Merge tag 'regmap-fix-v4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob6afe32381209d76cd0cf2f46d686a9f07a43f2c9
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
29 #include "xhci.h"
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state,
41 unsigned int max_packet,
42 gfp_t flags)
44 struct xhci_segment *seg;
45 dma_addr_t dma;
46 int i;
48 seg = kzalloc(sizeof *seg, flags);
49 if (!seg)
50 return NULL;
52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 if (!seg->trbs) {
54 kfree(seg);
55 return NULL;
58 if (max_packet) {
59 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60 if (!seg->bounce_buf) {
61 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 kfree(seg);
63 return NULL;
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state == 0) {
68 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
71 seg->dma = dma;
72 seg->next = NULL;
74 return seg;
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
79 if (seg->trbs) {
80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 seg->trbs = NULL;
83 kfree(seg->bounce_buf);
84 kfree(seg);
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 struct xhci_segment *first)
90 struct xhci_segment *seg;
92 seg = first->next;
93 while (seg != first) {
94 struct xhci_segment *next = seg->next;
95 xhci_segment_free(xhci, seg);
96 seg = next;
98 xhci_segment_free(xhci, first);
102 * Make the prev segment point to the next segment.
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 struct xhci_segment *next, enum xhci_ring_type type)
111 u32 val;
113 if (!prev || !next)
114 return;
115 prev->next = next;
116 if (type != TYPE_EVENT) {
117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 cpu_to_le64(next->dma);
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 val &= ~TRB_TYPE_BITMASK;
123 val |= TRB_TYPE(TRB_LINK);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci) ||
127 (type == TYPE_ISOC &&
128 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 val |= TRB_CHAIN;
130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 struct xhci_segment *first, struct xhci_segment *last,
140 unsigned int num_segs)
142 struct xhci_segment *next;
144 if (!ring || !first || !last)
145 return;
147 next = ring->enq_seg->next;
148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 xhci_link_segments(xhci, last, next, ring->type);
150 ring->num_segs += num_segs;
151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 &= ~cpu_to_le32(LINK_TOGGLE);
156 last->trbs[TRBS_PER_SEGMENT-1].link.control
157 |= cpu_to_le32(LINK_TOGGLE);
158 ring->last_seg = last;
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
183 * Caveats for the radix tree:
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 struct xhci_ring *ring,
195 struct xhci_segment *seg,
196 gfp_t mem_flags)
198 unsigned long key;
199 int ret;
201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map, key))
204 return 0;
206 ret = radix_tree_maybe_preload(mem_flags);
207 if (ret)
208 return ret;
209 ret = radix_tree_insert(trb_address_map,
210 key, ring);
211 radix_tree_preload_end();
212 return ret;
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 struct xhci_segment *seg)
218 unsigned long key;
220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 if (radix_tree_lookup(trb_address_map, key))
222 radix_tree_delete(trb_address_map, key);
225 static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root *trb_address_map,
227 struct xhci_ring *ring,
228 struct xhci_segment *first_seg,
229 struct xhci_segment *last_seg,
230 gfp_t mem_flags)
232 struct xhci_segment *seg;
233 struct xhci_segment *failed_seg;
234 int ret;
236 if (WARN_ON_ONCE(trb_address_map == NULL))
237 return 0;
239 seg = first_seg;
240 do {
241 ret = xhci_insert_segment_mapping(trb_address_map,
242 ring, seg, mem_flags);
243 if (ret)
244 goto remove_streams;
245 if (seg == last_seg)
246 return 0;
247 seg = seg->next;
248 } while (seg != first_seg);
250 return 0;
252 remove_streams:
253 failed_seg = seg;
254 seg = first_seg;
255 do {
256 xhci_remove_segment_mapping(trb_address_map, seg);
257 if (seg == failed_seg)
258 return ret;
259 seg = seg->next;
260 } while (seg != first_seg);
262 return ret;
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 struct xhci_segment *seg;
269 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 return;
272 seg = ring->first_seg;
273 do {
274 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 seg = seg->next;
276 } while (seg != ring->first_seg);
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 ring->first_seg, ring->last_seg, mem_flags);
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 if (!ring)
289 return;
291 if (ring->first_seg) {
292 if (ring->type == TYPE_STREAM)
293 xhci_remove_stream_mapping(ring);
294 xhci_free_segments_for_ring(xhci, ring->first_seg);
297 kfree(ring);
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301 unsigned int cycle_state)
303 /* The ring is empty, so the enqueue pointer == dequeue pointer */
304 ring->enqueue = ring->first_seg->trbs;
305 ring->enq_seg = ring->first_seg;
306 ring->dequeue = ring->enqueue;
307 ring->deq_seg = ring->first_seg;
308 /* The ring is initialized to 0. The producer must write 1 to the cycle
309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
310 * compare CCS to the cycle bit to check ownership, so CCS = 1.
312 * New rings are initialized with cycle state equal to 1; if we are
313 * handling ring expansion, set the cycle state equal to the old ring.
315 ring->cycle_state = cycle_state;
316 /* Not necessary for new rings, but needed for re-initialized rings */
317 ring->enq_updates = 0;
318 ring->deq_updates = 0;
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 struct xhci_segment **first, struct xhci_segment **last,
330 unsigned int num_segs, unsigned int cycle_state,
331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
333 struct xhci_segment *prev;
335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 if (!prev)
337 return -ENOMEM;
338 num_segs--;
340 *first = prev;
341 while (num_segs > 0) {
342 struct xhci_segment *next;
344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 if (!next) {
346 prev = *first;
347 while (prev) {
348 next = prev->next;
349 xhci_segment_free(xhci, prev);
350 prev = next;
352 return -ENOMEM;
354 xhci_link_segments(xhci, prev, next, type);
356 prev = next;
357 num_segs--;
359 xhci_link_segments(xhci, prev, *first, type);
360 *last = prev;
362 return 0;
366 * Create a new ring with zero or more segments.
368 * Link each segment together into a ring.
369 * Set the end flag and the cycle toggle bit on the last segment.
370 * See section 4.9.1 and figures 15 and 16.
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 unsigned int num_segs, unsigned int cycle_state,
374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
376 struct xhci_ring *ring;
377 int ret;
379 ring = kzalloc(sizeof *(ring), flags);
380 if (!ring)
381 return NULL;
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
402 xhci_initialize_ring_info(ring, cycle_state);
403 return ring;
405 fail:
406 kfree(ring);
407 return NULL;
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411 struct xhci_virt_device *virt_dev,
412 unsigned int ep_index)
414 int rings_cached;
416 rings_cached = virt_dev->num_rings_cached;
417 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418 virt_dev->ring_cache[rings_cached] =
419 virt_dev->eps[ep_index].ring;
420 virt_dev->num_rings_cached++;
421 xhci_dbg(xhci, "Cached old ring, "
422 "%d ring%s cached\n",
423 virt_dev->num_rings_cached,
424 (virt_dev->num_rings_cached > 1) ? "s" : "");
425 } else {
426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427 xhci_dbg(xhci, "Ring cache full (%d rings), "
428 "freeing ring\n",
429 virt_dev->num_rings_cached);
431 virt_dev->eps[ep_index].ring = NULL;
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435 * pointers to the beginning of the ring.
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 struct xhci_ring *ring, unsigned int cycle_state,
439 enum xhci_ring_type type)
441 struct xhci_segment *seg = ring->first_seg;
442 int i;
444 do {
445 memset(seg->trbs, 0,
446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 if (cycle_state == 0) {
448 for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 seg->trbs[i].link.control |=
450 cpu_to_le32(TRB_CYCLE);
452 /* All endpoint rings have link TRBs */
453 xhci_link_segments(xhci, seg, seg->next, type);
454 seg = seg->next;
455 } while (seg != ring->first_seg);
456 ring->type = type;
457 xhci_initialize_ring_info(ring, cycle_state);
458 /* td list should be empty since all URBs have been cancelled,
459 * but just in case...
461 INIT_LIST_HEAD(&ring->td_list);
465 * Expand an existing ring.
466 * Look for a cached ring or allocate a new ring which has same segment numbers
467 * and link the two rings.
