2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFC
29 struct cpu_hw_events
{
36 struct perf_event
*event
[MAX_HWEVENTS
];
37 u64 events
[MAX_HWEVENTS
];
38 unsigned int flags
[MAX_HWEVENTS
];
39 unsigned long mmcr
[3];
40 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
41 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
42 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
43 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
44 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
46 unsigned int group_flag
;
50 u64 bhrb_filter
; /* BHRB HW branch filter */
53 struct perf_branch_stack bhrb_stack
;
54 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
57 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
59 struct power_pmu
*ppmu
;
62 * Normally, to ignore kernel events we set the FCS (freeze counters
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
68 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
77 #define MMCR0_PMCjCE MMCR0_PMCnCE
79 #define SPRN_MMCRA SPRN_MMCR2
80 #define MMCRA_SAMPLE_ENABLE 0
82 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
86 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
87 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
91 static inline void perf_read_regs(struct pt_regs
*regs
)
95 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
100 static inline int siar_valid(struct pt_regs
*regs
)
105 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
106 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
107 void power_pmu_flush_branch_stack(void) {}
108 static inline void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
) {}
109 #endif /* CONFIG_PPC32 */
111 static bool regs_use_siar(struct pt_regs
*regs
)
113 return !!regs
->result
;
117 * Things that are specific to 64-bit implementations.
121 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
123 unsigned long mmcra
= regs
->dsisr
;
125 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
126 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
128 return 4 * (slot
- 1);
135 * The user wants a data address recorded.
136 * If we're not doing instruction sampling, give them the SDAR
137 * (sampled data address). If we are doing instruction sampling, then
138 * only give them the SDAR if it corresponds to the instruction
139 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
140 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
142 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
144 unsigned long mmcra
= regs
->dsisr
;
147 if (ppmu
->flags
& PPMU_HAS_SIER
)
148 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
150 unsigned long sdsync
;
152 if (ppmu
->flags
& PPMU_SIAR_VALID
)
153 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
154 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
155 sdsync
= POWER6_MMCRA_SDSYNC
;
157 sdsync
= MMCRA_SDSYNC
;
159 sdar_valid
= mmcra
& sdsync
;
162 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
163 *addrp
= mfspr(SPRN_SDAR
);
166 static bool regs_sihv(struct pt_regs
*regs
)
168 unsigned long sihv
= MMCRA_SIHV
;
170 if (ppmu
->flags
& PPMU_HAS_SIER
)
171 return !!(regs
->dar
& SIER_SIHV
);
173 if (ppmu
->flags
& PPMU_ALT_SIPR
)
174 sihv
= POWER6_MMCRA_SIHV
;
176 return !!(regs
->dsisr
& sihv
);
179 static bool regs_sipr(struct pt_regs
*regs
)
181 unsigned long sipr
= MMCRA_SIPR
;
183 if (ppmu
->flags
& PPMU_HAS_SIER
)
184 return !!(regs
->dar
& SIER_SIPR
);
186 if (ppmu
->flags
& PPMU_ALT_SIPR
)
187 sipr
= POWER6_MMCRA_SIPR
;
189 return !!(regs
->dsisr
& sipr
);
192 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
194 if (regs
->msr
& MSR_PR
)
195 return PERF_RECORD_MISC_USER
;
196 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
197 return PERF_RECORD_MISC_HYPERVISOR
;
198 return PERF_RECORD_MISC_KERNEL
;
201 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
203 bool use_siar
= regs_use_siar(regs
);
206 return perf_flags_from_msr(regs
);
209 * If we don't have flags in MMCRA, rather than using
210 * the MSR, we intuit the flags from the address in
211 * SIAR which should give slightly more reliable
214 if (ppmu
->flags
& PPMU_NO_SIPR
) {
215 unsigned long siar
= mfspr(SPRN_SIAR
);
216 if (siar
>= PAGE_OFFSET
)
217 return PERF_RECORD_MISC_KERNEL
;
218 return PERF_RECORD_MISC_USER
;
221 /* PR has priority over HV, so order below is important */
223 return PERF_RECORD_MISC_USER
;
225 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
226 return PERF_RECORD_MISC_HYPERVISOR
;
228 return PERF_RECORD_MISC_KERNEL
;
232 * Overload regs->dsisr to store MMCRA so we only need to read it once
234 * Overload regs->dar to store SIER if we have it.
235 * Overload regs->result to specify whether we should use the MSR (result
236 * is zero) or the SIAR (result is non zero).
238 static inline void perf_read_regs(struct pt_regs
*regs
)
240 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
241 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
246 if (ppmu
->flags
& PPMU_HAS_SIER
)
247 regs
->dar
= mfspr(SPRN_SIER
);
250 * If this isn't a PMU exception (eg a software event) the SIAR is
251 * not valid. Use pt_regs.
253 * If it is a marked event use the SIAR.
