -ENOMEM;
7487 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7489 int i, cpu;
7491 cpu = cpumask_first(cpu_online_mask);
7492 for (i = 0; i < h->msix_vector; i++) {
7493 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7494 cpu = cpumask_next(cpu, cpu_online_mask);
7498 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7499 static void hpsa_free_irqs(struct ctlr_info *h)
7501 int i;
7503 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7504 /* Single reply queue, only one irq to free */
7505 i = h->intr_mode;
7506 irq_set_affinity_hint(h->intr[i], NULL);
7507 free_irq(h->intr[i], &h->q[i]);
7508 h->q[i] = 0;
7509 return;
7512 for (i = 0; i < h->msix_vector; i++) {
7513 irq_set_affinity_hint(h->intr[i], NULL);
7514 free_irq(h->intr[i], &h->q[i]);
7515 h->q[i] = 0;
7517 for (; i < MAX_REPLY_QUEUES; i++)
7518 h->q[i] = 0;
7521 /* returns 0 on success; cleans up and returns -Enn on error */
7522 static int hpsa_request_irqs(struct ctlr_info *h,
7523 irqreturn_t (*msixhandler)(int, void *),
7524 irqreturn_t (*intxhandler)(int, void *))
7526 int rc, i;
7529 * initialize h->q[x] = x so that interrupt handlers know which
7530 * queue to process.
7532 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7533 h->q[i] = (u8) i;
7535 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7536 /* If performant mode and MSI-X, use multiple reply queues */
7537 for (i = 0; i < h->msix_vector; i++) {
7538 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7539 rc = request_irq(h->intr[i], msixhandler,
7540 0, h->intrname[i],
7541 &h->q[i]);
7542 if (rc) {
7543 int j;
7545 dev_err(&h->pdev->dev,
7546 "failed to get irq %d for %s\n",
7547 h->intr[i], h->devname);
7548 for (j = 0; j < i; j++) {
7549 free_irq(h->intr[j], &h->q[j]);
7550 h->q[j] = 0;
7552 for (; j < MAX_REPLY_QUEUES; j++)
7553 h->q[j] = 0;
7554 return rc;
7557 hpsa_irq_affinity_hints(h);
7558 } else {
7559 /* Use single reply pool */
7560 if (h->msix_vector > 0 || h->msi_vector) {
7561 if (h->msix_vector)
7562 sprintf(h->intrname[h->intr_mode],
7563 "%s-msix", h->devname);
7564 else
7565 sprintf(h->intrname[h->intr_mode],
7566 "%s-msi", h->devname);
7567 rc = request_irq(h->intr[h->intr_mode],
7568 msixhandler, 0,
7569 h->intrname[h->intr_mode],
7570 &h->q[h->intr_mode]);
7571 } else {
7572 sprintf(h->intrname[h->intr_mode],
7573 "%s-intx", h->devname);
7574 rc = request_irq(h->intr[h->intr_mode],
7575 intxhandler, IRQF_SHARED,
7576 h->intrname[h->intr_mode],
7577 &h->q[h->intr_mode]);
7579 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7581 if (rc) {
7582 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7583 h->intr[h->intr_mode], h->devname);
7584 hpsa_free_irqs(h);
7585 return -ENODEV;
7587 return 0;
7590 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7592 int rc;
7593 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7595 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7596 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7597 if (rc) {
7598 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7599 return rc;
7602 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7603 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7604 if (rc) {
7605 dev_warn(&h->pdev->dev, "Board failed to become ready "
7606 "after soft reset.\n");
7607 return rc;
7610 return 0;
7613 static void hpsa_free_reply_queues(struct ctlr_info *h)
7615 int i;
7617 for (i = 0; i < h->nreply_queues; i++) {
7618 if (!h->reply_queue[i].head)
7619 continue;
7620 pci_free_consistent(h->pdev,
7621 h->reply_queue_size,
7622 h->reply_queue[i].head,
7623 h->reply_queue[i].busaddr);
7624 h->reply_queue[i].head = NULL;
7625 h->reply_queue[i].busaddr = 0;
7627 h->reply_queue_size = 0;
7630 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7632 hpsa_free_performant_mode(h); /* init_one 7 */
7633 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7634 hpsa_free_cmd_pool(h); /* init_one 5 */
7635 hpsa_free_irqs(h); /* init_one 4 */
7636 scsi_host_put(h->scsi_host); /* init_one 3 */
7637 h->scsi_host = NULL; /* init_one 3 */
7638 hpsa_free_pci_init(h); /* init_one 2_5 */
7639 free_percpu(h->lockup_detected); /* init_one 2 */
7640 h->lockup_detected = NULL; /* init_one 2 */
7641 if (h->resubmit_wq) {
7642 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7643 h->resubmit_wq = NULL;
7645 if (h->rescan_ctlr_wq) {
7646 destroy_workqueue(h->rescan_ctlr_wq);
7647 h->rescan_ctlr_wq = NULL;
7649 kfree(h); /* init_one 1 */
7652 /* Called when controller lockup detected. */
7653 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7655 int i, refcount;
