2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
136 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
137 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
142 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
143 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
146 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
147 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
148 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
149 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
150 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
154 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
160 static struct board_type products
[] = {
161 {0x3241103C, "Smart Array P212", &SA5_access
},
162 {0x3243103C, "Smart Array P410", &SA5_access
},
163 {0x3245103C, "Smart Array P410i", &SA5_access
},
164 {0x3247103C, "Smart Array P411", &SA5_access
},
165 {0x3249103C, "Smart Array P812", &SA5_access
},
166 {0x324A103C, "Smart Array P712m", &SA5_access
},
167 {0x324B103C, "Smart Array P711m", &SA5_access
},
168 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
169 {0x3350103C, "Smart Array P222", &SA5_access
},
170 {0x3351103C, "Smart Array P420", &SA5_access
},
171 {0x3352103C, "Smart Array P421", &SA5_access
},
172 {0x3353103C, "Smart Array P822", &SA5_access
},
173 {0x3354103C, "Smart Array P420i", &SA5_access
},
174 {0x3355103C, "Smart Array P220i", &SA5_access
},
175 {0x3356103C, "Smart Array P721m", &SA5_access
},
176 {0x1920103C, "Smart Array P430i", &SA5_access
},
177 {0x1921103C, "Smart Array P830i", &SA5_access
},
178 {0x1922103C, "Smart Array P430", &SA5_access
},
179 {0x1923103C, "Smart Array P431", &SA5_access
},
180 {0x1924103C, "Smart Array P830", &SA5_access
},
181 {0x1925103C, "Smart Array P831", &SA5_access
},
182 {0x1926103C, "Smart Array P731m", &SA5_access
},
183 {0x1928103C, "Smart Array P230i", &SA5_access
},
184 {0x1929103C, "Smart Array P530", &SA5_access
},
185 {0x21BD103C, "Smart Array P244br", &SA5_access
},
186 {0x21BE103C, "Smart Array P741m", &SA5_access
},
187 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
188 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
189 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
190 {0x21C2103C, "Smart Array P440", &SA5_access
},
191 {0x21C3103C, "Smart Array P441", &SA5_access
},
192 {0x21C4103C, "Smart Array", &SA5_access
},
193 {0x21C5103C, "Smart Array P841", &SA5_access
},
194 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
195 {0x21C7103C, "Smart HBA H240", &SA5_access
},
196 {0x21C8103C, "Smart HBA H241", &SA5_access
},
197 {0x21C9103C, "Smart Array", &SA5_access
},
198 {0x21CA103C, "Smart Array P246br", &SA5_access
},
199 {0x21CB103C, "Smart Array P840", &SA5_access
},
200 {0x21CC103C, "Smart Array", &SA5_access
},
201 {0x21CD103C, "Smart Array", &SA5_access
},
202 {0x21CE103C, "Smart HBA", &SA5_access
},
203 {0x05809005, "SmartHBA-SA", &SA5_access
},
204 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
205 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
206 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
207 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
208 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
209 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
210 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
211 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
212 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
213 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
214 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
217 static struct scsi_transport_template
*hpsa_sas_transport_template
;
218 static int hpsa_add_sas_host(struct ctlr_info
*h
);
219 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
220 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
221 struct hpsa_scsi_dev_t
*device
);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
223 static struct hpsa_scsi_dev_t
224 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
225 struct sas_rphy
*rphy
);
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy
;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle
;
231 static int number_of_controllers
;
233 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
234 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
235 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
238 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
242 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
243 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
244 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
245 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
246 struct scsi_cmnd
*scmd
);
247 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
248 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
250 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
254 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
255 static void hpsa_scan_start(struct Scsi_Host
*);
256 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
257 unsigned long elapsed_time
);
258 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
261 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
262 static int hpsa_slave_configure(struct scsi_device
*sdev
);
263 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
265 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
266 static int check_for_unit_attention(struct ctlr_info
*h
,
267 struct CommandList
*c
);
268 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
269 struct CommandList
*c
);
270 /* performant mode helper functions */
271 static void calc_bucket_map(int *bucket
, int num_buckets
,
272 int nsgs
, int min_blocks
, u32
*bucket_map
);
273 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
274 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
275 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
276 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
277 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
279 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
280 unsigned long *memory_bar
);
281 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
282 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
283 unsigned char lunaddr
[],
285 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
287 static inline void finish_cmd(struct CommandList
*c
);
288 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
289 #define BOARD_NOT_READY 0
290 #define BOARD_READY 1
291 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
292 static void hpsa_flush_cache(struct ctlr_info
*h
);
293 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
294 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
295 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
296 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
297 static u32
lockup_detected(struct ctlr_info
*h
);
298 static int detect_controller_lockup(struct ctlr_info
*h
);
299 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
300 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
301 struct ReportExtendedLUNdata
*buf
, int bufsize
);
302 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
303 unsigned char scsi3addr
[], u8 page
);
304 static int hpsa_luns_changed(struct ctlr_info
*h
);
305 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
306 struct hpsa_scsi_dev_t
*dev
,
307 unsigned char *scsi3addr
);
309 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
311 unsigned long *priv
= shost_priv(sdev
->host
);
312 return (struct ctlr_info
*) *priv
;
315 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
317 unsigned long *priv
= shost_priv(sh
);
318 return (struct ctlr_info
*) *priv
;
321 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
323 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
326 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
328 return c
->reset_pending
;
331 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
332 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
333 u8
*sense_key
, u8
*asc
, u8
*ascq
)
335 struct scsi_sense_hdr sshdr
;
342 if (sense_data_len
< 1)
345 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
347 *sense_key
= sshdr
.sense_key
;
353 static int check_for_unit_attention(struct ctlr_info
*h
,
354 struct CommandList
*c
)
356 u8 sense_key
, asc
, ascq
;
359 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
360 sense_len
= sizeof(c
->err_info
->SenseInfo
);
362 sense_len
= c
->err_info
->SenseLen
;
364 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
365 &sense_key
, &asc
, &ascq
);
366 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
371 dev_warn(&h
->pdev
->dev
,
372 "%s: a state change detected, command retried\n",
376 dev_warn(&h
->pdev
->dev
,
377 "%s: LUN failure detected\n", h
->devname
);
379 case REPORT_LUNS_CHANGED
:
380 dev_warn(&h
->pdev
->dev
,
381 "%s: report LUN data changed\n", h
->devname
);
383 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
384 * target (array) devices.
388 dev_warn(&h
->pdev
->dev
,
389 "%s: a power on or device reset detected\n",
392 case UNIT_ATTENTION_CLEARED
:
393 dev_warn(&h
->pdev
->dev
,
394 "%s: unit attention cleared by another initiator\n",
398 dev_warn(&h
->pdev
->dev
,
399 "%s: unknown unit attention detected\n",
406 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
408 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
409 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
410 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
412 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
416 static u32
lockup_detected(struct ctlr_info
*h
);
417 static ssize_t
host_show_lockup_detected(struct device
*dev
,
418 struct device_attribute
*attr
, char *buf
)
422 struct Scsi_Host
*shost
= class_to_shost(dev
);
424 h
= shost_to_hba(shost
);
425 ld
= lockup_detected(h
);
427 return sprintf(buf
, "ld=%d\n", ld
);
430 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
431 struct device_attribute
*attr
,
432 const char *buf
, size_t count
)
436 struct Scsi_Host
*shost
= class_to_shost(dev
);
439 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
441 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
442 strncpy(tmpbuf
, buf
, len
);
444 if (sscanf(tmpbuf
, "%d", &status
) != 1)
446 h
= shost_to_hba(shost
);
447 h
->acciopath_status
= !!status
;
448 dev_warn(&h
->pdev
->dev
,
449 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
450 h
->acciopath_status
? "enabled" : "disabled");
454 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
455 struct device_attribute
*attr
,
456 const char *buf
, size_t count
)
458 int debug_level
, len
;
460 struct Scsi_Host
*shost
= class_to_shost(dev
);
463 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
465 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
466 strncpy(tmpbuf
, buf
, len
);
468 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
472 h
= shost_to_hba(shost
);
473 h
->raid_offload_debug
= debug_level
;
474 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
475 h
->raid_offload_debug
);
479 static ssize_t
host_store_rescan(struct device
*dev
,
480 struct device_attribute
*attr
,
481 const char *buf
, size_t count
)
484 struct Scsi_Host
*shost
= class_to_shost(dev
);
485 h
= shost_to_hba(shost
);
486 hpsa_scan_start(h
->scsi_host
);
490 static ssize_t
host_show_firmware_revision(struct device
*dev
,
491 struct device_attribute
*attr
, char *buf
)
494 struct Scsi_Host
*shost
= class_to_shost(dev
);
495 unsigned char *fwrev
;
497 h
= shost_to_hba(shost
);
498 if (!h
->hba_inquiry_data
)
500 fwrev
= &h
->hba_inquiry_data
[32];
501 return snprintf(buf
, 20, "%c%c%c%c\n",
502 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
505 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
506 struct device_attribute
*attr
, char *buf
)
508 struct Scsi_Host
*shost
= class_to_shost(dev
);
509 struct ctlr_info
*h
= shost_to_hba(shost
);
511 return snprintf(buf
, 20, "%d\n",
512 atomic_read(&h
->commands_outstanding
));
515 static ssize_t
host_show_transport_mode(struct device
*dev
,
516 struct device_attribute
*attr
, char *buf
)
519 struct Scsi_Host
*shost
= class_to_shost(dev
);
521 h
= shost_to_hba(shost
);
522 return snprintf(buf
, 20, "%s\n",
523 h
->transMethod
& CFGTBL_Trans_Performant
?
524 "performant" : "simple");
527 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
528 struct device_attribute
*attr
, char *buf
)
531 struct Scsi_Host
*shost
= class_to_shost(dev
);
533 h
= shost_to_hba(shost
);
534 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
535 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
538 /* List of controllers which cannot be hard reset on kexec with reset_devices */
539 static u32 unresettable_controller
[] = {
540 0x324a103C, /* Smart Array P712m */
541 0x324b103C, /* Smart Array P711m */
542 0x3223103C, /* Smart Array P800 */
543 0x3234103C, /* Smart Array P400 */
544 0x3235103C, /* Smart Array P400i */
545 0x3211103C, /* Smart Array E200i */
546 0x3212103C, /* Smart Array E200 */
547 0x3213103C, /* Smart Array E200i */
548 0x3214103C, /* Smart Array E200i */
549 0x3215103C, /* Smart Array E200i */
550 0x3237103C, /* Smart Array E500 */
551 0x323D103C, /* Smart Array P700m */
552 0x40800E11, /* Smart Array 5i */
553 0x409C0E11, /* Smart Array 6400 */
554 0x409D0E11, /* Smart Array 6400 EM */
555 0x40700E11, /* Smart Array 5300 */
556 0x40820E11, /* Smart Array 532 */
557 0x40830E11, /* Smart Array 5312 */
558 0x409A0E11, /* Smart Array 641 */
559 0x409B0E11, /* Smart Array 642 */
560 0x40910E11, /* Smart Array 6i */
563 /* List of controllers which cannot even be soft reset */
564 static u32 soft_unresettable_controller
[] = {
565 0x40800E11, /* Smart Array 5i */
566 0x40700E11, /* Smart Array 5300 */
567 0x40820E11, /* Smart Array 532 */
568 0x40830E11, /* Smart Array 5312 */
569 0x409A0E11, /* Smart Array 641 */
570 0x409B0E11, /* Smart Array 642 */
571 0x40910E11, /* Smart Array 6i */
572 /* Exclude 640x boards. These are two pci devices in one slot
573 * which share a battery backed cache module. One controls the
574 * cache, the other accesses the cache through the one that controls
575 * it. If we reset the one controlling the cache, the other will
576 * likely not be happy. Just forbid resetting this conjoined mess.
577 * The 640x isn't really supported by hpsa anyway.
579 0x409C0E11, /* Smart Array 6400 */
580 0x409D0E11, /* Smart Array 6400 EM */
583 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
587 for (i
= 0; i
< nelems
; i
++)
588 if (a
[i
] == board_id
)
593 static int ctlr_is_hard_resettable(u32 board_id
)
595 return !board_id_in_array(unresettable_controller
,
596 ARRAY_SIZE(unresettable_controller
), board_id
);
599 static int ctlr_is_soft_resettable(u32 board_id
)
601 return !board_id_in_array(soft_unresettable_controller
,
602 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
605 static int ctlr_is_resettable(u32 board_id
)
607 return ctlr_is_hard_resettable(board_id
) ||
608 ctlr_is_soft_resettable(board_id
);
611 static ssize_t
host_show_resettable(struct device
*dev
,
612 struct device_attribute
*attr
, char *buf
)
615 struct Scsi_Host
*shost
= class_to_shost(dev
);
617 h
= shost_to_hba(shost
);
618 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
623 return (scsi3addr
[3] & 0xC0) == 0x40;
626 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
641 return !device
->physical_device
;
644 static ssize_t
raid_level_show(struct device
*dev
,
645 struct device_attribute
*attr
, char *buf
)
648 unsigned char rlevel
;
650 struct scsi_device
*sdev
;
651 struct hpsa_scsi_dev_t
*hdev
;
654 sdev
= to_scsi_device(dev
);
655 h
= sdev_to_hba(sdev
);
656 spin_lock_irqsave(&h
->lock
, flags
);
657 hdev
= sdev
->hostdata
;
659 spin_unlock_irqrestore(&h
->lock
, flags
);
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev
)) {
665 spin_unlock_irqrestore(&h
->lock
, flags
);
666 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
670 rlevel
= hdev
->raid_level
;
671 spin_unlock_irqrestore(&h
->lock
, flags
);
672 if (rlevel
> RAID_UNKNOWN
)
673 rlevel
= RAID_UNKNOWN
;
674 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
678 static ssize_t
lunid_show(struct device
*dev
,
679 struct device_attribute
*attr
, char *buf
)
682 struct scsi_device
*sdev
;
683 struct hpsa_scsi_dev_t
*hdev
;
685 unsigned char lunid
[8];
687 sdev
= to_scsi_device(dev
);
688 h
= sdev_to_hba(sdev
);
689 spin_lock_irqsave(&h
->lock
, flags
);
690 hdev
= sdev
->hostdata
;
692 spin_unlock_irqrestore(&h
->lock
, flags
);
695 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
696 spin_unlock_irqrestore(&h
->lock
, flags
);
697 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
700 static ssize_t
unique_id_show(struct device
*dev
,
701 struct device_attribute
*attr
, char *buf
)
704 struct scsi_device
*sdev
;
705 struct hpsa_scsi_dev_t
*hdev
;
707 unsigned char sn
[16];
709 sdev
= to_scsi_device(dev
);
710 h
= sdev_to_hba(sdev
);
711 spin_lock_irqsave(&h
->lock
, flags
);
712 hdev
= sdev
->hostdata
;
714 spin_unlock_irqrestore(&h
->lock
, flags
);
717 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
718 spin_unlock_irqrestore(&h
->lock
, flags
);
719 return snprintf(buf
, 16 * 2 + 2,
720 "%02X%02X%02X%02X%02X%02X%02X%02X"
721 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
722 sn
[0], sn
[1], sn
[2], sn
[3],
723 sn
[4], sn
[5], sn
[6], sn
[7],
724 sn
[8], sn
[9], sn
[10], sn
[11],
725 sn
[12], sn
[13], sn
[14], sn
[15]);
728 static ssize_t
sas_address_show(struct device
*dev
,
729 struct device_attribute
*attr
, char *buf
)
732 struct scsi_device
*sdev
;
733 struct hpsa_scsi_dev_t
*hdev
;
737 sdev
= to_scsi_device(dev
);
738 h
= sdev_to_hba(sdev
);
739 spin_lock_irqsave(&h
->lock
, flags
);
740 hdev
= sdev
->hostdata
;
741 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
742 spin_unlock_irqrestore(&h
->lock
, flags
);
745 sas_address
= hdev
->sas_address
;
746 spin_unlock_irqrestore(&h
->lock
, flags
);
748 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
751 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
752 struct device_attribute
*attr
, char *buf
)
755 struct scsi_device
*sdev
;
756 struct hpsa_scsi_dev_t
*hdev
;
760 sdev
= to_scsi_device(dev
);
761 h
= sdev_to_hba(sdev
);
762 spin_lock_irqsave(&h
->lock
, flags
);
763 hdev
= sdev
->hostdata
;
765 spin_unlock_irqrestore(&h
->lock
, flags
);
768 offload_enabled
= hdev
->offload_enabled
;
769 spin_unlock_irqrestore(&h
->lock
, flags
);
770 return snprintf(buf
, 20, "%d\n", offload_enabled
);
774 static ssize_t
path_info_show(struct device
*dev
,
775 struct device_attribute
*attr
, char *buf
)
778 struct scsi_device
*sdev
;
779 struct hpsa_scsi_dev_t
*hdev
;
785 u8 path_map_index
= 0;
787 unsigned char phys_connector
[2];
789 sdev
= to_scsi_device(dev
);
790 h
= sdev_to_hba(sdev
);
791 spin_lock_irqsave(&h
->devlock
, flags
);
792 hdev
= sdev
->hostdata
;
794 spin_unlock_irqrestore(&h
->devlock
, flags
);
799 for (i
= 0; i
< MAX_PATHS
; i
++) {
800 path_map_index
= 1<<i
;
801 if (i
== hdev
->active_path_index
)
803 else if (hdev
->path_map
& path_map_index
)
808 output_len
+= scnprintf(buf
+ output_len
,
809 PAGE_SIZE
- output_len
,
810 "[%d:%d:%d:%d] %20.20s ",
811 h
->scsi_host
->host_no
,
812 hdev
->bus
, hdev
->target
, hdev
->lun
,
813 scsi_device_type(hdev
->devtype
));
815 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
816 output_len
+= scnprintf(buf
+ output_len
,
817 PAGE_SIZE
- output_len
,
823 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
824 sizeof(phys_connector
));
825 if (phys_connector
[0] < '0')
826 phys_connector
[0] = '0';
827 if (phys_connector
[1] < '0')
828 phys_connector
[1] = '0';
829 output_len
+= scnprintf(buf
+ output_len
,
830 PAGE_SIZE
- output_len
,
833 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
834 hdev
->expose_device
) {
835 if (box
== 0 || box
== 0xFF) {
836 output_len
+= scnprintf(buf
+ output_len
,
837 PAGE_SIZE
- output_len
,
841 output_len
+= scnprintf(buf
+ output_len
,
842 PAGE_SIZE
- output_len
,
843 "BOX: %hhu BAY: %hhu %s\n",
846 } else if (box
!= 0 && box
!= 0xFF) {
847 output_len
+= scnprintf(buf
+ output_len
,
848 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
851 output_len
+= scnprintf(buf
+ output_len
,
852 PAGE_SIZE
- output_len
, "%s\n", active
);
855 spin_unlock_irqrestore(&h
->devlock
, flags
);
859 static ssize_t
host_show_ctlr_num(struct device
*dev
,
860 struct device_attribute
*attr
, char *buf
)
863 struct Scsi_Host
*shost
= class_to_shost(dev
);
865 h
= shost_to_hba(shost
);
866 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
869 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
870 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
871 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
872 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
873 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
874 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
875 host_show_hp_ssd_smart_path_enabled
, NULL
);
876 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
877 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
878 host_show_hp_ssd_smart_path_status
,
879 host_store_hp_ssd_smart_path_status
);
880 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
881 host_store_raid_offload_debug
);
882 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
883 host_show_firmware_revision
, NULL
);
884 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
885 host_show_commands_outstanding
, NULL
);
886 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
887 host_show_transport_mode
, NULL
);
888 static DEVICE_ATTR(resettable
, S_IRUGO
,
889 host_show_resettable
, NULL
);
890 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
891 host_show_lockup_detected
, NULL
);
892 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
893 host_show_ctlr_num
, NULL
);
895 static struct device_attribute
*hpsa_sdev_attrs
[] = {
896 &dev_attr_raid_level
,
899 &dev_attr_hp_ssd_smart_path_enabled
,
901 &dev_attr_sas_address
,
905 static struct device_attribute
*hpsa_shost_attrs
[] = {
907 &dev_attr_firmware_revision
,
908 &dev_attr_commands_outstanding
,
909 &dev_attr_transport_mode
,
910 &dev_attr_resettable
,
911 &dev_attr_hp_ssd_smart_path_status
,
912 &dev_attr_raid_offload_debug
,
913 &dev_attr_lockup_detected
,
918 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
919 HPSA_MAX_CONCURRENT_PASSTHRUS)
921 static struct scsi_host_template hpsa_driver_template
= {
922 .module
= THIS_MODULE
,
925 .queuecommand
= hpsa_scsi_queue_command
,
926 .scan_start
= hpsa_scan_start
,
927 .scan_finished
= hpsa_scan_finished
,
928 .change_queue_depth
= hpsa_change_queue_depth
,
930 .use_clustering
= ENABLE_CLUSTERING
,
931 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
933 .slave_alloc
= hpsa_slave_alloc
,
934 .slave_configure
= hpsa_slave_configure
,
935 .slave_destroy
= hpsa_slave_destroy
,
937 .compat_ioctl
= hpsa_compat_ioctl
,
939 .sdev_attrs
= hpsa_sdev_attrs
,
940 .shost_attrs
= hpsa_shost_attrs
,
945 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
948 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
950 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
951 return h
->access
.command_completed(h
, q
);
953 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
954 return h
->access
.command_completed(h
, q
);
956 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
957 a
= rq
->head
[rq
->current_entry
];
959 atomic_dec(&h
->commands_outstanding
);
963 /* Check for wraparound */
964 if (rq
->current_entry
== h
->max_commands
) {
965 rq
->current_entry
= 0;
972 * There are some special bits in the bus address of the
973 * command that we have to set for the controller to know
974 * how to process the command:
976 * Normal performant mode:
977 * bit 0: 1 means performant mode, 0 means simple mode.
978 * bits 1-3 = block fetch table entry
979 * bits 4-6 = command type (== 0)
982 * bit 0 = "performant mode" bit.
983 * bits 1-3 = block fetch table entry
984 * bits 4-6 = command type (== 110)
985 * (command type is needed because ioaccel1 mode
986 * commands are submitted through the same register as normal
987 * mode commands, so this is how the controller knows whether
988 * the command is normal mode or ioaccel1 mode.)
991 * bit 0 = "performant mode" bit.
992 * bits 1-4 = block fetch table entry (note extra bit)
993 * bits 4-6 = not needed, because ioaccel2 mode has
994 * a separate special register for submitting commands.