255 * If the PMU doesn't update the SIAR for non marked events use
258 * If the PMU has HV/PR flags then check to see if they
259 * place the exception in userspace. If so, use pt_regs. In
260 * continuous sampling mode the SIAR and the PMU exception are
261 * not synchronised, so they may be many instructions apart.
262 * This can result in confusing backtraces. We still want
263 * hypervisor samples as well as samples in the kernel with
264 * interrupts off hence the userspace check.
266 if (TRAP(regs
) != 0xf00)
270 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
272 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
277 regs
->result
= use_siar
;
281 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
284 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
290 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
291 * must be sampled only if the SIAR-valid bit is set.
293 * For unmarked instructions and for processors that don't have the SIAR-Valid
294 * bit, assume that SIAR is valid.
296 static inline int siar_valid(struct pt_regs
*regs
)
298 unsigned long mmcra
= regs
->dsisr
;
299 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
302 if (ppmu
->flags
& PPMU_HAS_SIER
)
303 return regs
->dar
& SIER_SIAR_VALID
;
305 if (ppmu
->flags
& PPMU_SIAR_VALID
)
306 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
313 /* Reset all possible BHRB entries */
314 static void power_pmu_bhrb_reset(void)
316 asm volatile(PPC_CLRBHRB
);
319 static void power_pmu_bhrb_enable(struct perf_event
*event
)
321 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
326 /* Clear BHRB if we changed task context to avoid data leaks */
327 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
328 power_pmu_bhrb_reset();
329 cpuhw
->bhrb_context
= event
->ctx
;
334 static void power_pmu_bhrb_disable(struct perf_event
*event
)
336 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
342 WARN_ON_ONCE(cpuhw
->bhrb_users
< 0);
344 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
345 /* BHRB cannot be turned off when other
346 * events are active on the PMU.
349 /* avoid stale pointer */
350 cpuhw
->bhrb_context
= NULL
;
354 /* Called from ctxsw to prevent one process's branch entries to
355 * mingle with the other process's entries during context switch.
357 void power_pmu_flush_branch_stack(void)
360 power_pmu_bhrb_reset();
362 /* Calculate the to address for a branch */
363 static __u64
power_pmu_bhrb_to(u64 addr
)
369 if (is_kernel_addr(addr
))
370 return branch_target((unsigned int *)addr
);
372 /* Userspace: need copy instruction here then translate it */
374 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
381 target
= branch_target(&instr
);
382 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
385 /* Translate relative branch target from kernel to user address */
386 return target
- (unsigned long)&instr
+ addr
;
389 /* Processing BHRB entries */
390 void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
)
394 int r_index
, u_index
, pred
;
398 while (r_index
< ppmu
->bhrb_nr
) {
399 /* Assembly read function */
400 val
= read_bhrb(r_index
++);
402 /* Terminal marker: End of valid BHRB entries */
405 addr
= val
& BHRB_EA
;
406 pred
= val
& BHRB_PREDICTION
;
412 /* Branches are read most recent first (ie. mfbhrb 0 is
413 * the most recent branch).
414 * There are two types of valid entries:
415 * 1) a target entry which is the to address of a
416 * computed goto like a blr,bctr,btar. The next
417 * entry read from the bhrb will be branch
418 * corresponding to this target (ie. the actual
419 * blr/bctr/btar instruction).
420 * 2) a from address which is an actual branch. If a
421 * target entry proceeds this, then this is the
422 * matching branch for that target. If this is not
423 * following a target entry, then this is a branch
424 * where the target is given as an immediate field
425 * in the instruction (ie. an i or b form branch).
426 * In this case we need to read the instruction from
427 * memory to determine the target/to address.
430 if (val
& BHRB_TARGET
) {
431 /* Target branches use two entries
432 * (ie. computed gotos/XL form)
434 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
435 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
436 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
438 /* Get from address in next entry */
439 val
= read_bhrb(r_index
++);
440 addr
= val
& BHRB_EA
;
441 if (val
& BHRB_TARGET
) {
442 /* Shouldn't have two targets in a
443 row.. Reset index and try again */
447 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
449 /* Branches to immediate field
451 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
452 cpuhw
->bhrb_entries
[u_index
].to
=
453 power_pmu_bhrb_to(addr
);
454 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
455 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
461 cpuhw
->bhrb_stack
.nr
= u_index
;
465 #endif /* CONFIG_PPC64 */
467 static void perf_event_interrupt(struct pt_regs
*regs
);
469 void perf_event_print_debug(void)
474 * Read one performance monitor counter (PMC).