7656 struct CommandList *c;
7657 int failcount = 0;
7659 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7660 for (i = 0; i < h->nr_cmds; i++) {
7661 c = h->cmd_pool + i;
7662 refcount = atomic_inc_return(&c->refcount);
7663 if (refcount > 1) {
7664 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7665 finish_cmd(c);
7666 atomic_dec(&h->commands_outstanding);
7667 failcount++;
7669 cmd_free(h, c);
7671 dev_warn(&h->pdev->dev,
7672 "failed %d commands in fail_all\n", failcount);
7675 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7677 int cpu;
7679 for_each_online_cpu(cpu) {
7680 u32 *lockup_detected;
7681 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7682 *lockup_detected = value;
7684 wmb(); /* be sure the per-cpu variables are out to memory */
7687 static void controller_lockup_detected(struct ctlr_info *h)
7689 unsigned long flags;
7690 u32 lockup_detected;
7692 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7693 spin_lock_irqsave(&h->lock, flags);
7694 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7695 if (!lockup_detected) {
7696 /* no heartbeat, but controller gave us a zero. */
7697 dev_warn(&h->pdev->dev,
7698 "lockup detected after %d but scratchpad register is zero\n",
7699 h->heartbeat_sample_interval / HZ);
7700 lockup_detected = 0xffffffff;
7702 set_lockup_detected_for_all_cpus(h, lockup_detected);
7703 spin_unlock_irqrestore(&h->lock, flags);
7704 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7705 lockup_detected, h->heartbeat_sample_interval / HZ);
7706 pci_disable_device(h->pdev);
7707 fail_all_outstanding_cmds(h);
7710 static int detect_controller_lockup(struct ctlr_info *h)
7712 u64 now;
7713 u32 heartbeat;
7714 unsigned long flags;
7716 now = get_jiffies_64();
7717 /* If we've received an interrupt recently, we're ok. */
7718 if (time_after64(h->last_intr_timestamp +
7719 (h->heartbeat_sample_interval), now))
7720 return false;
7723 * If we've already checked the heartbeat recently, we're ok.
7724 * This could happen if someone sends us a signal. We
7725 * otherwise don't care about signals in this thread.
7727 if (time_after64(h->last_heartbeat_timestamp +
7728 (h->heartbeat_sample_interval), now))
7729 return false;
7731 /* If heartbeat has not changed since we last looked, we're not ok. */
7732 spin_lock_irqsave(&h->lock, flags);
7733 heartbeat = readl(&h->cfgtable->HeartBeat);
7734 spin_unlock_irqrestore(&h->lock, flags);
7735 if (h->last_heartbeat == heartbeat) {
7736 controller_lockup_detected(h);
7737 return true;
7740 /* We're ok. */
7741 h->last_heartbeat = heartbeat;
7742 h->last_heartbeat_timestamp = now;
7743 return false;
7746 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7748 int i;
7749 char *event_type;
7751 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7752 return;
7754 /* Ask the controller to clear the events we're handling. */
7755 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7756 | CFGTBL_Trans_io_accel2)) &&
7757 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7758 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7760 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7761 event_type = "state change";
7762 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7763 event_type = "configuration change";
7764 /* Stop sending new RAID offload reqs via the IO accelerator */
7765 scsi_block_requests(h->scsi_host);
7766 for (i = 0; i < h->ndevices; i++)
7767 h->dev[i]->offload_enabled = 0;
7768 hpsa_drain_accel_commands(h);
7769 /* Set 'accelerator path config change' bit */
7770 dev_warn(&h->pdev->dev,
7771 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7772 h->events, event_type);
7773 writel(h->events, &(h->cfgtable->clear_event_notify));
7774 /* Set the "clear event notify field update" bit 6 */
7775 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7776 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7777 hpsa_wait_for_clear_event_notify_ack(h);
7778 scsi_unblock_requests(h->scsi_host);
7779 } else {
7780 /* Acknowledge controller notification events. */
7781 writel(h->events, &(h->cfgtable->clear_event_notify));
7782 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7783 hpsa_wait_for_clear_event_notify_ack(h);
7784 #if 0
7785 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7786 hpsa_wait_for_mode_change_ack(h);
7787 #endif
7789 return;
7792 /* Check a register on the controller to see if there are configuration
7793 * changes (added/changed/removed logical drives, etc.) which mean that
7794 * we should rescan the controller for devices.
7795 * Also check flag for driver-initiated rescan.