998 * set_performant_mode: Modify the tag for cciss performant
999 * set bit 0 for pull model, bits 3-1 for block fetch
1002 #define DEFAULT_REPLY_QUEUE (-1)
1003 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1006 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1007 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1008 if (unlikely(!h
->msix_vectors
))
1010 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1011 c
->Header
.ReplyQueue
=
1012 raw_smp_processor_id() % h
->nreply_queues
;
1014 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1018 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1019 struct CommandList
*c
,
1022 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1025 * Tell the controller to post the reply to the queue for this
1026 * processor. This seems to give the best I/O throughput.
1028 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1029 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1031 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1033 * Set the bits in the address sent down to include:
1034 * - performant mode bit (bit 0)
1035 * - pull count (bits 1-3)
1036 * - command type (bits 4-6)
1038 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1039 IOACCEL1_BUSADDR_CMDTYPE
;
1042 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1043 struct CommandList
*c
,
1046 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1047 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1049 /* Tell the controller to post the reply to the queue for this
1050 * processor. This seems to give the best I/O throughput.
1052 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1053 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1055 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1056 /* Set the bits in the address sent down to include:
1057 * - performant mode bit not used in ioaccel mode 2
1058 * - pull count (bits 0-3)
1059 * - command type isn't needed for ioaccel2
1061 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1064 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1065 struct CommandList
*c
,
1068 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1071 * Tell the controller to post the reply to the queue for this
1072 * processor. This seems to give the best I/O throughput.
1074 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1075 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1077 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1079 * Set the bits in the address sent down to include:
1080 * - performant mode bit not used in ioaccel mode 2
1081 * - pull count (bits 0-3)
1082 * - command type isn't needed for ioaccel2
1084 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1087 static int is_firmware_flash_cmd(u8
*cdb
)
1089 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1093 * During firmware flash, the heartbeat register may not update as frequently
1094 * as it should. So we dial down lockup detection during firmware flash. and
1095 * dial it back up when firmware flash completes.
1097 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1098 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1099 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1100 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1101 struct CommandList
*c
)
1103 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1105 atomic_inc(&h
->firmware_flash_in_progress
);
1106 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1109 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1110 struct CommandList
*c
)
1112 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1113 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1114 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1117 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1118 struct CommandList
*c
, int reply_queue
)
1120 dial_down_lockup_detection_during_fw_flash(h
, c
);
1121 atomic_inc(&h
->commands_outstanding
);
1122 switch (c
->cmd_type
) {
1124 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1125 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1128 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1129 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1132 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1133 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1136 set_performant_mode(h
, c
, reply_queue
);
1137 h
->access
.submit_command(h
, c
);
1141 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1143 if (unlikely(hpsa_is_pending_event(c
)))
1144 return finish_cmd(c
);
1146 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1149 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1151 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1154 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1156 if (!h
->hba_inquiry_data
)
1158 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1163 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1164 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1166 /* finds an unused bus, target, lun for a new physical device
1167 * assumes h->devlock is held
1170 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1172 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1174 for (i
= 0; i
< h
->ndevices
; i
++) {
1175 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1176 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1179 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1180 if (i
< HPSA_MAX_DEVICES
) {
1189 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1190 struct hpsa_scsi_dev_t
*dev
, char *description
)
1192 #define LABEL_SIZE 25
1193 char label
[LABEL_SIZE
];
1195 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1198 switch (dev
->devtype
) {
1200 snprintf(label
, LABEL_SIZE
, "controller");
1202 case TYPE_ENCLOSURE
:
1203 snprintf(label
, LABEL_SIZE
, "enclosure");
1208 snprintf(label
, LABEL_SIZE
, "external");
1209 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1210 snprintf(label
, LABEL_SIZE
, "%s",
1211 raid_label
[PHYSICAL_DRIVE
]);
1213 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1214 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1215 raid_label
[dev
->raid_level
]);
1218 snprintf(label
, LABEL_SIZE
, "rom");
1221 snprintf(label
, LABEL_SIZE
, "tape");
1223 case TYPE_MEDIUM_CHANGER
:
1224 snprintf(label
, LABEL_SIZE
, "changer");
1227 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1231 dev_printk(level
, &h
->pdev
->dev
,
1232 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1233 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1235 scsi_device_type(dev
->devtype
),
1239 dev
->offload_config
? '+' : '-',
1240 dev
->offload_enabled
? '+' : '-',
1241 dev
->expose_device
);
1244 /* Add an entry into h->dev[] array. */
1245 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1246 struct hpsa_scsi_dev_t
*device
,
1247 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1249 /* assumes h->devlock is held */
1250 int n
= h
->ndevices
;
1252 unsigned char addr1
[8], addr2
[8];
1253 struct hpsa_scsi_dev_t
*sd
;
1255 if (n
>= HPSA_MAX_DEVICES
) {
1256 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1261 /* physical devices do not have lun or target assigned until now. */
1262 if (device
->lun
!= -1)
1263 /* Logical device, lun is already assigned. */
1266 /* If this device a non-zero lun of a multi-lun device
1267 * byte 4 of the 8-byte LUN addr will contain the logical
1268 * unit no, zero otherwise.
1270 if (device
->scsi3addr
[4] == 0) {
1271 /* This is not a non-zero lun of a multi-lun device */
1272 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1273 device
->bus
, &device
->target
, &device
->lun
) != 0)
1278 /* This is a non-zero lun of a multi-lun device.
1279 * Search through our list and find the device which
1280 * has the same 8 byte LUN address, excepting byte 4 and 5.
1281 * Assign the same bus and target for this new LUN.
1282 * Use the logical unit number from the firmware.
1284 memcpy(addr1
, device
->scsi3addr
, 8);
1287 for (i
= 0; i
< n
; i
++) {
1289 memcpy(addr2
, sd
->scsi3addr
, 8);
1292 /* differ only in byte 4 and 5? */
1293 if (memcmp(addr1
, addr2
, 8) == 0) {
1294 device
->bus
= sd
->bus
;
1295 device
->target
= sd
->target
;
1296 device
->lun
= device
->scsi3addr
[4];
1300 if (device
->lun
== -1) {
1301 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1302 " suspect firmware bug or unsupported hardware "
1303 "configuration.\n");
1311 added
[*nadded
] = device
;
1313 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1314 device
->expose_device
? "added" : "masked");
1315 device
->offload_to_be_enabled
= device
->offload_enabled
;
1316 device
->offload_enabled
= 0;
1320 /* Update an entry in h->dev[] array. */
1321 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1322 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1324 int offload_enabled
;
1325 /* assumes h->devlock is held */
1326 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1328 /* Raid level changed. */
1329 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1331 /* Raid offload parameters changed. Careful about the ordering. */
1332 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1334 * if drive is newly offload_enabled, we want to copy the
1335 * raid map data first. If previously offload_enabled and
1336 * offload_config were set, raid map data had better be
1337 * the same as it was before. if raid map data is changed
1338 * then it had better be the case that
1339 * h->dev[entry]->offload_enabled is currently 0.
1341 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1342 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1344 if (new_entry
->hba_ioaccel_enabled
) {
1345 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1346 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1348 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1349 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1350 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1351 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1354 * We can turn off ioaccel offload now, but need to delay turning
1355 * it on until we can update h->dev[entry]->phys_disk[], but we
1356 * can't do that until all the devices are updated.
1358 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1359 if (!new_entry
->offload_enabled
)
1360 h
->dev
[entry
]->offload_enabled
= 0;
1362 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1363 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1364 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1365 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1368 /* Replace an entry from h->dev[] array. */
1369 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1370 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1371 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1372 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1374 /* assumes h->devlock is held */
1375 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1376 removed
[*nremoved
] = h
->dev
[entry
];
1380 * New physical devices won't have target/lun assigned yet
1381 * so we need to preserve the values in the slot we are replacing.
1383 if (new_entry
->target
== -1) {
1384 new_entry
->target
= h
->dev
[entry
]->target
;
1385 new_entry
->lun
= h
->dev
[entry
]->lun
;
1388 h
->dev
[entry
] = new_entry
;
1389 added
[*nadded
] = new_entry
;
1391 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1392 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1393 new_entry
->offload_enabled
= 0;
1396 /* Remove an entry from h->dev[] array. */
1397 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1398 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1400 /* assumes h->devlock is held */
1402 struct hpsa_scsi_dev_t
*sd
;
1404 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1407 removed
[*nremoved
] = h
->dev
[entry
];
1410 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1411 h
->dev
[i
] = h
->dev
[i
+1];
1413 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1416 #define SCSI3ADDR_EQ(a, b) ( \
1417 (a)[7] == (b)[7] && \
1418 (a)[6] == (b)[6] && \
1419 (a)[5] == (b)[5] && \
1420 (a)[4] == (b)[4] && \
1421 (a)[3] == (b)[3] && \
1422 (a)[2] == (b)[2] && \
1423 (a)[1] == (b)[1] && \
1426 static void fixup_botched_add(struct ctlr_info
*h
,
1427 struct hpsa_scsi_dev_t
*added
)
1429 /* called when scsi_add_device fails in order to re-adjust
1430 * h->dev[] to match the mid layer's view.
1432 unsigned long flags
;
1435 spin_lock_irqsave(&h
->lock
, flags
);
1436 for (i
= 0; i
< h
->ndevices
; i
++) {
1437 if (h
->dev
[i
] == added
) {
1438 for (j
= i
; j
< h
->ndevices
-1; j
++)
1439 h
->dev
[j
] = h
->dev
[j
+1];
1444 spin_unlock_irqrestore(&h
->lock
, flags
);
1448 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1449 struct hpsa_scsi_dev_t
*dev2
)
1451 /* we compare everything except lun and target as these
1452 * are not yet assigned. Compare parts likely
1455 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1456 sizeof(dev1
->scsi3addr
)) != 0)
1458 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1459 sizeof(dev1
->device_id
)) != 0)
1461 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1463 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1465 if (dev1
->devtype
!= dev2
->devtype
)
1467 if (dev1
->bus
!= dev2
->bus
)
1472 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1473 struct hpsa_scsi_dev_t
*dev2
)
1475 /* Device attributes that can change, but don't mean
1476 * that the device is a different device, nor that the OS
1477 * needs to be told anything about the change.
1479 if (dev1
->raid_level
!= dev2
->raid_level
)
1481 if (dev1
->offload_config
!= dev2
->offload_config
)
1483 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1485 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1486 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1491 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1492 * and return needle location in *index. If scsi3addr matches, but not
1493 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1494 * location in *index.
1495 * In the case of a minor device attribute change, such as RAID level, just
1496 * return DEVICE_UPDATED, along with the updated device's location in index.
1497 * If needle not found, return DEVICE_NOT_FOUND.
1499 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1500 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1504 #define DEVICE_NOT_FOUND 0
1505 #define DEVICE_CHANGED 1
1506 #define DEVICE_SAME 2
1507 #define DEVICE_UPDATED 3
1509 return DEVICE_NOT_FOUND
;
1511 for (i
= 0; i
< haystack_size
; i
++) {
1512 if (haystack
[i
] == NULL
) /* previously removed. */
1514 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1516 if (device_is_the_same(needle
, haystack
[i
])) {
1517 if (device_updated(needle
, haystack
[i
]))
1518 return DEVICE_UPDATED
;
1521 /* Keep offline devices offline */
1522 if (needle
->volume_offline
)
1523 return DEVICE_NOT_FOUND
;
1524 return DEVICE_CHANGED
;
1529 return DEVICE_NOT_FOUND
;
1532 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1533 unsigned char scsi3addr
[])
1535 struct offline_device_entry
*device
;
1536 unsigned long flags
;
1538 /* Check to see if device is already on the list */
1539 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1540 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1541 if (memcmp(device
->scsi3addr
, scsi3addr
,
1542 sizeof(device
->scsi3addr
)) == 0) {
1543 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1547 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1549 /* Device is not on the list, add it. */
1550 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1554 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1555 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1556 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1557 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1560 /* Print a message explaining various offline volume states */
1561 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1562 struct hpsa_scsi_dev_t
*sd
)
1564 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1565 dev_info(&h
->pdev
->dev
,
1566 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1567 h
->scsi_host
->host_no
,
1568 sd
->bus
, sd
->target
, sd
->lun
);
1569 switch (sd
->volume_offline
) {
1572 case HPSA_LV_UNDERGOING_ERASE
:
1573 dev_info(&h
->pdev
->dev
,
1574 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1575 h
->scsi_host
->host_no
,
1576 sd
->bus
, sd
->target
, sd
->lun
);
1578 case HPSA_LV_NOT_AVAILABLE
:
1579 dev_info(&h
->pdev
->dev
,
1580 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1581 h
->scsi_host
->host_no
,
1582 sd
->bus
, sd
->target
, sd
->lun
);
1584 case HPSA_LV_UNDERGOING_RPI
:
1585 dev_info(&h
->pdev
->dev
,
1586 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1587 h
->scsi_host
->host_no
,
1588 sd
->bus
, sd
->target
, sd
->lun
);
1590 case HPSA_LV_PENDING_RPI
:
1591 dev_info(&h
->pdev
->dev
,
1592 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1593 h
->scsi_host
->host_no
,
1594 sd
->bus
, sd
->target
, sd
->lun
);
1596 case HPSA_LV_ENCRYPTED_NO_KEY
:
1597 dev_info(&h
->pdev
->dev
,
1598 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1599 h
->scsi_host
->host_no
,
1600 sd
->bus
, sd
->target
, sd
->lun
);
1602 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1603 dev_info(&h
->pdev
->dev
,
1604 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1605 h
->scsi_host
->host_no
,
1606 sd
->bus
, sd
->target
, sd
->lun
);
1608 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1609 dev_info(&h
->pdev
->dev
,
1610 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1611 h
->scsi_host
->host_no
,
1612 sd
->bus
, sd
->target
, sd
->lun
);
1614 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1615 dev_info(&h
->pdev
->dev
,
1616 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1617 h
->scsi_host
->host_no
,
1618 sd
->bus
, sd
->target
, sd
->lun
);
1620 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1621 dev_info(&h
->pdev
->dev
,
1622 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1623 h
->scsi_host
->host_no
,
1624 sd
->bus
, sd
->target
, sd
->lun
);
1626 case HPSA_LV_PENDING_ENCRYPTION
:
1627 dev_info(&h
->pdev
->dev
,
1628 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1629 h
->scsi_host
->host_no
,
1630 sd
->bus
, sd
->target
, sd
->lun
);
1632 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1633 dev_info(&h
->pdev
->dev
,
1634 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1635 h
->scsi_host
->host_no
,
1636 sd
->bus
, sd
->target
, sd
->lun
);
1642 * Figure the list of physical drive pointers for a logical drive with
1643 * raid offload configured.
1645 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1646 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1647 struct hpsa_scsi_dev_t
*logical_drive
)
1649 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1650 struct raid_map_disk_data
*dd
= &map
->data
[0];
1652 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1653 le16_to_cpu(map
->metadata_disks_per_row
);
1654 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1655 le16_to_cpu(map
->layout_map_count
) *
1656 total_disks_per_row
;
1657 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1658 total_disks_per_row
;
1661 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1662 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1664 logical_drive
->nphysical_disks
= nraid_map_entries
;
1667 for (i
= 0; i
< nraid_map_entries
; i
++) {
1668 logical_drive
->phys_disk
[i
] = NULL
;
1669 if (!logical_drive
->offload_config
)
1671 for (j
= 0; j
< ndevices
; j
++) {
1674 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1675 dev
[j
]->devtype
!= TYPE_ZBC
)
1677 if (is_logical_device(dev
[j
]))
1679 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1682 logical_drive
->phys_disk
[i
] = dev
[j
];
1684 qdepth
= min(h
->nr_cmds
, qdepth
+
1685 logical_drive
->phys_disk
[i
]->queue_depth
);
1690 * This can happen if a physical drive is removed and
1691 * the logical drive is degraded. In that case, the RAID
1692 * map data will refer to a physical disk which isn't actually
1693 * present. And in that case offload_enabled should already
1694 * be 0, but we'll turn it off here just in case
1696 if (!logical_drive
->phys_disk
[i
]) {
1697 logical_drive
->offload_enabled
= 0;
1698 logical_drive
->offload_to_be_enabled
= 0;
1699 logical_drive
->queue_depth
= 8;
1702 if (nraid_map_entries
)
1704 * This is correct for reads, too high for full stripe writes,
1705 * way too high for partial stripe writes
1707 logical_drive
->queue_depth
= qdepth
;
1709 logical_drive
->queue_depth
= h
->nr_cmds
;
1712 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1713 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1717 for (i
= 0; i
< ndevices
; i
++) {
1720 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1721 dev
[i
]->devtype
!= TYPE_ZBC
)
1723 if (!is_logical_device(dev
[i
]))
1727 * If offload is currently enabled, the RAID map and
1728 * phys_disk[] assignment *better* not be changing
1729 * and since it isn't changing, we do not need to
1732 if (dev
[i
]->offload_enabled
)
1735 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1739 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1746 if (is_logical_device(device
)) /* RAID */
1747 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1748 device
->target
, device
->lun
);
1750 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1755 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1756 struct hpsa_scsi_dev_t
*dev
)
1761 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1762 struct CommandList
*c
= h
->cmd_pool
+ i
;
1763 int refcount
= atomic_inc_return(&c
->refcount
);
1765 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1767 unsigned long flags
;
1769 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1770 if (!hpsa_is_cmd_idle(c
))
1772 spin_unlock_irqrestore(&h
->lock
, flags
);
1781 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1782 struct hpsa_scsi_dev_t
*device
)
1788 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1793 dev_warn(&h
->pdev
->dev
,
1794 "%s: removing device with %d outstanding commands!\n",
1800 static void hpsa_remove_device(struct ctlr_info
*h
,
1801 struct hpsa_scsi_dev_t
*device
)
1803 struct scsi_device
*sdev
= NULL
;
1808 if (is_logical_device(device
)) { /* RAID */
1809 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1810 device
->target
, device
->lun
);
1812 scsi_remove_device(sdev
);
1813 scsi_device_put(sdev
);
1816 * We don't expect to get here. Future commands
1817 * to this device will get a selection timeout as
1818 * if the device were gone.
1820 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1821 "didn't find device for removal.");
1825 device
->removed
= 1;
1826 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1828 hpsa_remove_sas_device(device
);
1832 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1833 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1835 /* sd contains scsi3 addresses and devtypes, and inquiry
1836 * data. This function takes what's in sd to be the current
1837 * reality and updates h->dev[] to reflect that reality.
1839 int i
, entry
, device_change
, changes
= 0;
1840 struct hpsa_scsi_dev_t
*csd
;
1841 unsigned long flags
;
1842 struct hpsa_scsi_dev_t
**added
, **removed
;
1843 int nadded
, nremoved
;
1846 * A reset can cause a device status to change
1847 * re-schedule the scan to see what happened.
1849 spin_lock_irqsave(&h
->reset_lock
, flags
);
1850 if (h
->reset_in_progress
) {
1851 h
->drv_req_rescan
= 1;
1852 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1855 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1857 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1858 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1860 if (!added
|| !removed
) {
1861 dev_warn(&h
->pdev
->dev
, "out of memory in "
1862 "adjust_hpsa_scsi_table\n");
1866 spin_lock_irqsave(&h
->devlock
, flags
);
1868 /* find any devices in h->dev[] that are not in
1869 * sd[] and remove them from h->dev[], and for any
1870 * devices which have changed, remove the old device
1871 * info and add the new device info.
1872 * If minor device attributes change, just update
1873 * the existing device structure.
1878 while (i
< h
->ndevices
) {
1880 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1881 if (device_change
== DEVICE_NOT_FOUND
) {
1883 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1884 continue; /* remove ^^^, hence i not incremented */
1885 } else if (device_change
== DEVICE_CHANGED
) {
1887 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1888 added
, &nadded
, removed
, &nremoved
);
1889 /* Set it to NULL to prevent it from being freed
1890 * at the bottom of hpsa_update_scsi_devices()
1893 } else if (device_change
== DEVICE_UPDATED
) {
1894 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1899 /* Now, make sure every device listed in sd[] is also
1900 * listed in h->dev[], adding them if they aren't found
1903 for (i
= 0; i
< nsds
; i
++) {
1904 if (!sd
[i
]) /* if already added above. */
1907 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1908 * as the SCSI mid-layer does not handle such devices well.
1909 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1910 * at 160Hz, and prevents the system from coming up.
1912 if (sd
[i
]->volume_offline
) {
1913 hpsa_show_volume_status(h
, sd
[i
]);
1914 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1918 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1919 h
->ndevices
, &entry
);
1920 if (device_change
== DEVICE_NOT_FOUND
) {
1922 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1924 sd
[i
] = NULL
; /* prevent from being freed later. */
1925 } else if (device_change
== DEVICE_CHANGED
) {
1926 /* should never happen... */
1928 dev_warn(&h
->pdev
->dev
,
1929 "device unexpectedly changed.\n");
1930 /* but if it does happen, we just ignore that device */
1933 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1935 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1936 * any logical drives that need it enabled.
1938 for (i
= 0; i
< h
->ndevices
; i
++) {
1939 if (h
->dev
[i
] == NULL
)
1941 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1944 spin_unlock_irqrestore(&h
->devlock
, flags
);
1946 /* Monitor devices which are in one of several NOT READY states to be
1947 * brought online later. This must be done without holding h->devlock,
1948 * so don't touch h->dev[]
1950 for (i
= 0; i
< nsds
; i
++) {
1951 if (!sd
[i
]) /* if already added above. */
1953 if (sd
[i
]->volume_offline
)
1954 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1957 /* Don't notify scsi mid layer of any changes the first time through
1958 * (or if there are no changes) scsi_scan_host will do it later the
1959 * first time through.
1964 /* Notify scsi mid layer of any removed devices */
1965 for (i
= 0; i
< nremoved
; i
++) {
1966 if (removed
[i
] == NULL
)
1968 if (removed
[i
]->expose_device
)
1969 hpsa_remove_device(h
, removed
[i
]);
1974 /* Notify scsi mid layer of any added devices */
1975 for (i
= 0; i
< nadded
; i
++) {
1978 if (added
[i
] == NULL
)
1980 if (!(added
[i
]->expose_device
))
1982 rc
= hpsa_add_device(h
, added
[i
]);
1985 dev_warn(&h
->pdev
->dev
,
1986 "addition failed %d, device not added.", rc
);
1987 /* now we have to remove it from h->dev,
1988 * since it didn't get added to scsi mid layer
1990 fixup_botched_add(h
, added
[i
]);
1991 h
->drv_req_rescan
= 1;
2000 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2001 * Assume's h->devlock is held.
