2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
29 /* SPI register offsets */
32 #define SPI_RDR 0x0008
33 #define SPI_TDR 0x000c
35 #define SPI_IER 0x0014
36 #define SPI_IDR 0x0018
37 #define SPI_IMR 0x001c
38 #define SPI_CSR0 0x0030
39 #define SPI_CSR1 0x0034
40 #define SPI_CSR2 0x0038
41 #define SPI_CSR3 0x003c
42 #define SPI_RPR 0x0100
43 #define SPI_RCR 0x0104
44 #define SPI_TPR 0x0108
45 #define SPI_TCR 0x010c
46 #define SPI_RNPR 0x0110
47 #define SPI_RNCR 0x0114
48 #define SPI_TNPR 0x0118
49 #define SPI_TNCR 0x011c
50 #define SPI_PTCR 0x0120
51 #define SPI_PTSR 0x0124
54 #define SPI_SPIEN_OFFSET 0
55 #define SPI_SPIEN_SIZE 1
56 #define SPI_SPIDIS_OFFSET 1
57 #define SPI_SPIDIS_SIZE 1
58 #define SPI_SWRST_OFFSET 7
59 #define SPI_SWRST_SIZE 1
60 #define SPI_LASTXFER_OFFSET 24
61 #define SPI_LASTXFER_SIZE 1
64 #define SPI_MSTR_OFFSET 0
65 #define SPI_MSTR_SIZE 1
66 #define SPI_PS_OFFSET 1
68 #define SPI_PCSDEC_OFFSET 2
69 #define SPI_PCSDEC_SIZE 1
70 #define SPI_FDIV_OFFSET 3
71 #define SPI_FDIV_SIZE 1
72 #define SPI_MODFDIS_OFFSET 4
73 #define SPI_MODFDIS_SIZE 1
74 #define SPI_LLB_OFFSET 7
75 #define SPI_LLB_SIZE 1
76 #define SPI_PCS_OFFSET 16
77 #define SPI_PCS_SIZE 4
78 #define SPI_DLYBCS_OFFSET 24
79 #define SPI_DLYBCS_SIZE 8
81 /* Bitfields in RDR */
82 #define SPI_RD_OFFSET 0
83 #define SPI_RD_SIZE 16
85 /* Bitfields in TDR */
86 #define SPI_TD_OFFSET 0
87 #define SPI_TD_SIZE 16
90 #define SPI_RDRF_OFFSET 0
91 #define SPI_RDRF_SIZE 1
92 #define SPI_TDRE_OFFSET 1
93 #define SPI_TDRE_SIZE 1
94 #define SPI_MODF_OFFSET 2
95 #define SPI_MODF_SIZE 1
96 #define SPI_OVRES_OFFSET 3
97 #define SPI_OVRES_SIZE 1
98 #define SPI_ENDRX_OFFSET 4
99 #define SPI_ENDRX_SIZE 1
100 #define SPI_ENDTX_OFFSET 5
101 #define SPI_ENDTX_SIZE 1
102 #define SPI_RXBUFF_OFFSET 6
103 #define SPI_RXBUFF_SIZE 1
104 #define SPI_TXBUFE_OFFSET 7
105 #define SPI_TXBUFE_SIZE 1
106 #define SPI_NSSR_OFFSET 8
107 #define SPI_NSSR_SIZE 1
108 #define SPI_TXEMPTY_OFFSET 9
109 #define SPI_TXEMPTY_SIZE 1
110 #define SPI_SPIENS_OFFSET 16
111 #define SPI_SPIENS_SIZE 1
113 /* Bitfields in CSR0 */
114 #define SPI_CPOL_OFFSET 0
115 #define SPI_CPOL_SIZE 1
116 #define SPI_NCPHA_OFFSET 1
117 #define SPI_NCPHA_SIZE 1
118 #define SPI_CSAAT_OFFSET 3
119 #define SPI_CSAAT_SIZE 1
120 #define SPI_BITS_OFFSET 4
121 #define SPI_BITS_SIZE 4
122 #define SPI_SCBR_OFFSET 8
123 #define SPI_SCBR_SIZE 8
124 #define SPI_DLYBS_OFFSET 16
125 #define SPI_DLYBS_SIZE 8
126 #define SPI_DLYBCT_OFFSET 24
127 #define SPI_DLYBCT_SIZE 8
129 /* Bitfields in RCR */
130 #define SPI_RXCTR_OFFSET 0
131 #define SPI_RXCTR_SIZE 16
133 /* Bitfields in TCR */
134 #define SPI_TXCTR_OFFSET 0
135 #define SPI_TXCTR_SIZE 16
137 /* Bitfields in RNCR */
138 #define SPI_RXNCR_OFFSET 0
139 #define SPI_RXNCR_SIZE 16
141 /* Bitfields in TNCR */
142 #define SPI_TXNCR_OFFSET 0
143 #define SPI_TXNCR_SIZE 16
145 /* Bitfields in PTCR */
146 #define SPI_RXTEN_OFFSET 0
147 #define SPI_RXTEN_SIZE 1
148 #define SPI_RXTDIS_OFFSET 1
149 #define SPI_RXTDIS_SIZE 1
150 #define SPI_TXTEN_OFFSET 8
151 #define SPI_TXTEN_SIZE 1