7797 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7799 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7800 return 0;
7802 h->events = readl(&(h->cfgtable->event_notify));
7803 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7807 * Check if any of the offline devices have become ready
7809 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7811 unsigned long flags;
7812 struct offline_device_entry *d;
7813 struct list_head *this, *tmp;
7815 spin_lock_irqsave(&h->offline_device_lock, flags);
7816 list_for_each_safe(this, tmp, &h->offline_device_list) {
7817 d = list_entry(this, struct offline_device_entry,
7818 offline_list);
7819 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7820 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7821 spin_lock_irqsave(&h->offline_device_lock, flags);
7822 list_del(&d->offline_list);
7823 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7824 return 1;
7826 spin_lock_irqsave(&h->offline_device_lock, flags);
7828 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7829 return 0;
7832 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7834 unsigned long flags;
7835 struct ctlr_info *h = container_of(to_delayed_work(work),
7836 struct ctlr_info, rescan_ctlr_work);
7839 if (h->remove_in_progress)
7840 return;
7842 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7843 scsi_host_get(h->scsi_host);
7844 hpsa_ack_ctlr_events(h);
7845 hpsa_scan_start(h->scsi_host);
7846 scsi_host_put(h->scsi_host);
7848 spin_lock_irqsave(&h->lock, flags);
7849 if (!h->remove_in_progress)
7850 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7851 h->heartbeat_sample_interval);
7852 spin_unlock_irqrestore(&h->lock, flags);
7855 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7857 unsigned long flags;
7858 struct ctlr_info *h = container_of(to_delayed_work(work),
7859 struct ctlr_info, monitor_ctlr_work);
7861 detect_controller_lockup(h);
7862 if (lockup_detected(h))
7863 return;
7865 spin_lock_irqsave(&h->lock, flags);
7866 if (!h->remove_in_progress)
7867 schedule_delayed_work(&h->monitor_ctlr_work,
7868 h->heartbeat_sample_interval);
7869 spin_unlock_irqrestore(&h->lock, flags);
7872 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7873 char *name)
7875 struct workqueue_struct *wq = NULL;
7877 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7878 if (!wq)
7879 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7881 return wq;
7884 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7886 int dac, rc;
7887 struct ctlr_info *h;
7888 int try_soft_reset = 0;
7889 unsigned long flags;
7890 u32 board_id;
7892 if (number_of_controllers == 0)
7893 printk(KERN_INFO DRIVER_NAME "\n");
7895 rc = hpsa_lookup_board_id(pdev, &board_id);
7896 if (rc < 0) {
7897 dev_warn(&pdev->dev, "Board ID not found\n");
7898 return rc;
7901 rc = hpsa_init_reset_devices(pdev, board_id);
7902 if (rc) {
7903 if (rc != -ENOTSUPP)
7904 return rc;
7905 /* If the reset fails in a particular way (it has no way to do
7906 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7907 * a soft reset once we get the controller configured up to the
7908 * point that it can accept a command.
7910 try_soft_reset = 1;
7911 rc = 0;
7914 reinit_after_soft_reset:
7916 /* Command structures must be aligned on a 32-byte boundary because
7917 * the 5 lower bits of the address are used by the hardware. and by
7918 * the driver. See comments in hpsa.h for more info.
7920 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7921 h = kzalloc(sizeof(*h), GFP_KERNEL);
7922 if (!h) {
7923 dev_err(&pdev->dev, "Failed to allocate controller head\n");
7924 return -ENOMEM;
7927 h->pdev = pdev;
7929 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7930 INIT_LIST_HEAD(&h->offline_device_list);
7931 spin_lock_init(&h->lock);
7932 spin_lock_init(&h->offline_device_lock);
7933 spin_lock_init(&h->scan_lock);
7934 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7935 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7937 /* Allocate and clear per-cpu variable lockup_detected */
7938 h->lockup_detected = alloc_percpu(u32);
7939 if (!h->lockup_detected) {
7940 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7941 rc = -ENOMEM;
7942 goto clean1; /* aer/h */
7944 set_lockup_detected_for_all_cpus(h, 0);
7946 rc = hpsa_pci_init(h);
7947 if (rc)
7948 goto clean2; /* lu, aer/h */
7950 /* relies on h-> settings made by hpsa_pci_init, including
7951 * interrupt_mode h->intr */
7952 rc = hpsa_scsi_host_alloc(h);
7953 if (rc)
7954 goto clean2_5; /* pci, lu, aer/h */
7956 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
7957 h->ctlr = number_of_controllers;
7958 number_of_controllers++;
7960 /* configure PCI DMA stuff */
7961 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7962 if (rc == 0) {
7963 dac = 1;
7964 } else {
7965 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7966 if (rc == 0) {
7967 dac = 0;
7968 } else {
7969 dev_err(&pdev->dev, "no suitable DMA available\n");
7970 goto clean3; /* shost, pci, lu, aer/h */
7974 /* make sure the board interrupts are off */
7975 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7977 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
7978 if (rc)
7979 goto clean3; /* shost, pci, lu, aer/h */
7980 rc = hpsa_alloc_cmd_pool(h);
7981 if (rc)
7982 goto clean4; /* irq, shost, pci, lu, aer/h */
7983 rc = hpsa_alloc_sg_chain_blocks(h);
7984 if (rc)
7985 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
7986 init_waitqueue_head(&h->scan_wait_queue);
7987 init_waitqueue_head(&h->abort_cmd_wait_queue);
7988 init_waitqueue_head(&h->event_sync_wait_queue);
7989 mutex_init(&h->reset_mutex);
7990 h->scan_finished = 1; /* no scan currently in progress */
7992 pci_set_drvdata(pdev, h);
7993 h->ndevices = 0;
7994 h->hba_mode_enabled = 0;
7996 spin_lock_init(&h->devlock);
7997 rc = hpsa_put_ctlr_into_performant_mode(h);
7998 if (rc)
7999 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8001 /* hook into SCSI subsystem */
8002 rc = hpsa_scsi_add_host(h);
8003 if (rc)
8004 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8006 /* create the resubmit workqueue */
8007 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8008 if (!h->rescan_ctlr_wq) {
8009 rc = -ENOMEM;
8010 goto clean7;
8013 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8014 if (!h->resubmit_wq) {
8015 rc = -ENOMEM;
8016 goto clean7; /* aer/h */
8020 * At this point, the controller is ready to take commands.
8021 * Now, if reset_devices and the hard reset didn't work, try
8022 * the soft reset and see if that works.
8024 if (try_soft_reset) {
8026 /* This is kind of gross. We may or may not get a completion
8027 * from the soft reset command, and if we do, then the value
8028 * from the fifo may or may not be valid. So, we wait 10 secs
8029 * after the reset throwing away any completions we get during
8030 * that time. Unregister the interrupt handler and register
8031 * fake ones to scoop up any residual completions.