2003 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2004 int bus
, int target
, int lun
)
2007 struct hpsa_scsi_dev_t
*sd
;
2009 for (i
= 0; i
< h
->ndevices
; i
++) {
2011 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2017 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2019 struct hpsa_scsi_dev_t
*sd
= NULL
;
2020 unsigned long flags
;
2021 struct ctlr_info
*h
;
2023 h
= sdev_to_hba(sdev
);
2024 spin_lock_irqsave(&h
->devlock
, flags
);
2025 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2026 struct scsi_target
*starget
;
2027 struct sas_rphy
*rphy
;
2029 starget
= scsi_target(sdev
);
2030 rphy
= target_to_rphy(starget
);
2031 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2033 sd
->target
= sdev_id(sdev
);
2034 sd
->lun
= sdev
->lun
;
2038 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2039 sdev_id(sdev
), sdev
->lun
);
2041 if (sd
&& sd
->expose_device
) {
2042 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2043 sdev
->hostdata
= sd
;
2045 sdev
->hostdata
= NULL
;
2046 spin_unlock_irqrestore(&h
->devlock
, flags
);
2050 /* configure scsi device based on internal per-device structure */
2051 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2053 struct hpsa_scsi_dev_t
*sd
;
2056 sd
= sdev
->hostdata
;
2057 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2061 queue_depth
= EXTERNAL_QD
;
2063 queue_depth
= sd
->queue_depth
!= 0 ?
2064 sd
->queue_depth
: sdev
->host
->can_queue
;
2066 queue_depth
= sdev
->host
->can_queue
;
2068 scsi_change_queue_depth(sdev
, queue_depth
);
2073 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2075 /* nothing to do. */
2078 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2082 if (!h
->ioaccel2_cmd_sg_list
)
2084 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2085 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2086 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2088 kfree(h
->ioaccel2_cmd_sg_list
);
2089 h
->ioaccel2_cmd_sg_list
= NULL
;
2092 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2096 if (h
->chainsize
<= 0)
2099 h
->ioaccel2_cmd_sg_list
=
2100 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2102 if (!h
->ioaccel2_cmd_sg_list
)
2104 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2105 h
->ioaccel2_cmd_sg_list
[i
] =
2106 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2107 h
->maxsgentries
, GFP_KERNEL
);
2108 if (!h
->ioaccel2_cmd_sg_list
[i
])
2114 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2118 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2122 if (!h
->cmd_sg_list
)
2124 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2125 kfree(h
->cmd_sg_list
[i
]);
2126 h
->cmd_sg_list
[i
] = NULL
;
2128 kfree(h
->cmd_sg_list
);
2129 h
->cmd_sg_list
= NULL
;
2132 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2136 if (h
->chainsize
<= 0)
2139 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2141 if (!h
->cmd_sg_list
)
2144 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2145 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2146 h
->chainsize
, GFP_KERNEL
);
2147 if (!h
->cmd_sg_list
[i
])
2154 hpsa_free_sg_chain_blocks(h
);
2158 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2159 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2161 struct ioaccel2_sg_element
*chain_block
;
2165 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2166 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2167 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2169 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2170 /* prevent subsequent unmapping */
2171 cp
->sg
->address
= 0;
2174 cp
->sg
->address
= cpu_to_le64(temp64
);
2178 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2179 struct io_accel2_cmd
*cp
)
2181 struct ioaccel2_sg_element
*chain_sg
;
2186 temp64
= le64_to_cpu(chain_sg
->address
);
2187 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2188 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2191 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2192 struct CommandList
*c
)
2194 struct SGDescriptor
*chain_sg
, *chain_block
;
2198 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2199 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2200 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2201 chain_len
= sizeof(*chain_sg
) *
2202 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2203 chain_sg
->Len
= cpu_to_le32(chain_len
);
2204 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2206 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2207 /* prevent subsequent unmapping */
2208 chain_sg
->Addr
= cpu_to_le64(0);
2211 chain_sg
->Addr
= cpu_to_le64(temp64
);
2215 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2216 struct CommandList
*c
)
2218 struct SGDescriptor
*chain_sg
;
2220 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2223 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2224 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2225 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2229 /* Decode the various types of errors on ioaccel2 path.
2230 * Return 1 for any error that should generate a RAID path retry.
2231 * Return 0 for errors that don't require a RAID path retry.
2233 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2234 struct CommandList
*c
,
2235 struct scsi_cmnd
*cmd
,
2236 struct io_accel2_cmd
*c2
,
2237 struct hpsa_scsi_dev_t
*dev
)
2241 u32 ioaccel2_resid
= 0;
2243 switch (c2
->error_data
.serv_response
) {
2244 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2245 switch (c2
->error_data
.status
) {
2246 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2248 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2249 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2250 if (c2
->error_data
.data_present
!=
2251 IOACCEL2_SENSE_DATA_PRESENT
) {
2252 memset(cmd
->sense_buffer
, 0,
2253 SCSI_SENSE_BUFFERSIZE
);
2256 /* copy the sense data */
2257 data_len
= c2
->error_data
.sense_data_len
;
2258 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2259 data_len
= SCSI_SENSE_BUFFERSIZE
;
2260 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2262 sizeof(c2
->error_data
.sense_data_buff
);
2263 memcpy(cmd
->sense_buffer
,
2264 c2
->error_data
.sense_data_buff
, data_len
);
2267 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2270 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2273 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2276 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2284 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2285 switch (c2
->error_data
.status
) {
2286 case IOACCEL2_STATUS_SR_IO_ERROR
:
2287 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2288 case IOACCEL2_STATUS_SR_OVERRUN
:
2291 case IOACCEL2_STATUS_SR_UNDERRUN
:
2292 cmd
->result
= (DID_OK
<< 16); /* host byte */
2293 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2294 ioaccel2_resid
= get_unaligned_le32(
2295 &c2
->error_data
.resid_cnt
[0]);
2296 scsi_set_resid(cmd
, ioaccel2_resid
);
2298 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2299 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2300 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2302 * Did an HBA disk disappear? We will eventually
2303 * get a state change event from the controller but
2304 * in the meantime, we need to tell the OS that the
2305 * HBA disk is no longer there and stop I/O
2306 * from going down. This allows the potential re-insert
2307 * of the disk to get the same device node.
2309 if (dev
->physical_device
&& dev
->expose_device
) {
2310 cmd
->result
= DID_NO_CONNECT
<< 16;
2312 h
->drv_req_rescan
= 1;
2313 dev_warn(&h
->pdev
->dev
,
2314 "%s: device is gone!\n", __func__
);
2317 * Retry by sending down the RAID path.
2318 * We will get an event from ctlr to
2319 * trigger rescan regardless.
2327 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2329 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2331 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2334 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2341 return retry
; /* retry on raid path? */
2344 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2345 struct CommandList
*c
)
2347 bool do_wake
= false;
2350 * Reset c->scsi_cmd here so that the reset handler will know
2351 * this command has completed. Then, check to see if the handler is
2352 * waiting for this command, and, if so, wake it.
2354 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2355 mb(); /* Declare command idle before checking for pending events. */
2356 if (c
->reset_pending
) {
2357 unsigned long flags
;
2358 struct hpsa_scsi_dev_t
*dev
;
2361 * There appears to be a reset pending; lock the lock and
2362 * reconfirm. If so, then decrement the count of outstanding
2363 * commands and wake the reset command if this is the last one.
2365 spin_lock_irqsave(&h
->lock
, flags
);
2366 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2367 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2369 c
->reset_pending
= NULL
;
2370 spin_unlock_irqrestore(&h
->lock
, flags
);
2374 wake_up_all(&h
->event_sync_wait_queue
);
2377 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2378 struct CommandList
*c
)
2380 hpsa_cmd_resolve_events(h
, c
);
2381 cmd_tagged_free(h
, c
);
2384 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2385 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2387 hpsa_cmd_resolve_and_free(h
, c
);
2388 if (cmd
&& cmd
->scsi_done
)
2389 cmd
->scsi_done(cmd
);
2392 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2394 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2395 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2398 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2399 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2400 struct hpsa_scsi_dev_t
*dev
)
2402 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2404 /* check for good status */
2405 if (likely(c2
->error_data
.serv_response
== 0 &&
2406 c2
->error_data
.status
== 0))
2407 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2410 * Any RAID offload error results in retry which will use
2411 * the normal I/O path so the controller can handle whatever's
2414 if (is_logical_device(dev
) &&
2415 c2
->error_data
.serv_response
==
2416 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2417 if (c2
->error_data
.status
==
2418 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2419 dev
->offload_enabled
= 0;
2420 dev
->offload_to_be_enabled
= 0;
2423 return hpsa_retry_cmd(h
, c
);
2426 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2427 return hpsa_retry_cmd(h
, c
);
2429 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2432 /* Returns 0 on success, < 0 otherwise. */
2433 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2434 struct CommandList
*cp
)
2436 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2438 switch (tmf_status
) {
2439 case CISS_TMF_COMPLETE
:
2441 * CISS_TMF_COMPLETE never happens, instead,
2442 * ei->CommandStatus == 0 for this case.
2444 case CISS_TMF_SUCCESS
:
2446 case CISS_TMF_INVALID_FRAME
:
2447 case CISS_TMF_NOT_SUPPORTED
:
2448 case CISS_TMF_FAILED
:
2449 case CISS_TMF_WRONG_LUN
:
2450 case CISS_TMF_OVERLAPPED_TAG
:
2453 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2460 static void complete_scsi_command(struct CommandList
*cp
)
2462 struct scsi_cmnd
*cmd
;
2463 struct ctlr_info
*h
;
2464 struct ErrorInfo
*ei
;
2465 struct hpsa_scsi_dev_t
*dev
;
2466 struct io_accel2_cmd
*c2
;
2469 u8 asc
; /* additional sense code */
2470 u8 ascq
; /* additional sense code qualifier */
2471 unsigned long sense_data_size
;
2478 cmd
->result
= DID_NO_CONNECT
<< 16;
2479 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2482 dev
= cmd
->device
->hostdata
;
2484 cmd
->result
= DID_NO_CONNECT
<< 16;
2485 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2487 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2489 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2490 if ((cp
->cmd_type
== CMD_SCSI
) &&
2491 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2492 hpsa_unmap_sg_chain_block(h
, cp
);
2494 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2495 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2496 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2498 cmd
->result
= (DID_OK
<< 16); /* host byte */
2499 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2501 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2502 if (dev
->physical_device
&& dev
->expose_device
&&
2504 cmd
->result
= DID_NO_CONNECT
<< 16;
2505 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2507 if (likely(cp
->phys_disk
!= NULL
))
2508 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2512 * We check for lockup status here as it may be set for
2513 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2514 * fail_all_oustanding_cmds()
2516 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2517 /* DID_NO_CONNECT will prevent a retry */
2518 cmd
->result
= DID_NO_CONNECT
<< 16;
2519 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2522 if ((unlikely(hpsa_is_pending_event(cp
))))
2523 if (cp
->reset_pending
)
2524 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2526 if (cp
->cmd_type
== CMD_IOACCEL2
)
2527 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2529 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2530 if (ei
->CommandStatus
== 0)
2531 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2533 /* For I/O accelerator commands, copy over some fields to the normal
2534 * CISS header used below for error handling.
2536 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2537 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2538 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2539 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2540 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2541 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2542 cp
->Header
.tag
= c
->tag
;
2543 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2544 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2546 /* Any RAID offload error results in retry which will use
2547 * the normal I/O path so the controller can handle whatever's
2550 if (is_logical_device(dev
)) {
2551 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2552 dev
->offload_enabled
= 0;
2553 return hpsa_retry_cmd(h
, cp
);
2557 /* an error has occurred */
2558 switch (ei
->CommandStatus
) {
2560 case CMD_TARGET_STATUS
:
2561 cmd
->result
|= ei
->ScsiStatus
;
2562 /* copy the sense data */
2563 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2564 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2566 sense_data_size
= sizeof(ei
->SenseInfo
);
2567 if (ei
->SenseLen
< sense_data_size
)
2568 sense_data_size
= ei
->SenseLen
;
2569 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2571 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2572 &sense_key
, &asc
, &ascq
);
2573 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2574 if (sense_key
== ABORTED_COMMAND
) {
2575 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2580 /* Problem was not a check condition
2581 * Pass it up to the upper layers...
2583 if (ei
->ScsiStatus
) {
2584 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2585 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2586 "Returning result: 0x%x\n",
2588 sense_key
, asc
, ascq
,
2590 } else { /* scsi status is zero??? How??? */
2591 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2592 "Returning no connection.\n", cp
),
2594 /* Ordinarily, this case should never happen,
2595 * but there is a bug in some released firmware
2596 * revisions that allows it to happen if, for
2597 * example, a 4100 backplane loses power and
2598 * the tape drive is in it. We assume that
2599 * it's a fatal error of some kind because we
2600 * can't show that it wasn't. We will make it
2601 * look like selection timeout since that is
2602 * the most common reason for this to occur,
2603 * and it's severe enough.
2606 cmd
->result
= DID_NO_CONNECT
<< 16;
2610 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2612 case CMD_DATA_OVERRUN
:
2613 dev_warn(&h
->pdev
->dev
,
2614 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2617 /* print_bytes(cp, sizeof(*cp), 1, 0);
2619 /* We get CMD_INVALID if you address a non-existent device
2620 * instead of a selection timeout (no response). You will
2621 * see this if you yank out a drive, then try to access it.
2622 * This is kind of a shame because it means that any other
2623 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2624 * missing target. */
2625 cmd
->result
= DID_NO_CONNECT
<< 16;
2628 case CMD_PROTOCOL_ERR
:
2629 cmd
->result
= DID_ERROR
<< 16;
2630 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2633 case CMD_HARDWARE_ERR
:
2634 cmd
->result
= DID_ERROR
<< 16;
2635 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2638 case CMD_CONNECTION_LOST
:
2639 cmd
->result
= DID_ERROR
<< 16;
2640 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2644 cmd
->result
= DID_ABORT
<< 16;
2646 case CMD_ABORT_FAILED
:
2647 cmd
->result
= DID_ERROR
<< 16;
2648 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2651 case CMD_UNSOLICITED_ABORT
:
2652 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2653 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2657 cmd
->result
= DID_TIME_OUT
<< 16;
2658 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2661 case CMD_UNABORTABLE
:
2662 cmd
->result
= DID_ERROR
<< 16;
2663 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2665 case CMD_TMF_STATUS
:
2666 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2667 cmd
->result
= DID_ERROR
<< 16;
2669 case CMD_IOACCEL_DISABLED
:
2670 /* This only handles the direct pass-through case since RAID
2671 * offload is handled above. Just attempt a retry.
2673 cmd
->result
= DID_SOFT_ERROR
<< 16;
2674 dev_warn(&h
->pdev
->dev
,
2675 "cp %p had HP SSD Smart Path error\n", cp
);
2678 cmd
->result
= DID_ERROR
<< 16;
2679 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2680 cp
, ei
->CommandStatus
);
2683 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2686 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2687 struct CommandList
*c
, int sg_used
, int data_direction
)
2691 for (i
= 0; i
< sg_used
; i
++)
2692 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2693 le32_to_cpu(c
->SG
[i
].Len
),
2697 static int hpsa_map_one(struct pci_dev
*pdev
,
2698 struct CommandList
*cp
,
2705 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2706 cp
->Header
.SGList
= 0;
2707 cp
->Header
.SGTotal
= cpu_to_le16(0);
2711 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2712 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2713 /* Prevent subsequent unmap of something never mapped */
2714 cp
->Header
.SGList
= 0;
2715 cp
->Header
.SGTotal
= cpu_to_le16(0);
2718 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2719 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2720 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2721 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2722 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2726 #define NO_TIMEOUT ((unsigned long) -1)
2727 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2728 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2729 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2731 DECLARE_COMPLETION_ONSTACK(wait
);
2734 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2735 if (timeout_msecs
== NO_TIMEOUT
) {
2736 /* TODO: get rid of this no-timeout thing */
2737 wait_for_completion_io(&wait
);
2740 if (!wait_for_completion_io_timeout(&wait
,
2741 msecs_to_jiffies(timeout_msecs
))) {
2742 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2748 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2749 int reply_queue
, unsigned long timeout_msecs
)
2751 if (unlikely(lockup_detected(h
))) {
2752 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2755 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2758 static u32
lockup_detected(struct ctlr_info
*h
)
2761 u32 rc
, *lockup_detected
;
2764 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2765 rc
= *lockup_detected
;
2770 #define MAX_DRIVER_CMD_RETRIES 25
2771 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2772 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2774 int backoff_time
= 10, retry_count
= 0;
2778 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2779 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2784 if (retry_count
> 3) {
2785 msleep(backoff_time
);
2786 if (backoff_time
< 1000)
2789 } while ((check_for_unit_attention(h
, c
) ||
2790 check_for_busy(h
, c
)) &&
2791 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2792 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2793 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2798 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2799 struct CommandList
*c
)
2801 const u8
*cdb
= c
->Request
.CDB
;
2802 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2804 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2808 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2809 struct CommandList
*cp
)
2811 const struct ErrorInfo
*ei
= cp
->err_info
;
2812 struct device
*d
= &cp
->h
->pdev
->dev
;
2813 u8 sense_key
, asc
, ascq
;
2816 switch (ei
->CommandStatus
) {
2817 case CMD_TARGET_STATUS
:
2818 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2819 sense_len
= sizeof(ei
->SenseInfo
);
2821 sense_len
= ei
->SenseLen
;
2822 decode_sense_data(ei
->SenseInfo
, sense_len
,
2823 &sense_key
, &asc
, &ascq
);
2824 hpsa_print_cmd(h
, "SCSI status", cp
);
2825 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2826 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2827 sense_key
, asc
, ascq
);
2829 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2830 if (ei
->ScsiStatus
== 0)
2831 dev_warn(d
, "SCSI status is abnormally zero. "
2832 "(probably indicates selection timeout "
2833 "reported incorrectly due to a known "
2834 "firmware bug, circa July, 2001.)\n");
2836 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2838 case CMD_DATA_OVERRUN
:
2839 hpsa_print_cmd(h
, "overrun condition", cp
);
2842 /* controller unfortunately reports SCSI passthru's
2843 * to non-existent targets as invalid commands.
2845 hpsa_print_cmd(h
, "invalid command", cp
);
2846 dev_warn(d
, "probably means device no longer present\n");
2849 case CMD_PROTOCOL_ERR
:
2850 hpsa_print_cmd(h
, "protocol error", cp
);
2852 case CMD_HARDWARE_ERR
:
2853 hpsa_print_cmd(h
, "hardware error", cp
);
2855 case CMD_CONNECTION_LOST
:
2856 hpsa_print_cmd(h
, "connection lost", cp
);
2859 hpsa_print_cmd(h
, "aborted", cp
);
2861 case CMD_ABORT_FAILED
:
2862 hpsa_print_cmd(h
, "abort failed", cp
);
2864 case CMD_UNSOLICITED_ABORT
:
2865 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2868 hpsa_print_cmd(h
, "timed out", cp
);
2870 case CMD_UNABORTABLE
:
2871 hpsa_print_cmd(h
, "unabortable", cp
);
2873 case CMD_CTLR_LOCKUP
:
2874 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2877 hpsa_print_cmd(h
, "unknown status", cp
);
2878 dev_warn(d
, "Unknown command status %x\n",
2883 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2884 u16 page
, unsigned char *buf
,
2885 unsigned char bufsize
)
2888 struct CommandList
*c
;
2889 struct ErrorInfo
*ei
;
2893 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2894 page
, scsi3addr
, TYPE_CMD
)) {
2898 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2899 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2903 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2904 hpsa_scsi_interpret_error(h
, c
);
2912 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2913 u8 reset_type
, int reply_queue
)
2916 struct CommandList
*c
;
2917 struct ErrorInfo
*ei
;
2922 /* fill_cmd can't fail here, no data buffer to map. */
2923 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2924 scsi3addr
, TYPE_MSG
);
2925 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2927 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2930 /* no unmap needed here because no data xfer. */
2933 if (ei
->CommandStatus
!= 0) {
2934 hpsa_scsi_interpret_error(h
, c
);
2942 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2943 struct hpsa_scsi_dev_t
*dev
,
2944 unsigned char *scsi3addr
)
2948 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2949 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2951 if (hpsa_is_cmd_idle(c
))
2954 switch (c
->cmd_type
) {
2956 case CMD_IOCTL_PEND
:
2957 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2958 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2963 if (c
->phys_disk
== dev
) {
2964 /* HBA mode match */
2967 /* Possible RAID mode -- check each phys dev. */
2968 /* FIXME: Do we need to take out a lock here? If
2969 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2971 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2972 /* FIXME: an alternate test might be
2974 * match = dev->phys_disk[i]->ioaccel_handle
2975 * == c2->scsi_nexus; */
2976 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2982 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2983 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2984 le32_to_cpu(ac
->it_nexus
);
2988 case 0: /* The command is in the middle of being initialized. */
2993 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3001 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3002 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3007 /* We can really only handle one reset at a time */
3008 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3009 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3013 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3015 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3016 struct CommandList
*c
= h
->cmd_pool
+ i
;
3017 int refcount
= atomic_inc_return(&c
->refcount
);
3019 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3020 unsigned long flags
;
3023 * Mark the target command as having a reset pending,
3024 * then lock a lock so that the command cannot complete
3025 * while we're considering it. If the command is not
3026 * idle then count it; otherwise revoke the event.
