2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
54 #include <asm/debug.h>
56 #include <asm/firmware.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
71 struct task_struct
*last_task_used_math
= NULL
;
72 struct task_struct
*last_task_used_altivec
= NULL
;
73 struct task_struct
*last_task_used_vsx
= NULL
;
74 struct task_struct
*last_task_used_spe
= NULL
;
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
81 void flush_fp_to_thread(struct task_struct
*tsk
)
83 if (tsk
->thread
.regs
) {
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
93 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
102 BUG_ON(tsk
!= current
);
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
111 void enable_kernel_fp(void)
113 WARN_ON(preemptible());
116 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
119 giveup_fpu(NULL
); /* just enables FP for kernel */
121 giveup_fpu(last_task_used_math
);
122 #endif /* CONFIG_SMP */
124 EXPORT_SYMBOL(enable_kernel_fp
);
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
129 WARN_ON(preemptible());
132 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
133 giveup_altivec(current
);
135 giveup_altivec_notask();
137 giveup_altivec(last_task_used_altivec
);
138 #endif /* CONFIG_SMP */
140 EXPORT_SYMBOL(enable_kernel_altivec
);
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
146 void flush_altivec_to_thread(struct task_struct
*tsk
)
148 if (tsk
->thread
.regs
) {
150 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
152 BUG_ON(tsk
!= current
);
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
160 #endif /* CONFIG_ALTIVEC */
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
167 WARN_ON(preemptible());
170 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
))
173 giveup_vsx(NULL
); /* just enable vsx for kernel - force */
175 giveup_vsx(last_task_used_vsx
);
176 #endif /* CONFIG_SMP */
178 EXPORT_SYMBOL(enable_kernel_vsx
);
181 void giveup_vsx(struct task_struct
*tsk
)
188 void flush_vsx_to_thread(struct task_struct
*tsk
)
190 if (tsk
->thread
.regs
) {
192 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
194 BUG_ON(tsk
!= current
);
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
202 #endif /* CONFIG_VSX */
206 void enable_kernel_spe(void)
208 WARN_ON(preemptible());
211 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
214 giveup_spe(NULL
); /* just enable SPE for kernel - force */
216 giveup_spe(last_task_used_spe
);
217 #endif /* __SMP __ */
219 EXPORT_SYMBOL(enable_kernel_spe
);
221 void flush_spe_to_thread(struct task_struct
*tsk
)
223 if (tsk
->thread
.regs
) {
225 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
227 BUG_ON(tsk
!= current
);
229 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
235 #endif /* CONFIG_SPE */
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
242 void discard_lazy_cpu_state(void)
245 if (last_task_used_math
== current
)
246 last_task_used_math
= NULL
;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec
== current
)
249 last_task_used_altivec
= NULL
;
250 #endif /* CONFIG_ALTIVEC */
252 if (last_task_used_vsx
== current
)
253 last_task_used_vsx
= NULL
;
254 #endif /* CONFIG_VSX */
256 if (last_task_used_spe
== current
)
257 last_task_used_spe
= NULL
;
261 #endif /* CONFIG_SMP */
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
265 unsigned long error_code
, int signal_code
, int breakpt
)
269 current
->thread
.trap_nr
= signal_code
;
270 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
271 11, SIGSEGV
) == NOTIFY_STOP
)
274 /* Deliver the signal to userspace */
275 info
.si_signo
= SIGTRAP
;
276 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
277 info
.si_code
= signal_code
;
278 info
.si_addr
= (void __user
*)address
;
279 force_sig_info(SIGTRAP
, &info
, current
);
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs
*regs
, unsigned long address
,
283 unsigned long error_code
)
287 current
->thread
.trap_nr
= TRAP_HWBKPT
;
288 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
289 11, SIGSEGV
) == NOTIFY_STOP
)
292 if (debugger_break_match(regs
))
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
298 /* Deliver the signal to userspace */
299 info
.si_signo
= SIGTRAP
;
301 info
.si_code
= TRAP_HWBKPT
;
302 info
.si_addr
= (void __user
*)address
;
303 force_sig_info(SIGTRAP
, &info
, current
);
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
311 * Set the debug registers back to their default "safe" values.