152 #define SPI_TXTDIS_OFFSET 9
153 #define SPI_TXTDIS_SIZE 1
155 /* Constants for BITS */
156 #define SPI_BITS_8_BPT 0
157 #define SPI_BITS_9_BPT 1
158 #define SPI_BITS_10_BPT 2
159 #define SPI_BITS_11_BPT 3
160 #define SPI_BITS_12_BPT 4
161 #define SPI_BITS_13_BPT 5
162 #define SPI_BITS_14_BPT 6
163 #define SPI_BITS_15_BPT 7
164 #define SPI_BITS_16_BPT 8
166 /* Bit manipulation macros */
167 #define SPI_BIT(name) \
168 (1 << SPI_##name##_OFFSET)
169 #define SPI_BF(name,value) \
170 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
171 #define SPI_BFEXT(name,value) \
172 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
173 #define SPI_BFINS(name,value,old) \
174 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
175 | SPI_BF(name,value))
177 /* Register access macros */
178 #define spi_readl(port,reg) \
179 __raw_readl((port)->regs + SPI_##reg)
180 #define spi_writel(port,reg,value) \
181 __raw_writel((value), (port)->regs + SPI_##reg)
185 * The core SPI transfer engine just talks to a register bank to set up
186 * DMA transfers; transfer queue progress is driven by IRQs. The clock
187 * framework provides the base clock, subdivided for each spi_device.
195 struct platform_device
*pdev
;
196 struct spi_device
*stay
;
199 struct list_head queue
;
200 struct spi_transfer
*current_transfer
;
201 unsigned long current_remaining_bytes
;
202 struct spi_transfer
*next_transfer
;
203 unsigned long next_remaining_bytes
;
206 dma_addr_t buffer_dma
;
209 /* Controller-specific per-slave state */
210 struct atmel_spi_device
{
211 unsigned int npcs_pin
;
215 #define BUFFER_SIZE PAGE_SIZE
216 #define INVALID_DMA_ADDRESS 0xffffffff
219 * Version 2 of the SPI controller has
221 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
222 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
224 * - SPI_CSRx.SBCR allows faster clocking
226 * We can determine the controller version by reading the VERSION
227 * register, but I haven't checked that it exists on all chips, and
228 * this is cheaper anyway.
230 static bool atmel_spi_is_v2(void)
232 return !cpu_is_at91rm9200();
236 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
237 * they assume that spi slave device state will not change on deselect, so
238 * that automagic deselection is OK. ("NPCSx rises if no data is to be
239 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
240 * controllers have CSAAT and friends.
242 * Since the CSAAT functionality is a bit weird on newer controllers as
243 * well, we use GPIO to control nCSx pins on all controllers, updating
244 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
245 * support active-high chipselects despite the controller's belief that
246 * only active-low devices/systems exists.
248 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
249 * right when driven with GPIO. ("Mode Fault does not allow more than one
250 * Master on Chip Select 0.") No workaround exists for that ... so for
251 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
252 * and (c) will trigger that first erratum in some cases.