3028 c
->reset_pending
= dev
;
3029 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3030 if (!hpsa_is_cmd_idle(c
))
3031 atomic_inc(&dev
->reset_cmds_out
);
3033 c
->reset_pending
= NULL
;
3034 spin_unlock_irqrestore(&h
->lock
, flags
);
3040 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3042 wait_event(h
->event_sync_wait_queue
,
3043 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3044 lockup_detected(h
));
3046 if (unlikely(lockup_detected(h
))) {
3047 dev_warn(&h
->pdev
->dev
,
3048 "Controller lockup detected during reset wait\n");
3053 atomic_set(&dev
->reset_cmds_out
, 0);
3055 rc
= wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3057 mutex_unlock(&h
->reset_mutex
);
3061 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3062 unsigned char *scsi3addr
, unsigned char *raid_level
)
3067 *raid_level
= RAID_UNKNOWN
;
3068 buf
= kzalloc(64, GFP_KERNEL
);
3072 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3073 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3076 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3077 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3080 *raid_level
= buf
[8];
3081 if (*raid_level
> RAID_UNKNOWN
)
3082 *raid_level
= RAID_UNKNOWN
;
3088 #define HPSA_MAP_DEBUG
3089 #ifdef HPSA_MAP_DEBUG
3090 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3091 struct raid_map_data
*map_buff
)
3093 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3095 u16 map_cnt
, row_cnt
, disks_per_row
;
3100 /* Show details only if debugging has been activated. */
3101 if (h
->raid_offload_debug
< 2)
3104 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3105 le32_to_cpu(map_buff
->structure_size
));
3106 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3107 le32_to_cpu(map_buff
->volume_blk_size
));
3108 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3109 le64_to_cpu(map_buff
->volume_blk_cnt
));
3110 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3111 map_buff
->phys_blk_shift
);
3112 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3113 map_buff
->parity_rotation_shift
);
3114 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3115 le16_to_cpu(map_buff
->strip_size
));
3116 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3117 le64_to_cpu(map_buff
->disk_starting_blk
));
3118 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3119 le64_to_cpu(map_buff
->disk_blk_cnt
));
3120 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3121 le16_to_cpu(map_buff
->data_disks_per_row
));
3122 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3123 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3124 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3125 le16_to_cpu(map_buff
->row_cnt
));
3126 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3127 le16_to_cpu(map_buff
->layout_map_count
));
3128 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3129 le16_to_cpu(map_buff
->flags
));
3130 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3131 le16_to_cpu(map_buff
->flags
) &
3132 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3133 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3134 le16_to_cpu(map_buff
->dekindex
));
3135 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3136 for (map
= 0; map
< map_cnt
; map
++) {
3137 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3138 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3139 for (row
= 0; row
< row_cnt
; row
++) {
3140 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3142 le16_to_cpu(map_buff
->data_disks_per_row
);
3143 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3144 dev_info(&h
->pdev
->dev
,
3145 " D%02u: h=0x%04x xor=%u,%u\n",
3146 col
, dd
->ioaccel_handle
,
3147 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3149 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3150 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3151 dev_info(&h
->pdev
->dev
,
3152 " M%02u: h=0x%04x xor=%u,%u\n",
3153 col
, dd
->ioaccel_handle
,
3154 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3159 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3160 __attribute__((unused
)) int rc
,
3161 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3166 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3167 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3170 struct CommandList
*c
;
3171 struct ErrorInfo
*ei
;
3175 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3176 sizeof(this_device
->raid_map
), 0,
3177 scsi3addr
, TYPE_CMD
)) {
3178 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3182 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3183 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3187 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3188 hpsa_scsi_interpret_error(h
, c
);
3194 /* @todo in the future, dynamically allocate RAID map memory */
3195 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3196 sizeof(this_device
->raid_map
)) {
3197 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3200 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3207 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3208 unsigned char scsi3addr
[], u16 bmic_device_index
,
3209 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3212 struct CommandList
*c
;
3213 struct ErrorInfo
*ei
;
3217 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3218 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3222 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3223 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3225 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3226 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3230 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3231 hpsa_scsi_interpret_error(h
, c
);
3239 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3240 struct bmic_identify_controller
*buf
, size_t bufsize
)
3243 struct CommandList
*c
;
3244 struct ErrorInfo
*ei
;
3248 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3249 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3253 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3254 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3258 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3259 hpsa_scsi_interpret_error(h
, c
);
3267 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3268 unsigned char scsi3addr
[], u16 bmic_device_index
,
3269 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3272 struct CommandList
*c
;
3273 struct ErrorInfo
*ei
;
3276 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3277 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3281 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3282 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3284 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3287 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3288 hpsa_scsi_interpret_error(h
, c
);
3298 * get enclosure information
3299 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3300 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3301 * Uses id_physical_device to determine the box_index.
3303 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3304 unsigned char *scsi3addr
,
3305 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3306 struct hpsa_scsi_dev_t
*encl_dev
)
3309 struct CommandList
*c
= NULL
;
3310 struct ErrorInfo
*ei
= NULL
;
3311 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3312 struct bmic_identify_physical_device
*id_phys
= NULL
;
3313 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3314 u16 bmic_device_index
= 0;
3316 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3318 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3323 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3328 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3332 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3336 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3337 id_phys
, sizeof(*id_phys
));
3339 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3340 __func__
, encl_dev
->external
, bmic_device_index
);
3346 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3347 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3352 if (id_phys
->phys_connector
[1] == 'E')
3353 c
->Request
.CDB
[5] = id_phys
->box_index
;
3355 c
->Request
.CDB
[5] = 0;
3357 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3363 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3368 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3369 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3370 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3381 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3382 "Error, could not get enclosure information\n");
3385 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3386 unsigned char *scsi3addr
)
3388 struct ReportExtendedLUNdata
*physdev
;
3393 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3397 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3398 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3402 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3404 for (i
= 0; i
< nphysicals
; i
++)
3405 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3406 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3415 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3416 struct hpsa_scsi_dev_t
*dev
)
3421 if (is_hba_lunid(scsi3addr
)) {
3422 struct bmic_sense_subsystem_info
*ssi
;
3424 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3428 rc
= hpsa_bmic_sense_subsystem_information(h
,
3429 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3431 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3432 h
->sas_address
= sa
;
3437 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3439 dev
->sas_address
= sa
;
3442 /* Get a device id from inquiry page 0x83 */
3443 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3444 unsigned char scsi3addr
[], u8 page
)
3449 unsigned char *buf
, bufsize
;
3451 buf
= kzalloc(256, GFP_KERNEL
);
3455 /* Get the size of the page list first */
3456 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3457 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3458 buf
, HPSA_VPD_HEADER_SZ
);
3460 goto exit_unsupported
;
3462 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3463 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3467 /* Get the whole VPD page list */
3468 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3469 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3472 goto exit_unsupported
;
3475 for (i
= 1; i
<= pages
; i
++)
3476 if (buf
[3 + i
] == page
)
3477 goto exit_supported
;
3486 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3487 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3493 this_device
->offload_config
= 0;
3494 this_device
->offload_enabled
= 0;
3495 this_device
->offload_to_be_enabled
= 0;
3497 buf
= kzalloc(64, GFP_KERNEL
);
3500 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3502 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3503 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3507 #define IOACCEL_STATUS_BYTE 4
3508 #define OFFLOAD_CONFIGURED_BIT 0x01
3509 #define OFFLOAD_ENABLED_BIT 0x02
3510 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3511 this_device
->offload_config
=
3512 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3513 if (this_device
->offload_config
) {
3514 this_device
->offload_enabled
=
3515 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3516 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3517 this_device
->offload_enabled
= 0;
3519 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3525 /* Get the device id from inquiry page 0x83 */
3526 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3527 unsigned char *device_id
, int index
, int buflen
)
3532 /* Does controller have VPD for device id? */
3533 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3534 return 1; /* not supported */
3536 buf
= kzalloc(64, GFP_KERNEL
);
3540 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3541 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3545 memcpy(device_id
, &buf
[8], buflen
);
3550 return rc
; /*0 - got id, otherwise, didn't */
3553 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3554 void *buf
, int bufsize
,
3555 int extended_response
)
3558 struct CommandList
*c
;
3559 unsigned char scsi3addr
[8];
3560 struct ErrorInfo
*ei
;
3564 /* address the controller */
3565 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3566 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3567 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3571 if (extended_response
)
3572 c
->Request
.CDB
[1] = extended_response
;
3573 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3574 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3578 if (ei
->CommandStatus
!= 0 &&
3579 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3580 hpsa_scsi_interpret_error(h
, c
);
3583 struct ReportLUNdata
*rld
= buf
;
3585 if (rld
->extended_response_flag
!= extended_response
) {
3586 dev_err(&h
->pdev
->dev
,
3587 "report luns requested format %u, got %u\n",
3589 rld
->extended_response_flag
);
3598 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3599 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3602 struct ReportLUNdata
*lbuf
;
3604 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3605 HPSA_REPORT_PHYS_EXTENDED
);
3606 if (!rc
|| !hpsa_allow_any
)
3609 /* REPORT PHYS EXTENDED is not supported */
3610 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3614 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3619 /* Copy ReportLUNdata header */
3620 memcpy(buf
, lbuf
, 8);
3621 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3622 for (i
= 0; i
< nphys
; i
++)
3623 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3629 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3630 struct ReportLUNdata
*buf
, int bufsize
)
3632 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3635 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3636 int bus
, int target
, int lun
)
3639 device
->target
= target
;
3643 /* Use VPD inquiry to get details of volume status */
3644 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3645 unsigned char scsi3addr
[])
3652 buf
= kzalloc(64, GFP_KERNEL
);
3654 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3656 /* Does controller have VPD for logical volume status? */
3657 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3660 /* Get the size of the VPD return buffer */
3661 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3662 buf
, HPSA_VPD_HEADER_SZ
);
3667 /* Now get the whole VPD buffer */
3668 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3669 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3672 status
= buf
[4]; /* status byte */
3678 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3681 /* Determine offline status of a volume.
3684 * 0xff (offline for unknown reasons)
3685 * # (integer code indicating one of several NOT READY states
3686 * describing why a volume is to be kept offline)
3688 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3689 unsigned char scsi3addr
[])
3691 struct CommandList
*c
;
3692 unsigned char *sense
;
3693 u8 sense_key
, asc
, ascq
;
3698 #define ASC_LUN_NOT_READY 0x04
3699 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3700 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3704 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3705 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3709 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3711 sense
= c
->err_info
->SenseInfo
;
3712 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3713 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3715 sense_len
= c
->err_info
->SenseLen
;
3716 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3717 cmd_status
= c
->err_info
->CommandStatus
;
3718 scsi_status
= c
->err_info
->ScsiStatus
;
3721 /* Determine the reason for not ready state */
3722 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3724 /* Keep volume offline in certain cases: */
3726 case HPSA_LV_FAILED
:
3727 case HPSA_LV_UNDERGOING_ERASE
:
3728 case HPSA_LV_NOT_AVAILABLE
:
3729 case HPSA_LV_UNDERGOING_RPI
:
3730 case HPSA_LV_PENDING_RPI
:
3731 case HPSA_LV_ENCRYPTED_NO_KEY
:
3732 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3733 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3734 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3735 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3737 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3738 /* If VPD status page isn't available,
3739 * use ASC/ASCQ to determine state
3741 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3742 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3751 static int hpsa_update_device_info(struct ctlr_info
*h
,
3752 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3753 unsigned char *is_OBDR_device
)
3756 #define OBDR_SIG_OFFSET 43
3757 #define OBDR_TAPE_SIG "$DR-10"
3758 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3759 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3761 unsigned char *inq_buff
;
3762 unsigned char *obdr_sig
;
3765 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3771 /* Do an inquiry to the device to see what it is. */
3772 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3773 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3774 dev_err(&h
->pdev
->dev
,
3775 "%s: inquiry failed, device will be skipped.\n",
3777 rc
= HPSA_INQUIRY_FAILED
;
3781 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3782 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3784 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3785 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3786 memcpy(this_device
->vendor
, &inq_buff
[8],
3787 sizeof(this_device
->vendor
));
3788 memcpy(this_device
->model
, &inq_buff
[16],
3789 sizeof(this_device
->model
));
3790 this_device
->rev
= inq_buff
[2];
3791 memset(this_device
->device_id
, 0,
3792 sizeof(this_device
->device_id
));
3793 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3794 sizeof(this_device
->device_id
)))
3795 dev_err(&h
->pdev
->dev
,
3796 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3798 h
->scsi_host
->host_no
,
3799 this_device
->target
, this_device
->lun
,
3800 scsi_device_type(this_device
->devtype
),
3801 this_device
->model
);
3803 if ((this_device
->devtype
== TYPE_DISK
||
3804 this_device
->devtype
== TYPE_ZBC
) &&
3805 is_logical_dev_addr_mode(scsi3addr
)) {
3806 unsigned char volume_offline
;
3808 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3809 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3810 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3811 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3812 this_device
->volume_offline
= volume_offline
;
3813 if (volume_offline
== HPSA_LV_FAILED
) {
3814 rc
= HPSA_LV_FAILED
;
3815 dev_err(&h
->pdev
->dev
,
3816 "%s: LV failed, device will be skipped.\n",
3821 this_device
->raid_level
= RAID_UNKNOWN
;
3822 this_device
->offload_config
= 0;
3823 this_device
->offload_enabled
= 0;
3824 this_device
->offload_to_be_enabled
= 0;
3825 this_device
->hba_ioaccel_enabled
= 0;
3826 this_device
->volume_offline
= 0;
3827 this_device
->queue_depth
= h
->nr_cmds
;
3830 if (this_device
->external
)
3831 this_device
->queue_depth
= EXTERNAL_QD
;
3833 if (is_OBDR_device
) {
3834 /* See if this is a One-Button-Disaster-Recovery device
3835 * by looking for "$DR-10" at offset 43 in inquiry data.
3837 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3838 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3839 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3840 OBDR_SIG_LEN
) == 0);
3851 * Helper function to assign bus, target, lun mapping of devices.
3852 * Logical drive target and lun are assigned at this time, but
3853 * physical device lun and target assignment are deferred (assigned
3854 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3856 static void figure_bus_target_lun(struct ctlr_info
*h
,
3857 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3859 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3861 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3862 /* physical device, target and lun filled in later */
3863 if (is_hba_lunid(lunaddrbytes
)) {
3864 int bus
= HPSA_HBA_BUS
;
3867 bus
= HPSA_LEGACY_HBA_BUS
;
3868 hpsa_set_bus_target_lun(device
,
3869 bus
, 0, lunid
& 0x3fff);
3871 /* defer target, lun assignment for physical devices */
3872 hpsa_set_bus_target_lun(device
,
3873 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3876 /* It's a logical device */
3877 if (device
->external
) {
3878 hpsa_set_bus_target_lun(device
,
3879 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3883 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3887 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3888 int i
, int nphysicals
, int nlocal_logicals
)
3890 /* In report logicals, local logicals are listed first,
3891 * then any externals.
3893 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3895 if (i
== raid_ctlr_position
)
3898 if (i
< logicals_start
)
3901 /* i is in logicals range, but still within local logicals */
3902 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3905 return 1; /* it's an external lun */
3909 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3910 * logdev. The number of luns in physdev and logdev are returned in
3911 * *nphysicals and *nlogicals, respectively.
3912 * Returns 0 on success, -1 otherwise.
3914 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3915 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3916 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3918 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3919 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3922 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3923 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3924 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3925 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3926 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3928 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3929 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3932 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3933 /* Reject Logicals in excess of our max capability. */
3934 if (*nlogicals
> HPSA_MAX_LUN
) {
3935 dev_warn(&h
->pdev
->dev
,
3936 "maximum logical LUNs (%d) exceeded. "
3937 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3938 *nlogicals
- HPSA_MAX_LUN
);
3939 *nlogicals
= HPSA_MAX_LUN
;
3941 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3942 dev_warn(&h
->pdev
->dev
,
3943 "maximum logical + physical LUNs (%d) exceeded. "
3944 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3945 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3946 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3951 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3952 int i
, int nphysicals
, int nlogicals
,
3953 struct ReportExtendedLUNdata
*physdev_list
,
3954 struct ReportLUNdata
*logdev_list
)
3956 /* Helper function, figure out where the LUN ID info is coming from
3957 * given index i, lists of physical and logical devices, where in
3958 * the list the raid controller is supposed to appear (first or last)
3961 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3962 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3964 if (i
== raid_ctlr_position
)
3965 return RAID_CTLR_LUNID
;
3967 if (i
< logicals_start
)
3968 return &physdev_list
->LUN
[i
-
3969 (raid_ctlr_position
== 0)].lunid
[0];
3971 if (i
< last_device
)
3972 return &logdev_list
->LUN
[i
- nphysicals
-
3973 (raid_ctlr_position
== 0)][0];
3978 /* get physical drive ioaccel handle and queue depth */
3979 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3980 struct hpsa_scsi_dev_t
*dev
,
3981 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3982 struct bmic_identify_physical_device
*id_phys
)
3985 struct ext_report_lun_entry
*rle
;
3987 rle
= &rlep
->LUN
[rle_index
];
3989 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3990 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
3991 dev
->hba_ioaccel_enabled
= 1;
3992 memset(id_phys
, 0, sizeof(*id_phys
));
3993 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
3994 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
3997 /* Reserve space for FW operations */
3998 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3999 #define DRIVE_QUEUE_DEPTH 7
4001 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4002 DRIVE_CMDS_RESERVED_FOR_FW
;
4004 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4007 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4008 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4009 struct bmic_identify_physical_device
*id_phys
)
4011 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4013 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4014 this_device
->hba_ioaccel_enabled
= 1;
4016 memcpy(&this_device
->active_path_index
,
4017 &id_phys
->active_path_number
,
4018 sizeof(this_device
->active_path_index
));
4019 memcpy(&this_device
->path_map
,
4020 &id_phys
->redundant_path_present_map
,
4021 sizeof(this_device
->path_map
));
4022 memcpy(&this_device
->box
,
4023 &id_phys
->alternate_paths_phys_box_on_port
,
4024 sizeof(this_device
->box
));
4025 memcpy(&this_device
->phys_connector
,
4026 &id_phys
->alternate_paths_phys_connector
,
4027 sizeof(this_device
->phys_connector
));
4028 memcpy(&this_device
->bay
,
4029 &id_phys
->phys_bay_in_box
,
4030 sizeof(this_device
->bay
));
4033 /* get number of local logical disks. */
4034 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4035 struct bmic_identify_controller
*id_ctlr
,
4041 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4045 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4046 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4048 if (id_ctlr
->configured_logical_drive_count
< 256)
4049 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4051 *nlocals
= le16_to_cpu(
4052 id_ctlr
->extended_logical_unit_count
);
4058 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4060 struct bmic_identify_physical_device
*id_phys
;
4061 bool is_spare
= false;
4064 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4068 rc
= hpsa_bmic_id_physical_device(h
,
4070 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4071 id_phys
, sizeof(*id_phys
));
4073 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4079 #define RPL_DEV_FLAG_NON_DISK 0x1
4080 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4081 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4083 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4085 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4086 struct ext_report_lun_entry
*rle
)
4091 if (!MASKED_DEVICE(lunaddrbytes
))
4094 device_flags
= rle
->device_flags
;
4095 device_type
= rle
->device_type
;
4097 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4098 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4103 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4106 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4110 * Spares may be spun down, we do not want to
4111 * do an Inquiry to a RAID set spare drive as
4112 * that would have them spun up, that is a
4113 * performance hit because I/O to the RAID device
4114 * stops while the spin up occurs which can take
4117 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4123 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4125 /* the idea here is we could get notified
4126 * that some devices have changed, so we do a report
4127 * physical luns and report logical luns cmd, and adjust
4128 * our list of devices accordingly.
4130 * The scsi3addr's of devices won't change so long as the
4131 * adapter is not reset. That means we can rescan and
4132 * tell which devices we already know about, vs. new
4133 * devices, vs. disappearing devices.
4135 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4136 struct ReportLUNdata
*logdev_list
= NULL
;
4137 struct bmic_identify_physical_device
*id_phys
= NULL
;
4138 struct bmic_identify_controller
*id_ctlr
= NULL
;
4141 u32 nlocal_logicals
= 0;
4142 u32 ndev_allocated
= 0;
4143 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4145 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4146 int raid_ctlr_position
;
4147 bool physical_device
;
4148 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4150 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4151 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4152 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4153 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4154 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4155 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4157 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4158 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4159 dev_err(&h
->pdev
->dev
, "out of memory\n");
4162 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4164 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4166 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4167 logdev_list
, &nlogicals
)) {
4168 h
->drv_req_rescan
= 1;
4172 /* Set number of local logicals (non PTRAID) */
4173 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4174 dev_warn(&h
->pdev
->dev
,
4175 "%s: Can't determine number of local logical devices.\n",
4179 /* We might see up to the maximum number of logical and physical disks
4180 * plus external target devices, and a device for the local RAID
4183 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4185 /* Allocate the per device structures */
4186 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4187 if (i
>= HPSA_MAX_DEVICES
) {
4188 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4189 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4190 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4194 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4195 if (!currentsd
[i
]) {
4196 h
->drv_req_rescan
= 1;
4202 if (is_scsi_rev_5(h
))
4203 raid_ctlr_position
= 0;
4205 raid_ctlr_position
= nphysicals
+ nlogicals
;
4207 /* adjust our table of devices */
4208 n_ext_target_devs
= 0;
4209 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4210 u8
*lunaddrbytes
, is_OBDR
= 0;
4212 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4213 bool skip_device
= false;
4215 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4217 /* Figure out where the LUN ID info is coming from */
4218 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4219 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4221 /* Determine if this is a lun from an external target array */
4222 tmpdevice
->external
=
4223 figure_external_status(h
, raid_ctlr_position
, i
,
4224 nphysicals
, nlocal_logicals
);
4227 * Skip over some devices such as a spare.
4229 if (!tmpdevice
->external
&& physical_device
) {
4230 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4231 &physdev_list
->LUN
[phys_dev_index
]);
4236 /* Get device type, vendor, model, device id */
4237 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4239 if (rc
== -ENOMEM
) {
4240 dev_warn(&h
->pdev
->dev
,
4241 "Out of memory, rescan deferred.\n");
4242 h
->drv_req_rescan
= 1;
4246 h
->drv_req_rescan
= 1;
4250 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4251 this_device
= currentsd
[ncurrent
];
4253 /* Turn on discovery_polling if there are ext target devices.
4254 * Event-based change notification is unreliable for those.
4256 if (!h
->discovery_polling
) {
4257 if (tmpdevice
->external
) {
4258 h
->discovery_polling
= 1;
4259 dev_info(&h
->pdev
->dev
,
4260 "External target, activate discovery polling.\n");
4265 *this_device
= *tmpdevice
;
4266 this_device
->physical_device
= physical_device
;
4269 * Expose all devices except for physical devices that
4272 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4273 this_device
->expose_device
= 0;
4275 this_device
->expose_device
= 1;
4279 * Get the SAS address for physical devices that are exposed.
4281 if (this_device
->physical_device
&& this_device
->expose_device
)
4282 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4284 switch (this_device
->devtype
) {
4286 /* We don't *really* support actual CD-ROM devices,
4287 * just "One Button Disaster Recovery" tape drive
4288 * which temporarily pretends to be a CD-ROM drive.