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470 unsigned int num_trbs, gfp_t flags)
472 struct xhci_segment *first;
473 struct xhci_segment *last;
474 unsigned int num_segs;
475 unsigned int num_segs_needed;
476 int ret;
478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479 (TRBS_PER_SEGMENT - 1);
481 /* Allocate number of segments we needed, or double the ring size */
482 num_segs = ring->num_segs > num_segs_needed ?
483 ring->num_segs : num_segs_needed;
485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 num_segs, ring->cycle_state, ring->type,
487 ring->bounce_buf_len, flags);
488 if (ret)
489 return -ENOMEM;
491 if (ring->type == TYPE_STREAM)
492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493 ring, first, last, flags);
494 if (ret) {
495 struct xhci_segment *next;
496 do {
497 next = first->next;
498 xhci_segment_free(xhci, first);
499 if (first == last)
500 break;
501 first = next;
502 } while (true);
503 return ret;
506 xhci_link_rings(xhci, ring, first, last, num_segs);
507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508 "ring expansion succeed, now has %d segments",
509 ring->num_segs);
511 return 0;
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 int type, gfp_t flags)
519 struct xhci_container_ctx *ctx;
521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522 return NULL;
524 ctx = kzalloc(sizeof(*ctx), flags);
525 if (!ctx)
526 return NULL;
528 ctx->type = type;
529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530 if (type == XHCI_CTX_TYPE_INPUT)
531 ctx->size += CTX_SIZE(xhci->hcc_params);
533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 if (!ctx->bytes) {
535 kfree(ctx);
536 return NULL;
538 return ctx;
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 struct xhci_container_ctx *ctx)
544 if (!ctx)
545 return;
546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547 kfree(ctx);
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 struct xhci_container_ctx *ctx)
553 if (ctx->type != XHCI_CTX_TYPE_INPUT)
554 return NULL;
556 return (struct xhci_input_control_ctx *)ctx->bytes;
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560 struct xhci_container_ctx *ctx)
562 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563 return (struct xhci_slot_ctx *)ctx->bytes;
565 return (struct xhci_slot_ctx *)
566 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570 struct xhci_container_ctx *ctx,
571 unsigned int ep_index)
573 /* increment ep index by offset of start of ep ctx array */
574 ep_index++;
575 if (ctx->type == XHCI_CTX_TYPE_INPUT)
576 ep_index++;
578 return (struct xhci_ep_ctx *)
579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
583 /***************** Streams structures manipulation *************************/
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 unsigned int num_stream_ctxs,
587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
589 struct device *dev = xhci_to_hcd(xhci)->self.controller;
590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
592 if (size > MEDIUM_STREAM_ARRAY_SIZE)
593 dma_free_coherent(dev, size,
594 stream_ctx, dma);
595 else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 return dma_pool_free(xhci->small_streams_pool,
597 stream_ctx, dma);
598 else
599 return dma_pool_free(xhci->medium_streams_pool,
600 stream_ctx, dma);
604 * The stream context array for each endpoint with bulk streams enabled can
605 * vary in size, based on:
606 * - how many streams the endpoint supports,
607 * - the maximum primary stream array size the host controller supports,
608 * - and how many streams the device driver asks for.
610 * The stream context array must be a power of 2, and can be as small as
611 * 64 bytes or as large as 1MB.
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 unsigned int num_stream_ctxs, dma_addr_t *dma,
615 gfp_t mem_flags)
617 struct device *dev = xhci_to_hcd(xhci)->self.controller;
618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
620 if (size > MEDIUM_STREAM_ARRAY_SIZE)
621 return dma_alloc_coherent(dev, size,
622 dma, mem_flags);
623 else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 return dma_pool_alloc(xhci->small_streams_pool,
625 mem_flags, dma);
626 else
627 return dma_pool_alloc(xhci->medium_streams_pool,
628 mem_flags, dma);
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632 struct xhci_virt_ep *ep,
633 u64 address)
635 if (ep->ep_state & EP_HAS_STREAMS)
636 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637 address >> TRB_SEGMENT_SHIFT);
638 return ep->ring;
641 struct xhci_ring *xhci_stream_id_to_ring(
642 struct xhci_virt_device *dev,
643 unsigned int ep_index,
644 unsigned int stream_id)
646 struct xhci_virt_ep *ep = &dev->eps[ep_index];
648 if (stream_id == 0)
649 return ep->ring;
650 if (!ep->stream_info)
651 return NULL;
653 if (stream_id > ep->stream_info->num_streams)
654 return NULL;
655 return ep->stream_info->stream_rings[stream_id];
659 * Change an endpoint's internal structure so it supports stream IDs. The
660 * number of requested streams includes stream 0, which cannot be used by device
661 * drivers.
663 * The number of stream contexts in the stream context array may be bigger than
664 * the number of streams the driver wants to use. This is because the number of
665 * stream context array entries must be a power of two.
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668 unsigned int num_stream_ctxs,
669 unsigned int num_streams,
670 unsigned int max_packet, gfp_t mem_flags)
672 struct xhci_stream_info *stream_info;
673 u32 cur_stream;
674 struct xhci_ring *cur_ring;
675 u64 addr;
676 int ret;
678 xhci_dbg(xhci, "Allocating %u streams and %u "
679 "stream context array entries.\n",
680 num_streams, num_stream_ctxs);
681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683 return NULL;
685 xhci->cmd_ring_reserved_trbs++;
687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688 if (!stream_info)
689 goto cleanup_trbs;
691 stream_info->num_streams = num_streams;
692 stream_info->num_stream_ctxs = num_stream_ctxs;
694 /* Initialize the array of virtual pointers to stream rings. */
695 stream_info->stream_rings = kzalloc(
696 sizeof(struct xhci_ring *)*num_streams,
697 mem_flags);
698 if (!stream_info->stream_rings)
699 goto cleanup_info;
701 /* Initialize the array of DMA addresses for stream rings for the HW. */
702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703 num_stream_ctxs, &stream_info->ctx_array_dma,
704 mem_flags);
705 if (!stream_info->stream_ctx_array)
706 goto cleanup_ctx;
707 memset(stream_info->stream_ctx_array, 0,
708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
710 /* Allocate everything needed to free the stream rings later */
711 stream_info->free_streams_command =
712 xhci_alloc_command(xhci, true, true, mem_flags);
713 if (!stream_info->free_streams_command)
714 goto cleanup_ctx;
716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
718 /* Allocate rings for all the streams that the driver will use,
719 * and add their segment DMA addresses to the radix tree.
720 * Stream 0 is reserved.
723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724 stream_info->stream_rings[cur_stream] =
725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726 mem_flags);
727 cur_ring = stream_info->stream_rings[cur_stream];
728 if (!cur_ring)
729 goto cleanup_rings;
730 cur_ring->stream_id = cur_stream;
731 cur_ring->trb_address_map = &stream_info->trb_address_map;
732 /* Set deq ptr, cycle bit, and stream context type */
733 addr = cur_ring->first_seg->dma |
734 SCT_FOR_CTX(SCT_PRI_TR) |
735 cur_ring->cycle_state;
736 stream_info->stream_ctx_array[cur_stream].stream_ring =
737 cpu_to_le64(addr);
738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739 cur_stream, (unsigned long long) addr);
741 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 if (ret) {
743 xhci_ring_free(xhci, cur_ring);
744 stream_info->stream_rings[cur_stream] = NULL;
745 goto cleanup_rings;
748 /* Leave the other unused stream ring pointers in the stream context
749 * array initialized to zero. This will cause the xHC to give us an
750 * error if the device asks for a stream ID we don't have setup (if it
751 * was any other way, the host controller would assume the ring is
752 * "empty" and wait forever for data to be queued to that stream ID).
755 return stream_info;
757 cleanup_rings:
758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759 cur_ring = stream_info->stream_rings[cur_stream];
760 if (cur_ring) {
761 xhci_ring_free(xhci, cur_ring);
762 stream_info->stream_rings[cur_stream] = NULL;
765 xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767 kfree(stream_info->stream_rings);
768 cleanup_info:
769 kfree(stream_info);
770 cleanup_trbs:
771 xhci->cmd_ring_reserved_trbs--;
772 return NULL;
775 * Sets the MaxPStreams field and the Linear Stream Array field.
776 * Sets the dequeue pointer to the stream context array.