313 static void set_debug_reg_defaults(struct thread_struct
*thread
)
315 thread
->iac1
= thread
->iac2
= 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread
->iac3
= thread
->iac4
= 0;
319 thread
->dac1
= thread
->dac2
= 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread
->dvc1
= thread
->dvc2
= 0;
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
328 thread
->dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
| \
329 DBCR1_IAC3US
| DBCR1_IAC4US
;
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
334 thread
->dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
340 static void prime_debug_regs(struct thread_struct
*thread
)
343 * We could have inherited MSR_DE from userspace, since
344 * it doesn't get cleared on exception entry. Make sure
345 * MSR_DE is clear before we enable any debug events.
347 mtmsr(mfmsr() & ~MSR_DE
);
349 mtspr(SPRN_IAC1
, thread
->iac1
);
350 mtspr(SPRN_IAC2
, thread
->iac2
);
351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
352 mtspr(SPRN_IAC3
, thread
->iac3
);
353 mtspr(SPRN_IAC4
, thread
->iac4
);
355 mtspr(SPRN_DAC1
, thread
->dac1
);
356 mtspr(SPRN_DAC2
, thread
->dac2
);
357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358 mtspr(SPRN_DVC1
, thread
->dvc1
);
359 mtspr(SPRN_DVC2
, thread
->dvc2
);
361 mtspr(SPRN_DBCR0
, thread
->dbcr0
);
362 mtspr(SPRN_DBCR1
, thread
->dbcr1
);
364 mtspr(SPRN_DBCR2
, thread
->dbcr2
);
368 * Unless neither the old or new thread are making use of the
369 * debug registers, set the debug registers from the values
370 * stored in the new thread.
372 static void switch_booke_debug_regs(struct thread_struct
*new_thread
)
374 if ((current
->thread
.dbcr0
& DBCR0_IDM
)
375 || (new_thread
->dbcr0
& DBCR0_IDM
))
376 prime_debug_regs(new_thread
);
378 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
379 #ifndef CONFIG_HAVE_HW_BREAKPOINT
380 static void set_debug_reg_defaults(struct thread_struct
*thread
)
382 thread
->hw_brk
.address
= 0;
383 thread
->hw_brk
.type
= 0;
384 set_breakpoint(&thread
->hw_brk
);
386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
392 mtspr(SPRN_DAC1
, dabr
);
393 #ifdef CONFIG_PPC_47x
398 #elif defined(CONFIG_PPC_BOOK3S)
399 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
401 mtspr(SPRN_DABR
, dabr
);
402 if (cpu_has_feature(CPU_FTR_DABRX
))
403 mtspr(SPRN_DABRX
, dabrx
);
407 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
413 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
415 unsigned long dabr
, dabrx
;
417 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
418 dabrx
= ((brk
->type
>> 3) & 0x7);
421 return ppc_md
.set_dabr(dabr
, dabrx
);
423 return __set_dabr(dabr
, dabrx
);
426 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
428 unsigned long dawr
, dawrx
, mrd
;
432 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
433 << (63 - 58); //* read/write bits */
434 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
435 << (63 - 59); //* translate */
436 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
437 >> 3; //* PRIM bits */
438 /* dawr length is stored in field MDR bits 48:53. Matches range in
439 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
441 brk->len is in bytes.