4289 * So we check that the device is really an OBDR tape
4290 * device by checking for "$DR-10" in bytes 43-48 of
4298 if (this_device
->physical_device
) {
4299 /* The disk is in HBA mode. */
4300 /* Never use RAID mapper in HBA mode. */
4301 this_device
->offload_enabled
= 0;
4302 hpsa_get_ioaccel_drive_info(h
, this_device
,
4303 physdev_list
, phys_dev_index
, id_phys
);
4304 hpsa_get_path_info(this_device
,
4305 physdev_list
, phys_dev_index
, id_phys
);
4310 case TYPE_MEDIUM_CHANGER
:
4313 case TYPE_ENCLOSURE
:
4314 if (!this_device
->external
)
4315 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4316 physdev_list
, phys_dev_index
,
4321 /* Only present the Smartarray HBA as a RAID controller.
4322 * If it's a RAID controller other than the HBA itself
4323 * (an external RAID controller, MSA500 or similar)
4326 if (!is_hba_lunid(lunaddrbytes
))
4333 if (ncurrent
>= HPSA_MAX_DEVICES
)
4337 if (h
->sas_host
== NULL
) {
4340 rc
= hpsa_add_sas_host(h
);
4342 dev_warn(&h
->pdev
->dev
,
4343 "Could not add sas host %d\n", rc
);
4348 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4351 for (i
= 0; i
< ndev_allocated
; i
++)
4352 kfree(currentsd
[i
]);
4354 kfree(physdev_list
);
4360 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4361 struct scatterlist
*sg
)
4363 u64 addr64
= (u64
) sg_dma_address(sg
);
4364 unsigned int len
= sg_dma_len(sg
);
4366 desc
->Addr
= cpu_to_le64(addr64
);
4367 desc
->Len
= cpu_to_le32(len
);
4372 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4373 * dma mapping and fills in the scatter gather entries of the
4376 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4377 struct CommandList
*cp
,
4378 struct scsi_cmnd
*cmd
)
4380 struct scatterlist
*sg
;
4381 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4382 struct SGDescriptor
*curr_sg
;
4384 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4386 use_sg
= scsi_dma_map(cmd
);
4391 goto sglist_finished
;
4394 * If the number of entries is greater than the max for a single list,
4395 * then we have a chained list; we will set up all but one entry in the
4396 * first list (the last entry is saved for link information);
4397 * otherwise, we don't have a chained list and we'll set up at each of
4398 * the entries in the one list.
4401 chained
= use_sg
> h
->max_cmd_sg_entries
;
4402 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4403 last_sg
= scsi_sg_count(cmd
) - 1;
4404 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4405 hpsa_set_sg_descriptor(curr_sg
, sg
);
4411 * Continue with the chained list. Set curr_sg to the chained
4412 * list. Modify the limit to the total count less the entries
4413 * we've already set up. Resume the scan at the list entry
4414 * where the previous loop left off.
4416 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4417 sg_limit
= use_sg
- sg_limit
;
4418 for_each_sg(sg
, sg
, sg_limit
, i
) {
4419 hpsa_set_sg_descriptor(curr_sg
, sg
);
4424 /* Back the pointer up to the last entry and mark it as "last". */
4425 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4427 if (use_sg
+ chained
> h
->maxSG
)
4428 h
->maxSG
= use_sg
+ chained
;
4431 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4432 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4433 if (hpsa_map_sg_chain_block(h
, cp
)) {
4434 scsi_dma_unmap(cmd
);
4442 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4443 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4448 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4449 u8
*cdb
, int cdb_len
,
4456 outlen
= scnprintf(buf
, BUFLEN
,
4457 "%s: Blocking zero-length request: CDB:", func
);
4458 for (i
= 0; i
< cdb_len
; i
++)
4459 outlen
+= scnprintf(buf
+outlen
, BUFLEN
- outlen
,
4461 dev_warn(&h
->pdev
->dev
, "%s\n", buf
);
4464 #define IO_ACCEL_INELIGIBLE 1
4465 /* zero-length transfers trigger hardware errors. */
4466 static bool is_zero_length_transfer(u8
*cdb
)
4470 /* Block zero-length transfer sizes on certain commands. */
4474 case VERIFY
: /* 0x2F */
4475 case WRITE_VERIFY
: /* 0x2E */
4476 block_cnt
= get_unaligned_be16(&cdb
[7]);
4480 case VERIFY_12
: /* 0xAF */
4481 case WRITE_VERIFY_12
: /* 0xAE */
4482 block_cnt
= get_unaligned_be32(&cdb
[6]);
4486 case VERIFY_16
: /* 0x8F */
4487 block_cnt
= get_unaligned_be32(&cdb
[10]);
4493 return block_cnt
== 0;
4496 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4502 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4509 if (*cdb_len
== 6) {
4510 block
= (((cdb
[1] & 0x1F) << 16) |
4517 BUG_ON(*cdb_len
!= 12);
4518 block
= get_unaligned_be32(&cdb
[2]);
4519 block_cnt
= get_unaligned_be32(&cdb
[6]);
4521 if (block_cnt
> 0xffff)
4522 return IO_ACCEL_INELIGIBLE
;
4524 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4526 cdb
[2] = (u8
) (block
>> 24);
4527 cdb
[3] = (u8
) (block
>> 16);
4528 cdb
[4] = (u8
) (block
>> 8);
4529 cdb
[5] = (u8
) (block
);
4531 cdb
[7] = (u8
) (block_cnt
>> 8);
4532 cdb
[8] = (u8
) (block_cnt
);
4540 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4541 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4542 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4544 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4545 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4547 unsigned int total_len
= 0;
4548 struct scatterlist
*sg
;
4551 struct SGDescriptor
*curr_sg
;
4552 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4554 /* TODO: implement chaining support */
4555 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4556 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4557 return IO_ACCEL_INELIGIBLE
;
4560 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4562 if (is_zero_length_transfer(cdb
)) {
4563 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4564 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4565 return IO_ACCEL_INELIGIBLE
;
4568 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4569 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4570 return IO_ACCEL_INELIGIBLE
;
4573 c
->cmd_type
= CMD_IOACCEL1
;
4575 /* Adjust the DMA address to point to the accelerated command buffer */
4576 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4577 (c
->cmdindex
* sizeof(*cp
));
4578 BUG_ON(c
->busaddr
& 0x0000007F);
4580 use_sg
= scsi_dma_map(cmd
);
4582 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4588 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4589 addr64
= (u64
) sg_dma_address(sg
);
4590 len
= sg_dma_len(sg
);
4592 curr_sg
->Addr
= cpu_to_le64(addr64
);
4593 curr_sg
->Len
= cpu_to_le32(len
);
4594 curr_sg
->Ext
= cpu_to_le32(0);
4597 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4599 switch (cmd
->sc_data_direction
) {
4601 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4603 case DMA_FROM_DEVICE
:
4604 control
|= IOACCEL1_CONTROL_DATA_IN
;
4607 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4610 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4611 cmd
->sc_data_direction
);
4616 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4619 c
->Header
.SGList
= use_sg
;
4620 /* Fill out the command structure to submit */
4621 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4622 cp
->transfer_len
= cpu_to_le32(total_len
);
4623 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4624 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4625 cp
->control
= cpu_to_le32(control
);
4626 memcpy(cp
->CDB
, cdb
, cdb_len
);
4627 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4628 /* Tag was already set at init time. */
4629 enqueue_cmd_and_start_io(h
, c
);
4634 * Queue a command directly to a device behind the controller using the
4635 * I/O accelerator path.
4637 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4638 struct CommandList
*c
)
4640 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4641 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4648 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4649 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4653 * Set encryption parameters for the ioaccel2 request
4655 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4656 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4658 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4659 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4660 struct raid_map_data
*map
= &dev
->raid_map
;
4663 /* Are we doing encryption on this device */
4664 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4666 /* Set the data encryption key index. */
4667 cp
->dekindex
= map
->dekindex
;
4669 /* Set the encryption enable flag, encoded into direction field. */
4670 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4672 /* Set encryption tweak values based on logical block address
4673 * If block size is 512, tweak value is LBA.
4674 * For other block sizes, tweak is (LBA * block size)/ 512)
4676 switch (cmd
->cmnd
[0]) {
4677 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4680 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4681 (cmd
->cmnd
[2] << 8) |
4686 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4689 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4693 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4696 dev_err(&h
->pdev
->dev
,
4697 "ERROR: %s: size (0x%x) not supported for encryption\n",
4698 __func__
, cmd
->cmnd
[0]);
4703 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4704 first_block
= first_block
*
4705 le32_to_cpu(map
->volume_blk_size
)/512;
4707 cp
->tweak_lower
= cpu_to_le32(first_block
);
4708 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4711 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4712 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4713 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4715 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4716 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4717 struct ioaccel2_sg_element
*curr_sg
;
4719 struct scatterlist
*sg
;
4727 if (!cmd
->device
->hostdata
)
4730 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4732 if (is_zero_length_transfer(cdb
)) {
4733 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4734 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4735 return IO_ACCEL_INELIGIBLE
;
4738 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4739 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4740 return IO_ACCEL_INELIGIBLE
;
4743 c
->cmd_type
= CMD_IOACCEL2
;
4744 /* Adjust the DMA address to point to the accelerated command buffer */
4745 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4746 (c
->cmdindex
* sizeof(*cp
));
4747 BUG_ON(c
->busaddr
& 0x0000007F);
4749 memset(cp
, 0, sizeof(*cp
));
4750 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4752 use_sg
= scsi_dma_map(cmd
);
4754 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4760 if (use_sg
> h
->ioaccel_maxsg
) {
4761 addr64
= le64_to_cpu(
4762 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4763 curr_sg
->address
= cpu_to_le64(addr64
);
4764 curr_sg
->length
= 0;
4765 curr_sg
->reserved
[0] = 0;
4766 curr_sg
->reserved
[1] = 0;
4767 curr_sg
->reserved
[2] = 0;
4768 curr_sg
->chain_indicator
= 0x80;
4770 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4772 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4773 addr64
= (u64
) sg_dma_address(sg
);
4774 len
= sg_dma_len(sg
);
4776 curr_sg
->address
= cpu_to_le64(addr64
);
4777 curr_sg
->length
= cpu_to_le32(len
);
4778 curr_sg
->reserved
[0] = 0;
4779 curr_sg
->reserved
[1] = 0;
4780 curr_sg
->reserved
[2] = 0;
4781 curr_sg
->chain_indicator
= 0;
4785 switch (cmd
->sc_data_direction
) {
4787 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4788 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4790 case DMA_FROM_DEVICE
:
4791 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4792 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4795 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4796 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4799 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4800 cmd
->sc_data_direction
);
4805 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4806 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4809 /* Set encryption parameters, if necessary */
4810 set_encrypt_ioaccel2(h
, c
, cp
);
4812 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4813 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4814 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4816 cp
->data_len
= cpu_to_le32(total_len
);
4817 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4818 offsetof(struct io_accel2_cmd
, error_data
));
4819 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4821 /* fill in sg elements */
4822 if (use_sg
> h
->ioaccel_maxsg
) {
4824 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4825 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4826 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4827 scsi_dma_unmap(cmd
);
4831 cp
->sg_count
= (u8
) use_sg
;
4833 enqueue_cmd_and_start_io(h
, c
);
4838 * Queue a command to the correct I/O accelerator path.
4840 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4841 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4842 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4844 if (!c
->scsi_cmd
->device
)
4847 if (!c
->scsi_cmd
->device
->hostdata
)
4850 /* Try to honor the device's queue depth */
4851 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4852 phys_disk
->queue_depth
) {
4853 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4854 return IO_ACCEL_INELIGIBLE
;
4856 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4857 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4858 cdb
, cdb_len
, scsi3addr
,
4861 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4862 cdb
, cdb_len
, scsi3addr
,
4866 static void raid_map_helper(struct raid_map_data
*map
,
4867 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4869 if (offload_to_mirror
== 0) {
4870 /* use physical disk in the first mirrored group. */
4871 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4875 /* determine mirror group that *map_index indicates */
4876 *current_group
= *map_index
/
4877 le16_to_cpu(map
->data_disks_per_row
);
4878 if (offload_to_mirror
== *current_group
)
4880 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4881 /* select map index from next group */
4882 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4885 /* select map index from first group */
4886 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4889 } while (offload_to_mirror
!= *current_group
);
4893 * Attempt to perform offload RAID mapping for a logical volume I/O.
4895 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4896 struct CommandList
*c
)
4898 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4899 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4900 struct raid_map_data
*map
= &dev
->raid_map
;
4901 struct raid_map_disk_data
*dd
= &map
->data
[0];
4904 u64 first_block
, last_block
;
4907 u64 first_row
, last_row
;
4908 u32 first_row_offset
, last_row_offset
;
4909 u32 first_column
, last_column
;
4910 u64 r0_first_row
, r0_last_row
;
4911 u32 r5or6_blocks_per_row
;
4912 u64 r5or6_first_row
, r5or6_last_row
;
4913 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4914 u32 r5or6_first_column
, r5or6_last_column
;
4915 u32 total_disks_per_row
;
4917 u32 first_group
, last_group
, current_group
;
4925 #if BITS_PER_LONG == 32
4928 int offload_to_mirror
;
4933 /* check for valid opcode, get LBA and block count */
4934 switch (cmd
->cmnd
[0]) {
4938 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4939 (cmd
->cmnd
[2] << 8) |
4941 block_cnt
= cmd
->cmnd
[4];
4949 (((u64
) cmd
->cmnd
[2]) << 24) |
4950 (((u64
) cmd
->cmnd
[3]) << 16) |
4951 (((u64
) cmd
->cmnd
[4]) << 8) |
4954 (((u32
) cmd
->cmnd
[7]) << 8) |
4961 (((u64
) cmd
->cmnd
[2]) << 24) |
4962 (((u64
) cmd
->cmnd
[3]) << 16) |
4963 (((u64
) cmd
->cmnd
[4]) << 8) |
4966 (((u32
) cmd
->cmnd
[6]) << 24) |
4967 (((u32
) cmd
->cmnd
[7]) << 16) |
4968 (((u32
) cmd
->cmnd
[8]) << 8) |
4975 (((u64
) cmd
->cmnd
[2]) << 56) |
4976 (((u64
) cmd
->cmnd
[3]) << 48) |
4977 (((u64
) cmd
->cmnd
[4]) << 40) |
4978 (((u64
) cmd
->cmnd
[5]) << 32) |
4979 (((u64
) cmd
->cmnd
[6]) << 24) |
4980 (((u64
) cmd
->cmnd
[7]) << 16) |
4981 (((u64
) cmd
->cmnd
[8]) << 8) |
4984 (((u32
) cmd
->cmnd
[10]) << 24) |
4985 (((u32
) cmd
->cmnd
[11]) << 16) |
4986 (((u32
) cmd
->cmnd
[12]) << 8) |
4990 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4992 last_block
= first_block
+ block_cnt
- 1;
4994 /* check for write to non-RAID-0 */
4995 if (is_write
&& dev
->raid_level
!= 0)
4996 return IO_ACCEL_INELIGIBLE
;
4998 /* check for invalid block or wraparound */
4999 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5000 last_block
< first_block
)
5001 return IO_ACCEL_INELIGIBLE
;
5003 /* calculate stripe information for the request */
5004 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5005 le16_to_cpu(map
->strip_size
);
5006 strip_size
= le16_to_cpu(map
->strip_size
);
5007 #if BITS_PER_LONG == 32
5008 tmpdiv
= first_block
;
5009 (void) do_div(tmpdiv
, blocks_per_row
);
5011 tmpdiv
= last_block
;
5012 (void) do_div(tmpdiv
, blocks_per_row
);
5014 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5015 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5016 tmpdiv
= first_row_offset
;
5017 (void) do_div(tmpdiv
, strip_size
);
5018 first_column
= tmpdiv
;
5019 tmpdiv
= last_row_offset
;
5020 (void) do_div(tmpdiv
, strip_size
);
5021 last_column
= tmpdiv
;
5023 first_row
= first_block
/ blocks_per_row
;
5024 last_row
= last_block
/ blocks_per_row
;
5025 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5026 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5027 first_column
= first_row_offset
/ strip_size
;
5028 last_column
= last_row_offset
/ strip_size
;
5031 /* if this isn't a single row/column then give to the controller */
5032 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5033 return IO_ACCEL_INELIGIBLE
;
5035 /* proceeding with driver mapping */
5036 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5037 le16_to_cpu(map
->metadata_disks_per_row
);
5038 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5039 le16_to_cpu(map
->row_cnt
);
5040 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5042 switch (dev
->raid_level
) {
5044 break; /* nothing special to do */
5046 /* Handles load balance across RAID 1 members.
5047 * (2-drive R1 and R10 with even # of drives.)
5048 * Appropriate for SSDs, not optimal for HDDs
5050 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5051 if (dev
->offload_to_mirror
)
5052 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5053 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5056 /* Handles N-way mirrors (R1-ADM)
5057 * and R10 with # of drives divisible by 3.)
5059 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5061 offload_to_mirror
= dev
->offload_to_mirror
;
5062 raid_map_helper(map
, offload_to_mirror
,
5063 &map_index
, ¤t_group
);
5064 /* set mirror group to use next time */
5066 (offload_to_mirror
>=
5067 le16_to_cpu(map
->layout_map_count
) - 1)
5068 ? 0 : offload_to_mirror
+ 1;
5069 dev
->offload_to_mirror
= offload_to_mirror
;
5070 /* Avoid direct use of dev->offload_to_mirror within this
5071 * function since multiple threads might simultaneously
5072 * increment it beyond the range of dev->layout_map_count -1.
5077 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5080 /* Verify first and last block are in same RAID group */
5081 r5or6_blocks_per_row
=
5082 le16_to_cpu(map
->strip_size
) *
5083 le16_to_cpu(map
->data_disks_per_row
);
5084 BUG_ON(r5or6_blocks_per_row
== 0);
5085 stripesize
= r5or6_blocks_per_row
*
5086 le16_to_cpu(map
->layout_map_count
);
5087 #if BITS_PER_LONG == 32
5088 tmpdiv
= first_block
;
5089 first_group
= do_div(tmpdiv
, stripesize
);
5090 tmpdiv
= first_group
;
5091 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5092 first_group
= tmpdiv
;
5093 tmpdiv
= last_block
;
5094 last_group
= do_div(tmpdiv
, stripesize
);
5095 tmpdiv
= last_group
;
5096 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5097 last_group
= tmpdiv
;
5099 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5100 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5102 if (first_group
!= last_group
)
5103 return IO_ACCEL_INELIGIBLE
;
5105 /* Verify request is in a single row of RAID 5/6 */
5106 #if BITS_PER_LONG == 32
5107 tmpdiv
= first_block
;
5108 (void) do_div(tmpdiv
, stripesize
);
5109 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5110 tmpdiv
= last_block
;
5111 (void) do_div(tmpdiv
, stripesize
);
5112 r5or6_last_row
= r0_last_row
= tmpdiv
;
5114 first_row
= r5or6_first_row
= r0_first_row
=
5115 first_block
/ stripesize
;
5116 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5118 if (r5or6_first_row
!= r5or6_last_row
)
5119 return IO_ACCEL_INELIGIBLE
;
5122 /* Verify request is in a single column */
5123 #if BITS_PER_LONG == 32
5124 tmpdiv
= first_block
;
5125 first_row_offset
= do_div(tmpdiv
, stripesize
);
5126 tmpdiv
= first_row_offset
;
5127 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5128 r5or6_first_row_offset
= first_row_offset
;
5129 tmpdiv
= last_block
;
5130 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5131 tmpdiv
= r5or6_last_row_offset
;
5132 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5133 tmpdiv
= r5or6_first_row_offset
;
5134 (void) do_div(tmpdiv
, map
->strip_size
);
5135 first_column
= r5or6_first_column
= tmpdiv
;
5136 tmpdiv
= r5or6_last_row_offset
;
5137 (void) do_div(tmpdiv
, map
->strip_size
);
5138 r5or6_last_column
= tmpdiv
;
5140 first_row_offset
= r5or6_first_row_offset
=
5141 (u32
)((first_block
% stripesize
) %
5142 r5or6_blocks_per_row
);
5144 r5or6_last_row_offset
=
5145 (u32
)((last_block
% stripesize
) %
5146 r5or6_blocks_per_row
);
5148 first_column
= r5or6_first_column
=
5149 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5151 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5153 if (r5or6_first_column
!= r5or6_last_column
)
5154 return IO_ACCEL_INELIGIBLE
;
5156 /* Request is eligible */
5157 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5158 le16_to_cpu(map
->row_cnt
);
5160 map_index
= (first_group
*
5161 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5162 (map_row
* total_disks_per_row
) + first_column
;
5165 return IO_ACCEL_INELIGIBLE
;
5168 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5169 return IO_ACCEL_INELIGIBLE
;
5171 c
->phys_disk
= dev
->phys_disk
[map_index
];
5173 return IO_ACCEL_INELIGIBLE
;
5175 disk_handle
= dd
[map_index
].ioaccel_handle
;
5176 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5177 first_row
* le16_to_cpu(map
->strip_size
) +
5178 (first_row_offset
- first_column
*
5179 le16_to_cpu(map
->strip_size
));
5180 disk_block_cnt
= block_cnt
;
5182 /* handle differing logical/physical block sizes */
5183 if (map
->phys_blk_shift
) {
5184 disk_block
<<= map
->phys_blk_shift
;
5185 disk_block_cnt
<<= map
->phys_blk_shift
;
5187 BUG_ON(disk_block_cnt
> 0xffff);
5189 /* build the new CDB for the physical disk I/O */
5190 if (disk_block
> 0xffffffff) {
5191 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5193 cdb
[2] = (u8
) (disk_block
>> 56);
5194 cdb
[3] = (u8
) (disk_block
>> 48);
5195 cdb
[4] = (u8
) (disk_block
>> 40);
5196 cdb
[5] = (u8
) (disk_block
>> 32);
5197 cdb
[6] = (u8
) (disk_block
>> 24);
5198 cdb
[7] = (u8
) (disk_block
>> 16);
5199 cdb
[8] = (u8
) (disk_block
>> 8);
5200 cdb
[9] = (u8
) (disk_block
);
5201 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5202 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5203 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5204 cdb
[13] = (u8
) (disk_block_cnt
);
5209 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5211 cdb
[2] = (u8
) (disk_block
>> 24);
5212 cdb
[3] = (u8
) (disk_block
>> 16);
5213 cdb
[4] = (u8
) (disk_block
>> 8);
5214 cdb
[5] = (u8
) (disk_block
);
5216 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5217 cdb
[8] = (u8
) (disk_block_cnt
);
5221 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5223 dev
->phys_disk
[map_index
]);
5227 * Submit commands down the "normal" RAID stack path
5228 * All callers to hpsa_ciss_submit must check lockup_detected
5229 * beforehand, before (opt.) and after calling cmd_alloc
5231 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5232 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5233 unsigned char scsi3addr
[])
5235 cmd
->host_scribble
= (unsigned char *) c
;
5236 c
->cmd_type
= CMD_SCSI
;
5238 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5239 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5240 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5242 /* Fill in the request block... */
5244 c
->Request
.Timeout
= 0;
5245 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5246 c
->Request
.CDBLen
= cmd
->cmd_len
;
5247 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5248 switch (cmd
->sc_data_direction
) {
5250 c
->Request
.type_attr_dir
=
5251 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5253 case DMA_FROM_DEVICE
:
5254 c
->Request
.type_attr_dir
=
5255 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5258 c
->Request
.type_attr_dir
=
5259 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5261 case DMA_BIDIRECTIONAL
:
5262 /* This can happen if a buggy application does a scsi passthru
5263 * and sets both inlen and outlen to non-zero. ( see
5264 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5267 c
->Request
.type_attr_dir
=
5268 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5269 /* This is technically wrong, and hpsa controllers should
5270 * reject it with CMD_INVALID, which is the most correct
5271 * response, but non-fibre backends appear to let it
5272 * slide by, and give the same results as if this field
5273 * were set correctly. Either way is acceptable for
5274 * our purposes here.