8033 spin_lock_irqsave(&h->lock, flags);
8034 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8035 spin_unlock_irqrestore(&h->lock, flags);
8036 hpsa_free_irqs(h);
8037 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8038 hpsa_intx_discard_completions);
8039 if (rc) {
8040 dev_warn(&h->pdev->dev,
8041 "Failed to request_irq after soft reset.\n");
8043 * cannot goto clean7 or free_irqs will be called
8044 * again. Instead, do its work
8046 hpsa_free_performant_mode(h); /* clean7 */
8047 hpsa_free_sg_chain_blocks(h); /* clean6 */
8048 hpsa_free_cmd_pool(h); /* clean5 */
8050 * skip hpsa_free_irqs(h) clean4 since that
8051 * was just called before request_irqs failed
8053 goto clean3;
8056 rc = hpsa_kdump_soft_reset(h);
8057 if (rc)
8058 /* Neither hard nor soft reset worked, we're hosed. */
8059 goto clean9;
8061 dev_info(&h->pdev->dev, "Board READY.\n");
8062 dev_info(&h->pdev->dev,
8063 "Waiting for stale completions to drain.\n");
8064 h->access.set_intr_mask(h, HPSA_INTR_ON);
8065 msleep(10000);
8066 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8068 rc = controller_reset_failed(h->cfgtable);
8069 if (rc)
8070 dev_info(&h->pdev->dev,
8071 "Soft reset appears to have failed.\n");
8073 /* since the controller's reset, we have to go back and re-init
8074 * everything. Easiest to just forget what we've done and do it
8075 * all over again.
8077 hpsa_undo_allocations_after_kdump_soft_reset(h);
8078 try_soft_reset = 0;
8079 if (rc)
8080 /* don't goto clean, we already unallocated */
8081 return -ENODEV;
8083 goto reinit_after_soft_reset;
8086 /* Enable Accelerated IO path at driver layer */
8087 h->acciopath_status = 1;
8090 /* Turn the interrupts on so we can service requests */
8091 h->access.set_intr_mask(h, HPSA_INTR_ON);
8093 hpsa_hba_inquiry(h);
8095 /* Monitor the controller for firmware lockups */
8096 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8097 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8098 schedule_delayed_work(&h->monitor_ctlr_work,
8099 h->heartbeat_sample_interval);
8100 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8101 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8102 h->heartbeat_sample_interval);
8103 return 0;
8105 clean9: /* wq, sh, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8106 kfree(h->hba_inquiry_data);
8107 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8108 hpsa_free_performant_mode(h);
8109 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8110 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8111 hpsa_free_sg_chain_blocks(h);
8112 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8113 hpsa_free_cmd_pool(h);
8114 clean4: /* irq, shost, pci, lu, aer/h */
8115 hpsa_free_irqs(h);
8116 clean3: /* shost, pci, lu, aer/h */
8117 scsi_host_put(h->scsi_host);
8118 h->scsi_host = NULL;
8119 clean2_5: /* pci, lu, aer/h */
8120 hpsa_free_pci_init(h);
8121 clean2: /* lu, aer/h */
8122 if (h->lockup_detected) {
8123 free_percpu(h->lockup_detected);
8124 h->lockup_detected = NULL;
8126 clean1: /* wq/aer/h */
8127 if (h->resubmit_wq) {
8128 destroy_workqueue(h->resubmit_wq);
8129 h->resubmit_wq = NULL;
8131 if (h->rescan_ctlr_wq) {
8132 destroy_workqueue(h->rescan_ctlr_wq);
8133 h->rescan_ctlr_wq = NULL;
8135 kfree(h);
8136 return rc;
8139 static void hpsa_flush_cache(struct ctlr_info *h)
8141 char *flush_buf;
8142 struct CommandList *c;
8143 int rc;
8145 if (unlikely(lockup_detected(h)))
8146 return;
8147 flush_buf = kzalloc(4, GFP_KERNEL);
8148 if (!flush_buf)
8149 return;
8151 c = cmd_alloc(h);
8153 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8154 RAID_CTLR_LUNID, TYPE_CMD)) {
8155 goto out;
8157 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8158 PCI_DMA_TODEVICE, NO_TIMEOUT);
8159 if (rc)
8160 goto out;
8161 if (c->err_info->CommandStatus != 0)
8162 out:
8163 dev_warn(&h->pdev->dev,
8164 "error flushing cache on controller\n");
8165 cmd_free(h, c);
8166 kfree(flush_buf);
8169 static void hpsa_shutdown(struct pci_dev *pdev)
8171 struct ctlr_info *h;
8173 h = pci_get_drvdata(pdev);
8174 /* Turn board interrupts off and send the flush cache command
8175 * sendcmd will turn off interrupt, and send the flush...