254 * TODO: Test if the atmel_spi_is_v2() branch below works on
255 * AT91RM9200 if we use some other register than CSR0. However, don't
256 * do this unconditionally since AP7000 has an errata where the BITS
257 * field in CSR0 overrides all other CSRs.
260 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
262 struct atmel_spi_device
*asd
= spi
->controller_state
;
263 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
266 if (atmel_spi_is_v2()) {
268 * Always use CSR0. This ensures that the clock
269 * switches to the correct idle polarity before we
272 spi_writel(as
, CSR0
, asd
->csr
);
273 spi_writel(as
, MR
, SPI_BF(PCS
, 0x0e) | SPI_BIT(MODFDIS
)
275 mr
= spi_readl(as
, MR
);
276 gpio_set_value(asd
->npcs_pin
, active
);
278 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
282 /* Make sure clock polarity is correct */
283 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
284 csr
= spi_readl(as
, CSR0
+ 4 * i
);
285 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
286 spi_writel(as
, CSR0
+ 4 * i
,
287 csr
^ SPI_BIT(CPOL
));
290 mr
= spi_readl(as
, MR
);
291 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
292 if (spi
->chip_select
!= 0)
293 gpio_set_value(asd
->npcs_pin
, active
);
294 spi_writel(as
, MR
, mr
);
297 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
298 asd
->npcs_pin
, active
? " (high)" : "",
302 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
304 struct atmel_spi_device
*asd
= spi
->controller_state
;
305 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
308 /* only deactivate *this* device; sometimes transfers to
309 * another device may be active when this routine is called.
311 mr
= spi_readl(as
, MR
);
312 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
313 mr
= SPI_BFINS(PCS
, 0xf, mr
);
314 spi_writel(as
, MR
, mr
);
317 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
318 asd
->npcs_pin
, active
? " (low)" : "",
321 if (atmel_spi_is_v2() || spi
->chip_select
!= 0)
322 gpio_set_value(asd
->npcs_pin
, !active
);
325 static inline int atmel_spi_xfer_is_last(struct spi_message
*msg
,
326 struct spi_transfer
*xfer
)
328 return msg
->transfers
.prev
== &xfer
->transfer_list
;
331 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer
*xfer
)
333 return xfer
->delay_usecs
== 0 && !xfer
->cs_change
;
336 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
337 struct spi_transfer
*xfer
,
342 struct atmel_spi
*as
= spi_master_get_devdata(master
);
345 /* use scratch buffer only when rx or tx data is unspecified */
347 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
349 *rx_dma
= as
->buffer_dma
;
350 if (len
> BUFFER_SIZE
)
354 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
356 *tx_dma
= as
->buffer_dma
;
357 if (len
> BUFFER_SIZE
)
359 memset(as
->buffer
, 0, len
);
360 dma_sync_single_for_device(&as
->pdev
->dev
,
361 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
368 * Submit next transfer for DMA.
369 * lock is held, spi irq is blocked
371 static void atmel_spi_next_xfer(struct spi_master
*master
,
372 struct spi_message
*msg
)
374 struct atmel_spi
*as
= spi_master_get_devdata(master
);
375 struct spi_transfer
*xfer
;
378 dma_addr_t tx_dma
, rx_dma
;
380 if (!as
->current_transfer
)
381 xfer
= list_entry(msg
->transfers
.next
,
382 struct spi_transfer
, transfer_list
);
383 else if (!as
->next_transfer
)
384 xfer
= list_entry(as
->current_transfer
->transfer_list
.next
,
385 struct spi_transfer
, transfer_list
);
390 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
393 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
394 remaining
= xfer
->len
- len
;
396 spi_writel(as
, RPR
, rx_dma
);
397 spi_writel(as
, TPR
, tx_dma
);
399 if (msg
->spi
->bits_per_word
> 8)
401 spi_writel(as
, RCR
, len
);
402 spi_writel(as
, TCR
, len
);
404 dev_dbg(&msg
->spi
->dev
,
405 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
406 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
407 xfer
->rx_buf
, xfer
->rx_dma
);
409 xfer
= as
->next_transfer
;
410 remaining
= as
->next_remaining_bytes
;
413 as
->current_transfer
= xfer
;
414 as
->current_remaining_bytes
= remaining
;
418 else if (!atmel_spi_xfer_is_last(msg
, xfer
)
419 && atmel_spi_xfer_can_be_chained(xfer
)) {
420 xfer
= list_entry(xfer
->transfer_list
.next
,
421 struct spi_transfer
, transfer_list
);
426 as
->next_transfer
= xfer
;