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779 struct xhci_ep_ctx *ep_ctx,
780 struct xhci_stream_info *stream_info)
782 u32 max_primary_streams;
783 /* MaxPStreams is the number of stream context array entries, not the
784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
789 "Setting number of stream ctx array entries to %u",
790 1 << (max_primary_streams + 1));
791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793 | EP_HAS_LSA);
794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
798 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800 * not at the beginning of the ring).
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 struct xhci_virt_ep *ep)
805 dma_addr_t addr;
806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
811 /* Frees all stream contexts associated with the endpoint,
813 * Caller should fix the endpoint context streams fields.
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816 struct xhci_stream_info *stream_info)
818 int cur_stream;
819 struct xhci_ring *cur_ring;
821 if (!stream_info)
822 return;
824 for (cur_stream = 1; cur_stream < stream_info->num_streams;
825 cur_stream++) {
826 cur_ring = stream_info->stream_rings[cur_stream];
827 if (cur_ring) {
828 xhci_ring_free(xhci, cur_ring);
829 stream_info->stream_rings[cur_stream] = NULL;
832 xhci_free_command(xhci, stream_info->free_streams_command);
833 xhci->cmd_ring_reserved_trbs--;
834 if (stream_info->stream_ctx_array)
835 xhci_free_stream_ctx(xhci,
836 stream_info->num_stream_ctxs,
837 stream_info->stream_ctx_array,
838 stream_info->ctx_array_dma);
840 kfree(stream_info->stream_rings);
841 kfree(stream_info);
845 /***************** Device context manipulation *************************/
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848 struct xhci_virt_ep *ep)
850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851 (unsigned long)ep);
852 ep->xhci = xhci;
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856 struct xhci_virt_device *virt_dev,
857 int slot_id)
859 struct list_head *tt_list_head;
860 struct xhci_tt_bw_info *tt_info, *next;
861 bool slot_found = false;
863 /* If the device never made it past the Set Address stage,
864 * it may not have the real_port set correctly.
866 if (virt_dev->real_port == 0 ||
867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868 xhci_dbg(xhci, "Bad real port.\n");
869 return;
872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874 /* Multi-TT hubs will have more than one entry */
875 if (tt_info->slot_id == slot_id) {
876 slot_found = true;
877 list_del(&tt_info->tt_list);
878 kfree(tt_info);
879 } else if (slot_found) {
880 break;
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886 struct xhci_virt_device *virt_dev,
887 struct usb_device *hdev,
888 struct usb_tt *tt, gfp_t mem_flags)
890 struct xhci_tt_bw_info *tt_info;
891 unsigned int num_ports;
892 int i, j;
894 if (!tt->multi)
895 num_ports = 1;
896 else
897 num_ports = hdev->maxchild;
899 for (i = 0; i < num_ports; i++, tt_info++) {
900 struct xhci_interval_bw_table *bw_table;
902 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903 if (!tt_info)
904 goto free_tts;
905 INIT_LIST_HEAD(&tt_info->tt_list);
906 list_add(&tt_info->tt_list,
907 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908 tt_info->slot_id = virt_dev->udev->slot_id;
909 if (tt->multi)
910 tt_info->ttport = i+1;
911 bw_table = &tt_info->bw_table;
912 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
915 return 0;
917 free_tts:
918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919 return -ENOMEM;
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924 * Should be called with xhci->lock held if there is any chance the TT lists
925 * will be manipulated by the configure endpoint, allocate device, or update
926 * hub functions while this function is removing the TT entries from the list.
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
930 struct xhci_virt_device *dev;
931 int i;
932 int old_active_eps = 0;
934 /* Slot ID 0 is reserved */
935 if (slot_id == 0 || !xhci->devs[slot_id])
936 return;
938 dev = xhci->devs[slot_id];
939 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940 if (!dev)
941 return;
943 if (dev->tt_info)
944 old_active_eps = dev->tt_info->active_eps;
946 for (i = 0; i < 31; ++i) {
947 if (dev->eps[i].ring)
948 xhci_ring_free(xhci, dev->eps[i].ring);
949 if (dev->eps[i].stream_info)
950 xhci_free_stream_info(xhci,
951 dev->eps[i].stream_info);
952 /* Endpoints on the TT/root port lists should have been removed
953 * when usb_disable_device() was called for the device.
954 * We can't drop them anyway, because the udev might have gone
955 * away by this point, and we can't tell what speed it was.
957 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958 xhci_warn(xhci, "Slot %u endpoint %u "
959 "not removed from BW list!\n",
960 slot_id, i);
962 /* If this is a hub, free the TT(s) from the TT list */
963 xhci_free_tt_info(xhci, dev, slot_id);
964 /* If necessary, update the number of active TTs on this root port */
965 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
967 if (dev->ring_cache) {
968 for (i = 0; i < dev->num_rings_cached; i++)
969 xhci_ring_free(xhci, dev->ring_cache[i]);
970 kfree(dev->ring_cache);
973 if (dev->in_ctx)
974 xhci_free_container_ctx(xhci, dev->in_ctx);
975 if (dev->out_ctx)
976 xhci_free_container_ctx(xhci, dev->out_ctx);
978 kfree(xhci->devs[slot_id]);
979 xhci->devs[slot_id] = NULL;
982 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
983 struct usb_device *udev, gfp_t flags)
985 struct xhci_virt_device *dev;
986 int i;
988 /* Slot ID 0 is reserved */
989 if (slot_id == 0 || xhci->devs[slot_id]) {
990 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
991 return 0;
994 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
995 if (!xhci->devs[slot_id])
996 return 0;
997 dev = xhci->devs[slot_id];
999 /* Allocate the (output) device context that will be used in the HC. */
1000 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1001 if (!dev->out_ctx)
1002 goto fail;
1004 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1005 (unsigned long long)dev->out_ctx->dma);
1007 /* Allocate the (input) device context for address device command */
1008 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1009 if (!dev->in_ctx)
1010 goto fail;
1012 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1013 (unsigned long long)dev->in_ctx->dma);
1015 /* Initialize the cancellation list and watchdog timers for each ep */
1016 for (i = 0; i < 31; i++) {
1017 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1018 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1019 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1022 /* Allocate endpoint 0 ring */
1023 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1024 if (!dev->eps[0].ring)
1025 goto fail;
1027 /* Allocate pointers to the ring cache */
1028 dev->ring_cache = kzalloc(
1029 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1030 flags);
1031 if (!dev->ring_cache)
1032 goto fail;
1033 dev->num_rings_cached = 0;
1035 init_completion(&dev->cmd_completion);
1036 dev->udev = udev;
1038 /* Point to output device context in dcbaa. */
1039 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1040 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1041 slot_id,
1042 &xhci->dcbaa->dev_context_ptrs[slot_id],
1043 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1045 return 1;
1046 fail:
1047 xhci_free_virt_device(xhci, slot_id);
1048 return 0;
1051 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1052 struct usb_device *udev)
1054 struct xhci_virt_device *virt_dev;
1055 struct xhci_ep_ctx *ep0_ctx;
1056 struct xhci_ring *ep_ring;
1058 virt_dev = xhci->devs[udev->slot_id];
1059 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1060 ep_ring = virt_dev->eps[0].ring;
1062 * FIXME we don't keep track of the dequeue pointer very well after a
1063 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1064 * host to our enqueue pointer. This should only be called after a
1065 * configured device has reset, so all control transfers should have
1066 * been completed or cancelled before the reset.
1068 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1069 ep_ring->enqueue)
1070 | ep_ring->cycle_state);
1074 * The xHCI roothub may have ports of differing speeds in any order in the port
1075 * status registers. xhci->port_array provides an array of the port speed for
1076 * each offset into the port status registers.
1078 * The xHCI hardware wants to know the roothub port number that the USB device
1079 * is attached to (or the roothub port its ancestor hub is attached to). All we
1080 * know is the index of that port under either the USB 2.0 or the USB 3.0
1081 * roothub, but that doesn't give us the real index into the HW port status
1082 * registers. Call xhci_find_raw_port_number() to get real index.