8176 * To write all data in the battery backed cache to disks
8178 hpsa_flush_cache(h);
8179 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180 hpsa_free_irqs(h); /* init_one 4 */
8181 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8184 static void hpsa_free_device_info(struct ctlr_info *h)
8186 int i;
8188 for (i = 0; i < h->ndevices; i++) {
8189 kfree(h->dev[i]);
8190 h->dev[i] = NULL;
8194 static void hpsa_remove_one(struct pci_dev *pdev)
8196 struct ctlr_info *h;
8197 unsigned long flags;
8199 if (pci_get_drvdata(pdev) == NULL) {
8200 dev_err(&pdev->dev, "unable to remove device\n");
8201 return;
8203 h = pci_get_drvdata(pdev);
8205 /* Get rid of any controller monitoring work items */
8206 spin_lock_irqsave(&h->lock, flags);
8207 h->remove_in_progress = 1;
8208 spin_unlock_irqrestore(&h->lock, flags);
8209 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8210 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8211 destroy_workqueue(h->rescan_ctlr_wq);
8212 destroy_workqueue(h->resubmit_wq);
8214 /* includes hpsa_free_irqs - init_one 4 */
8215 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8216 hpsa_shutdown(pdev);
8218 hpsa_free_device_info(h); /* scan */
8220 kfree(h->hba_inquiry_data); /* init_one 10 */
8221 h->hba_inquiry_data = NULL; /* init_one 10 */
8222 if (h->scsi_host)
8223 scsi_remove_host(h->scsi_host); /* init_one 8 */
8224 hpsa_free_ioaccel2_sg_chain_blocks(h);
8225 hpsa_free_performant_mode(h); /* init_one 7 */
8226 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8227 hpsa_free_cmd_pool(h); /* init_one 5 */
8229 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8231 scsi_host_put(h->scsi_host); /* init_one 3 */
8232 h->scsi_host = NULL; /* init_one 3 */
8234 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8235 hpsa_free_pci_init(h); /* init_one 2.5 */
8237 free_percpu(h->lockup_detected); /* init_one 2 */
8238 h->lockup_detected = NULL; /* init_one 2 */
8239 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8240 kfree(h); /* init_one 1 */
8243 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8244 __attribute__((unused)) pm_message_t state)
8246 return -ENOSYS;
8249 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8251 return -ENOSYS;
8254 static struct pci_driver hpsa_pci_driver = {
8255 .name = HPSA,
8256 .probe = hpsa_init_one,
8257 .remove = hpsa_remove_one,
8258 .id_table = hpsa_pci_device_id, /* id_table */
8259 .shutdown = hpsa_shutdown,
8260 .suspend = hpsa_suspend,
8261 .resume = hpsa_resume,
8264 /* Fill in bucket_map[], given nsgs (the max number of
8265 * scatter gather elements supported) and bucket[],
8266 * which is an array of 8 integers. The bucket[] array
8267 * contains 8 different DMA transfer sizes (in 16
8268 * byte increments) which the controller uses to fetch
8269 * commands. This function fills in bucket_map[], which
8270 * maps a given number of scatter gather elements to one of
8271 * the 8 DMA transfer sizes. The point of it is to allow the
8272 * controller to only do as much DMA as needed to fetch the
8273 * command, with the DMA transfer size encoded in the lower
8274 * bits of the command address.
8276 static void calc_bucket_map(int bucket[], int num_buckets,
8277 int nsgs, int min_blocks, u32 *bucket_map)
8279 int i, j, b, size;
8281 /* Note, bucket_map must have nsgs+1 entries. */
8282 for (i = 0; i <= nsgs; i++) {
8283 /* Compute size of a command with i SG entries */
8284 size = i + min_blocks;
8285 b = num_buckets; /* Assume the biggest bucket */
8286 /* Find the bucket that is just big enough */
8287 for (j = 0; j < num_buckets; j++) {
8288 if (bucket[j] >= size) {
8289 b = j;
8290 break;
8293 /* for a command with i SG entries, use bucket b. */
8294 bucket_map[i] = b;
8299 * return -ENODEV on err, 0 on success (or no action)
8300 * allocates numerous items that must be freed later
8302 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8304 int i;
8305 unsigned long register_value;
8306 unsigned long transMethod = CFGTBL_Trans_Performant |
8307 (trans_support & CFGTBL_Trans_use_short_tags) |
8308 CFGTBL_Trans_enable_directed_msix |
8309 (trans_support & (CFGTBL_Trans_io_accel1 |
8310 CFGTBL_Trans_io_accel2));
8311 struct access_method access = SA5_performant_access;
8313 /* This is a bit complicated. There are 8 registers on
8314 * the controller which we write to to tell it 8 different
8315 * sizes of commands which there may be. It's a way of
8316 * reducing the DMA done to fetch each command. Encoded into
8317 * each command's tag are 3 bits which communicate to the controller
8318 * which of the eight sizes that command fits within. The size of
8319 * each command depends on how many scatter gather entries there are.
8320 * Each SG entry requires 16 bytes. The eight registers are programmed
8321 * with the number of 16-byte blocks a command of that size requires.
8322 * The smallest command possible requires 5 such 16 byte blocks.
8323 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8324 * blocks. Note, this only extends to the SG entries contained
8325 * within the command block, and does not extend to chained blocks
8326 * of SG elements. bft[] contains the eight values we write to
8327 * the registers. They are not evenly distributed, but have more
8328 * sizes for small commands, and fewer sizes for larger commands.
8330 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8331 #define MIN_IOACCEL2_BFT_ENTRY 5
8332 #define HPSA_IOACCEL2_HEADER_SZ 4
8333 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8334 13, 14, 15, 16, 17, 18, 19,
8335 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8336 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8337 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8338 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8339 16 * MIN_IOACCEL2_BFT_ENTRY);
8340 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8341 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8342 /* 5 = 1 s/g entry or 4k
8343 * 6 = 2 s/g entry or 8k
8344 * 8 = 4 s/g entry or 16k
8345 * 10 = 6 s/g entry or 24k
8348 /* If the controller supports either ioaccel method then
8349 * we can also use the RAID stack submit path that does not
8350 * perform the superfluous readl() after each command submission.