442 This aligns up to double word size, shifts and does the bias.
444 mrd
= ((brk
->len
+ 7) >> 3) - 1;
445 dawrx
|= (mrd
& 0x3f) << (63 - 53);
448 return ppc_md
.set_dawr(dawr
, dawrx
);
449 mtspr(SPRN_DAWR
, dawr
);
450 mtspr(SPRN_DAWRX
, dawrx
);
454 int set_breakpoint(struct arch_hw_breakpoint
*brk
)
456 __get_cpu_var(current_brk
) = *brk
;
458 if (cpu_has_feature(CPU_FTR_DAWR
))
459 return set_dawr(brk
);
461 return set_dabr(brk
);
465 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
468 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
469 struct arch_hw_breakpoint
*b
)
471 if (a
->address
!= b
->address
)
473 if (a
->type
!= b
->type
)
475 if (a
->len
!= b
->len
)
479 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
480 static inline void tm_reclaim_task(struct task_struct
*tsk
)
482 /* We have to work out if we're switching from/to a task that's in the
483 * middle of a transaction.
485 * In switching we need to maintain a 2nd register state as
486 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
487 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
488 * (current) FPRs into oldtask->thread.transact_fpr[].
490 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
492 struct thread_struct
*thr
= &tsk
->thread
;
497 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
498 goto out_and_saveregs
;
500 /* Stash the original thread MSR, as giveup_fpu et al will
501 * modify it. We hold onto it to see whether the task used
504 thr
->tm_orig_msr
= thr
->regs
->msr
;
506 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
507 "ccr=%lx, msr=%lx, trap=%lx)\n",
508 tsk
->pid
, thr
->regs
->nip
,
509 thr
->regs
->ccr
, thr
->regs
->msr
,
512 tm_reclaim(thr
, thr
->regs
->msr
, TM_CAUSE_RESCHED
);
514 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
518 /* Always save the regs here, even if a transaction's not active.
519 * This context-switches a thread's TM info SPRs. We do it here to
520 * be consistent with the restore path (in recheckpoint) which
521 * cannot happen later in _switch().
526 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
530 if (!cpu_has_feature(CPU_FTR_TM
))
533 /* Recheckpoint the registers of the thread we're about to switch to.
535 * If the task was using FP, we non-lazily reload both the original and
536 * the speculative FP register states. This is because the kernel
537 * doesn't see if/when a TM rollback occurs, so if we take an FP
538 * unavoidable later, we are unable to determine which set of FP regs
539 * need to be restored.
541 if (!new->thread
.regs
)
544 /* The TM SPRs are restored here, so that TEXASR.FS can be set
545 * before the trecheckpoint and no explosion occurs.
547 tm_restore_sprs(&new->thread
);
549 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
))
551 msr
= new->thread
.tm_orig_msr
;
552 /* Recheckpoint to restore original checkpointed register state. */
553 TM_DEBUG("*** tm_recheckpoint of pid %d "
554 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
555 new->pid
, new->thread
.regs
->msr
, msr
);
557 /* This loads the checkpointed FP/VEC state, if used */
558 tm_recheckpoint(&new->thread
, msr
);
560 /* This loads the speculative FP/VEC state, if used */
562 do_load_up_transact_fpu(&new->thread
);
563 new->thread
.regs
->msr
|=
564 (MSR_FP
| new->thread
.fpexc_mode
);
566 #ifdef CONFIG_ALTIVEC
568 do_load_up_transact_altivec(&new->thread
);
569 new->thread
.regs
->msr
|= MSR_VEC
;
572 /* We may as well turn on VSX too since all the state is restored now */
574 new->thread
.regs
->msr
|= MSR_VSX
;
576 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
577 "(kernel msr 0x%lx)\n",
581 static inline void __switch_to_tm(struct task_struct
*prev
)
583 if (cpu_has_feature(CPU_FTR_TM
)) {
585 tm_reclaim_task(prev
);
589 #define tm_recheckpoint_new_task(new)
590 #define __switch_to_tm(prev)
591 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
593 struct task_struct
*__switch_to(struct task_struct
*prev
,
594 struct task_struct
*new)
596 struct thread_struct
*new_thread
, *old_thread
;
598 struct task_struct
*last
;
599 #ifdef CONFIG_PPC_BOOK3S_64
600 struct ppc64_tlb_batch
*batch
;
603 __switch_to_tm(prev
);
606 /* avoid complexity of lazy save/restore of fpu
607 * by just saving it every time we switch out if
608 * this task used the fpu during the last quantum.