1084 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1085 struct usb_device *udev)
1087 struct usb_device *top_dev;
1088 struct usb_hcd *hcd;
1090 if (udev->speed >= USB_SPEED_SUPER)
1091 hcd = xhci->shared_hcd;
1092 else
1093 hcd = xhci->main_hcd;
1095 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1096 top_dev = top_dev->parent)
1097 /* Found device below root hub */;
1099 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1102 /* Setup an xHCI virtual device for a Set Address command */
1103 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1105 struct xhci_virt_device *dev;
1106 struct xhci_ep_ctx *ep0_ctx;
1107 struct xhci_slot_ctx *slot_ctx;
1108 u32 port_num;
1109 u32 max_packets;
1110 struct usb_device *top_dev;
1112 dev = xhci->devs[udev->slot_id];
1113 /* Slot ID 0 is reserved */
1114 if (udev->slot_id == 0 || !dev) {
1115 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1116 udev->slot_id);
1117 return -EINVAL;
1119 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1120 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1122 /* 3) Only the control endpoint is valid - one endpoint context */
1123 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1124 switch (udev->speed) {
1125 case USB_SPEED_SUPER_PLUS:
1126 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1127 max_packets = MAX_PACKET(512);
1128 break;
1129 case USB_SPEED_SUPER:
1130 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1131 max_packets = MAX_PACKET(512);
1132 break;
1133 case USB_SPEED_HIGH:
1134 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1135 max_packets = MAX_PACKET(64);
1136 break;
1137 /* USB core guesses at a 64-byte max packet first for FS devices */
1138 case USB_SPEED_FULL:
1139 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1140 max_packets = MAX_PACKET(64);
1141 break;
1142 case USB_SPEED_LOW:
1143 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1144 max_packets = MAX_PACKET(8);
1145 break;
1146 case USB_SPEED_WIRELESS:
1147 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1148 return -EINVAL;
1149 break;
1150 default:
1151 /* Speed was set earlier, this shouldn't happen. */
1152 return -EINVAL;
1154 /* Find the root hub port this device is under */
1155 port_num = xhci_find_real_port_number(xhci, udev);
1156 if (!port_num)
1157 return -EINVAL;
1158 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1159 /* Set the port number in the virtual_device to the faked port number */
1160 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1161 top_dev = top_dev->parent)
1162 /* Found device below root hub */;
1163 dev->fake_port = top_dev->portnum;
1164 dev->real_port = port_num;
1165 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1166 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1168 /* Find the right bandwidth table that this device will be a part of.
1169 * If this is a full speed device attached directly to a root port (or a
1170 * decendent of one), it counts as a primary bandwidth domain, not a
1171 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1172 * will never be created for the HS root hub.
1174 if (!udev->tt || !udev->tt->hub->parent) {
1175 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1176 } else {
1177 struct xhci_root_port_bw_info *rh_bw;
1178 struct xhci_tt_bw_info *tt_bw;
1180 rh_bw = &xhci->rh_bw[port_num - 1];
1181 /* Find the right TT. */
1182 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1183 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1184 continue;
1186 if (!dev->udev->tt->multi ||
1187 (udev->tt->multi &&
1188 tt_bw->ttport == dev->udev->ttport)) {
1189 dev->bw_table = &tt_bw->bw_table;
1190 dev->tt_info = tt_bw;
1191 break;
1194 if (!dev->tt_info)
1195 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1198 /* Is this a LS/FS device under an external HS hub? */
1199 if (udev->tt && udev->tt->hub->parent) {
1200 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1201 (udev->ttport << 8));
1202 if (udev->tt->multi)
1203 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1205 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1206 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1208 /* Step 4 - ring already allocated */
1209 /* Step 5 */
1210 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1212 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1213 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1214 max_packets);
1216 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1217 dev->eps[0].ring->cycle_state);
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1221 return 0;
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1232 unsigned int interval;
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1242 if (udev->speed == USB_SPEED_FULL) {
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1248 interval += 3; /* 1 frame = 2^3 uframes */
1251 return interval;
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1262 unsigned int interval;
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1267 dev_dbg(&udev->dev,
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1270 1 << interval,
1271 desc_interval);
1273 return interval;
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1279 if (ep->desc.bInterval == 0)
1280 return 0;
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1293 /* Return the polling or NAK interval.
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1304 unsigned int interval = 0;
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1308 /* Max NAK rate */
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1312 break;
1314 /* Fall through - SS and HS isoc/int have same decoding */
1316 case USB_SPEED_SUPER_PLUS:
1317 case USB_SPEED_SUPER:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320 interval = xhci_parse_exponent_interval(udev, ep);
1322 break;
1324 case USB_SPEED_FULL:
1325 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_exponent_interval(udev, ep);
1327 break;
1330 * Fall through for interrupt endpoint interval decoding
1331 * since it uses the same rules as low speed interrupt
1332 * endpoints.
1335 case USB_SPEED_LOW:
1336 if (usb_endpoint_xfer_int(&ep->desc) ||
1337 usb_endpoint_xfer_isoc(&ep->desc)) {
1339 interval = xhci_parse_frame_interval(udev, ep);
1341 break;
1343 default:
1344 BUG();
1346 return interval;
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350 * High speed endpoint descriptors can define "the number of additional
1351 * transaction opportunities per microframe", but that goes in the Max Burst
1352 * endpoint context field.
1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1355 struct usb_host_endpoint *ep)
1357 if (udev->speed < USB_SPEED_SUPER ||
1358 !usb_endpoint_xfer_isoc(&ep->desc))
1359 return 0;
1360 return ep->ss_ep_comp.bmAttributes;
1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1364 struct usb_host_endpoint *ep)
1366 /* Super speed and Plus have max burst in ep companion desc */
1367 if (udev->speed >= USB_SPEED_SUPER)
1368 return ep->ss_ep_comp.bMaxBurst;
1370 if (udev->speed == USB_SPEED_HIGH &&
1371 (usb_endpoint_xfer_isoc(&ep->desc) ||
1372 usb_endpoint_xfer_int(&ep->desc)))
1373 return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1375 return 0;
1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380 int in;
1382 in = usb_endpoint_dir_in(&ep->desc);
1384 if (usb_endpoint_xfer_control(&ep->desc))
1385 return CTRL_EP;
1386 if (usb_endpoint_xfer_bulk(&ep->desc))
1387 return in ? BULK_IN_EP : BULK_OUT_EP;
1388 if (usb_endpoint_xfer_isoc(&ep->desc))
1389 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1390 if (usb_endpoint_xfer_int(&ep->desc))
1391 return in ? INT_IN_EP : INT_OUT_EP;
1392 return 0;
1395 /* Return the maximum endpoint service interval time (ESIT) payload.
1396 * Basically, this is the maxpacket size, multiplied by the burst size
1397 * and mult size.
1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1400 struct usb_host_endpoint *ep)
1402 int max_burst;
1403 int max_packet;
1405 /* Only applies for interrupt or isochronous endpoints */
1406 if (usb_endpoint_xfer_control(&ep->desc) ||
1407 usb_endpoint_xfer_bulk(&ep->desc))
1408 return 0;
1410 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1411 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1412 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1413 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1414 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1415 else if (udev->speed >= USB_SPEED_SUPER)
1416 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1418 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1419 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1420 /* A 0 in max burst means 1 transfer per ESIT */
1421 return max_packet * (max_burst + 1);
1424 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1425 * Drivers will have to call usb_alloc_streams() to do that.
1427 int xhci_endpoint_init(struct xhci_hcd *xhci,
1428 struct xhci_virt_device *virt_dev,
1429 struct usb_device *udev,
1430 struct usb_host_endpoint *ep,
1431 gfp_t mem_flags)
1433 unsigned int ep_index;
1434 struct xhci_ep_ctx *ep_ctx;
1435 struct xhci_ring *ep_ring;
1436 unsigned int max_packet;
1437 enum xhci_ring_type ring_type;
1438 u32 max_esit_payload;
1439 u32 endpoint_type;
1440 unsigned int max_burst;
1441 unsigned int interval;
1442 unsigned int mult;
1443 unsigned int avg_trb_len;
1444 unsigned int err_count = 0;
1446 ep_index = xhci_get_endpoint_index(&ep->desc);
1447 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1449 endpoint_type = xhci_get_endpoint_type(ep);
1450 if (!endpoint_type)
1451 return -EINVAL;
1453 ring_type = usb_endpoint_type(&ep->desc);
1456 * Get values to fill the endpoint context, mostly from ep descriptor.