5280 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5281 cmd
->sc_data_direction
);
5286 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5287 hpsa_cmd_resolve_and_free(h
, c
);
5288 return SCSI_MLQUEUE_HOST_BUSY
;
5290 enqueue_cmd_and_start_io(h
, c
);
5291 /* the cmd'll come back via intr handler in complete_scsi_command() */
5295 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5296 struct CommandList
*c
)
5298 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5300 /* Zero out all of commandlist except the last field, refcount */
5301 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5302 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5303 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5304 c
->err_info
= h
->errinfo_pool
+ index
;
5305 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5306 err_dma_handle
= h
->errinfo_pool_dhandle
5307 + index
* sizeof(*c
->err_info
);
5308 c
->cmdindex
= index
;
5309 c
->busaddr
= (u32
) cmd_dma_handle
;
5310 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5311 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5313 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5316 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5320 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5321 struct CommandList
*c
= h
->cmd_pool
+ i
;
5323 hpsa_cmd_init(h
, i
, c
);
5324 atomic_set(&c
->refcount
, 0);
5328 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5329 struct CommandList
*c
)
5331 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5333 BUG_ON(c
->cmdindex
!= index
);
5335 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5336 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5337 c
->busaddr
= (u32
) cmd_dma_handle
;
5340 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5341 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5342 unsigned char *scsi3addr
)
5344 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5345 int rc
= IO_ACCEL_INELIGIBLE
;
5348 return SCSI_MLQUEUE_HOST_BUSY
;
5350 cmd
->host_scribble
= (unsigned char *) c
;
5352 if (dev
->offload_enabled
) {
5353 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5354 c
->cmd_type
= CMD_SCSI
;
5356 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5357 if (rc
< 0) /* scsi_dma_map failed. */
5358 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5359 } else if (dev
->hba_ioaccel_enabled
) {
5360 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5361 c
->cmd_type
= CMD_SCSI
;
5363 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5364 if (rc
< 0) /* scsi_dma_map failed. */
5365 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5370 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5372 struct scsi_cmnd
*cmd
;
5373 struct hpsa_scsi_dev_t
*dev
;
5374 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5377 dev
= cmd
->device
->hostdata
;
5379 cmd
->result
= DID_NO_CONNECT
<< 16;
5380 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5382 if (c
->reset_pending
)
5383 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5384 if (c
->cmd_type
== CMD_IOACCEL2
) {
5385 struct ctlr_info
*h
= c
->h
;
5386 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5389 if (c2
->error_data
.serv_response
==
5390 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5391 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5394 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5396 * If we get here, it means dma mapping failed.
5397 * Try again via scsi mid layer, which will
5398 * then get SCSI_MLQUEUE_HOST_BUSY.
5400 cmd
->result
= DID_IMM_RETRY
<< 16;
5401 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5403 /* else, fall thru and resubmit down CISS path */
5406 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5407 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5409 * If we get here, it means dma mapping failed. Try
5410 * again via scsi mid layer, which will then get
5411 * SCSI_MLQUEUE_HOST_BUSY.
5413 * hpsa_ciss_submit will have already freed c
5414 * if it encountered a dma mapping failure.
5416 cmd
->result
= DID_IMM_RETRY
<< 16;
5417 cmd
->scsi_done(cmd
);
5421 /* Running in struct Scsi_Host->host_lock less mode */
5422 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5424 struct ctlr_info
*h
;
5425 struct hpsa_scsi_dev_t
*dev
;
5426 unsigned char scsi3addr
[8];
5427 struct CommandList
*c
;
5430 /* Get the ptr to our adapter structure out of cmd->host. */
5431 h
= sdev_to_hba(cmd
->device
);
5433 BUG_ON(cmd
->request
->tag
< 0);
5435 dev
= cmd
->device
->hostdata
;
5437 cmd
->result
= DID_NO_CONNECT
<< 16;
5438 cmd
->scsi_done(cmd
);
5443 cmd
->result
= DID_NO_CONNECT
<< 16;
5444 cmd
->scsi_done(cmd
);
5448 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5450 if (unlikely(lockup_detected(h
))) {
5451 cmd
->result
= DID_NO_CONNECT
<< 16;
5452 cmd
->scsi_done(cmd
);
5455 c
= cmd_tagged_alloc(h
, cmd
);
5458 * Call alternate submit routine for I/O accelerated commands.
5459 * Retries always go down the normal I/O path.
5461 if (likely(cmd
->retries
== 0 &&
5462 !blk_rq_is_passthrough(cmd
->request
) &&
5463 h
->acciopath_status
)) {
5464 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5467 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5468 hpsa_cmd_resolve_and_free(h
, c
);
5469 return SCSI_MLQUEUE_HOST_BUSY
;
5472 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5475 static void hpsa_scan_complete(struct ctlr_info
*h
)
5477 unsigned long flags
;
5479 spin_lock_irqsave(&h
->scan_lock
, flags
);
5480 h
->scan_finished
= 1;
5481 wake_up(&h
->scan_wait_queue
);
5482 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5485 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5487 struct ctlr_info
*h
= shost_to_hba(sh
);
5488 unsigned long flags
;
5491 * Don't let rescans be initiated on a controller known to be locked
5492 * up. If the controller locks up *during* a rescan, that thread is
5493 * probably hosed, but at least we can prevent new rescan threads from
5494 * piling up on a locked up controller.
5496 if (unlikely(lockup_detected(h
)))
5497 return hpsa_scan_complete(h
);
5500 * If a scan is already waiting to run, no need to add another
5502 spin_lock_irqsave(&h
->scan_lock
, flags
);
5503 if (h
->scan_waiting
) {
5504 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5508 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5510 /* wait until any scan already in progress is finished. */
5512 spin_lock_irqsave(&h
->scan_lock
, flags
);
5513 if (h
->scan_finished
)
5515 h
->scan_waiting
= 1;
5516 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5517 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5518 /* Note: We don't need to worry about a race between this
5519 * thread and driver unload because the midlayer will
5520 * have incremented the reference count, so unload won't
5521 * happen if we're in here.
5524 h
->scan_finished
= 0; /* mark scan as in progress */
5525 h
->scan_waiting
= 0;
5526 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5528 if (unlikely(lockup_detected(h
)))
5529 return hpsa_scan_complete(h
);
5532 * Do the scan after a reset completion
5534 spin_lock_irqsave(&h
->reset_lock
, flags
);
5535 if (h
->reset_in_progress
) {
5536 h
->drv_req_rescan
= 1;
5537 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5538 hpsa_scan_complete(h
);
5541 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5543 hpsa_update_scsi_devices(h
);
5545 hpsa_scan_complete(h
);
5548 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5550 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5557 else if (qdepth
> logical_drive
->queue_depth
)
5558 qdepth
= logical_drive
->queue_depth
;
5560 return scsi_change_queue_depth(sdev
, qdepth
);
5563 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5564 unsigned long elapsed_time
)
5566 struct ctlr_info
*h
= shost_to_hba(sh
);
5567 unsigned long flags
;
5570 spin_lock_irqsave(&h
->scan_lock
, flags
);
5571 finished
= h
->scan_finished
;
5572 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5576 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5578 struct Scsi_Host
*sh
;
5580 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5582 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5589 sh
->max_channel
= 3;
5590 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5591 sh
->max_lun
= HPSA_MAX_LUN
;
5592 sh
->max_id
= HPSA_MAX_LUN
;
5593 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5594 sh
->cmd_per_lun
= sh
->can_queue
;
5595 sh
->sg_tablesize
= h
->maxsgentries
;
5596 sh
->transportt
= hpsa_sas_transport_template
;
5597 sh
->hostdata
[0] = (unsigned long) h
;
5598 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5599 sh
->unique_id
= sh
->irq
;
5605 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5609 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5611 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5614 scsi_scan_host(h
->scsi_host
);
5619 * The block layer has already gone to the trouble of picking out a unique,
5620 * small-integer tag for this request. We use an offset from that value as
5621 * an index to select our command block. (The offset allows us to reserve the
5622 * low-numbered entries for our own uses.)
5624 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5626 int idx
= scmd
->request
->tag
;
5631 /* Offset to leave space for internal cmds. */
5632 return idx
+= HPSA_NRESERVED_CMDS
;
5636 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5637 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5639 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5640 struct CommandList
*c
, unsigned char lunaddr
[],
5645 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5646 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5647 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5648 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5651 /* no unmap needed here because no data xfer. */
5653 /* Check if the unit is already ready. */
5654 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5658 * The first command sent after reset will receive "unit attention" to
5659 * indicate that the LUN has been reset...this is actually what we're
5660 * looking for (but, success is good too).
5662 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5663 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5664 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5665 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5672 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5673 * returns zero when the unit is ready, and non-zero when giving up.
5675 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5676 struct CommandList
*c
,
5677 unsigned char lunaddr
[], int reply_queue
)
5681 int waittime
= 1; /* seconds */
5683 /* Send test unit ready until device ready, or give up. */
5684 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5687 * Wait for a bit. do this first, because if we send
5688 * the TUR right away, the reset will just abort it.
5690 msleep(1000 * waittime
);
5692 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5696 /* Increase wait time with each try, up to a point. */
5697 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5700 dev_warn(&h
->pdev
->dev
,
5701 "waiting %d secs for device to become ready.\n",
5708 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5709 unsigned char lunaddr
[],
5716 struct CommandList
*c
;
5721 * If no specific reply queue was requested, then send the TUR
5722 * repeatedly, requesting a reply on each reply queue; otherwise execute
5723 * the loop exactly once using only the specified queue.
5725 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5727 last_queue
= h
->nreply_queues
- 1;
5729 first_queue
= reply_queue
;
5730 last_queue
= reply_queue
;
5733 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5734 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5740 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5742 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5748 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5749 * complaining. Doing a host- or bus-reset can't do anything good here.
5751 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5754 struct ctlr_info
*h
;
5755 struct hpsa_scsi_dev_t
*dev
;
5758 unsigned long flags
;
5760 /* find the controller to which the command to be aborted was sent */
5761 h
= sdev_to_hba(scsicmd
->device
);
5762 if (h
== NULL
) /* paranoia */
5765 spin_lock_irqsave(&h
->reset_lock
, flags
);
5766 h
->reset_in_progress
= 1;
5767 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5769 if (lockup_detected(h
)) {
5771 goto return_reset_status
;
5774 dev
= scsicmd
->device
->hostdata
;
5776 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5778 goto return_reset_status
;
5781 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5783 goto return_reset_status
;
5786 /* if controller locked up, we can guarantee command won't complete */
5787 if (lockup_detected(h
)) {
5788 snprintf(msg
, sizeof(msg
),
5789 "cmd %d RESET FAILED, lockup detected",
5790 hpsa_get_cmd_index(scsicmd
));
5791 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5793 goto return_reset_status
;
5796 /* this reset request might be the result of a lockup; check */
5797 if (detect_controller_lockup(h
)) {
5798 snprintf(msg
, sizeof(msg
),
5799 "cmd %d RESET FAILED, new lockup detected",
5800 hpsa_get_cmd_index(scsicmd
));
5801 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5803 goto return_reset_status
;
5806 /* Do not attempt on controller */
5807 if (is_hba_lunid(dev
->scsi3addr
)) {
5809 goto return_reset_status
;
5812 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5813 reset_type
= HPSA_DEVICE_RESET_MSG
;
5815 reset_type
= HPSA_PHYS_TARGET_RESET
;
5817 sprintf(msg
, "resetting %s",
5818 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5819 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5821 /* send a reset to the SCSI LUN which the command was sent to */
5822 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5823 DEFAULT_REPLY_QUEUE
);
5829 sprintf(msg
, "reset %s %s",
5830 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5831 rc
== SUCCESS
? "completed successfully" : "failed");
5832 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5834 return_reset_status
:
5835 spin_lock_irqsave(&h
->reset_lock
, flags
);
5836 h
->reset_in_progress
= 0;
5837 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5842 * For operations with an associated SCSI command, a command block is allocated
5843 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5844 * block request tag as an index into a table of entries. cmd_tagged_free() is
5845 * the complement, although cmd_free() may be called instead.
5847 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5848 struct scsi_cmnd
*scmd
)
5850 int idx
= hpsa_get_cmd_index(scmd
);
5851 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5853 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5854 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5855 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5856 /* The index value comes from the block layer, so if it's out of
5857 * bounds, it's probably not our bug.
5862 atomic_inc(&c
->refcount
);
5863 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5865 * We expect that the SCSI layer will hand us a unique tag
5866 * value. Thus, there should never be a collision here between
5867 * two requests...because if the selected command isn't idle
5868 * then someone is going to be very disappointed.
5870 dev_err(&h
->pdev
->dev
,
5871 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5873 if (c
->scsi_cmd
!= NULL
)
5874 scsi_print_command(c
->scsi_cmd
);
5875 scsi_print_command(scmd
);
5878 hpsa_cmd_partial_init(h
, idx
, c
);
5882 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5885 * Release our reference to the block. We don't need to do anything
5886 * else to free it, because it is accessed by index.
5888 (void)atomic_dec(&c
->refcount
);
5892 * For operations that cannot sleep, a command block is allocated at init,
5893 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5894 * which ones are free or in use. Lock must be held when calling this.
5895 * cmd_free() is the complement.
5896 * This function never gives up and returns NULL. If it hangs,
5897 * another thread must call cmd_free() to free some tags.
5900 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5902 struct CommandList
*c
;
5907 * There is some *extremely* small but non-zero chance that that
5908 * multiple threads could get in here, and one thread could
5909 * be scanning through the list of bits looking for a free
5910 * one, but the free ones are always behind him, and other
5911 * threads sneak in behind him and eat them before he can
5912 * get to them, so that while there is always a free one, a
5913 * very unlucky thread might be starved anyway, never able to
5914 * beat the other threads. In reality, this happens so
5915 * infrequently as to be indistinguishable from never.
5917 * Note that we start allocating commands before the SCSI host structure
5918 * is initialized. Since the search starts at bit zero, this
5919 * all works, since we have at least one command structure available;
5920 * however, it means that the structures with the low indexes have to be
5921 * reserved for driver-initiated requests, while requests from the block
5922 * layer will use the higher indexes.
5926 i
= find_next_zero_bit(h
->cmd_pool_bits
,
5927 HPSA_NRESERVED_CMDS
,
5929 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
5933 c
= h
->cmd_pool
+ i
;
5934 refcount
= atomic_inc_return(&c
->refcount
);
5935 if (unlikely(refcount
> 1)) {
5936 cmd_free(h
, c
); /* already in use */
5937 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
5940 set_bit(i
& (BITS_PER_LONG
- 1),
5941 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5942 break; /* it's ours now. */
5944 hpsa_cmd_partial_init(h
, i
, c
);
5949 * This is the complementary operation to cmd_alloc(). Note, however, in some
5950 * corner cases it may also be used to free blocks allocated by
5951 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5952 * the clear-bit is harmless.
5954 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
5956 if (atomic_dec_and_test(&c
->refcount
)) {
5959 i
= c
- h
->cmd_pool
;
5960 clear_bit(i
& (BITS_PER_LONG
- 1),
5961 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5965 #ifdef CONFIG_COMPAT
5967 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
5970 IOCTL32_Command_struct __user
*arg32
=
5971 (IOCTL32_Command_struct __user
*) arg
;
5972 IOCTL_Command_struct arg64
;
5973 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
5977 memset(&arg64
, 0, sizeof(arg64
));
5979 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5980 sizeof(arg64
.LUN_info
));
5981 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5982 sizeof(arg64
.Request
));
5983 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5984 sizeof(arg64
.error_info
));
5985 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5986 err
|= get_user(cp
, &arg32
->buf
);
5987 arg64
.buf
= compat_ptr(cp
);
5988 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5993 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
5996 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5997 sizeof(arg32
->error_info
));
6003 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6004 int cmd
, void __user
*arg
)
6006 BIG_IOCTL32_Command_struct __user
*arg32
=
6007 (BIG_IOCTL32_Command_struct __user
*) arg
;
6008 BIG_IOCTL_Command_struct arg64
;
6009 BIG_IOCTL_Command_struct __user
*p
=
6010 compat_alloc_user_space(sizeof(arg64
));
6014 memset(&arg64
, 0, sizeof(arg64
));
6016 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6017 sizeof(arg64
.LUN_info
));
6018 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6019 sizeof(arg64
.Request
));
6020 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6021 sizeof(arg64
.error_info
));
6022 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6023 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6024 err
|= get_user(cp
, &arg32
->buf
);
6025 arg64
.buf
= compat_ptr(cp
);
6026 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6031 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6034 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6035 sizeof(arg32
->error_info
));
6041 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6044 case CCISS_GETPCIINFO
:
6045 case CCISS_GETINTINFO
:
6046 case CCISS_SETINTINFO
:
6047 case CCISS_GETNODENAME
:
6048 case CCISS_SETNODENAME
:
6049 case CCISS_GETHEARTBEAT
:
6050 case CCISS_GETBUSTYPES
:
6051 case CCISS_GETFIRMVER
:
6052 case CCISS_GETDRIVVER
:
6053 case CCISS_REVALIDVOLS
:
6054 case CCISS_DEREGDISK
:
6055 case CCISS_REGNEWDISK
:
6057 case CCISS_RESCANDISK
:
6058 case CCISS_GETLUNINFO
:
6059 return hpsa_ioctl(dev
, cmd
, arg
);
6061 case CCISS_PASSTHRU32
:
6062 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6063 case CCISS_BIG_PASSTHRU32
:
6064 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6067 return -ENOIOCTLCMD
;
6072 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6074 struct hpsa_pci_info pciinfo
;
6078 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6079 pciinfo
.bus
= h
->pdev
->bus
->number
;
6080 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6081 pciinfo
.board_id
= h
->board_id
;
6082 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6087 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6089 DriverVer_type DriverVer
;
6090 unsigned char vmaj
, vmin
, vsubmin
;
6093 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6094 &vmaj
, &vmin
, &vsubmin
);
6096 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6097 "unrecognized.", HPSA_DRIVER_VERSION
);
6102 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6105 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6110 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6112 IOCTL_Command_struct iocommand
;
6113 struct CommandList
*c
;
6120 if (!capable(CAP_SYS_RAWIO
))
6122 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6124 if ((iocommand
.buf_size
< 1) &&
6125 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6128 if (iocommand
.buf_size
> 0) {
6129 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6132 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6133 /* Copy the data into the buffer we created */
6134 if (copy_from_user(buff
, iocommand
.buf
,
6135 iocommand
.buf_size
)) {
6140 memset(buff
, 0, iocommand
.buf_size
);
6145 /* Fill in the command type */
6146 c
->cmd_type
= CMD_IOCTL_PEND
;
6147 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6148 /* Fill in Command Header */
6149 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6150 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6151 c
->Header
.SGList
= 1;
6152 c
->Header
.SGTotal
= cpu_to_le16(1);
6153 } else { /* no buffers to fill */
6154 c
->Header
.SGList
= 0;
6155 c
->Header
.SGTotal
= cpu_to_le16(0);
6157 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6159 /* Fill in Request block */
6160 memcpy(&c
->Request
, &iocommand
.Request
,
6161 sizeof(c
->Request
));
6163 /* Fill in the scatter gather information */
6164 if (iocommand
.buf_size
> 0) {
6165 temp64
= pci_map_single(h
->pdev
, buff
,
6166 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6167 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6168 c
->SG
[0].Addr
= cpu_to_le64(0);
6169 c
->SG
[0].Len
= cpu_to_le32(0);
6173 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6174 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6175 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6177 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6179 if (iocommand
.buf_size
> 0)
6180 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6181 check_ioctl_unit_attention(h
, c
);
6187 /* Copy the error information out */
6188 memcpy(&iocommand
.error_info
, c
->err_info
,
6189 sizeof(iocommand
.error_info
));
6190 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6194 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6195 iocommand
.buf_size
> 0) {
6196 /* Copy the data out of the buffer we created */
6197 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6209 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6211 BIG_IOCTL_Command_struct
*ioc
;
6212 struct CommandList
*c
;
6213 unsigned char **buff
= NULL
;
6214 int *buff_size
= NULL
;
6220 BYTE __user
*data_ptr
;
6224 if (!capable(CAP_SYS_RAWIO
))
6226 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6231 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6235 if ((ioc
->buf_size
< 1) &&
6236 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6240 /* Check kmalloc limits using all SGs */
6241 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6245 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6249 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6254 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6259 left
= ioc
->buf_size
;
6260 data_ptr
= ioc
->buf
;
6262 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6263 buff_size
[sg_used
] = sz
;
6264 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6265 if (buff
[sg_used
] == NULL
) {
6269 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6270 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6275 memset(buff
[sg_used
], 0, sz
);
6282 c
->cmd_type
= CMD_IOCTL_PEND
;
6283 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6284 c
->Header
.ReplyQueue
= 0;
6285 c
->Header
.SGList
= (u8
) sg_used
;
6286 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6287 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6288 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6289 if (ioc
->buf_size
> 0) {
6291 for (i
= 0; i
< sg_used
; i
++) {
6292 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6293 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6294 if (dma_mapping_error(&h
->pdev
->dev
,
6295 (dma_addr_t
) temp64
)) {
6296 c
->SG
[i
].Addr
= cpu_to_le64(0);
6297 c
->SG
[i
].Len
= cpu_to_le32(0);
6298 hpsa_pci_unmap(h
->pdev
, c
, i
,
6299 PCI_DMA_BIDIRECTIONAL
);
6303 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6304 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6305 c
->SG
[i
].Ext
= cpu_to_le32(0);
6307 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6309 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6312 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6313 check_ioctl_unit_attention(h
, c
);
6319 /* Copy the error information out */
6320 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6321 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6325 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6328 /* Copy the data out of the buffer we created */
6329 BYTE __user
*ptr
= ioc
->buf
;
6330 for (i
= 0; i
< sg_used
; i
++) {
6331 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6335 ptr
+= buff_size
[i
];
6345 for (i
= 0; i
< sg_used
; i
++)
6354 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6355 struct CommandList
*c
)
6357 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6358 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6359 (void) check_for_unit_attention(h
, c
);
6365 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6367 struct ctlr_info
*h
;
6368 void __user
*argp
= (void __user
*)arg
;
6371 h
= sdev_to_hba(dev
);
6374 case CCISS_DEREGDISK
:
6375 case CCISS_REGNEWDISK
:
6377 hpsa_scan_start(h
->scsi_host
);
6379 case CCISS_GETPCIINFO
:
6380 return hpsa_getpciinfo_ioctl(h
, argp
);
6381 case CCISS_GETDRIVVER
:
6382 return hpsa_getdrivver_ioctl(h
, argp
);
6383 case CCISS_PASSTHRU
:
6384 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6386 rc
= hpsa_passthru_ioctl(h
, argp
);
6387 atomic_inc(&h
->passthru_cmds_avail
);
6389 case CCISS_BIG_PASSTHRU
:
6390 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6392 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6393 atomic_inc(&h
->passthru_cmds_avail
);
6400 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6403 struct CommandList
*c
;
6407 /* fill_cmd can't fail here, no data buffer to map */
6408 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6409 RAID_CTLR_LUNID
, TYPE_MSG
);
6410 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6412 enqueue_cmd_and_start_io(h
, c
);
6413 /* Don't wait for completion, the reset won't complete. Don't free
6414 * the command either. This is the last command we will send before
6415 * re-initializing everything, so it doesn't matter and won't leak.