610 * If it tries to use the fpu again, it'll trap and
611 * reload its fp regs. So we don't have to do a restore
612 * every switch, just a save.
615 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
617 #ifdef CONFIG_ALTIVEC
619 * If the previous thread used altivec in the last quantum
620 * (thus changing altivec regs) then save them.
621 * We used to check the VRSAVE register but not all apps
622 * set it, so we don't rely on it now (and in fact we need
623 * to save & restore VSCR even if VRSAVE == 0). -- paulus
625 * On SMP we always save/restore altivec regs just to avoid the
626 * complexity of changing processors.
629 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
630 giveup_altivec(prev
);
631 #endif /* CONFIG_ALTIVEC */
633 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VSX
))
634 /* VMX and FPU registers are already save here */
636 #endif /* CONFIG_VSX */
639 * If the previous thread used spe in the last quantum
640 * (thus changing spe regs) then save them.
642 * On SMP we always save/restore spe regs just to avoid the
643 * complexity of changing processors.
645 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
647 #endif /* CONFIG_SPE */
649 #else /* CONFIG_SMP */
650 #ifdef CONFIG_ALTIVEC
651 /* Avoid the trap. On smp this this never happens since
652 * we don't set last_task_used_altivec -- Cort
654 if (new->thread
.regs
&& last_task_used_altivec
== new)
655 new->thread
.regs
->msr
|= MSR_VEC
;
656 #endif /* CONFIG_ALTIVEC */
658 if (new->thread
.regs
&& last_task_used_vsx
== new)
659 new->thread
.regs
->msr
|= MSR_VSX
;
660 #endif /* CONFIG_VSX */
662 /* Avoid the trap. On smp this this never happens since
663 * we don't set last_task_used_spe
665 if (new->thread
.regs
&& last_task_used_spe
== new)
666 new->thread
.regs
->msr
|= MSR_SPE
;
667 #endif /* CONFIG_SPE */
669 #endif /* CONFIG_SMP */
671 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
672 switch_booke_debug_regs(&new->thread
);
675 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
678 #ifndef CONFIG_HAVE_HW_BREAKPOINT
679 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk
), &new->thread
.hw_brk
)))
680 set_breakpoint(&new->thread
.hw_brk
);
681 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
685 new_thread
= &new->thread
;
686 old_thread
= ¤t
->thread
;
690 * Collect processor utilization data per process
692 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
693 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
694 long unsigned start_tb
, current_tb
;
695 start_tb
= old_thread
->start_tb
;
696 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
697 old_thread
->accum_tb
+= (current_tb
- start_tb
);
698 new_thread
->start_tb
= current_tb
;
700 #endif /* CONFIG_PPC64 */
702 #ifdef CONFIG_PPC_BOOK3S_64
703 batch
= &__get_cpu_var(ppc64_tlb_batch
);
705 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
707 __flush_tlb_pending(batch
);
710 #endif /* CONFIG_PPC_BOOK3S_64 */
712 local_irq_save(flags
);
715 * We can't take a PMU exception inside _switch() since there is a
716 * window where the kernel stack SLB and the kernel stack are out
717 * of sync. Hard disable here.
721 tm_recheckpoint_new_task(new);
723 last
= _switch(old_thread
, new_thread
);
725 #ifdef CONFIG_PPC_BOOK3S_64
726 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
727 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
728 batch
= &__get_cpu_var(ppc64_tlb_batch
);
731 #endif /* CONFIG_PPC_BOOK3S_64 */
733 local_irq_restore(flags
);
738 static int instructions_to_print
= 16;
740 static void show_instructions(struct pt_regs
*regs
)
743 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
746 printk("Instruction dump:");
748 for (i
= 0; i
< instructions_to_print
; i
++) {
754 #if !defined(CONFIG_BOOKE)
755 /* If executing with the IMMU off, adjust pc rather
756 * than print XXXXXXXX.