1457 * The average TRB buffer lengt for bulk endpoints is unclear as we
1458 * have no clue on scatter gather list entry size. For Isoc and Int,
1459 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1461 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1462 interval = xhci_get_endpoint_interval(udev, ep);
1463 mult = xhci_get_endpoint_mult(udev, ep);
1464 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1465 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466 avg_trb_len = max_esit_payload;
1468 /* FIXME dig Mult and streams info out of ep companion desc */
1470 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471 if (!usb_endpoint_xfer_isoc(&ep->desc))
1472 err_count = 3;
1473 /* Some devices get this wrong */
1474 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1475 max_packet = 512;
1476 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1477 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1478 avg_trb_len = 8;
1479 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1480 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1481 mult = 0;
1483 /* Set up the endpoint ring */
1484 virt_dev->eps[ep_index].new_ring =
1485 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1486 if (!virt_dev->eps[ep_index].new_ring) {
1487 /* Attempt to use the ring cache */
1488 if (virt_dev->num_rings_cached == 0)
1489 return -ENOMEM;
1490 virt_dev->num_rings_cached--;
1491 virt_dev->eps[ep_index].new_ring =
1492 virt_dev->ring_cache[virt_dev->num_rings_cached];
1493 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1494 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1495 1, ring_type);
1497 virt_dev->eps[ep_index].skip = false;
1498 ep_ring = virt_dev->eps[ep_index].new_ring;
1500 /* Fill the endpoint context */
1501 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1502 EP_INTERVAL(interval) |
1503 EP_MULT(mult));
1504 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1505 MAX_PACKET(max_packet) |
1506 MAX_BURST(max_burst) |
1507 ERROR_COUNT(err_count));
1508 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1509 ep_ring->cycle_state);
1511 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1512 EP_AVG_TRB_LENGTH(avg_trb_len));
1514 /* FIXME Debug endpoint context */
1515 return 0;
1518 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1519 struct xhci_virt_device *virt_dev,
1520 struct usb_host_endpoint *ep)
1522 unsigned int ep_index;
1523 struct xhci_ep_ctx *ep_ctx;
1525 ep_index = xhci_get_endpoint_index(&ep->desc);
1526 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1528 ep_ctx->ep_info = 0;
1529 ep_ctx->ep_info2 = 0;
1530 ep_ctx->deq = 0;
1531 ep_ctx->tx_info = 0;
1532 /* Don't free the endpoint ring until the set interface or configuration
1533 * request succeeds.
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1539 bw_info->ep_interval = 0;
1540 bw_info->mult = 0;
1541 bw_info->num_packets = 0;
1542 bw_info->max_packet_size = 0;
1543 bw_info->type = 0;
1544 bw_info->max_esit_payload = 0;
1547 void xhci_update_bw_info(struct xhci_hcd *xhci,
1548 struct xhci_container_ctx *in_ctx,
1549 struct xhci_input_control_ctx *ctrl_ctx,
1550 struct xhci_virt_device *virt_dev)
1552 struct xhci_bw_info *bw_info;
1553 struct xhci_ep_ctx *ep_ctx;
1554 unsigned int ep_type;
1555 int i;
1557 for (i = 1; i < 31; ++i) {
1558 bw_info = &virt_dev->eps[i].bw_info;
1560 /* We can't tell what endpoint type is being dropped, but
1561 * unconditionally clearing the bandwidth info for non-periodic
1562 * endpoints should be harmless because the info will never be
1563 * set in the first place.
1565 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1566 /* Dropped endpoint */
1567 xhci_clear_endpoint_bw_info(bw_info);
1568 continue;
1571 if (EP_IS_ADDED(ctrl_ctx, i)) {
1572 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1573 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1575 /* Ignore non-periodic endpoints */
1576 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1577 ep_type != ISOC_IN_EP &&
1578 ep_type != INT_IN_EP)
1579 continue;
1581 /* Added or changed endpoint */
1582 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1583 le32_to_cpu(ep_ctx->ep_info));
1584 /* Number of packets and mult are zero-based in the
1585 * input context, but we want one-based for the
1586 * interval table.
1588 bw_info->mult = CTX_TO_EP_MULT(
1589 le32_to_cpu(ep_ctx->ep_info)) + 1;
1590 bw_info->num_packets = CTX_TO_MAX_BURST(
1591 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1592 bw_info->max_packet_size = MAX_PACKET_DECODED(
1593 le32_to_cpu(ep_ctx->ep_info2));
1594 bw_info->type = ep_type;
1595 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1596 le32_to_cpu(ep_ctx->tx_info));
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.
1605 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606 struct xhci_container_ctx *in_ctx,
1607 struct xhci_container_ctx *out_ctx,
1608 unsigned int ep_index)
1610 struct xhci_ep_ctx *out_ep_ctx;
1611 struct xhci_ep_ctx *in_ep_ctx;
1613 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1616 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1617 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1618 in_ep_ctx->deq = out_ep_ctx->deq;
1619 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623 * Useful when you want to change one particular aspect of the endpoint and then
1624 * issue a configure endpoint command. Only the context entries field matters,
1625 * but we'll copy the whole thing anyway.
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628 struct xhci_container_ctx *in_ctx,
1629 struct xhci_container_ctx *out_ctx)
1631 struct xhci_slot_ctx *in_slot_ctx;
1632 struct xhci_slot_ctx *out_slot_ctx;
1634 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646 int i;
1647 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1648 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651 "Allocating %d scratchpad buffers", num_sp);
1653 if (!num_sp)
1654 return 0;
1656 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1657 if (!xhci->scratchpad)
1658 goto fail_sp;
1660 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661 num_sp * sizeof(u64),
1662 &xhci->scratchpad->sp_dma, flags);
1663 if (!xhci->scratchpad->sp_array)
1664 goto fail_sp2;
1666 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1667 if (!xhci->scratchpad->sp_buffers)
1668 goto fail_sp3;
1670 xhci->scratchpad->sp_dma_buffers =
1671 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1673 if (!xhci->scratchpad->sp_dma_buffers)
1674 goto fail_sp4;
1676 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677 for (i = 0; i < num_sp; i++) {
1678 dma_addr_t dma;
1679 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1680 flags);
1681 if (!buf)
1682 goto fail_sp5;
1684 xhci->scratchpad->sp_array[i] = dma;
1685 xhci->scratchpad->sp_buffers[i] = buf;
1686 xhci->scratchpad->sp_dma_buffers[i] = dma;
1689 return 0;
1691 fail_sp5:
1692 for (i = i - 1; i >= 0; i--) {
1693 dma_free_coherent(dev, xhci->page_size,
1694 xhci->scratchpad->sp_buffers[i],
1695 xhci->scratchpad->sp_dma_buffers[i]);
1697 kfree(xhci->scratchpad->sp_dma_buffers);
1699 fail_sp4:
1700 kfree(xhci->scratchpad->sp_buffers);
1702 fail_sp3:
1703 dma_free_coherent(dev, num_sp * sizeof(u64),
1704 xhci->scratchpad->sp_array,
1705 xhci->scratchpad->sp_dma);
1707 fail_sp2:
1708 kfree(xhci->scratchpad);
1709 xhci->scratchpad = NULL;
1711 fail_sp:
1712 return -ENOMEM;
1715 static void scratchpad_free(struct xhci_hcd *xhci)
1717 int num_sp;
1718 int i;
1719 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1721 if (!xhci->scratchpad)
1722 return;
1724 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1726 for (i = 0; i < num_sp; i++) {
1727 dma_free_coherent(dev, xhci->page_size,
1728 xhci->scratchpad->sp_buffers[i],
1729 xhci->scratchpad->sp_dma_buffers[i]);
1731 kfree(xhci->scratchpad->sp_dma_buffers);
1732 kfree(xhci->scratchpad->sp_buffers);
1733 dma_free_coherent(dev, num_sp * sizeof(u64),
1734 xhci->scratchpad->sp_array,
1735 xhci->scratchpad->sp_dma);
1736 kfree(xhci->scratchpad);
1737 xhci->scratchpad = NULL;
1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741 bool allocate_in_ctx, bool allocate_completion,
1742 gfp_t mem_flags)
1744 struct xhci_command *command;
1746 command = kzalloc(sizeof(*command), mem_flags);
1747 if (!command)
1748 return NULL;
1750 if (allocate_in_ctx) {
1751 command->in_ctx =
1752 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 mem_flags);
1754 if (!command->in_ctx) {
1755 kfree(command);
1756 return NULL;
1760 if (allocate_completion) {
1761 command->completion =
1762 kzalloc(sizeof(struct completion), mem_flags);
1763 if (!command->completion) {
1764 xhci_free_container_ctx(xhci, command->in_ctx);
1765 kfree(command);
1766 return NULL;
1768 init_completion(command->completion);
1771 command->status = 0;
1772 INIT_LIST_HEAD(&command->cmd_list);
1773 return command;
1776 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778 if (urb_priv) {
1779 kfree(urb_priv->td[0]);
1780 kfree(urb_priv);
1784 void xhci_free_command(struct xhci_hcd *xhci,
1785 struct xhci_command *command)
1787 xhci_free_container_ctx(xhci,