432 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
433 as
->next_remaining_bytes
= total
- len
;
435 spi_writel(as
, RNPR
, rx_dma
);
436 spi_writel(as
, TNPR
, tx_dma
);
438 if (msg
->spi
->bits_per_word
> 8)
440 spi_writel(as
, RNCR
, len
);
441 spi_writel(as
, TNCR
, len
);
443 dev_dbg(&msg
->spi
->dev
,
444 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
445 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
446 xfer
->rx_buf
, xfer
->rx_dma
);
447 ieval
= SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
449 spi_writel(as
, RNCR
, 0);
450 spi_writel(as
, TNCR
, 0);
451 ieval
= SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
454 /* REVISIT: We're waiting for ENDRX before we start the next
455 * transfer because we need to handle some difficult timing
456 * issues otherwise. If we wait for ENDTX in one transfer and
457 * then starts waiting for ENDRX in the next, it's difficult
458 * to tell the difference between the ENDRX interrupt we're
459 * actually waiting for and the ENDRX interrupt of the
462 * It should be doable, though. Just not now...
464 spi_writel(as
, IER
, ieval
);
465 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
468 static void atmel_spi_next_message(struct spi_master
*master
)
470 struct atmel_spi
*as
= spi_master_get_devdata(master
);
471 struct spi_message
*msg
;
472 struct spi_device
*spi
;
474 BUG_ON(as
->current_transfer
);
476 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
479 dev_dbg(master
->dev
.parent
, "start message %p for %s\n",
480 msg
, dev_name(&spi
->dev
));
482 /* select chip if it's not still active */
484 if (as
->stay
!= spi
) {
485 cs_deactivate(as
, as
->stay
);
486 cs_activate(as
, spi
);
490 cs_activate(as
, spi
);
492 atmel_spi_next_xfer(master
, msg
);
496 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
497 * - The buffer is either valid for CPU access, else NULL
498 * - If the buffer is valid, so is its DMA address
500 * This driver manages the dma address unless message->is_dma_mapped.
503 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
505 struct device
*dev
= &as
->pdev
->dev
;
507 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
509 /* tx_buf is a const void* where we need a void * for the dma
511 void *nonconst_tx
= (void *)xfer
->tx_buf
;
513 xfer
->tx_dma
= dma_map_single(dev
,
514 nonconst_tx
, xfer
->len
,
516 if (dma_mapping_error(dev
, xfer
->tx_dma
))
520 xfer
->rx_dma
= dma_map_single(dev
,
521 xfer
->rx_buf
, xfer
->len
,
523 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
525 dma_unmap_single(dev
,
526 xfer
->tx_dma
, xfer
->len
,
534 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
535 struct spi_transfer
*xfer
)
537 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
538 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
539 xfer
->len
, DMA_TO_DEVICE
);
540 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
541 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
542 xfer
->len
, DMA_FROM_DEVICE
);
546 atmel_spi_msg_done(struct spi_master
*master
, struct atmel_spi
*as
,
547 struct spi_message
*msg
, int status
, int stay
)
549 if (!stay
|| status
< 0)
550 cs_deactivate(as
, msg
->spi
);
554 list_del(&msg
->queue
);
555 msg
->status
= status
;
557 dev_dbg(master
->dev
.parent
,
558 "xfer complete: %u bytes transferred\n",
561 spin_unlock(&as
->lock
);
562 msg
->complete(msg
->context
);
563 spin_lock(&as
->lock
);
565 as
->current_transfer
= NULL
;
566 as
->next_transfer
= NULL
;
568 /* continue if needed */
569 if (list_empty(&as
->queue
) || as
->stopping
)
570 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
572 atmel_spi_next_message(master
);
576 atmel_spi_interrupt(int irq
, void *dev_id
)
578 struct spi_master
*master
= dev_id
;
579 struct atmel_spi
*as
= spi_master_get_devdata(master
);
580 struct spi_message
*msg
;
581 struct spi_transfer
*xfer
;
582 u32 status
, pending
, imr
;
585 spin_lock(&as
->lock
);
587 xfer
= as
->current_transfer
;
588 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
590 imr
= spi_readl(as
, IMR
);
591 status
= spi_readl(as
, SR
);
592 pending
= status
& imr
;
594 if (pending
& SPI_BIT(OVRES
)) {
599 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
603 * When we get an overrun, we disregard the current
604 * transfer. Data will not be copied back from any
605 * bounce buffer and msg->actual_len will not be
606 * updated with the last xfer.