6420 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6421 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6424 int pci_dir
= XFER_NONE
;
6426 c
->cmd_type
= CMD_IOCTL_PEND
;
6427 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6428 c
->Header
.ReplyQueue
= 0;
6429 if (buff
!= NULL
&& size
> 0) {
6430 c
->Header
.SGList
= 1;
6431 c
->Header
.SGTotal
= cpu_to_le16(1);
6433 c
->Header
.SGList
= 0;
6434 c
->Header
.SGTotal
= cpu_to_le16(0);
6436 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6438 if (cmd_type
== TYPE_CMD
) {
6441 /* are we trying to read a vital product page */
6442 if (page_code
& VPD_PAGE
) {
6443 c
->Request
.CDB
[1] = 0x01;
6444 c
->Request
.CDB
[2] = (page_code
& 0xff);
6446 c
->Request
.CDBLen
= 6;
6447 c
->Request
.type_attr_dir
=
6448 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6449 c
->Request
.Timeout
= 0;
6450 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6451 c
->Request
.CDB
[4] = size
& 0xFF;
6453 case HPSA_REPORT_LOG
:
6454 case HPSA_REPORT_PHYS
:
6455 /* Talking to controller so It's a physical command
6456 mode = 00 target = 0. Nothing to write.
6458 c
->Request
.CDBLen
= 12;
6459 c
->Request
.type_attr_dir
=
6460 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6461 c
->Request
.Timeout
= 0;
6462 c
->Request
.CDB
[0] = cmd
;
6463 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6464 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6465 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6466 c
->Request
.CDB
[9] = size
& 0xFF;
6468 case BMIC_SENSE_DIAG_OPTIONS
:
6469 c
->Request
.CDBLen
= 16;
6470 c
->Request
.type_attr_dir
=
6471 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6472 c
->Request
.Timeout
= 0;
6473 /* Spec says this should be BMIC_WRITE */
6474 c
->Request
.CDB
[0] = BMIC_READ
;
6475 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6477 case BMIC_SET_DIAG_OPTIONS
:
6478 c
->Request
.CDBLen
= 16;
6479 c
->Request
.type_attr_dir
=
6480 TYPE_ATTR_DIR(cmd_type
,
6481 ATTR_SIMPLE
, XFER_WRITE
);
6482 c
->Request
.Timeout
= 0;
6483 c
->Request
.CDB
[0] = BMIC_WRITE
;
6484 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6486 case HPSA_CACHE_FLUSH
:
6487 c
->Request
.CDBLen
= 12;
6488 c
->Request
.type_attr_dir
=
6489 TYPE_ATTR_DIR(cmd_type
,
6490 ATTR_SIMPLE
, XFER_WRITE
);
6491 c
->Request
.Timeout
= 0;
6492 c
->Request
.CDB
[0] = BMIC_WRITE
;
6493 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6494 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6495 c
->Request
.CDB
[8] = size
& 0xFF;
6497 case TEST_UNIT_READY
:
6498 c
->Request
.CDBLen
= 6;
6499 c
->Request
.type_attr_dir
=
6500 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6501 c
->Request
.Timeout
= 0;
6503 case HPSA_GET_RAID_MAP
:
6504 c
->Request
.CDBLen
= 12;
6505 c
->Request
.type_attr_dir
=
6506 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6507 c
->Request
.Timeout
= 0;
6508 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6509 c
->Request
.CDB
[1] = cmd
;
6510 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6511 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6512 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6513 c
->Request
.CDB
[9] = size
& 0xFF;
6515 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6516 c
->Request
.CDBLen
= 10;
6517 c
->Request
.type_attr_dir
=
6518 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6519 c
->Request
.Timeout
= 0;
6520 c
->Request
.CDB
[0] = BMIC_READ
;
6521 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6522 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6523 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6525 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6526 c
->Request
.CDBLen
= 10;
6527 c
->Request
.type_attr_dir
=
6528 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6529 c
->Request
.Timeout
= 0;
6530 c
->Request
.CDB
[0] = BMIC_READ
;
6531 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6532 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6533 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6535 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6536 c
->Request
.CDBLen
= 10;
6537 c
->Request
.type_attr_dir
=
6538 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6539 c
->Request
.Timeout
= 0;
6540 c
->Request
.CDB
[0] = BMIC_READ
;
6541 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6542 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6543 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6545 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6546 c
->Request
.CDBLen
= 10;
6547 c
->Request
.type_attr_dir
=
6548 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6549 c
->Request
.Timeout
= 0;
6550 c
->Request
.CDB
[0] = BMIC_READ
;
6551 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6552 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6553 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6555 case BMIC_IDENTIFY_CONTROLLER
:
6556 c
->Request
.CDBLen
= 10;
6557 c
->Request
.type_attr_dir
=
6558 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6559 c
->Request
.Timeout
= 0;
6560 c
->Request
.CDB
[0] = BMIC_READ
;
6561 c
->Request
.CDB
[1] = 0;
6562 c
->Request
.CDB
[2] = 0;
6563 c
->Request
.CDB
[3] = 0;
6564 c
->Request
.CDB
[4] = 0;
6565 c
->Request
.CDB
[5] = 0;
6566 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6567 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6568 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6569 c
->Request
.CDB
[9] = 0;
6572 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6576 } else if (cmd_type
== TYPE_MSG
) {
6579 case HPSA_PHYS_TARGET_RESET
:
6580 c
->Request
.CDBLen
= 16;
6581 c
->Request
.type_attr_dir
=
6582 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6583 c
->Request
.Timeout
= 0; /* Don't time out */
6584 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6585 c
->Request
.CDB
[0] = HPSA_RESET
;
6586 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6587 /* Physical target reset needs no control bytes 4-7*/
6588 c
->Request
.CDB
[4] = 0x00;
6589 c
->Request
.CDB
[5] = 0x00;
6590 c
->Request
.CDB
[6] = 0x00;
6591 c
->Request
.CDB
[7] = 0x00;
6593 case HPSA_DEVICE_RESET_MSG
:
6594 c
->Request
.CDBLen
= 16;
6595 c
->Request
.type_attr_dir
=
6596 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6597 c
->Request
.Timeout
= 0; /* Don't time out */
6598 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6599 c
->Request
.CDB
[0] = cmd
;
6600 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6601 /* If bytes 4-7 are zero, it means reset the */
6603 c
->Request
.CDB
[4] = 0x00;
6604 c
->Request
.CDB
[5] = 0x00;
6605 c
->Request
.CDB
[6] = 0x00;
6606 c
->Request
.CDB
[7] = 0x00;
6609 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6614 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6618 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6620 pci_dir
= PCI_DMA_FROMDEVICE
;
6623 pci_dir
= PCI_DMA_TODEVICE
;
6626 pci_dir
= PCI_DMA_NONE
;
6629 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6631 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6637 * Map (physical) PCI mem into (virtual) kernel space
6639 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6641 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6642 ulong page_offs
= ((ulong
) base
) - page_base
;
6643 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6646 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6649 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6651 return h
->access
.command_completed(h
, q
);
6654 static inline bool interrupt_pending(struct ctlr_info
*h
)
6656 return h
->access
.intr_pending(h
);
6659 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6661 return (h
->access
.intr_pending(h
) == 0) ||
6662 (h
->interrupts_enabled
== 0);
6665 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6668 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6669 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6675 static inline void finish_cmd(struct CommandList
*c
)
6677 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6678 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6679 || c
->cmd_type
== CMD_IOACCEL2
))
6680 complete_scsi_command(c
);
6681 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6682 complete(c
->waiting
);
6685 /* process completion of an indexed ("direct lookup") command */
6686 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6690 struct CommandList
*c
;
6692 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6693 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6694 c
= h
->cmd_pool
+ tag_index
;
6699 /* Some controllers, like p400, will give us one interrupt
6700 * after a soft reset, even if we turned interrupts off.
6701 * Only need to check for this in the hpsa_xxx_discard_completions
6704 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6706 if (likely(!reset_devices
))
6709 if (likely(h
->interrupts_enabled
))
6712 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6713 "(known firmware bug.) Ignoring.\n");
6719 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6720 * Relies on (h-q[x] == x) being true for x such that
6721 * 0 <= x < MAX_REPLY_QUEUES.
6723 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6725 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6728 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6730 struct ctlr_info
*h
= queue_to_hba(queue
);
6731 u8 q
= *(u8
*) queue
;
6734 if (ignore_bogus_interrupt(h
))
6737 if (interrupt_not_for_us(h
))
6739 h
->last_intr_timestamp
= get_jiffies_64();
6740 while (interrupt_pending(h
)) {
6741 raw_tag
= get_next_completion(h
, q
);
6742 while (raw_tag
!= FIFO_EMPTY
)
6743 raw_tag
= next_command(h
, q
);
6748 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6750 struct ctlr_info
*h
= queue_to_hba(queue
);
6752 u8 q
= *(u8
*) queue
;
6754 if (ignore_bogus_interrupt(h
))
6757 h
->last_intr_timestamp
= get_jiffies_64();
6758 raw_tag
= get_next_completion(h
, q
);
6759 while (raw_tag
!= FIFO_EMPTY
)
6760 raw_tag
= next_command(h
, q
);
6764 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6766 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6768 u8 q
= *(u8
*) queue
;
6770 if (interrupt_not_for_us(h
))
6772 h
->last_intr_timestamp
= get_jiffies_64();
6773 while (interrupt_pending(h
)) {
6774 raw_tag
= get_next_completion(h
, q
);
6775 while (raw_tag
!= FIFO_EMPTY
) {
6776 process_indexed_cmd(h
, raw_tag
);
6777 raw_tag
= next_command(h
, q
);
6783 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6785 struct ctlr_info
*h
= queue_to_hba(queue
);
6787 u8 q
= *(u8
*) queue
;
6789 h
->last_intr_timestamp
= get_jiffies_64();
6790 raw_tag
= get_next_completion(h
, q
);
6791 while (raw_tag
!= FIFO_EMPTY
) {
6792 process_indexed_cmd(h
, raw_tag
);
6793 raw_tag
= next_command(h
, q
);
6798 /* Send a message CDB to the firmware. Careful, this only works
6799 * in simple mode, not performant mode due to the tag lookup.
6800 * We only ever use this immediately after a controller reset.
6802 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6806 struct CommandListHeader CommandHeader
;
6807 struct RequestBlock Request
;
6808 struct ErrDescriptor ErrorDescriptor
;
6810 struct Command
*cmd
;
6811 static const size_t cmd_sz
= sizeof(*cmd
) +
6812 sizeof(cmd
->ErrorDescriptor
);
6816 void __iomem
*vaddr
;
6819 vaddr
= pci_ioremap_bar(pdev
, 0);
6823 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6824 * CCISS commands, so they must be allocated from the lower 4GiB of
6827 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6833 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6839 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6840 * although there's no guarantee, we assume that the address is at
6841 * least 4-byte aligned (most likely, it's page-aligned).
6843 paddr32
= cpu_to_le32(paddr64
);
6845 cmd
->CommandHeader
.ReplyQueue
= 0;
6846 cmd
->CommandHeader
.SGList
= 0;
6847 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6848 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6849 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6851 cmd
->Request
.CDBLen
= 16;
6852 cmd
->Request
.type_attr_dir
=
6853 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6854 cmd
->Request
.Timeout
= 0; /* Don't time out */
6855 cmd
->Request
.CDB
[0] = opcode
;
6856 cmd
->Request
.CDB
[1] = type
;
6857 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6858 cmd
->ErrorDescriptor
.Addr
=
6859 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6860 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6862 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6864 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6865 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6866 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6868 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6873 /* we leak the DMA buffer here ... no choice since the controller could
6874 * still complete the command.
6876 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6877 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6882 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6884 if (tag
& HPSA_ERROR_BIT
) {
6885 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6890 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6895 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6897 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6898 void __iomem
*vaddr
, u32 use_doorbell
)
6902 /* For everything after the P600, the PCI power state method
6903 * of resetting the controller doesn't work, so we have this
6904 * other way using the doorbell register.
6906 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
6907 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
6909 /* PMC hardware guys tell us we need a 10 second delay after
6910 * doorbell reset and before any attempt to talk to the board
6911 * at all to ensure that this actually works and doesn't fall
6912 * over in some weird corner cases.
6915 } else { /* Try to do it the PCI power state way */
6917 /* Quoting from the Open CISS Specification: "The Power
6918 * Management Control/Status Register (CSR) controls the power
6919 * state of the device. The normal operating state is D0,
6920 * CSR=00h. The software off state is D3, CSR=03h. To reset
6921 * the controller, place the interface device in D3 then to D0,
6922 * this causes a secondary PCI reset which will reset the
6927 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
6929 /* enter the D3hot power management state */
6930 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
6936 /* enter the D0 power management state */
6937 rc
= pci_set_power_state(pdev
, PCI_D0
);
6942 * The P600 requires a small delay when changing states.
6943 * Otherwise we may think the board did not reset and we bail.
6944 * This for kdump only and is particular to the P600.
6951 static void init_driver_version(char *driver_version
, int len
)
6953 memset(driver_version
, 0, len
);
6954 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
6957 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
6959 char *driver_version
;
6960 int i
, size
= sizeof(cfgtable
->driver_version
);
6962 driver_version
= kmalloc(size
, GFP_KERNEL
);
6963 if (!driver_version
)
6966 init_driver_version(driver_version
, size
);
6967 for (i
= 0; i
< size
; i
++)
6968 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
6969 kfree(driver_version
);
6973 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
6974 unsigned char *driver_ver
)
6978 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
6979 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
6982 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
6985 char *driver_ver
, *old_driver_ver
;
6986 int rc
, size
= sizeof(cfgtable
->driver_version
);
6988 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
6989 if (!old_driver_ver
)
6991 driver_ver
= old_driver_ver
+ size
;
6993 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6994 * should have been changed, otherwise we know the reset failed.
6996 init_driver_version(old_driver_ver
, size
);
6997 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
6998 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
6999 kfree(old_driver_ver
);
7002 /* This does a hard reset of the controller using PCI power management
7003 * states or the using the doorbell register.
7005 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7009 u64 cfg_base_addr_index
;
7010 void __iomem
*vaddr
;
7011 unsigned long paddr
;
7012 u32 misc_fw_support
;
7014 struct CfgTable __iomem
*cfgtable
;
7016 u16 command_register
;
7018 /* For controllers as old as the P600, this is very nearly
7021 * pci_save_state(pci_dev);
7022 * pci_set_power_state(pci_dev, PCI_D3hot);
7023 * pci_set_power_state(pci_dev, PCI_D0);
7024 * pci_restore_state(pci_dev);
7026 * For controllers newer than the P600, the pci power state
7027 * method of resetting doesn't work so we have another way
7028 * using the doorbell register.
7031 if (!ctlr_is_resettable(board_id
)) {
7032 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7036 /* if controller is soft- but not hard resettable... */
7037 if (!ctlr_is_hard_resettable(board_id
))
7038 return -ENOTSUPP
; /* try soft reset later. */
7040 /* Save the PCI command register */
7041 pci_read_config_word(pdev
, 4, &command_register
);
7042 pci_save_state(pdev
);
7044 /* find the first memory BAR, so we can find the cfg table */
7045 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7048 vaddr
= remap_pci_mem(paddr
, 0x250);
7052 /* find cfgtable in order to check if reset via doorbell is supported */
7053 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7054 &cfg_base_addr_index
, &cfg_offset
);
7057 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7058 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7063 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7065 goto unmap_cfgtable
;
7067 /* If reset via doorbell register is supported, use that.
7068 * There are two such methods. Favor the newest method.
7070 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7071 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7073 use_doorbell
= DOORBELL_CTLR_RESET2
;
7075 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7077 dev_warn(&pdev
->dev
,
7078 "Soft reset not supported. Firmware update is required.\n");
7079 rc
= -ENOTSUPP
; /* try soft reset */
7080 goto unmap_cfgtable
;
7084 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7086 goto unmap_cfgtable
;
7088 pci_restore_state(pdev
);
7089 pci_write_config_word(pdev
, 4, command_register
);
7091 /* Some devices (notably the HP Smart Array 5i Controller)
7092 need a little pause here */
7093 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7095 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7097 dev_warn(&pdev
->dev
,
7098 "Failed waiting for board to become ready after hard reset\n");
7099 goto unmap_cfgtable
;
7102 rc
= controller_reset_failed(vaddr
);
7104 goto unmap_cfgtable
;
7106 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7107 "controller. Will try soft reset.\n");
7110 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7122 * We cannot read the structure directly, for portability we must use
7124 * This is for debug only.
7126 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7132 dev_info(dev
, "Controller Configuration information\n");
7133 dev_info(dev
, "------------------------------------\n");
7134 for (i
= 0; i
< 4; i
++)
7135 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7136 temp_name
[4] = '\0';
7137 dev_info(dev
, " Signature = %s\n", temp_name
);
7138 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7139 dev_info(dev
, " Transport methods supported = 0x%x\n",
7140 readl(&(tb
->TransportSupport
)));
7141 dev_info(dev
, " Transport methods active = 0x%x\n",
7142 readl(&(tb
->TransportActive
)));
7143 dev_info(dev
, " Requested transport Method = 0x%x\n",
7144 readl(&(tb
->HostWrite
.TransportRequest
)));
7145 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7146 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7147 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7148 readl(&(tb
->HostWrite
.CoalIntCount
)));
7149 dev_info(dev
, " Max outstanding commands = %d\n",
7150 readl(&(tb
->CmdsOutMax
)));
7151 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7152 for (i
= 0; i
< 16; i
++)
7153 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7154 temp_name
[16] = '\0';
7155 dev_info(dev
, " Server Name = %s\n", temp_name
);
7156 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7157 readl(&(tb
->HeartBeat
)));
7158 #endif /* HPSA_DEBUG */
7161 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7163 int i
, offset
, mem_type
, bar_type
;
7165 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7168 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7169 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7170 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7173 mem_type
= pci_resource_flags(pdev
, i
) &
7174 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7176 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7177 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7178 offset
+= 4; /* 32 bit */
7180 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7183 default: /* reserved in PCI 2.2 */
7184 dev_warn(&pdev
->dev
,
7185 "base address is invalid\n");
7190 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7196 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7198 pci_free_irq_vectors(h
->pdev
);
7199 h
->msix_vectors
= 0;
7202 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7203 * controllers that are capable. If not, we use legacy INTx mode.
7205 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7207 unsigned int flags
= PCI_IRQ_LEGACY
;
7210 /* Some boards advertise MSI but don't really support it */
7211 switch (h
->board_id
) {
7218 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7219 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7221 h
->msix_vectors
= ret
;
7225 flags
|= PCI_IRQ_MSI
;
7229 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7235 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7238 u32 subsystem_vendor_id
, subsystem_device_id
;
7240 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7241 subsystem_device_id
= pdev
->subsystem_device
;
7242 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7243 subsystem_vendor_id
;
7245 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7246 if (*board_id
== products
[i
].board_id
)
7249 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7250 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7252 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7253 "0x%08x, ignoring.\n", *board_id
);
7256 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7259 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7260 unsigned long *memory_bar
)
7264 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7265 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7266 /* addressing mode bits already removed */
7267 *memory_bar
= pci_resource_start(pdev
, i
);
7268 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7272 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7276 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7282 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7284 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7286 for (i
= 0; i
< iterations
; i
++) {
7287 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7288 if (wait_for_ready
) {
7289 if (scratchpad
== HPSA_FIRMWARE_READY
)
7292 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7295 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7297 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7301 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7302 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7305 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7306 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7307 *cfg_base_addr
&= (u32
) 0x0000ffff;
7308 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7309 if (*cfg_base_addr_index
== -1) {
7310 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7316 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7318 if (h
->transtable
) {
7319 iounmap(h
->transtable
);
7320 h
->transtable
= NULL
;
7323 iounmap(h
->cfgtable
);
7328 /* Find and map CISS config table and transfer table
7329 + * several items must be unmapped (freed) later
7331 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7335 u64 cfg_base_addr_index
;
7339 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7340 &cfg_base_addr_index
, &cfg_offset
);
7343 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7344 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7346 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7349 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7352 /* Find performant mode table. */
7353 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7354 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7355 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7356 sizeof(*h
->transtable
));
7357 if (!h
->transtable
) {
7358 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7359 hpsa_free_cfgtables(h
);
7365 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7367 #define MIN_MAX_COMMANDS 16
7368 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7370 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7372 /* Limit commands in memory limited kdump scenario. */
7373 if (reset_devices
&& h
->max_commands
> 32)
7374 h
->max_commands
= 32;
7376 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7377 dev_warn(&h
->pdev
->dev
,
7378 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7381 h
->max_commands
= MIN_MAX_COMMANDS
;
7385 /* If the controller reports that the total max sg entries is greater than 512,
7386 * then we know that chained SG blocks work. (Original smart arrays did not
7387 * support chained SG blocks and would return zero for max sg entries.)