1788 command->in_ctx);
1789 kfree(command->completion);
1790 kfree(command);
1793 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1795 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1796 int size;
1797 int i, j, num_ports;
1799 del_timer_sync(&xhci->cmd_timer);
1801 /* Free the Event Ring Segment Table and the actual Event Ring */
1802 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803 if (xhci->erst.entries)
1804 dma_free_coherent(dev, size,
1805 xhci->erst.entries, xhci->erst.erst_dma_addr);
1806 xhci->erst.entries = NULL;
1807 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808 if (xhci->event_ring)
1809 xhci_ring_free(xhci, xhci->event_ring);
1810 xhci->event_ring = NULL;
1811 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1813 if (xhci->lpm_command)
1814 xhci_free_command(xhci, xhci->lpm_command);
1815 xhci->lpm_command = NULL;
1816 if (xhci->cmd_ring)
1817 xhci_ring_free(xhci, xhci->cmd_ring);
1818 xhci->cmd_ring = NULL;
1819 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1820 xhci_cleanup_command_queue(xhci);
1822 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1825 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1826 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1827 while (!list_empty(ep))
1828 list_del_init(ep->next);
1832 for (i = 1; i < MAX_HC_SLOTS; ++i)
1833 xhci_free_virt_device(xhci, i);
1835 dma_pool_destroy(xhci->segment_pool);
1836 xhci->segment_pool = NULL;
1837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1839 dma_pool_destroy(xhci->device_pool);
1840 xhci->device_pool = NULL;
1841 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1843 dma_pool_destroy(xhci->small_streams_pool);
1844 xhci->small_streams_pool = NULL;
1845 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1846 "Freed small stream array pool");
1848 dma_pool_destroy(xhci->medium_streams_pool);
1849 xhci->medium_streams_pool = NULL;
1850 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1851 "Freed medium stream array pool");
1853 if (xhci->dcbaa)
1854 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855 xhci->dcbaa, xhci->dcbaa->dma);
1856 xhci->dcbaa = NULL;
1858 scratchpad_free(xhci);
1860 if (!xhci->rh_bw)
1861 goto no_bw;
1863 for (i = 0; i < num_ports; i++) {
1864 struct xhci_tt_bw_info *tt, *n;
1865 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1866 list_del(&tt->tt_list);
1867 kfree(tt);
1871 no_bw:
1872 xhci->cmd_ring_reserved_trbs = 0;
1873 xhci->num_usb2_ports = 0;
1874 xhci->num_usb3_ports = 0;
1875 xhci->num_active_eps = 0;
1876 kfree(xhci->usb2_ports);
1877 kfree(xhci->usb3_ports);
1878 kfree(xhci->port_array);
1879 kfree(xhci->rh_bw);
1880 kfree(xhci->ext_caps);
1882 xhci->usb2_ports = NULL;
1883 xhci->usb3_ports = NULL;
1884 xhci->port_array = NULL;
1885 xhci->rh_bw = NULL;
1886 xhci->ext_caps = NULL;
1888 xhci->page_size = 0;
1889 xhci->page_shift = 0;
1890 xhci->bus_state[0].bus_suspended = 0;
1891 xhci->bus_state[1].bus_suspended = 0;
1894 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1895 struct xhci_segment *input_seg,
1896 union xhci_trb *start_trb,
1897 union xhci_trb *end_trb,
1898 dma_addr_t input_dma,
1899 struct xhci_segment *result_seg,
1900 char *test_name, int test_number)
1902 unsigned long long start_dma;
1903 unsigned long long end_dma;
1904 struct xhci_segment *seg;
1906 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1907 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1909 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1910 if (seg != result_seg) {
1911 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1912 test_name, test_number);
1913 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1914 "input DMA 0x%llx\n",
1915 input_seg,
1916 (unsigned long long) input_dma);
1917 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1918 "ending TRB %p (0x%llx DMA)\n",
1919 start_trb, start_dma,
1920 end_trb, end_dma);
1921 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1922 result_seg, seg);
1923 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1924 true);
1925 return -1;
1927 return 0;
1930 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1931 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1933 struct {
1934 dma_addr_t input_dma;
1935 struct xhci_segment *result_seg;
1936 } simple_test_vector [] = {
1937 /* A zeroed DMA field should fail */
1938 { 0, NULL },
1939 /* One TRB before the ring start should fail */
1940 { xhci->event_ring->first_seg->dma - 16, NULL },
1941 /* One byte before the ring start should fail */
1942 { xhci->event_ring->first_seg->dma - 1, NULL },
1943 /* Starting TRB should succeed */
1944 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1945 /* Ending TRB should succeed */
1946 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1947 xhci->event_ring->first_seg },
1948 /* One byte after the ring end should fail */
1949 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1950 /* One TRB after the ring end should fail */
1951 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1952 /* An address of all ones should fail */
1953 { (dma_addr_t) (~0), NULL },
1955 struct {
1956 struct xhci_segment *input_seg;
1957 union xhci_trb *start_trb;
1958 union xhci_trb *end_trb;
1959 dma_addr_t input_dma;
1960 struct xhci_segment *result_seg;
1961 } complex_test_vector [] = {
1962 /* Test feeding a valid DMA address from a different ring */
1963 { .input_seg = xhci->event_ring->first_seg,
1964 .start_trb = xhci->event_ring->first_seg->trbs,
1965 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1966 .input_dma = xhci->cmd_ring->first_seg->dma,
1967 .result_seg = NULL,
1969 /* Test feeding a valid end TRB from a different ring */
1970 { .input_seg = xhci->event_ring->first_seg,
1971 .start_trb = xhci->event_ring->first_seg->trbs,
1972 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973 .input_dma = xhci->cmd_ring->first_seg->dma,
1974 .result_seg = NULL,
1976 /* Test feeding a valid start and end TRB from a different ring */
1977 { .input_seg = xhci->event_ring->first_seg,
1978 .start_trb = xhci->cmd_ring->first_seg->trbs,
1979 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1980 .input_dma = xhci->cmd_ring->first_seg->dma,
1981 .result_seg = NULL,
1983 /* TRB in this ring, but after this TD */
1984 { .input_seg = xhci->event_ring->first_seg,
1985 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1986 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1987 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1988 .result_seg = NULL,
1990 /* TRB in this ring, but before this TD */
1991 { .input_seg = xhci->event_ring->first_seg,
1992 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1993 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1994 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1995 .result_seg = NULL,
1997 /* TRB in this ring, but after this wrapped TD */
1998 { .input_seg = xhci->event_ring->first_seg,
1999 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2000 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2001 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2002 .result_seg = NULL,
2004 /* TRB in this ring, but before this wrapped TD */
2005 { .input_seg = xhci->event_ring->first_seg,
2006 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2007 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2008 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2009 .result_seg = NULL,
2011 /* TRB not in this ring, and we have a wrapped TD */
2012 { .input_seg = xhci->event_ring->first_seg,
2013 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2014 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2015 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2016 .result_seg = NULL,
2020 unsigned int num_tests;
2021 int i, ret;
2023 num_tests = ARRAY_SIZE(simple_test_vector);
2024 for (i = 0; i < num_tests; i++) {
2025 ret = xhci_test_trb_in_td(xhci,
2026 xhci->event_ring->first_seg,
2027 xhci->event_ring->first_seg->trbs,
2028 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029 simple_test_vector[i].input_dma,
2030 simple_test_vector[i].result_seg,
2031 "Simple", i);
2032 if (ret < 0)
2033 return ret;
2036 num_tests = ARRAY_SIZE(complex_test_vector);
2037 for (i = 0; i < num_tests; i++) {
2038 ret = xhci_test_trb_in_td(xhci,
2039 complex_test_vector[i].input_seg,
2040 complex_test_vector[i].start_trb,
2041 complex_test_vector[i].end_trb,
2042 complex_test_vector[i].input_dma,
2043 complex_test_vector[i].result_seg,
2044 "Complex", i);
2045 if (ret < 0)
2046 return ret;
2048 xhci_dbg(xhci, "TRB math tests passed.\n");
2049 return 0;
2052 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2054 u64 temp;
2055 dma_addr_t deq;
2057 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2058 xhci->event_ring->dequeue);
2059 if (deq == 0 && !in_interrupt())
2060 xhci_warn(xhci, "WARN something wrong with SW event ring "
2061 "dequeue ptr.\n");
2062 /* Update HC event ring dequeue pointer */
2063 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2064 temp &= ERST_PTR_MASK;
2065 /* Don't clear the EHB bit (which is RW1C) because
2066 * there might be more events to service.