758 if (!(regs
->msr
& MSR_IR
))
759 pc
= (unsigned long)phys_to_virt(pc
);
762 /* We use __get_user here *only* to avoid an OOPS on a
763 * bad address because the pc *should* only be a
766 if (!__kernel_text_address(pc
) ||
767 __get_user(instr
, (unsigned int __user
*)pc
)) {
768 printk(KERN_CONT
"XXXXXXXX ");
771 printk(KERN_CONT
"<%08x> ", instr
);
773 printk(KERN_CONT
"%08x ", instr
);
782 static struct regbit
{
786 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
815 static void printbits(unsigned long val
, struct regbit
*bits
)
817 const char *sep
= "";
820 for (; bits
->bit
; ++bits
)
821 if (val
& bits
->bit
) {
822 printk("%s%s", sep
, bits
->name
);
830 #define REGS_PER_LINE 4
831 #define LAST_VOLATILE 13
834 #define REGS_PER_LINE 8
835 #define LAST_VOLATILE 12
838 void show_regs(struct pt_regs
* regs
)
842 show_regs_print_info(KERN_DEFAULT
);
844 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
845 regs
->nip
, regs
->link
, regs
->ctr
);
846 printk("REGS: %p TRAP: %04lx %s (%s)\n",
847 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
848 printk("MSR: "REG
" ", regs
->msr
);
849 printbits(regs
->msr
, msr_bits
);
850 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
852 printk("SOFTE: %ld\n", regs
->softe
);
855 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
856 printk("CFAR: "REG
"\n", regs
->orig_gpr3
);
857 if (trap
== 0x300 || trap
== 0x600)
858 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
859 printk("DEAR: "REG
", ESR: "REG
"\n", regs
->dar
, regs
->dsisr
);
861 printk("DAR: "REG
", DSISR: %08lx\n", regs
->dar
, regs
->dsisr
);
864 for (i
= 0; i
< 32; i
++) {
865 if ((i
% REGS_PER_LINE
) == 0)
866 printk("\nGPR%02d: ", i
);
867 printk(REG
" ", regs
->gpr
[i
]);
868 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
872 #ifdef CONFIG_KALLSYMS
874 * Lookup NIP late so we have the best change of getting the
875 * above info out without failing
877 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
878 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
880 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
881 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch
);
883 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
884 if (!user_mode(regs
))
885 show_instructions(regs
);
888 void exit_thread(void)
890 discard_lazy_cpu_state();
893 void flush_thread(void)
895 discard_lazy_cpu_state();
897 #ifdef CONFIG_HAVE_HW_BREAKPOINT
898 flush_ptrace_hw_breakpoint(current
);
899 #else /* CONFIG_HAVE_HW_BREAKPOINT */
900 set_debug_reg_defaults(¤t
->thread
);
901 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
905 release_thread(struct task_struct
*t
)
910 * this gets called so that we can store coprocessor state into memory and
911 * copy the current task into the new thread.