476 static unsigned long read_pmc(int idx
)
482 val
= mfspr(SPRN_PMC1
);
485 val
= mfspr(SPRN_PMC2
);
488 val
= mfspr(SPRN_PMC3
);
491 val
= mfspr(SPRN_PMC4
);
494 val
= mfspr(SPRN_PMC5
);
497 val
= mfspr(SPRN_PMC6
);
501 val
= mfspr(SPRN_PMC7
);
504 val
= mfspr(SPRN_PMC8
);
506 #endif /* CONFIG_PPC64 */
508 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
517 static void write_pmc(int idx
, unsigned long val
)
521 mtspr(SPRN_PMC1
, val
);
524 mtspr(SPRN_PMC2
, val
);
527 mtspr(SPRN_PMC3
, val
);
530 mtspr(SPRN_PMC4
, val
);
533 mtspr(SPRN_PMC5
, val
);
536 mtspr(SPRN_PMC6
, val
);
540 mtspr(SPRN_PMC7
, val
);
543 mtspr(SPRN_PMC8
, val
);
545 #endif /* CONFIG_PPC64 */
547 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
552 * Check if a set of events can all go on the PMU at once.
553 * If they can't, this will look at alternative codes for the events
554 * and see if any combination of alternative codes is feasible.
555 * The feasible set is returned in event_id[].
557 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
558 u64 event_id
[], unsigned int cflags
[],
561 unsigned long mask
, value
, nv
;
562 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
563 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
565 unsigned long addf
= ppmu
->add_fields
;
566 unsigned long tadd
= ppmu
->test_adder
;
568 if (n_ev
> ppmu
->n_counter
)
571 /* First see if the events will go on as-is */
572 for (i
= 0; i
< n_ev
; ++i
) {
573 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
574 && !ppmu
->limited_pmc_event(event_id
[i
])) {
575 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
576 cpuhw
->alternatives
[i
]);
577 event_id
[i
] = cpuhw
->alternatives
[i
][0];
579 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
580 &cpuhw
->avalues
[i
][0]))
584 for (i
= 0; i
< n_ev
; ++i
) {
585 nv
= (value
| cpuhw
->avalues
[i
][0]) +
586 (value
& cpuhw
->avalues
[i
][0] & addf
);
587 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
588 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) &
589 cpuhw
->amasks
[i
][0]) != 0)
592 mask
|= cpuhw
->amasks
[i
][0];
595 return 0; /* all OK */
597 /* doesn't work, gather alternatives... */
598 if (!ppmu
->get_alternatives
)
600 for (i
= 0; i
< n_ev
; ++i
) {
602 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
603 cpuhw
->alternatives
[i
]);
604 for (j
= 1; j
< n_alt
[i
]; ++j
)
605 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
606 &cpuhw
->amasks
[i
][j
],
607 &cpuhw
->avalues
[i
][j
]);
610 /* enumerate all possibilities and see if any will work */
613 value
= mask
= nv
= 0;
616 /* we're backtracking, restore context */
622 * See if any alternative k for event_id i,
623 * where k > j, will satisfy the constraints.
625 while (++j
< n_alt
[i
]) {
626 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
627 (value
& cpuhw
->avalues
[i
][j
] & addf
);
628 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
629 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
630 & cpuhw
->amasks
[i
][j
]) == 0)
635 * No feasible alternative, backtrack
636 * to event_id i-1 and continue enumerating its
637 * alternatives from where we got up to.
643 * Found a feasible alternative for event_id i,
644 * remember where we got up to with this event_id,
645 * go on to the next event_id, and start with
646 * the first alternative for it.
652 mask
|= cpuhw
->amasks
[i
][j
];
658 /* OK, we have a feasible combination, tell the caller the solution */
659 for (i
= 0; i
< n_ev
; ++i
)
660 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
665 * Check if newly-added events have consistent settings for
666 * exclude_{user,kernel,hv} with each other and any previously
669 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
670 int n_prev
, int n_new
)
672 int eu
= 0, ek
= 0, eh
= 0;
674 struct perf_event
*event
;
681 for (i
= 0; i
< n
; ++i
) {
682 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
683 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
688 eu
= event
->attr
.exclude_user
;
689 ek
= event
->attr
.exclude_kernel
;
690 eh
= event
->attr
.exclude_hv
;
692 } else if (event
->attr
.exclude_user
!= eu
||
693 event
->attr
.exclude_kernel
!= ek
||
694 event
->attr
.exclude_hv
!= eh
) {
700 for (i
= 0; i
< n
; ++i
)
701 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
702 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
707 static u64
check_and_compute_delta(u64 prev
, u64 val
)
709 u64 delta
= (val
- prev
) & 0xfffffffful
;
712 * POWER7 can roll back counter values, if the new value is smaller
713 * than the previous value it will cause the delta and the counter to
714 * have bogus values unless we rolled a counter over. If a coutner is
715 * rolled back, it will be smaller, but within 256, which is the maximum
716 * number of events to rollback at once. If we dectect a rollback
717 * return 0. This can lead to a small lack of precision in the
720 if (prev
> val
&& (prev
- val
) < 256)
726 static void power_pmu_read(struct perf_event
*event
)
728 s64 val
, delta
, prev
;
730 if (event
->hw
.state
& PERF_HES_STOPPED
)
736 * Performance monitor interrupts come even when interrupts
737 * are soft-disabled, as long as interrupts are hard-enabled.