608 * We will also not process any remaning transfers in
611 * First, stop the transfer and unmap the DMA buffers.
613 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
614 if (!msg
->is_dma_mapped
)
615 atmel_spi_dma_unmap_xfer(master
, xfer
);
617 /* REVISIT: udelay in irq is unfriendly */
618 if (xfer
->delay_usecs
)
619 udelay(xfer
->delay_usecs
);
621 dev_warn(master
->dev
.parent
, "overrun (%u/%u remaining)\n",
622 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
625 * Clean up DMA registers and make sure the data
626 * registers are empty.
628 spi_writel(as
, RNCR
, 0);
629 spi_writel(as
, TNCR
, 0);
630 spi_writel(as
, RCR
, 0);
631 spi_writel(as
, TCR
, 0);
632 for (timeout
= 1000; timeout
; timeout
--)
633 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
636 dev_warn(master
->dev
.parent
,
637 "timeout waiting for TXEMPTY");
638 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
641 /* Clear any overrun happening while cleaning up */
644 atmel_spi_msg_done(master
, as
, msg
, -EIO
, 0);
645 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
648 spi_writel(as
, IDR
, pending
);
650 if (as
->current_remaining_bytes
== 0) {
651 msg
->actual_length
+= xfer
->len
;
653 if (!msg
->is_dma_mapped
)
654 atmel_spi_dma_unmap_xfer(master
, xfer
);
656 /* REVISIT: udelay in irq is unfriendly */
657 if (xfer
->delay_usecs
)
658 udelay(xfer
->delay_usecs
);
660 if (atmel_spi_xfer_is_last(msg
, xfer
)) {
661 /* report completed message */
662 atmel_spi_msg_done(master
, as
, msg
, 0,
665 if (xfer
->cs_change
) {
666 cs_deactivate(as
, msg
->spi
);
668 cs_activate(as
, msg
->spi
);
672 * Not done yet. Submit the next transfer.
674 * FIXME handle protocol options for xfer
676 atmel_spi_next_xfer(master
, msg
);
680 * Keep going, we still have data to send in
681 * the current transfer.
683 atmel_spi_next_xfer(master
, msg
);
687 spin_unlock(&as
->lock
);
692 static int atmel_spi_setup(struct spi_device
*spi
)
694 struct atmel_spi
*as
;
695 struct atmel_spi_device
*asd
;
697 unsigned int bits
= spi
->bits_per_word
;
698 unsigned long bus_hz
;
699 unsigned int npcs_pin
;
702 as
= spi_master_get_devdata(spi
->master
);
707 if (spi
->chip_select
> spi
->master
->num_chipselect
) {
709 "setup: invalid chipselect %u (%u defined)\n",
710 spi
->chip_select
, spi
->master
->num_chipselect
);
714 if (bits
< 8 || bits
> 16) {
716 "setup: invalid bits_per_word %u (8 to 16)\n",
721 /* see notes above re chipselect */
722 if (!atmel_spi_is_v2()
723 && spi
->chip_select
== 0
724 && (spi
->mode
& SPI_CS_HIGH
)) {
725 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
729 /* v1 chips start out at half the peripheral bus speed. */
730 bus_hz
= clk_get_rate(as
->clk
);
731 if (!atmel_spi_is_v2())
734 if (spi
->max_speed_hz
) {
736 * Calculate the lowest divider that satisfies the
737 * constraint, assuming div32/fdiv/mbz == 0.