913 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
915 flush_fp_to_thread(src
);
916 flush_altivec_to_thread(src
);
917 flush_vsx_to_thread(src
);
918 flush_spe_to_thread(src
);
926 extern unsigned long dscr_default
; /* defined in arch/powerpc/kernel/sysfs.c */
928 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
929 unsigned long arg
, struct task_struct
*p
)
931 struct pt_regs
*childregs
, *kregs
;
932 extern void ret_from_fork(void);
933 extern void ret_from_kernel_thread(void);
935 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
938 sp
-= sizeof(struct pt_regs
);
939 childregs
= (struct pt_regs
*) sp
;
940 if (unlikely(p
->flags
& PF_KTHREAD
)) {
941 struct thread_info
*ti
= (void *)task_stack_page(p
);
942 memset(childregs
, 0, sizeof(struct pt_regs
));
943 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
944 childregs
->gpr
[14] = usp
; /* function */
946 clear_tsk_thread_flag(p
, TIF_32BIT
);
947 childregs
->softe
= 1;
949 childregs
->gpr
[15] = arg
;
950 p
->thread
.regs
= NULL
; /* no user register state */
951 ti
->flags
|= _TIF_RESTOREALL
;
952 f
= ret_from_kernel_thread
;
954 struct pt_regs
*regs
= current_pt_regs();
955 CHECK_FULL_REGS(regs
);
958 childregs
->gpr
[1] = usp
;
959 p
->thread
.regs
= childregs
;
960 childregs
->gpr
[3] = 0; /* Result from fork() */
961 if (clone_flags
& CLONE_SETTLS
) {
963 if (!is_32bit_task())
964 childregs
->gpr
[13] = childregs
->gpr
[6];
967 childregs
->gpr
[2] = childregs
->gpr
[6];
972 sp
-= STACK_FRAME_OVERHEAD
;
975 * The way this works is that at some point in the future
976 * some task will call _switch to switch to the new task.
977 * That will pop off the stack frame created below and start
978 * the new task running at ret_from_fork. The new task will
979 * do some house keeping and then return from the fork or clone
980 * system call, using the stack frame created above.
982 ((unsigned long *)sp
)[0] = 0;
983 sp
-= sizeof(struct pt_regs
);
984 kregs
= (struct pt_regs
*) sp
;
985 sp
-= STACK_FRAME_OVERHEAD
;
987 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
988 _ALIGN_UP(sizeof(struct thread_info
), 16);
990 #ifdef CONFIG_HAVE_HW_BREAKPOINT
991 p
->thread
.ptrace_bps
[0] = NULL
;
994 #ifdef CONFIG_PPC_STD_MMU_64
995 if (mmu_has_feature(MMU_FTR_SLB
)) {
996 unsigned long sp_vsid
;
997 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
999 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1000 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1001 << SLB_VSID_SHIFT_1T
;
1003 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1005 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1006 p
->thread
.ksp_vsid
= sp_vsid
;
1008 #endif /* CONFIG_PPC_STD_MMU_64 */
1010 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1011 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1012 p
->thread
.dscr
= current
->thread
.dscr
;
1014 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1015 p
->thread
.ppr
= INIT_PPR
;
1018 * The PPC64 ABI makes use of a TOC to contain function
1019 * pointers. The function (ret_from_except) is actually a pointer
1020 * to the TOC entry. The first entry is a pointer to the actual
1024 kregs
->nip
= *((unsigned long *)f
);
1026 kregs
->nip
= (unsigned long)f
;
1032 * Set up a thread for executing a new program
1034 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1037 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1041 * If we exec out of a kernel thread then thread.regs will not be
1044 if (!current
->thread
.regs
) {
1045 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1046 current
->thread
.regs
= regs
- 1;
1049 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1057 * We have just cleared all the nonvolatile GPRs, so make
1058 * FULL_REGS(regs) return true. This is necessary to allow
1059 * ptrace to examine the thread immediately after exec.
1066 regs
->msr
= MSR_USER
;
1068 if (!is_32bit_task()) {
1069 unsigned long entry
, toc
;
1071 /* start is a relocated pointer to the function descriptor for
1072 * the elf _start routine. The first entry in the function
1073 * descriptor is the entry address of _start and the second
1074 * entry is the TOC value we need to use.
1076 __get_user(entry
, (unsigned long __user
*)start
);
1077 __get_user(toc
, (unsigned long __user
*)start
+1);
1079 /* Check whether the e_entry function descriptor entries
1080 * need to be relocated before we can use them.