738 * Therefore we treat them like NMIs.
741 prev
= local64_read(&event
->hw
.prev_count
);
743 val
= read_pmc(event
->hw
.idx
);
744 delta
= check_and_compute_delta(prev
, val
);
747 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
749 local64_add(delta
, &event
->count
);
750 local64_sub(delta
, &event
->hw
.period_left
);
754 * On some machines, PMC5 and PMC6 can't be written, don't respect
755 * the freeze conditions, and don't generate interrupts. This tells
756 * us if `event' is using such a PMC.
758 static int is_limited_pmc(int pmcnum
)
760 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
761 && (pmcnum
== 5 || pmcnum
== 6);
764 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
765 unsigned long pmc5
, unsigned long pmc6
)
767 struct perf_event
*event
;
768 u64 val
, prev
, delta
;
771 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
772 event
= cpuhw
->limited_counter
[i
];
775 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
776 prev
= local64_read(&event
->hw
.prev_count
);
778 delta
= check_and_compute_delta(prev
, val
);
780 local64_add(delta
, &event
->count
);
784 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
785 unsigned long pmc5
, unsigned long pmc6
)
787 struct perf_event
*event
;
791 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
792 event
= cpuhw
->limited_counter
[i
];
793 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
794 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
795 prev
= local64_read(&event
->hw
.prev_count
);
796 if (check_and_compute_delta(prev
, val
))
797 local64_set(&event
->hw
.prev_count
, val
);
798 perf_event_update_userpage(event
);
803 * Since limited events don't respect the freeze conditions, we
804 * have to read them immediately after freezing or unfreezing the
805 * other events. We try to keep the values from the limited
806 * events as consistent as possible by keeping the delay (in
807 * cycles and instructions) between freezing/unfreezing and reading
808 * the limited events as small and consistent as possible.
809 * Therefore, if any limited events are in use, we read them
810 * both, and always in the same order, to minimize variability,
811 * and do it inside the same asm that writes MMCR0.
813 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
815 unsigned long pmc5
, pmc6
;
817 if (!cpuhw
->n_limited
) {
818 mtspr(SPRN_MMCR0
, mmcr0
);
823 * Write MMCR0, then read PMC5 and PMC6 immediately.
824 * To ensure we don't get a performance monitor interrupt
825 * between writing MMCR0 and freezing/thawing the limited
826 * events, we first write MMCR0 with the event overflow
827 * interrupt enable bits turned off.
829 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
830 : "=&r" (pmc5
), "=&r" (pmc6
)
831 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
833 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
835 if (mmcr0
& MMCR0_FC
)
836 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
838 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
841 * Write the full MMCR0 including the event overflow interrupt
842 * enable bits, if necessary.
844 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
845 mtspr(SPRN_MMCR0
, mmcr0
);
849 * Disable all events to prevent PMU interrupts and to allow
850 * events to be added or removed.
852 static void power_pmu_disable(struct pmu
*pmu
)
854 struct cpu_hw_events
*cpuhw
;
859 local_irq_save(flags
);
860 cpuhw
= &__get_cpu_var(cpu_hw_events
);
862 if (!cpuhw
->disabled
) {
867 * Check if we ever enabled the PMU on this cpu.
869 if (!cpuhw
->pmcs_enabled
) {
871 cpuhw
->pmcs_enabled
= 1;
875 * Disable instruction sampling if it was enabled
877 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
879 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
884 * Set the 'freeze counters' bit.
885 * The barrier is to make sure the mtspr has been
886 * executed and the PMU has frozen the events
889 write_mmcr0(cpuhw
, mfspr(SPRN_MMCR0
) | MMCR0_FC
);
892 local_irq_restore(flags
);
896 * Re-enable all events if disable == 0.
897 * If we were previously disabled and events were added, then
898 * put the new config on the PMU.
900 static void power_pmu_enable(struct pmu
*pmu
)
902 struct perf_event
*event
;
903 struct cpu_hw_events
*cpuhw
;
908 unsigned int hwc_index
[MAX_HWEVENTS
];
914 local_irq_save(flags
);
915 cpuhw
= &__get_cpu_var(cpu_hw_events
);
916 if (!cpuhw
->disabled
) {
917 local_irq_restore(flags
);
923 * If we didn't change anything, or only removed events,
924 * no need to recalculate MMCR* settings and reset the PMCs.
925 * Just reenable the PMU with the current MMCR* settings
926 * (possibly updated for removal of events).
928 if (!cpuhw
->n_added
) {
929 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
930 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
931 if (cpuhw
->n_events
== 0)
932 ppc_set_pmu_inuse(0);
937 * Compute MMCR* values for the new set of events
939 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
941 /* shouldn't ever get here */
942 printk(KERN_ERR
"oops compute_mmcr failed\n");
947 * Add in MMCR0 freeze bits corresponding to the
948 * attr.exclude_* bits for the first event.