8352 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8353 access = SA5_performant_access_no_read;
8355 /* Controller spec: zero out this buffer. */
8356 for (i = 0; i < h->nreply_queues; i++)
8357 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8359 bft[7] = SG_ENTRIES_IN_CMD + 4;
8360 calc_bucket_map(bft, ARRAY_SIZE(bft),
8361 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8362 for (i = 0; i < 8; i++)
8363 writel(bft[i], &h->transtable->BlockFetch[i]);
8365 /* size of controller ring buffer */
8366 writel(h->max_commands, &h->transtable->RepQSize);
8367 writel(h->nreply_queues, &h->transtable->RepQCount);
8368 writel(0, &h->transtable->RepQCtrAddrLow32);
8369 writel(0, &h->transtable->RepQCtrAddrHigh32);
8371 for (i = 0; i < h->nreply_queues; i++) {
8372 writel(0, &h->transtable->RepQAddr[i].upper);
8373 writel(h->reply_queue[i].busaddr,
8374 &h->transtable->RepQAddr[i].lower);
8377 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8378 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8380 * enable outbound interrupt coalescing in accelerator mode;
8382 if (trans_support & CFGTBL_Trans_io_accel1) {
8383 access = SA5_ioaccel_mode1_access;
8384 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8385 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8386 } else {
8387 if (trans_support & CFGTBL_Trans_io_accel2) {
8388 access = SA5_ioaccel_mode2_access;
8389 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8390 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8393 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8394 if (hpsa_wait_for_mode_change_ack(h)) {
8395 dev_err(&h->pdev->dev,
8396 "performant mode problem - doorbell timeout\n");
8397 return -ENODEV;
8399 register_value = readl(&(h->cfgtable->TransportActive));
8400 if (!(register_value & CFGTBL_Trans_Performant)) {
8401 dev_err(&h->pdev->dev,
8402 "performant mode problem - transport not active\n");
8403 return -ENODEV;
8405 /* Change the access methods to the performant access methods */
8406 h->access = access;
8407 h->transMethod = transMethod;
8409 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8410 (trans_support & CFGTBL_Trans_io_accel2)))
8411 return 0;
8413 if (trans_support & CFGTBL_Trans_io_accel1) {
8414 /* Set up I/O accelerator mode */
8415 for (i = 0; i < h->nreply_queues; i++) {
8416 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8417 h->reply_queue[i].current_entry =
8418 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8420 bft[7] = h->ioaccel_maxsg + 8;
8421 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8422 h->ioaccel1_blockFetchTable);
8424 /* initialize all reply queue entries to unused */
8425 for (i = 0; i < h->nreply_queues; i++)
8426 memset(h->reply_queue[i].head,
8427 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8428 h->reply_queue_size);
8430 /* set all the constant fields in the accelerator command
8431 * frames once at init time to save CPU cycles later.
8433 for (i = 0; i < h->nr_cmds; i++) {
8434 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8436 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8437 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8438 (i * sizeof(struct ErrorInfo)));
8439 cp->err_info_len = sizeof(struct ErrorInfo);
8440 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8441 cp->host_context_flags =
8442 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8443 cp->timeout_sec = 0;
8444 cp->ReplyQueue = 0;
8445 cp->tag =
8446 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8447 cp->host_addr =
8448 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8449 (i * sizeof(struct io_accel1_cmd)));
8451 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8452 u64 cfg_offset, cfg_base_addr_index;
8453 u32 bft2_offset, cfg_base_addr;
8454 int rc;
8456 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8457 &cfg_base_addr_index, &cfg_offset);
8458 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8459 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8460 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8461 4, h->ioaccel2_blockFetchTable);
8462 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8463 BUILD_BUG_ON(offsetof(struct CfgTable,
8464 io_accel_request_size_offset) != 0xb8);
8465 h->ioaccel2_bft2_regs =
8466 remap_pci_mem(pci_resource_start(h->pdev,
8467 cfg_base_addr_index) +
8468 cfg_offset + bft2_offset,
8469 ARRAY_SIZE(bft2) *
8470 sizeof(*h->ioaccel2_bft2_regs));
8471 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8472 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8474 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8475 if (hpsa_wait_for_mode_change_ack(h)) {
8476 dev_err(&h->pdev->dev,
8477 "performant mode problem - enabling ioaccel mode\n");
8478 return -ENODEV;
8480 return 0;
8483 /* Free ioaccel1 mode command blocks and block fetch table */
8484 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8486 if (h->ioaccel_cmd_pool) {
8487 pci_free_consistent(h->pdev,
8488 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8489 h->ioaccel_cmd_pool,
8490 h->ioaccel_cmd_pool_dhandle);
8491 h->ioaccel_cmd_pool = NULL;
8492 h->ioaccel_cmd_pool_dhandle = 0;
8494 kfree(h->ioaccel1_blockFetchTable);
8495 h->ioaccel1_blockFetchTable = NULL;
8498 /* Allocate ioaccel1 mode command blocks and block fetch table */
8499 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8501 h->ioaccel_maxsg =
8502 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8503 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8504 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8506 /* Command structures must be aligned on a 128-byte boundary
8507 * because the 7 lower bits of the address are used by the
8508 * hardware.