1082 if (load_addr
!= 0) {
1088 regs
->msr
= MSR_USER64
;
1092 regs
->msr
= MSR_USER32
;
1095 discard_lazy_cpu_state();
1097 current
->thread
.used_vsr
= 0;
1099 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
1100 current
->thread
.fpscr
.val
= 0;
1101 #ifdef CONFIG_ALTIVEC
1102 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
1103 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
1104 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1105 current
->thread
.vrsave
= 0;
1106 current
->thread
.used_vr
= 0;
1107 #endif /* CONFIG_ALTIVEC */
1109 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1110 current
->thread
.acc
= 0;
1111 current
->thread
.spefscr
= 0;
1112 current
->thread
.used_spe
= 0;
1113 #endif /* CONFIG_SPE */
1114 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1115 if (cpu_has_feature(CPU_FTR_TM
))
1116 regs
->msr
|= MSR_TM
;
1117 current
->thread
.tm_tfhar
= 0;
1118 current
->thread
.tm_texasr
= 0;
1119 current
->thread
.tm_tfiar
= 0;
1120 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1123 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1124 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1126 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1128 struct pt_regs
*regs
= tsk
->thread
.regs
;
1130 /* This is a bit hairy. If we are an SPE enabled processor
1131 * (have embedded fp) we store the IEEE exception enable flags in
1132 * fpexc_mode. fpexc_mode is also used for setting FP exception
1133 * mode (asyn, precise, disabled) for 'Classic' FP. */
1134 if (val
& PR_FP_EXC_SW_ENABLE
) {
1136 if (cpu_has_feature(CPU_FTR_SPE
)) {
1137 tsk
->thread
.fpexc_mode
= val
&
1138 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1148 /* on a CONFIG_SPE this does not hurt us. The bits that
1149 * __pack_fe01 use do not overlap with bits used for
1150 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1151 * on CONFIG_SPE implementations are reserved so writing to
1152 * them does not change anything */
1153 if (val
> PR_FP_EXC_PRECISE
)
1155 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1156 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1157 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1158 | tsk
->thread
.fpexc_mode
;
1162 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1166 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1168 if (cpu_has_feature(CPU_FTR_SPE
))
1169 val
= tsk
->thread
.fpexc_mode
;
1176 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1177 return put_user(val
, (unsigned int __user
*) adr
);
1180 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1182 struct pt_regs
*regs
= tsk
->thread
.regs
;
1184 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1185 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1191 if (val
== PR_ENDIAN_BIG
)
1192 regs
->msr
&= ~MSR_LE
;
1193 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1194 regs
->msr
|= MSR_LE
;
1201 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1203 struct pt_regs
*regs
= tsk
->thread
.regs
;
1206 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1207 !cpu_has_feature(CPU_FTR_REAL_LE
))
1213 if (regs
->msr
& MSR_LE
) {
1214 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1215 val
= PR_ENDIAN_LITTLE
;
1217 val
= PR_ENDIAN_PPC_LITTLE
;
1219 val
= PR_ENDIAN_BIG
;
1221 return put_user(val
, (unsigned int __user
*)adr
);
1224 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1226 tsk
->thread
.align_ctl
= val
;
1230 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1232 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1235 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1236 unsigned long nbytes
)
1238 unsigned long stack_page
;
1239 unsigned long cpu
= task_cpu(p
);
1242 * Avoid crashing if the stack has overflowed and corrupted
1243 * task_cpu(p), which is in the thread_info struct.