949 * We have already checked that all events have the
950 * same values for these bits as the first event.
952 event
= cpuhw
->event
[0];
953 if (event
->attr
.exclude_user
)
954 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
955 if (event
->attr
.exclude_kernel
)
956 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
957 if (event
->attr
.exclude_hv
)
958 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
961 * Write the new configuration to MMCR* with the freeze
962 * bit set and set the hardware events to their initial values.
963 * Then unfreeze the events.
965 ppc_set_pmu_inuse(1);
966 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
967 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
968 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
972 * Read off any pre-existing events that need to move
975 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
976 event
= cpuhw
->event
[i
];
977 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
978 power_pmu_read(event
);
979 write_pmc(event
->hw
.idx
, 0);
985 * Initialize the PMCs for all the new and moved events.
987 cpuhw
->n_limited
= n_lim
= 0;
988 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
989 event
= cpuhw
->event
[i
];
992 idx
= hwc_index
[i
] + 1;
993 if (is_limited_pmc(idx
)) {
994 cpuhw
->limited_counter
[n_lim
] = event
;
995 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1000 if (event
->hw
.sample_period
) {
1001 left
= local64_read(&event
->hw
.period_left
);
1002 if (left
< 0x80000000L
)
1003 val
= 0x80000000L
- left
;
1005 local64_set(&event
->hw
.prev_count
, val
);
1006 event
->hw
.idx
= idx
;
1007 if (event
->hw
.state
& PERF_HES_STOPPED
)
1009 write_pmc(idx
, val
);
1010 perf_event_update_userpage(event
);
1012 cpuhw
->n_limited
= n_lim
;
1013 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1017 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
1020 * Enable instruction sampling if necessary
1022 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1024 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1028 if (cpuhw
->bhrb_users
)
1029 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1031 local_irq_restore(flags
);
1034 static int collect_events(struct perf_event
*group
, int max_count
,
1035 struct perf_event
*ctrs
[], u64
*events
,
1036 unsigned int *flags
)
1039 struct perf_event
*event
;
1041 if (!is_software_event(group
)) {
1045 flags
[n
] = group
->hw
.event_base
;
1046 events
[n
++] = group
->hw
.config
;
1048 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1049 if (!is_software_event(event
) &&
1050 event
->state
!= PERF_EVENT_STATE_OFF
) {
1054 flags
[n
] = event
->hw
.event_base
;
1055 events
[n
++] = event
->hw
.config
;
1062 * Add a event to the PMU.
1063 * If all events are not already frozen, then we disable and
1064 * re-enable the PMU in order to get hw_perf_enable to do the
1065 * actual work of reconfiguring the PMU.
1067 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1069 struct cpu_hw_events
*cpuhw
;
1070 unsigned long flags
;
1074 local_irq_save(flags
);
1075 perf_pmu_disable(event
->pmu
);
1078 * Add the event to the list (if there is room)
1079 * and check whether the total set is still feasible.
1081 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1082 n0
= cpuhw
->n_events
;
1083 if (n0
>= ppmu
->n_counter
)
1085 cpuhw
->event
[n0
] = event
;
1086 cpuhw
->events
[n0
] = event
->hw
.config
;
1087 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1090 * This event may have been disabled/stopped in record_and_restart()
1091 * because we exceeded the ->event_limit. If re-starting the event,
1092 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1093 * notification is re-enabled.
1095 if (!(ef_flags
& PERF_EF_START
))
1096 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1098 event
->hw
.state
= 0;
1101 * If group events scheduling transaction was started,
1102 * skip the schedulability test here, it will be performed
1103 * at commit time(->commit_txn) as a whole
1105 if (cpuhw
->group_flag
& PERF_EVENT_TXN
)
1108 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1110 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1112 event
->hw
.config
= cpuhw
->events
[n0
];
1120 if (has_branch_stack(event
))
1121 power_pmu_bhrb_enable(event
);
1123 perf_pmu_enable(event
->pmu
);
1124 local_irq_restore(flags
);
1129 * Remove a event from the PMU.
1131 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1133 struct cpu_hw_events
*cpuhw
;
1135 unsigned long flags
;
1137 local_irq_save(flags
);
1138 perf_pmu_disable(event
->pmu
);
1140 power_pmu_read(event
);
1142 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1143 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1144 if (event
== cpuhw
->event
[i
]) {
1145 while (++i
< cpuhw
->n_events
) {
1146 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1147 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1148 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1151 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1152 if (event
->hw
.idx
) {
1153 write_pmc(event
->hw
.idx
, 0);
1156 perf_event_update_userpage(event
);
1160 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1161 if (event
== cpuhw
->limited_counter
[i
])
1163 if (i
< cpuhw
->n_limited
) {
1164 while (++i
< cpuhw
->n_limited
) {
1165 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1166 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1170 if (cpuhw
->n_events
== 0) {
1171 /* disable exceptions if no events are running */
1172 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1175 if (has_branch_stack(event
))
1176 power_pmu_bhrb_disable(event
);
1178 perf_pmu_enable(event
->pmu
);
1179 local_irq_restore(flags
);
1183 * POWER-PMU does not support disabling individual counters, hence
1184 * program their cycle counter to their max value and ignore the interrupts.