8510 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8511 IOACCEL1_COMMANDLIST_ALIGNMENT);
8512 h->ioaccel_cmd_pool =
8513 pci_alloc_consistent(h->pdev,
8514 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8515 &(h->ioaccel_cmd_pool_dhandle));
8517 h->ioaccel1_blockFetchTable =
8518 kmalloc(((h->ioaccel_maxsg + 1) *
8519 sizeof(u32)), GFP_KERNEL);
8521 if ((h->ioaccel_cmd_pool == NULL) ||
8522 (h->ioaccel1_blockFetchTable == NULL))
8523 goto clean_up;
8525 memset(h->ioaccel_cmd_pool, 0,
8526 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8527 return 0;
8529 clean_up:
8530 hpsa_free_ioaccel1_cmd_and_bft(h);
8531 return -ENOMEM;
8534 /* Free ioaccel2 mode command blocks and block fetch table */
8535 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8537 hpsa_free_ioaccel2_sg_chain_blocks(h);
8539 if (h->ioaccel2_cmd_pool) {
8540 pci_free_consistent(h->pdev,
8541 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8542 h->ioaccel2_cmd_pool,
8543 h->ioaccel2_cmd_pool_dhandle);
8544 h->ioaccel2_cmd_pool = NULL;
8545 h->ioaccel2_cmd_pool_dhandle = 0;
8547 kfree(h->ioaccel2_blockFetchTable);
8548 h->ioaccel2_blockFetchTable = NULL;
8551 /* Allocate ioaccel2 mode command blocks and block fetch table */
8552 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8554 int rc;
8556 /* Allocate ioaccel2 mode command blocks and block fetch table */
8558 h->ioaccel_maxsg =
8559 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8560 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8561 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8563 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8564 IOACCEL2_COMMANDLIST_ALIGNMENT);
8565 h->ioaccel2_cmd_pool =
8566 pci_alloc_consistent(h->pdev,
8567 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8568 &(h->ioaccel2_cmd_pool_dhandle));
8570 h->ioaccel2_blockFetchTable =
8571 kmalloc(((h->ioaccel_maxsg + 1) *
8572 sizeof(u32)), GFP_KERNEL);
8574 if ((h->ioaccel2_cmd_pool == NULL) ||
8575 (h->ioaccel2_blockFetchTable == NULL)) {
8576 rc = -ENOMEM;
8577 goto clean_up;
8580 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8581 if (rc)
8582 goto clean_up;
8584 memset(h->ioaccel2_cmd_pool, 0,
8585 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8586 return 0;
8588 clean_up:
8589 hpsa_free_ioaccel2_cmd_and_bft(h);
8590 return rc;
8593 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8594 static void hpsa_free_performant_mode(struct ctlr_info *h)
8596 kfree(h->blockFetchTable);
8597 h->blockFetchTable = NULL;
8598 hpsa_free_reply_queues(h);
8599 hpsa_free_ioaccel1_cmd_and_bft(h);
8600 hpsa_free_ioaccel2_cmd_and_bft(h);
8603 /* return -ENODEV on error, 0 on success (or no action)
8604 * allocates numerous items that must be freed later
8606 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8608 u32 trans_support;
8609 unsigned long transMethod = CFGTBL_Trans_Performant |
8610 CFGTBL_Trans_use_short_tags;
8611 int i, rc;
8613 if (hpsa_simple_mode)
8614 return 0;
8616 trans_support = readl(&(h->cfgtable->TransportSupport));
8617 if (!(trans_support & PERFORMANT_MODE))
8618 return 0;
8620 /* Check for I/O accelerator mode support */
8621 if (trans_support & CFGTBL_Trans_io_accel1) {
8622 transMethod |= CFGTBL_Trans_io_accel1 |
8623 CFGTBL_Trans_enable_directed_msix;
8624 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8625 if (rc)
8626 return rc;
8627 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8628 transMethod |= CFGTBL_Trans_io_accel2 |
8629 CFGTBL_Trans_enable_directed_msix;
8630 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8631 if (rc)
8632 return rc;
8635 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8636 hpsa_get_max_perf_mode_cmds(h);
8637 /* Performant mode ring buffer and supporting data structures */
8638 h->reply_queue_size = h->max_commands * sizeof(u64);
8640 for (i = 0; i < h->nreply_queues; i++) {
8641 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8642 h->reply_queue_size,
8643 &(h->reply_queue[i].busaddr));
8644 if (!h->reply_queue[i].head) {
8645 rc = -ENOMEM;
8646 goto clean1; /* rq, ioaccel */
8648 h->reply_queue[i].size = h->max_commands;
8649 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
8650 h->reply_queue[i].current_entry = 0;
8653 /* Need a block fetch table for performant mode */
8654 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8655 sizeof(u32)), GFP_KERNEL);
8656 if (!h->blockFetchTable) {
8657 rc = -ENOMEM;
8658 goto clean1; /* rq, ioaccel */
8661 rc = hpsa_enter_performant_mode(h, trans_support);
8662 if (rc)
8663 goto clean2; /* bft, rq, ioaccel */
8664 return 0;
8666 clean2: /* bft, rq, ioaccel */
8667 kfree(h->blockFetchTable);
8668 h->blockFetchTable = NULL;
8669 clean1: /* rq, ioaccel */
8670 hpsa_free_reply_queues(h);
8671 hpsa_free_ioaccel1_cmd_and_bft(h);
8672 hpsa_free_ioaccel2_cmd_and_bft(h);
8673 return rc;
8676 static int is_accelerated_cmd(struct CommandList *c)
8678 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8681 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8683 struct CommandList *c = NULL;
8684 int i, accel_cmds_out;
8685 int refcount;
8687 do { /* wait for all outstanding ioaccel commands to drain out */
8688 accel_cmds_out = 0;
8689 for (i = 0; i < h->nr_cmds; i++) {
8690 c = h->cmd_pool + i;
8691 refcount = atomic_inc_return(&c->refcount);
8692 if (refcount > 1) /* Command is allocated */
8693 accel_cmds_out += is_accelerated_cmd(c);
8694 cmd_free(h, c);
8696 if (accel_cmds_out <= 0)
8697 break;
8698 msleep(100);
8699 } while (1);
8703 * This is it. Register the PCI driver information for the cards we control
8704 * the OS will call our registered routines when it finds one of our cards.