2068 temp &= ~ERST_EHB;
2069 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2070 "// Write event ring dequeue pointer, "
2071 "preserving EHB bit");
2072 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2073 &xhci->ir_set->erst_dequeue);
2076 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2077 __le32 __iomem *addr, int max_caps)
2079 u32 temp, port_offset, port_count;
2080 int i;
2081 u8 major_revision;
2082 struct xhci_hub *rhub;
2084 temp = readl(addr);
2085 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2087 if (major_revision == 0x03) {
2088 rhub = &xhci->usb3_rhub;
2089 } else if (major_revision <= 0x02) {
2090 rhub = &xhci->usb2_rhub;
2091 } else {
2092 xhci_warn(xhci, "Ignoring unknown port speed, "
2093 "Ext Cap %p, revision = 0x%x\n",
2094 addr, major_revision);
2095 /* Ignoring port protocol we can't understand. FIXME */
2096 return;
2098 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2099 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2101 /* Port offset and count in the third dword, see section 7.2 */
2102 temp = readl(addr + 2);
2103 port_offset = XHCI_EXT_PORT_OFF(temp);
2104 port_count = XHCI_EXT_PORT_COUNT(temp);
2105 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2106 "Ext Cap %p, port offset = %u, "
2107 "count = %u, revision = 0x%x",
2108 addr, port_offset, port_count, major_revision);
2109 /* Port count includes the current port offset */
2110 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2111 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2112 return;
2114 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2115 if (rhub->psi_count) {
2116 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2117 GFP_KERNEL);
2118 if (!rhub->psi)
2119 rhub->psi_count = 0;
2121 rhub->psi_uid_count++;
2122 for (i = 0; i < rhub->psi_count; i++) {
2123 rhub->psi[i] = readl(addr + 4 + i);
2125 /* count unique ID values, two consecutive entries can
2126 * have the same ID if link is assymetric
2128 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2129 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2130 rhub->psi_uid_count++;
2132 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2133 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2134 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2135 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2136 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2137 XHCI_EXT_PORT_LP(rhub->psi[i]),
2138 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2141 /* cache usb2 port capabilities */
2142 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2143 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2145 /* Check the host's USB2 LPM capability */
2146 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2147 (temp & XHCI_L1C)) {
2148 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149 "xHCI 0.96: support USB2 software lpm");
2150 xhci->sw_lpm_support = 1;
2153 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2154 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2155 "xHCI 1.0: support USB2 software lpm");
2156 xhci->sw_lpm_support = 1;
2157 if (temp & XHCI_HLC) {
2158 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2159 "xHCI 1.0: support USB2 hardware lpm");
2160 xhci->hw_lpm_support = 1;
2164 port_offset--;
2165 for (i = port_offset; i < (port_offset + port_count); i++) {
2166 /* Duplicate entry. Ignore the port if the revisions differ. */
2167 if (xhci->port_array[i] != 0) {
2168 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2169 " port %u\n", addr, i);
2170 xhci_warn(xhci, "Port was marked as USB %u, "
2171 "duplicated as USB %u\n",
2172 xhci->port_array[i], major_revision);
2173 /* Only adjust the roothub port counts if we haven't
2174 * found a similar duplicate.
2176 if (xhci->port_array[i] != major_revision &&
2177 xhci->port_array[i] != DUPLICATE_ENTRY) {
2178 if (xhci->port_array[i] == 0x03)
2179 xhci->num_usb3_ports--;
2180 else
2181 xhci->num_usb2_ports--;
2182 xhci->port_array[i] = DUPLICATE_ENTRY;
2184 /* FIXME: Should we disable the port? */
2185 continue;
2187 xhci->port_array[i] = major_revision;
2188 if (major_revision == 0x03)
2189 xhci->num_usb3_ports++;
2190 else
2191 xhci->num_usb2_ports++;
2193 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2197 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2198 * specify what speeds each port is supposed to be. We can't count on the port
2199 * speed bits in the PORTSC register being correct until a device is connected,
2200 * but we need to set up the two fake roothubs with the correct number of USB
2201 * 3.0 and USB 2.0 ports at host controller initialization time.
2203 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2205 void __iomem *base;
2206 u32 offset;
2207 unsigned int num_ports;
2208 int i, j, port_index;
2209 int cap_count = 0;
2210 u32 cap_start;
2212 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2213 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2214 if (!xhci->port_array)
2215 return -ENOMEM;
2217 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2218 if (!xhci->rh_bw)
2219 return -ENOMEM;
2220 for (i = 0; i < num_ports; i++) {
2221 struct xhci_interval_bw_table *bw_table;
2223 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2224 bw_table = &xhci->rh_bw[i].bw_table;
2225 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2226 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2228 base = &xhci->cap_regs->hc_capbase;
2230 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2231 if (!cap_start) {
2232 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2233 return -ENODEV;
2236 offset = cap_start;
2237 /* count extended protocol capability entries for later caching */
2238 while (offset) {
2239 cap_count++;
2240 offset = xhci_find_next_ext_cap(base, offset,
2241 XHCI_EXT_CAPS_PROTOCOL);
2244 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2245 if (!xhci->ext_caps)
2246 return -ENOMEM;
2248 offset = cap_start;
2250 while (offset) {
2251 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2252 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2253 break;
2254 offset = xhci_find_next_ext_cap(base, offset,
2255 XHCI_EXT_CAPS_PROTOCOL);
2258 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2259 xhci_warn(xhci, "No ports on the roothubs?\n");
2260 return -ENODEV;
2262 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2263 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2264 xhci->num_usb2_ports, xhci->num_usb3_ports);
2266 /* Place limits on the number of roothub ports so that the hub
2267 * descriptors aren't longer than the USB core will allocate.
2269 if (xhci->num_usb3_ports > 15) {
2270 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2271 "Limiting USB 3.0 roothub ports to 15.");
2272 xhci->num_usb3_ports = 15;
2274 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2275 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2276 "Limiting USB 2.0 roothub ports to %u.",
2277 USB_MAXCHILDREN);
2278 xhci->num_usb2_ports = USB_MAXCHILDREN;
2282 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2283 * Not sure how the USB core will handle a hub with no ports...