1187 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1189 unsigned long flags
;
1193 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1196 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1199 if (ef_flags
& PERF_EF_RELOAD
)
1200 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1202 local_irq_save(flags
);
1203 perf_pmu_disable(event
->pmu
);
1205 event
->hw
.state
= 0;
1206 left
= local64_read(&event
->hw
.period_left
);
1209 if (left
< 0x80000000L
)
1210 val
= 0x80000000L
- left
;
1212 write_pmc(event
->hw
.idx
, val
);
1214 perf_event_update_userpage(event
);
1215 perf_pmu_enable(event
->pmu
);
1216 local_irq_restore(flags
);
1219 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1221 unsigned long flags
;
1223 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1226 if (event
->hw
.state
& PERF_HES_STOPPED
)
1229 local_irq_save(flags
);
1230 perf_pmu_disable(event
->pmu
);
1232 power_pmu_read(event
);
1233 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1234 write_pmc(event
->hw
.idx
, 0);
1236 perf_event_update_userpage(event
);
1237 perf_pmu_enable(event
->pmu
);
1238 local_irq_restore(flags
);
1242 * Start group events scheduling transaction
1243 * Set the flag to make pmu::enable() not perform the
1244 * schedulability test, it will be performed at commit time
1246 void power_pmu_start_txn(struct pmu
*pmu
)
1248 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1250 perf_pmu_disable(pmu
);
1251 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1252 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1256 * Stop group events scheduling transaction
1257 * Clear the flag and pmu::enable() will perform the
1258 * schedulability test.
1260 void power_pmu_cancel_txn(struct pmu
*pmu
)
1262 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1264 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1265 perf_pmu_enable(pmu
);
1269 * Commit group events scheduling transaction
1270 * Perform the group schedulability test as a whole
1271 * Return 0 if success
1273 int power_pmu_commit_txn(struct pmu
*pmu
)
1275 struct cpu_hw_events
*cpuhw
;
1280 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1281 n
= cpuhw
->n_events
;
1282 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1284 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1288 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1289 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1291 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1292 perf_pmu_enable(pmu
);
1297 * Return 1 if we might be able to put event on a limited PMC,
1299 * A event can only go on a limited PMC if it counts something
1300 * that a limited PMC can count, doesn't require interrupts, and
1301 * doesn't exclude any processor mode.
1303 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1307 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1309 if (event
->attr
.exclude_user
1310 || event
->attr
.exclude_kernel
1311 || event
->attr
.exclude_hv
1312 || event
->attr
.sample_period
)
1315 if (ppmu
->limited_pmc_event(ev
))
1319 * The requested event_id isn't on a limited PMC already;
1320 * see if any alternative code goes on a limited PMC.
1322 if (!ppmu
->get_alternatives
)
1325 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1326 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1332 * Find an alternative event_id that goes on a normal PMC, if possible,
1333 * and return the event_id code, or 0 if there is no such alternative.
1334 * (Note: event_id code 0 is "don't count" on all machines.)
1336 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1338 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1341 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1342 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1348 /* Number of perf_events counting hardware events */
1349 static atomic_t num_events
;
1350 /* Used to avoid races in calling reserve/release_pmc_hardware */
1351 static DEFINE_MUTEX(pmc_reserve_mutex
);
1354 * Release the PMU if this is the last perf_event.
1356 static void hw_perf_event_destroy(struct perf_event
*event
)
1358 if (!atomic_add_unless(&num_events
, -1, 1)) {
1359 mutex_lock(&pmc_reserve_mutex
);
1360 if (atomic_dec_return(&num_events
) == 0)
1361 release_pmc_hardware();
1362 mutex_unlock(&pmc_reserve_mutex
);
1367 * Translate a generic cache event_id config to a raw event_id code.
1369 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1371 unsigned long type
, op
, result
;
1374 if (!ppmu
->cache_events
)
1378 type
= config
& 0xff;
1379 op
= (config
>> 8) & 0xff;
1380 result
= (config
>> 16) & 0xff;
1382 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1383 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1384 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1387 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1396 static int power_pmu_event_init(struct perf_event
*event
)
1399 unsigned long flags
;
1400 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1401 u64 events
[MAX_HWEVENTS
];
1402 unsigned int cflags
[MAX_HWEVENTS
];
1405 struct cpu_hw_events
*cpuhw
;
1410 if (has_branch_stack(event
)) {
1411 /* PMU has BHRB enabled */
1412 if (!(ppmu
->flags
& PPMU_BHRB
))
1416 switch (event
->attr
.type
) {
1417 case PERF_TYPE_HARDWARE
:
1418 ev
= event
->attr
.config
;
1419 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1421 ev
= ppmu
->generic_events
[ev
];
1423 case PERF_TYPE_HW_CACHE
:
1424 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1429 ev
= event
->attr
.config
;
1435 event
->hw
.config_base
= ev
;
1439 * If we are not running on a hypervisor, force the
1440 * exclude_hv bit to 0 so that we don't care what
1441 * the user set it to.