739 scbr
= DIV_ROUND_UP(bus_hz
, spi
->max_speed_hz
);
742 * If the resulting divider doesn't fit into the
743 * register bitfield, we can't satisfy the constraint.
745 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
747 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
748 spi
->max_speed_hz
, scbr
, bus_hz
/255);
752 /* speed zero means "as slow as possible" */
755 csr
= SPI_BF(SCBR
, scbr
) | SPI_BF(BITS
, bits
- 8);
756 if (spi
->mode
& SPI_CPOL
)
757 csr
|= SPI_BIT(CPOL
);
758 if (!(spi
->mode
& SPI_CPHA
))
759 csr
|= SPI_BIT(NCPHA
);
761 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
763 * DLYBCT would add delays between words, slowing down transfers.
764 * It could potentially be useful to cope with DMA bottlenecks, but
765 * in those cases it's probably best to just use a lower bitrate.
767 csr
|= SPI_BF(DLYBS
, 0);
768 csr
|= SPI_BF(DLYBCT
, 0);
770 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
771 npcs_pin
= (unsigned int)spi
->controller_data
;
773 if (gpio_is_valid(spi
->cs_gpio
))
774 npcs_pin
= spi
->cs_gpio
;
776 asd
= spi
->controller_state
;
778 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
782 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
788 asd
->npcs_pin
= npcs_pin
;
789 spi
->controller_state
= asd
;
790 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
794 spin_lock_irqsave(&as
->lock
, flags
);
797 cs_deactivate(as
, spi
);
798 spin_unlock_irqrestore(&as
->lock
, flags
);
804 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
805 bus_hz
/ scbr
, bits
, spi
->mode
, spi
->chip_select
, csr
);
807 if (!atmel_spi_is_v2())
808 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
813 static int atmel_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
815 struct atmel_spi
*as
;
816 struct spi_transfer
*xfer
;
818 struct device
*controller
= spi
->master
->dev
.parent
;
820 struct atmel_spi_device
*asd
;
822 as
= spi_master_get_devdata(spi
->master
);
824 dev_dbg(controller
, "new message %p submitted for %s\n",
825 msg
, dev_name(&spi
->dev
));
827 if (unlikely(list_empty(&msg
->transfers
)))
833 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
834 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
835 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
839 if (xfer
->bits_per_word
) {
840 asd
= spi
->controller_state
;
841 bits
= (asd
->csr
>> 4) & 0xf;
842 if (bits
!= xfer
->bits_per_word
- 8) {
843 dev_dbg(&spi
->dev
, "you can't yet change "
844 "bits_per_word in transfers\n");
849 /* FIXME implement these protocol options!! */
850 if (xfer
->speed_hz
) {
851 dev_dbg(&spi
->dev
, "no protocol options yet\n");
856 * DMA map early, for performance (empties dcache ASAP) and
857 * better fault reporting. This is a DMA-only driver.
859 * NOTE that if dma_unmap_single() ever starts to do work on
860 * platforms supported by this driver, we would need to clean
861 * up mappings for previously-mapped transfers.