2285 if (xhci->num_usb2_ports) {
2286 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2287 xhci->num_usb2_ports, flags);
2288 if (!xhci->usb2_ports)
2289 return -ENOMEM;
2291 port_index = 0;
2292 for (i = 0; i < num_ports; i++) {
2293 if (xhci->port_array[i] == 0x03 ||
2294 xhci->port_array[i] == 0 ||
2295 xhci->port_array[i] == DUPLICATE_ENTRY)
2296 continue;
2298 xhci->usb2_ports[port_index] =
2299 &xhci->op_regs->port_status_base +
2300 NUM_PORT_REGS*i;
2301 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302 "USB 2.0 port at index %u, "
2303 "addr = %p", i,
2304 xhci->usb2_ports[port_index]);
2305 port_index++;
2306 if (port_index == xhci->num_usb2_ports)
2307 break;
2310 if (xhci->num_usb3_ports) {
2311 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2312 xhci->num_usb3_ports, flags);
2313 if (!xhci->usb3_ports)
2314 return -ENOMEM;
2316 port_index = 0;
2317 for (i = 0; i < num_ports; i++)
2318 if (xhci->port_array[i] == 0x03) {
2319 xhci->usb3_ports[port_index] =
2320 &xhci->op_regs->port_status_base +
2321 NUM_PORT_REGS*i;
2322 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2323 "USB 3.0 port at index %u, "
2324 "addr = %p", i,
2325 xhci->usb3_ports[port_index]);
2326 port_index++;
2327 if (port_index == xhci->num_usb3_ports)
2328 break;
2331 return 0;
2334 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2336 dma_addr_t dma;
2337 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2338 unsigned int val, val2;
2339 u64 val_64;
2340 struct xhci_segment *seg;
2341 u32 page_size, temp;
2342 int i;
2344 INIT_LIST_HEAD(&xhci->cmd_list);
2346 /* init command timeout timer */
2347 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2348 (unsigned long)xhci);
2350 page_size = readl(&xhci->op_regs->page_size);
2351 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352 "Supported page size register = 0x%x", page_size);
2353 for (i = 0; i < 16; i++) {
2354 if ((0x1 & page_size) != 0)
2355 break;
2356 page_size = page_size >> 1;
2358 if (i < 16)
2359 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2360 "Supported page size of %iK", (1 << (i+12)) / 1024);
2361 else
2362 xhci_warn(xhci, "WARN: no supported page size\n");
2363 /* Use 4K pages, since that's common and the minimum the HC supports */
2364 xhci->page_shift = 12;
2365 xhci->page_size = 1 << xhci->page_shift;
2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 "HCD page size set to %iK", xhci->page_size / 1024);
2370 * Program the Number of Device Slots Enabled field in the CONFIG
2371 * register with the max value of slots the HC can handle.
2373 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2374 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 "// xHC can handle at most %d device slots.", val);
2376 val2 = readl(&xhci->op_regs->config_reg);
2377 val |= (val2 & ~HCS_SLOTS_MASK);
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379 "// Setting Max device slots reg = 0x%x.", val);
2380 writel(val, &xhci->op_regs->config_reg);
2383 * Section 5.4.8 - doorbell array must be
2384 * "physically contiguous and 64-byte (cache line) aligned".
2386 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2387 GFP_KERNEL);
2388 if (!xhci->dcbaa)
2389 goto fail;
2390 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2391 xhci->dcbaa->dma = dma;
2392 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2394 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2395 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2398 * Initialize the ring segment pool. The ring must be a contiguous
2399 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2400 * however, the command ring segment needs 64-byte aligned segments
2401 * and our use of dma addresses in the trb_address_map radix tree needs
2402 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2404 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2405 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2407 /* See Table 46 and Note on Figure 55 */
2408 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2409 2112, 64, xhci->page_size);
2410 if (!xhci->segment_pool || !xhci->device_pool)
2411 goto fail;
2413 /* Linear stream context arrays don't have any boundary restrictions,
2414 * and only need to be 16-byte aligned.
2416 xhci->small_streams_pool =
2417 dma_pool_create("xHCI 256 byte stream ctx arrays",
2418 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2419 xhci->medium_streams_pool =
2420 dma_pool_create("xHCI 1KB stream ctx arrays",
2421 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2422 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2423 * will be allocated with dma_alloc_coherent()
2426 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2427 goto fail;
2429 /* Set up the command ring to have one segments for now. */
2430 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2431 if (!xhci->cmd_ring)
2432 goto fail;
2433 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434 "Allocated command ring at %p", xhci->cmd_ring);
2435 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2436 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2438 /* Set the address in the Command Ring Control register */
2439 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2440 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2441 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2442 xhci->cmd_ring->cycle_state;
2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444 "// Setting command ring address to 0x%x", val);
2445 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2446 xhci_dbg_cmd_ptrs(xhci);
2448 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2449 if (!xhci->lpm_command)
2450 goto fail;
2452 /* Reserve one command ring TRB for disabling LPM.
2453 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2454 * disabling LPM, we only need to reserve one TRB for all devices.
2456 xhci->cmd_ring_reserved_trbs++;
2458 val = readl(&xhci->cap_regs->db_off);
2459 val &= DBOFF_MASK;
2460 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2461 "// Doorbell array is located at offset 0x%x"
2462 " from cap regs base addr", val);
2463 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2464 xhci_dbg_regs(xhci);
2465 xhci_print_run_regs(xhci);
2466 /* Set ir_set to interrupt register set 0 */
2467 xhci->ir_set = &xhci->run_regs->ir_set[0];
2470 * Event ring setup: Allocate a normal ring, but also setup
2471 * the event ring segment table (ERST). Section 4.9.3.
2473 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2474 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2475 0, flags);
2476 if (!xhci->event_ring)
2477 goto fail;
2478 if (xhci_check_trb_in_td_math(xhci) < 0)
2479 goto fail;
2481 xhci->erst.entries = dma_alloc_coherent(dev,
2482 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2483 GFP_KERNEL);
2484 if (!xhci->erst.entries)
2485 goto fail;
2486 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2487 "// Allocated event ring segment table at 0x%llx",
2488 (unsigned long long)dma);
2490 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2491 xhci->erst.num_entries = ERST_NUM_SEGS;
2492 xhci->erst.erst_dma_addr = dma;
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2495 xhci->erst.num_entries,
2496 xhci->erst.entries,
2497 (unsigned long long)xhci->erst.erst_dma_addr);
2499 /* set ring base address and size for each segment table entry */
2500 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2501 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2502 entry->seg_addr = cpu_to_le64(seg->dma);
2503 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2504 entry->rsvd = 0;
2505 seg = seg->next;
2508 /* set ERST count with the number of entries in the segment table */
2509 val = readl(&xhci->ir_set->erst_size);
2510 val &= ERST_SIZE_MASK;
2511 val |= ERST_NUM_SEGS;
2512 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2514 val);
2515 writel(val, &xhci->ir_set->erst_size);
2517 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518 "// Set ERST entries to point to event ring.");
2519 /* set the segment table base address */
2520 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521 "// Set ERST base address for ir_set 0 = 0x%llx",
2522 (unsigned long long)xhci->erst.erst_dma_addr);
2523 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2524 val_64 &= ERST_PTR_MASK;
2525 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2526 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2528 /* Set the event ring dequeue address */
2529 xhci_set_hc_event_deq(xhci);
2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 "Wrote ERST address to ir_set 0.");
2532 xhci_print_ir_set(xhci, 0);
2535 * XXX: Might need to set the Interrupter Moderation Register to
2536 * something other than the default (~1ms minimum between interrupts).
2537 * See section 5.5.1.2.
2539 init_completion(&xhci->addr_dev);
2540 for (i = 0; i < MAX_HC_SLOTS; ++i)
2541 xhci->devs[i] = NULL;
2542 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2543 xhci->bus_state[0].resume_done[i] = 0;
2544 xhci->bus_state[1].resume_done[i] = 0;
2545 /* Only the USB 2.0 completions will ever be used. */
2546 init_completion(&xhci->bus_state[1].rexit_done[i]);
2549 if (scratchpad_alloc(xhci, flags))
2550 goto fail;
2551 if (xhci_setup_port_arrays(xhci, flags))
2552 goto fail;
2554 /* Enable USB 3.0 device notifications for function remote wake, which
2555 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2556 * U3 (device suspend).
2558 temp = readl(&xhci->op_regs->dev_notification);
2559 temp &= ~DEV_NOTE_MASK;
2560 temp |= DEV_NOTE_FWAKE;
2561 writel(temp, &xhci->op_regs->dev_notification);
2563 return 0;
2565 fail:
2566 xhci_warn(xhci, "Couldn't initialize memory\n");
2567 xhci_halt(xhci);
2568 xhci_reset(xhci);
2569 xhci_mem_cleanup(xhci);
2570 return -ENOMEM;