1443 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1444 event
->attr
.exclude_hv
= 0;
1447 * If this is a per-task event, then we can use
1448 * PM_RUN_* events interchangeably with their non RUN_*
1449 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1450 * XXX we should check if the task is an idle task.
1453 if (event
->attach_state
& PERF_ATTACH_TASK
)
1454 flags
|= PPMU_ONLY_COUNT_RUN
;
1457 * If this machine has limited events, check whether this
1458 * event_id could go on a limited event.
1460 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1461 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1462 flags
|= PPMU_LIMITED_PMC_OK
;
1463 } else if (ppmu
->limited_pmc_event(ev
)) {
1465 * The requested event_id is on a limited PMC,
1466 * but we can't use a limited PMC; see if any
1467 * alternative goes on a normal PMC.
1469 ev
= normal_pmc_alternative(ev
, flags
);
1476 * If this is in a group, check if it can go on with all the
1477 * other hardware events in the group. We assume the event
1478 * hasn't been linked into its leader's sibling list at this point.
1481 if (event
->group_leader
!= event
) {
1482 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1483 ctrs
, events
, cflags
);
1490 if (check_excludes(ctrs
, cflags
, n
, 1))
1493 cpuhw
= &get_cpu_var(cpu_hw_events
);
1494 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1496 if (has_branch_stack(event
)) {
1497 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1498 event
->attr
.branch_sample_type
);
1500 if(cpuhw
->bhrb_filter
== -1)
1504 put_cpu_var(cpu_hw_events
);
1508 event
->hw
.config
= events
[n
];
1509 event
->hw
.event_base
= cflags
[n
];
1510 event
->hw
.last_period
= event
->hw
.sample_period
;
1511 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1514 * See if we need to reserve the PMU.
1515 * If no events are currently in use, then we have to take a
1516 * mutex to ensure that we don't race with another task doing
1517 * reserve_pmc_hardware or release_pmc_hardware.
1520 if (!atomic_inc_not_zero(&num_events
)) {
1521 mutex_lock(&pmc_reserve_mutex
);
1522 if (atomic_read(&num_events
) == 0 &&
1523 reserve_pmc_hardware(perf_event_interrupt
))
1526 atomic_inc(&num_events
);
1527 mutex_unlock(&pmc_reserve_mutex
);
1529 event
->destroy
= hw_perf_event_destroy
;
1534 static int power_pmu_event_idx(struct perf_event
*event
)
1536 return event
->hw
.idx
;
1539 ssize_t
power_events_sysfs_show(struct device
*dev
,
1540 struct device_attribute
*attr
, char *page
)
1542 struct perf_pmu_events_attr
*pmu_attr
;
1544 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
1546 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
1549 struct pmu power_pmu
= {
1550 .pmu_enable
= power_pmu_enable
,
1551 .pmu_disable
= power_pmu_disable
,
1552 .event_init
= power_pmu_event_init
,
1553 .add
= power_pmu_add
,
1554 .del
= power_pmu_del
,
1555 .start
= power_pmu_start
,
1556 .stop
= power_pmu_stop
,
1557 .read
= power_pmu_read
,
1558 .start_txn
= power_pmu_start_txn
,
1559 .cancel_txn
= power_pmu_cancel_txn
,
1560 .commit_txn
= power_pmu_commit_txn
,
1561 .event_idx
= power_pmu_event_idx
,
1562 .flush_branch_stack
= power_pmu_flush_branch_stack
,
1566 * A counter has overflowed; update its count and record
1567 * things if requested. Note that interrupts are hard-disabled
1568 * here so there is no possibility of being interrupted.
1570 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
1571 struct pt_regs
*regs
)
1573 u64 period
= event
->hw
.sample_period
;
1574 s64 prev
, delta
, left
;
1577 if (event
->hw
.state
& PERF_HES_STOPPED
) {
1578 write_pmc(event
->hw
.idx
, 0);
1582 /* we don't have to worry about interrupts here */
1583 prev
= local64_read(&event
->hw
.prev_count
);
1584 delta
= check_and_compute_delta(prev
, val
);
1585 local64_add(delta
, &event
->count
);
1588 * See if the total period for this event has expired,
1589 * and update for the next period.