8706 static int __init hpsa_init(void)
8708 return pci_register_driver(&hpsa_pci_driver);
8711 static void __exit hpsa_cleanup(void)
8713 pci_unregister_driver(&hpsa_pci_driver);
8716 static void __attribute__((unused)) verify_offsets(void)
8718 #define VERIFY_OFFSET(member, offset) \
8719 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8721 VERIFY_OFFSET(structure_size, 0);
8722 VERIFY_OFFSET(volume_blk_size, 4);
8723 VERIFY_OFFSET(volume_blk_cnt, 8);
8724 VERIFY_OFFSET(phys_blk_shift, 16);
8725 VERIFY_OFFSET(parity_rotation_shift, 17);
8726 VERIFY_OFFSET(strip_size, 18);
8727 VERIFY_OFFSET(disk_starting_blk, 20);
8728 VERIFY_OFFSET(disk_blk_cnt, 28);
8729 VERIFY_OFFSET(data_disks_per_row, 36);
8730 VERIFY_OFFSET(metadata_disks_per_row, 38);
8731 VERIFY_OFFSET(row_cnt, 40);
8732 VERIFY_OFFSET(layout_map_count, 42);
8733 VERIFY_OFFSET(flags, 44);
8734 VERIFY_OFFSET(dekindex, 46);
8735 /* VERIFY_OFFSET(reserved, 48 */
8736 VERIFY_OFFSET(data, 64);
8738 #undef VERIFY_OFFSET
8740 #define VERIFY_OFFSET(member, offset) \
8741 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8743 VERIFY_OFFSET(IU_type, 0);
8744 VERIFY_OFFSET(direction, 1);
8745 VERIFY_OFFSET(reply_queue, 2);
8746 /* VERIFY_OFFSET(reserved1, 3); */
8747 VERIFY_OFFSET(scsi_nexus, 4);
8748 VERIFY_OFFSET(Tag, 8);
8749 VERIFY_OFFSET(cdb, 16);
8750 VERIFY_OFFSET(cciss_lun, 32);
8751 VERIFY_OFFSET(data_len, 40);
8752 VERIFY_OFFSET(cmd_priority_task_attr, 44);
8753 VERIFY_OFFSET(sg_count, 45);
8754 /* VERIFY_OFFSET(reserved3 */
8755 VERIFY_OFFSET(err_ptr, 48);
8756 VERIFY_OFFSET(err_len, 56);
8757 /* VERIFY_OFFSET(reserved4 */
8758 VERIFY_OFFSET(sg, 64);
8760 #undef VERIFY_OFFSET
8762 #define VERIFY_OFFSET(member, offset) \
8763 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8765 VERIFY_OFFSET(dev_handle, 0x00);
8766 VERIFY_OFFSET(reserved1, 0x02);
8767 VERIFY_OFFSET(function, 0x03);
8768 VERIFY_OFFSET(reserved2, 0x04);
8769 VERIFY_OFFSET(err_info, 0x0C);
8770 VERIFY_OFFSET(reserved3, 0x10);
8771 VERIFY_OFFSET(err_info_len, 0x12);
8772 VERIFY_OFFSET(reserved4, 0x13);
8773 VERIFY_OFFSET(sgl_offset, 0x14);
8774 VERIFY_OFFSET(reserved5, 0x15);
8775 VERIFY_OFFSET(transfer_len, 0x1C);
8776 VERIFY_OFFSET(reserved6, 0x20);
8777 VERIFY_OFFSET(io_flags, 0x24);
8778 VERIFY_OFFSET(reserved7, 0x26);
8779 VERIFY_OFFSET(LUN, 0x34);
8780 VERIFY_OFFSET(control, 0x3C);
8781 VERIFY_OFFSET(CDB, 0x40);
8782 VERIFY_OFFSET(reserved8, 0x50);
8783 VERIFY_OFFSET(host_context_flags, 0x60);
8784 VERIFY_OFFSET(timeout_sec, 0x62);
8785 VERIFY_OFFSET(ReplyQueue, 0x64);
8786 VERIFY_OFFSET(reserved9, 0x65);
8787 VERIFY_OFFSET(tag, 0x68);
8788 VERIFY_OFFSET(host_addr, 0x70);
8789 VERIFY_OFFSET(CISS_LUN, 0x78);
8790 VERIFY_OFFSET(SG, 0x78 + 8);
8791 #undef VERIFY_OFFSET
8794 module_init(hpsa_init);
8795 module_exit(hpsa_cleanup);