863 if (!msg
->is_dma_mapped
) {
864 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
870 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
872 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
874 xfer
->tx_buf
, xfer
->tx_dma
,
875 xfer
->rx_buf
, xfer
->rx_dma
);
879 msg
->status
= -EINPROGRESS
;
880 msg
->actual_length
= 0;
882 spin_lock_irqsave(&as
->lock
, flags
);
883 list_add_tail(&msg
->queue
, &as
->queue
);
884 if (!as
->current_transfer
)
885 atmel_spi_next_message(spi
->master
);
886 spin_unlock_irqrestore(&as
->lock
, flags
);
891 static void atmel_spi_cleanup(struct spi_device
*spi
)
893 struct atmel_spi
*as
= spi_master_get_devdata(spi
->master
);
894 struct atmel_spi_device
*asd
= spi
->controller_state
;
895 unsigned gpio
= (unsigned) spi
->controller_data
;
901 spin_lock_irqsave(&as
->lock
, flags
);
902 if (as
->stay
== spi
) {
904 cs_deactivate(as
, spi
);
906 spin_unlock_irqrestore(&as
->lock
, flags
);
908 spi
->controller_state
= NULL
;
913 /*-------------------------------------------------------------------------*/
915 static int atmel_spi_probe(struct platform_device
*pdev
)
917 struct resource
*regs
;
921 struct spi_master
*master
;
922 struct atmel_spi
*as
;
924 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
928 irq
= platform_get_irq(pdev
, 0);
932 clk
= clk_get(&pdev
->dev
, "spi_clk");
936 /* setup spi core then atmel-specific driver state */
938 master
= spi_alloc_master(&pdev
->dev
, sizeof *as
);
942 /* the spi->mode bits understood by this driver: */
943 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
945 master
->dev
.of_node
= pdev
->dev
.of_node
;
946 master
->bus_num
= pdev
->id
;
947 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
948 master
->setup
= atmel_spi_setup
;
949 master
->transfer
= atmel_spi_transfer
;
950 master
->cleanup
= atmel_spi_cleanup
;
951 platform_set_drvdata(pdev
, master
);
953 as
= spi_master_get_devdata(master
);
956 * Scratch buffer is used for throwaway rx and tx data.
957 * It's coherent to minimize dcache pollution.
959 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
960 &as
->buffer_dma
, GFP_KERNEL
);
964 spin_lock_init(&as
->lock
);
965 INIT_LIST_HEAD(&as
->queue
);
967 as
->regs
= ioremap(regs
->start
, resource_size(regs
));
969 goto out_free_buffer
;
973 ret
= request_irq(irq
, atmel_spi_interrupt
, 0,
974 dev_name(&pdev
->dev
), master
);
978 /* Initialize the hardware */
980 spi_writel(as
, CR
, SPI_BIT(SWRST
));
981 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
982 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
983 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
984 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
987 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
988 (unsigned long)regs
->start
, irq
);
990 ret
= spi_register_master(master
);
997 spi_writel(as
, CR
, SPI_BIT(SWRST
));
998 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1000 free_irq(irq
, master
);
1004 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1008 spi_master_put(master
);
1012 static int atmel_spi_remove(struct platform_device
*pdev
)
1014 struct spi_master
*master
= platform_get_drvdata(pdev
);
1015 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1016 struct spi_message
*msg
;
1018 /* reset the hardware and block queue progress */
1019 spin_lock_irq(&as
->lock
);
1021 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1022 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1024 spin_unlock_irq(&as
->lock
);
1026 /* Terminate remaining queued transfers */
1027 list_for_each_entry(msg
, &as
->queue
, queue
) {
1028 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1029 * but we shouldn't depend on that...
1031 msg
->status
= -ESHUTDOWN
;
1032 msg
->complete(msg
->context
);
1035 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1038 clk_disable(as
->clk
);
1040 free_irq(as
->irq
, master
);
1043 spi_unregister_master(master
);
1050 static int atmel_spi_suspend(struct platform_device
*pdev
, pm_message_t mesg
)
1052 struct spi_master
*master
= platform_get_drvdata(pdev
);
1053 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1055 clk_disable(as
->clk
);
1059 static int atmel_spi_resume(struct platform_device
*pdev
)
1061 struct spi_master
*master
= platform_get_drvdata(pdev
);
1062 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1064 clk_enable(as
->clk
);
1069 #define atmel_spi_suspend NULL
1070 #define atmel_spi_resume NULL
1073 #if defined(CONFIG_OF)
1074 static const struct of_device_id atmel_spi_dt_ids
[] = {
1075 { .compatible
= "atmel,at91rm9200-spi" },
1079 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1082 static struct platform_driver atmel_spi_driver
= {
1084 .name
= "atmel_spi",
1085 .owner
= THIS_MODULE
,
1086 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1088 .suspend
= atmel_spi_suspend
,
1089 .resume
= atmel_spi_resume
,
1090 .probe
= atmel_spi_probe
,
1091 .remove
= __exit_p(atmel_spi_remove
),
1093 module_platform_driver(atmel_spi_driver
);
1095 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1096 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1097 MODULE_LICENSE("GPL");
1098 MODULE_ALIAS("platform:atmel_spi");