1592 left
= local64_read(&event
->hw
.period_left
) - delta
;
1600 record
= siar_valid(regs
);
1601 event
->hw
.last_period
= event
->hw
.sample_period
;
1603 if (left
< 0x80000000LL
)
1604 val
= 0x80000000LL
- left
;
1607 write_pmc(event
->hw
.idx
, val
);
1608 local64_set(&event
->hw
.prev_count
, val
);
1609 local64_set(&event
->hw
.period_left
, left
);
1610 perf_event_update_userpage(event
);
1613 * Finally record data if requested.
1616 struct perf_sample_data data
;
1618 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
1620 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
1621 perf_get_data_addr(regs
, &data
.addr
);
1623 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
1624 struct cpu_hw_events
*cpuhw
;
1625 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1626 power_pmu_bhrb_read(cpuhw
);
1627 data
.br_stack
= &cpuhw
->bhrb_stack
;
1630 if (perf_event_overflow(event
, &data
, regs
))
1631 power_pmu_stop(event
, 0);
1636 * Called from generic code to get the misc flags (i.e. processor mode)
1639 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1641 u32 flags
= perf_get_misc_flags(regs
);
1645 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
1646 PERF_RECORD_MISC_KERNEL
;
1650 * Called from generic code to get the instruction pointer
1653 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1655 bool use_siar
= regs_use_siar(regs
);
1657 if (use_siar
&& siar_valid(regs
))
1658 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
1660 return 0; // no valid instruction pointer
1665 static bool pmc_overflow_power7(unsigned long val
)
1668 * Events on POWER7 can roll back if a speculative event doesn't
1669 * eventually complete. Unfortunately in some rare cases they will
1670 * raise a performance monitor exception. We need to catch this to
1671 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1672 * cycles from overflow.
1674 * We only do this if the first pass fails to find any overflowing
1675 * PMCs because a user might set a period of less than 256 and we
1676 * don't want to mistakenly reset them.
1678 if ((0x80000000 - val
) <= 256)
1684 static bool pmc_overflow(unsigned long val
)
1693 * Performance monitor interrupt stuff
1695 static void perf_event_interrupt(struct pt_regs
*regs
)
1698 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1699 struct perf_event
*event
;
1700 unsigned long val
[8];
1704 if (cpuhw
->n_limited
)
1705 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
1708 perf_read_regs(regs
);
1710 nmi
= perf_intr_is_nmi(regs
);
1716 /* Read all the PMCs since we'll need them a bunch of times */
1717 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
1718 val
[i
] = read_pmc(i
+ 1);
1720 /* Try to find what caused the IRQ */
1722 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
1723 if (!pmc_overflow(val
[i
]))
1725 if (is_limited_pmc(i
+ 1))
1726 continue; /* these won't generate IRQs */
1728 * We've found one that's overflowed. For active
1729 * counters we need to log this. For inactive
1730 * counters, we need to reset it anyway
1734 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
1735 event
= cpuhw
->event
[j
];
1736 if (event
->hw
.idx
== (i
+ 1)) {
1738 record_and_restart(event
, val
[i
], regs
);
1743 /* reset non active counters that have overflowed */
1744 write_pmc(i
+ 1, 0);
1746 if (!found
&& pvr_version_is(PVR_POWER7
)) {
1747 /* check active counters for special buggy p7 overflow */
1748 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1749 event
= cpuhw
->event
[i
];
1750 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
1752 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
1753 /* event has overflowed in a buggy way*/
1755 record_and_restart(event
,
1756 val
[event
->hw
.idx
- 1],
1761 if (!found
&& !nmi
&& printk_ratelimit())
1762 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
1765 * Reset MMCR0 to its normal value. This will set PMXE and
1766 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1767 * and thus allow interrupts to occur again.
1768 * XXX might want to use MSR.PM to keep the events frozen until
1769 * we get back out of this interrupt.
1771 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
1779 static void power_pmu_setup(int cpu
)
1781 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
1785 memset(cpuhw
, 0, sizeof(*cpuhw
));
1786 cpuhw
->mmcr
[0] = MMCR0_FC
;
1789 static int __cpuinit
1790 power_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1792 unsigned int cpu
= (long)hcpu
;
1794 switch (action
& ~CPU_TASKS_FROZEN
) {
1795 case CPU_UP_PREPARE
:
1796 power_pmu_setup(cpu
);
1806 int __cpuinit
register_power_pmu(struct power_pmu
*pmu
)
1809 return -EBUSY
; /* something's already registered */
1812 pr_info("%s performance monitor hardware support registered\n",
1815 power_pmu
.attr_groups
= ppmu
->attr_groups
;
1819 * Use FCHV to ignore kernel events if MSR.HV is set.
1821 if (mfmsr() & MSR_HV
)
1822 freeze_events_kernel
= MMCR0_FCHV
;
1823 #endif /* CONFIG_PPC64 */
1825 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
1826 perf_cpu_notifier(power_pmu_notifier
);