1245 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1246 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1247 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1248 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1251 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1252 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1253 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1259 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1260 unsigned long nbytes
)
1262 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1264 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1265 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1268 return valid_irq_stack(sp
, p
, nbytes
);
1271 EXPORT_SYMBOL(validate_sp
);
1273 unsigned long get_wchan(struct task_struct
*p
)
1275 unsigned long ip
, sp
;
1278 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1282 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1286 sp
= *(unsigned long *)sp
;
1287 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1290 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1291 if (!in_sched_functions(ip
))
1294 } while (count
++ < 16);
1298 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1300 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1302 unsigned long sp
, ip
, lr
, newsp
;
1305 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1306 int curr_frame
= current
->curr_ret_stack
;
1307 extern void return_to_handler(void);
1308 unsigned long rth
= (unsigned long)return_to_handler
;
1309 unsigned long mrth
= -1;
1311 extern void mod_return_to_handler(void);
1312 rth
= *(unsigned long *)rth
;
1313 mrth
= (unsigned long)mod_return_to_handler
;
1314 mrth
= *(unsigned long *)mrth
;
1318 sp
= (unsigned long) stack
;
1323 asm("mr %0,1" : "=r" (sp
));
1325 sp
= tsk
->thread
.ksp
;
1329 printk("Call Trace:\n");
1331 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1334 stack
= (unsigned long *) sp
;
1336 ip
= stack
[STACK_FRAME_LR_SAVE
];
1337 if (!firstframe
|| ip
!= lr
) {
1338 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1339 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1340 if ((ip
== rth
|| ip
== mrth
) && curr_frame
>= 0) {
1342 (void *)current
->ret_stack
[curr_frame
].ret
);
1347 printk(" (unreliable)");
1353 * See if this is an exception frame.
1354 * We look for the "regshere" marker in the current frame.
1356 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1357 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1358 struct pt_regs
*regs
= (struct pt_regs
*)
1359 (sp
+ STACK_FRAME_OVERHEAD
);
1361 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1362 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1367 } while (count
++ < kstack_depth_to_print
);
1371 /* Called with hard IRQs off */
1372 void notrace
__ppc64_runlatch_on(void)
1374 struct thread_info
*ti
= current_thread_info();
1377 ctrl
= mfspr(SPRN_CTRLF
);
1378 ctrl
|= CTRL_RUNLATCH
;
1379 mtspr(SPRN_CTRLT
, ctrl
);
1381 ti
->local_flags
|= _TLF_RUNLATCH
;
1384 /* Called with hard IRQs off */
1385 void notrace
__ppc64_runlatch_off(void)
1387 struct thread_info
*ti
= current_thread_info();
1390 ti
->local_flags
&= ~_TLF_RUNLATCH
;
1392 ctrl
= mfspr(SPRN_CTRLF
);
1393 ctrl
&= ~CTRL_RUNLATCH
;
1394 mtspr(SPRN_CTRLT
, ctrl
);
1396 #endif /* CONFIG_PPC64 */
1398 unsigned long arch_align_stack(unsigned long sp
)
1400 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1401 sp
-= get_random_int() & ~PAGE_MASK
;
1405 static inline unsigned long brk_rnd(void)
1407 unsigned long rnd
= 0;
1409 /* 8MB for 32bit, 1GB for 64bit */
1410 if (is_32bit_task())
1411 rnd
= (long)(get_random_int() % (1<<(23-PAGE_SHIFT
)));
1413 rnd
= (long)(get_random_int() % (1<<(30-PAGE_SHIFT
)));
1415 return rnd
<< PAGE_SHIFT
;
1418 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1420 unsigned long base
= mm
->brk
;
1423 #ifdef CONFIG_PPC_STD_MMU_64
1425 * If we are using 1TB segments and we are allowed to randomise
1426 * the heap, we can put it above 1TB so it is backed by a 1TB
1427 * segment. Otherwise the heap will be in the bottom 1TB
1428 * which always uses 256MB segments and this may result in a
1429 * performance penalty.
1431 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1432 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1435 ret
= PAGE_ALIGN(base
+ brk_rnd());
1443 unsigned long randomize_et_dyn(unsigned long base
)
1445 unsigned long ret
= PAGE_ALIGN(base
+ brk_rnd());