7389 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7391 return h
->maxsgentries
> 512;
7394 /* Interrogate the hardware for some limits:
7395 * max commands, max SG elements without chaining, and with chaining,
7396 * SG chain block size, etc.
7398 static void hpsa_find_board_params(struct ctlr_info
*h
)
7400 hpsa_get_max_perf_mode_cmds(h
);
7401 h
->nr_cmds
= h
->max_commands
;
7402 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7403 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7404 if (hpsa_supports_chained_sg_blocks(h
)) {
7405 /* Limit in-command s/g elements to 32 save dma'able memory. */
7406 h
->max_cmd_sg_entries
= 32;
7407 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7408 h
->maxsgentries
--; /* save one for chain pointer */
7411 * Original smart arrays supported at most 31 s/g entries
7412 * embedded inline in the command (trying to use more
7413 * would lock up the controller)
7415 h
->max_cmd_sg_entries
= 31;
7416 h
->maxsgentries
= 31; /* default to traditional values */
7420 /* Find out what task management functions are supported and cache */
7421 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7422 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7423 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7424 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7425 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7426 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7427 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7430 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7432 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7433 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7439 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7443 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7444 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7446 driver_support
|= ENABLE_SCSI_PREFETCH
;
7448 driver_support
|= ENABLE_UNIT_ATTN
;
7449 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7452 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7453 * in a prefetch beyond physical memory.
7455 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7459 if (h
->board_id
!= 0x3225103C)
7461 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7462 dma_prefetch
|= 0x8000;
7463 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7466 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7470 unsigned long flags
;
7471 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7472 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7473 spin_lock_irqsave(&h
->lock
, flags
);
7474 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7475 spin_unlock_irqrestore(&h
->lock
, flags
);
7476 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7478 /* delay and try again */
7479 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7486 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7490 unsigned long flags
;
7492 /* under certain very rare conditions, this can take awhile.
7493 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7494 * as we enter this code.)
7496 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7497 if (h
->remove_in_progress
)
7499 spin_lock_irqsave(&h
->lock
, flags
);
7500 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7501 spin_unlock_irqrestore(&h
->lock
, flags
);
7502 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7504 /* delay and try again */
7505 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7512 /* return -ENODEV or other reason on error, 0 on success */
7513 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7517 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7518 if (!(trans_support
& SIMPLE_MODE
))
7521 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7523 /* Update the field, and then ring the doorbell */
7524 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7525 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7526 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7527 if (hpsa_wait_for_mode_change_ack(h
))
7529 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7530 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7532 h
->transMethod
= CFGTBL_Trans_Simple
;
7535 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7539 /* free items allocated or mapped by hpsa_pci_init */
7540 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7542 hpsa_free_cfgtables(h
); /* pci_init 4 */
7543 iounmap(h
->vaddr
); /* pci_init 3 */
7545 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7547 * call pci_disable_device before pci_release_regions per
7548 * Documentation/PCI/pci.txt
7550 pci_disable_device(h
->pdev
); /* pci_init 1 */
7551 pci_release_regions(h
->pdev
); /* pci_init 2 */
7554 /* several items must be freed later */
7555 static int hpsa_pci_init(struct ctlr_info
*h
)
7557 int prod_index
, err
;
7559 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7562 h
->product_name
= products
[prod_index
].product_name
;
7563 h
->access
= *(products
[prod_index
].access
);
7565 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7566 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7568 err
= pci_enable_device(h
->pdev
);
7570 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7571 pci_disable_device(h
->pdev
);
7575 err
= pci_request_regions(h
->pdev
, HPSA
);
7577 dev_err(&h
->pdev
->dev
,
7578 "failed to obtain PCI resources\n");
7579 pci_disable_device(h
->pdev
);
7583 pci_set_master(h
->pdev
);
7585 err
= hpsa_interrupt_mode(h
);
7588 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7590 goto clean2
; /* intmode+region, pci */
7591 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7593 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7595 goto clean2
; /* intmode+region, pci */
7597 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7599 goto clean3
; /* vaddr, intmode+region, pci */
7600 err
= hpsa_find_cfgtables(h
);
7602 goto clean3
; /* vaddr, intmode+region, pci */
7603 hpsa_find_board_params(h
);
7605 if (!hpsa_CISS_signature_present(h
)) {
7607 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7609 hpsa_set_driver_support_bits(h
);
7610 hpsa_p600_dma_prefetch_quirk(h
);
7611 err
= hpsa_enter_simple_mode(h
);
7613 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7616 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7617 hpsa_free_cfgtables(h
);
7618 clean3
: /* vaddr, intmode+region, pci */
7621 clean2
: /* intmode+region, pci */
7622 hpsa_disable_interrupt_mode(h
);
7625 * call pci_disable_device before pci_release_regions per
7626 * Documentation/PCI/pci.txt
7628 pci_disable_device(h
->pdev
);
7629 pci_release_regions(h
->pdev
);
7633 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7637 #define HBA_INQUIRY_BYTE_COUNT 64
7638 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7639 if (!h
->hba_inquiry_data
)
7641 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7642 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7644 kfree(h
->hba_inquiry_data
);
7645 h
->hba_inquiry_data
= NULL
;
7649 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7652 void __iomem
*vaddr
;
7657 /* kdump kernel is loading, we don't know in which state is
7658 * the pci interface. The dev->enable_cnt is equal zero
7659 * so we call enable+disable, wait a while and switch it on.
7661 rc
= pci_enable_device(pdev
);
7663 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7666 pci_disable_device(pdev
);
7667 msleep(260); /* a randomly chosen number */
7668 rc
= pci_enable_device(pdev
);
7670 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7674 pci_set_master(pdev
);
7676 vaddr
= pci_ioremap_bar(pdev
, 0);
7677 if (vaddr
== NULL
) {
7681 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7684 /* Reset the controller with a PCI power-cycle or via doorbell */
7685 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7687 /* -ENOTSUPP here means we cannot reset the controller
7688 * but it's already (and still) up and running in
7689 * "performant mode". Or, it might be 640x, which can't reset
7690 * due to concerns about shared bbwc between 6402/6404 pair.
7695 /* Now try to get the controller to respond to a no-op */
7696 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7697 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7698 if (hpsa_noop(pdev
) == 0)
7701 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7702 (i
< 11 ? "; re-trying" : ""));
7707 pci_disable_device(pdev
);
7711 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7713 kfree(h
->cmd_pool_bits
);
7714 h
->cmd_pool_bits
= NULL
;
7716 pci_free_consistent(h
->pdev
,
7717 h
->nr_cmds
* sizeof(struct CommandList
),
7719 h
->cmd_pool_dhandle
);
7721 h
->cmd_pool_dhandle
= 0;
7723 if (h
->errinfo_pool
) {
7724 pci_free_consistent(h
->pdev
,
7725 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7727 h
->errinfo_pool_dhandle
);
7728 h
->errinfo_pool
= NULL
;
7729 h
->errinfo_pool_dhandle
= 0;
7733 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7735 h
->cmd_pool_bits
= kzalloc(
7736 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7737 sizeof(unsigned long), GFP_KERNEL
);
7738 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7739 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7740 &(h
->cmd_pool_dhandle
));
7741 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7742 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7743 &(h
->errinfo_pool_dhandle
));
7744 if ((h
->cmd_pool_bits
== NULL
)
7745 || (h
->cmd_pool
== NULL
)
7746 || (h
->errinfo_pool
== NULL
)) {
7747 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7750 hpsa_preinitialize_commands(h
);
7753 hpsa_free_cmd_pool(h
);
7757 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7758 static void hpsa_free_irqs(struct ctlr_info
*h
)
7762 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
7763 /* Single reply queue, only one irq to free */
7764 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
7765 h
->q
[h
->intr_mode
] = 0;
7769 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7770 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
7773 for (; i
< MAX_REPLY_QUEUES
; i
++)
7777 /* returns 0 on success; cleans up and returns -Enn on error */
7778 static int hpsa_request_irqs(struct ctlr_info
*h
,
7779 irqreturn_t (*msixhandler
)(int, void *),
7780 irqreturn_t (*intxhandler
)(int, void *))
7785 * initialize h->q[x] = x so that interrupt handlers know which
7788 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7791 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
7792 /* If performant mode and MSI-X, use multiple reply queues */
7793 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7794 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7795 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
7801 dev_err(&h
->pdev
->dev
,
7802 "failed to get irq %d for %s\n",
7803 pci_irq_vector(h
->pdev
, i
), h
->devname
);
7804 for (j
= 0; j
< i
; j
++) {
7805 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
7808 for (; j
< MAX_REPLY_QUEUES
; j
++)
7814 /* Use single reply pool */
7815 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
7816 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
7817 h
->msix_vectors
? "x" : "");
7818 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
7821 &h
->q
[h
->intr_mode
]);
7823 sprintf(h
->intrname
[h
->intr_mode
],
7824 "%s-intx", h
->devname
);
7825 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
7826 intxhandler
, IRQF_SHARED
,
7828 &h
->q
[h
->intr_mode
]);
7832 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7833 pci_irq_vector(h
->pdev
, 0), h
->devname
);
7840 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7843 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7845 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7846 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7848 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7852 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7853 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7855 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
7856 "after soft reset.\n");
7863 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
7867 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7868 if (!h
->reply_queue
[i
].head
)
7870 pci_free_consistent(h
->pdev
,
7871 h
->reply_queue_size
,
7872 h
->reply_queue
[i
].head
,
7873 h
->reply_queue
[i
].busaddr
);
7874 h
->reply_queue
[i
].head
= NULL
;
7875 h
->reply_queue
[i
].busaddr
= 0;
7877 h
->reply_queue_size
= 0;
7880 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
7882 hpsa_free_performant_mode(h
); /* init_one 7 */
7883 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
7884 hpsa_free_cmd_pool(h
); /* init_one 5 */
7885 hpsa_free_irqs(h
); /* init_one 4 */
7886 scsi_host_put(h
->scsi_host
); /* init_one 3 */
7887 h
->scsi_host
= NULL
; /* init_one 3 */
7888 hpsa_free_pci_init(h
); /* init_one 2_5 */
7889 free_percpu(h
->lockup_detected
); /* init_one 2 */
7890 h
->lockup_detected
= NULL
; /* init_one 2 */
7891 if (h
->resubmit_wq
) {
7892 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
7893 h
->resubmit_wq
= NULL
;
7895 if (h
->rescan_ctlr_wq
) {
7896 destroy_workqueue(h
->rescan_ctlr_wq
);
7897 h
->rescan_ctlr_wq
= NULL
;
7899 kfree(h
); /* init_one 1 */
7902 /* Called when controller lockup detected. */
7903 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
7906 struct CommandList
*c
;
7909 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
7910 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7911 c
= h
->cmd_pool
+ i
;
7912 refcount
= atomic_inc_return(&c
->refcount
);
7914 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
7916 atomic_dec(&h
->commands_outstanding
);
7921 dev_warn(&h
->pdev
->dev
,
7922 "failed %d commands in fail_all\n", failcount
);
7925 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
7929 for_each_online_cpu(cpu
) {
7930 u32
*lockup_detected
;
7931 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
7932 *lockup_detected
= value
;
7934 wmb(); /* be sure the per-cpu variables are out to memory */
7937 static void controller_lockup_detected(struct ctlr_info
*h
)
7939 unsigned long flags
;
7940 u32 lockup_detected
;
7942 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7943 spin_lock_irqsave(&h
->lock
, flags
);
7944 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7945 if (!lockup_detected
) {
7946 /* no heartbeat, but controller gave us a zero. */
7947 dev_warn(&h
->pdev
->dev
,
7948 "lockup detected after %d but scratchpad register is zero\n",
7949 h
->heartbeat_sample_interval
/ HZ
);
7950 lockup_detected
= 0xffffffff;
7952 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
7953 spin_unlock_irqrestore(&h
->lock
, flags
);
7954 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
7955 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
7956 pci_disable_device(h
->pdev
);
7957 fail_all_outstanding_cmds(h
);
7960 static int detect_controller_lockup(struct ctlr_info
*h
)
7964 unsigned long flags
;
7966 now
= get_jiffies_64();
7967 /* If we've received an interrupt recently, we're ok. */
7968 if (time_after64(h
->last_intr_timestamp
+
7969 (h
->heartbeat_sample_interval
), now
))
7973 * If we've already checked the heartbeat recently, we're ok.
7974 * This could happen if someone sends us a signal. We
7975 * otherwise don't care about signals in this thread.
7977 if (time_after64(h
->last_heartbeat_timestamp
+
7978 (h
->heartbeat_sample_interval
), now
))
7981 /* If heartbeat has not changed since we last looked, we're not ok. */
7982 spin_lock_irqsave(&h
->lock
, flags
);
7983 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
7984 spin_unlock_irqrestore(&h
->lock
, flags
);
7985 if (h
->last_heartbeat
== heartbeat
) {
7986 controller_lockup_detected(h
);
7991 h
->last_heartbeat
= heartbeat
;
7992 h
->last_heartbeat_timestamp
= now
;
7996 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8001 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8004 /* Ask the controller to clear the events we're handling. */
8005 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8006 | CFGTBL_Trans_io_accel2
)) &&
8007 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8008 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8010 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8011 event_type
= "state change";
8012 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8013 event_type
= "configuration change";
8014 /* Stop sending new RAID offload reqs via the IO accelerator */
8015 scsi_block_requests(h
->scsi_host
);
8016 for (i
= 0; i
< h
->ndevices
; i
++) {
8017 h
->dev
[i
]->offload_enabled
= 0;
8018 h
->dev
[i
]->offload_to_be_enabled
= 0;
8020 hpsa_drain_accel_commands(h
);
8021 /* Set 'accelerator path config change' bit */
8022 dev_warn(&h
->pdev
->dev
,
8023 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8024 h
->events
, event_type
);
8025 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8026 /* Set the "clear event notify field update" bit 6 */
8027 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8028 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8029 hpsa_wait_for_clear_event_notify_ack(h
);
8030 scsi_unblock_requests(h
->scsi_host
);
8032 /* Acknowledge controller notification events. */
8033 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8034 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8035 hpsa_wait_for_clear_event_notify_ack(h
);
8037 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8038 hpsa_wait_for_mode_change_ack(h
);
8044 /* Check a register on the controller to see if there are configuration
8045 * changes (added/changed/removed logical drives, etc.) which mean that
8046 * we should rescan the controller for devices.
8047 * Also check flag for driver-initiated rescan.
8049 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8051 if (h
->drv_req_rescan
) {
8052 h
->drv_req_rescan
= 0;
8056 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8059 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8060 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8064 * Check if any of the offline devices have become ready
8066 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8068 unsigned long flags
;
8069 struct offline_device_entry
*d
;
8070 struct list_head
*this, *tmp
;
8072 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8073 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8074 d
= list_entry(this, struct offline_device_entry
,
8076 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8077 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8078 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8079 list_del(&d
->offline_list
);
8080 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8083 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8085 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8089 static int hpsa_luns_changed(struct ctlr_info
*h
)
8091 int rc
= 1; /* assume there are changes */
8092 struct ReportLUNdata
*logdev
= NULL
;
8094 /* if we can't find out if lun data has changed,
8095 * assume that it has.
8098 if (!h
->lastlogicals
)
8101 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8105 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8106 dev_warn(&h
->pdev
->dev
,
8107 "report luns failed, can't track lun changes.\n");
8110 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8111 dev_info(&h
->pdev
->dev
,
8112 "Lun changes detected.\n");
8113 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8116 rc
= 0; /* no changes detected. */
8122 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8124 struct Scsi_Host
*sh
= NULL
;
8125 unsigned long flags
;
8128 * Do the scan after the reset
8130 spin_lock_irqsave(&h
->reset_lock
, flags
);
8131 if (h
->reset_in_progress
) {
8132 h
->drv_req_rescan
= 1;
8133 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8136 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8138 sh
= scsi_host_get(h
->scsi_host
);
8140 hpsa_scan_start(sh
);
8142 h
->drv_req_rescan
= 0;
8147 * watch for controller events
8149 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8151 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8152 struct ctlr_info
, event_monitor_work
);
8153 unsigned long flags
;
8155 spin_lock_irqsave(&h
->lock
, flags
);
8156 if (h
->remove_in_progress
) {
8157 spin_unlock_irqrestore(&h
->lock
, flags
);
8160 spin_unlock_irqrestore(&h
->lock
, flags
);
8162 if (hpsa_ctlr_needs_rescan(h
)) {
8163 hpsa_ack_ctlr_events(h
);
8164 hpsa_perform_rescan(h
);
8167 spin_lock_irqsave(&h
->lock
, flags
);
8168 if (!h
->remove_in_progress
)
8169 schedule_delayed_work(&h
->event_monitor_work
,
8170 HPSA_EVENT_MONITOR_INTERVAL
);
8171 spin_unlock_irqrestore(&h
->lock
, flags
);
8174 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8176 unsigned long flags
;
8177 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8178 struct ctlr_info
, rescan_ctlr_work
);
8180 spin_lock_irqsave(&h
->lock
, flags
);
8181 if (h
->remove_in_progress
) {
8182 spin_unlock_irqrestore(&h
->lock
, flags
);
8185 spin_unlock_irqrestore(&h
->lock
, flags
);
8187 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8188 hpsa_perform_rescan(h
);
8189 } else if (h
->discovery_polling
) {
8190 hpsa_disable_rld_caching(h
);
8191 if (hpsa_luns_changed(h
)) {
8192 dev_info(&h
->pdev
->dev
,
8193 "driver discovery polling rescan.\n");
8194 hpsa_perform_rescan(h
);
8197 spin_lock_irqsave(&h
->lock
, flags
);
8198 if (!h
->remove_in_progress
)
8199 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8200 h
->heartbeat_sample_interval
);
8201 spin_unlock_irqrestore(&h
->lock
, flags
);
8204 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8206 unsigned long flags
;
8207 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8208 struct ctlr_info
, monitor_ctlr_work
);
8210 detect_controller_lockup(h
);
8211 if (lockup_detected(h
))
8214 spin_lock_irqsave(&h
->lock
, flags
);
8215 if (!h
->remove_in_progress
)
8216 schedule_delayed_work(&h
->monitor_ctlr_work
,
8217 h
->heartbeat_sample_interval
);
8218 spin_unlock_irqrestore(&h
->lock
, flags
);
8221 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8224 struct workqueue_struct
*wq
= NULL
;
8226 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8228 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8233 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8236 struct ctlr_info
*h
;
8237 int try_soft_reset
= 0;
8238 unsigned long flags
;
8241 if (number_of_controllers
== 0)
8242 printk(KERN_INFO DRIVER_NAME
"\n");
8244 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8246 dev_warn(&pdev
->dev
, "Board ID not found\n");
8250 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8252 if (rc
!= -ENOTSUPP
)
8254 /* If the reset fails in a particular way (it has no way to do
8255 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8256 * a soft reset once we get the controller configured up to the
8257 * point that it can accept a command.
8263 reinit_after_soft_reset
:
8265 /* Command structures must be aligned on a 32-byte boundary because
8266 * the 5 lower bits of the address are used by the hardware. and by
8267 * the driver. See comments in hpsa.h for more info.
8269 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8270 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8272 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8278 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8279 INIT_LIST_HEAD(&h
->offline_device_list
);
8280 spin_lock_init(&h
->lock
);
8281 spin_lock_init(&h
->offline_device_lock
);
8282 spin_lock_init(&h
->scan_lock
);
8283 spin_lock_init(&h
->reset_lock
);
8284 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8286 /* Allocate and clear per-cpu variable lockup_detected */
8287 h
->lockup_detected
= alloc_percpu(u32
);
8288 if (!h
->lockup_detected
) {
8289 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8291 goto clean1
; /* aer/h */
8293 set_lockup_detected_for_all_cpus(h
, 0);
8295 rc
= hpsa_pci_init(h
);
8297 goto clean2
; /* lu, aer/h */
8299 /* relies on h-> settings made by hpsa_pci_init, including
8300 * interrupt_mode h->intr */
8301 rc
= hpsa_scsi_host_alloc(h
);
8303 goto clean2_5
; /* pci, lu, aer/h */
8305 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8306 h
->ctlr
= number_of_controllers
;
8307 number_of_controllers
++;
8309 /* configure PCI DMA stuff */
8310 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8314 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8318 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8319 goto clean3
; /* shost, pci, lu, aer/h */
8323 /* make sure the board interrupts are off */
8324 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8326 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8328 goto clean3
; /* shost, pci, lu, aer/h */
8329 rc
= hpsa_alloc_cmd_pool(h
);
8331 goto clean4
; /* irq, shost, pci, lu, aer/h */
8332 rc
= hpsa_alloc_sg_chain_blocks(h
);
8334 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8335 init_waitqueue_head(&h
->scan_wait_queue
);
8336 init_waitqueue_head(&h
->event_sync_wait_queue
);
8337 mutex_init(&h
->reset_mutex
);
8338 h
->scan_finished
= 1; /* no scan currently in progress */
8339 h
->scan_waiting
= 0;
8341 pci_set_drvdata(pdev
, h
);
8344 spin_lock_init(&h
->devlock
);
8345 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8347 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8349 /* create the resubmit workqueue */
8350 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8351 if (!h
->rescan_ctlr_wq
) {
8356 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8357 if (!h
->resubmit_wq
) {
8359 goto clean7
; /* aer/h */
8363 * At this point, the controller is ready to take commands.
8364 * Now, if reset_devices and the hard reset didn't work, try
8365 * the soft reset and see if that works.
8367 if (try_soft_reset
) {
8369 /* This is kind of gross. We may or may not get a completion
8370 * from the soft reset command, and if we do, then the value
8371 * from the fifo may or may not be valid. So, we wait 10 secs
8372 * after the reset throwing away any completions we get during
8373 * that time. Unregister the interrupt handler and register
8374 * fake ones to scoop up any residual completions.
8376 spin_lock_irqsave(&h
->lock
, flags
);
8377 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8378 spin_unlock_irqrestore(&h
->lock
, flags
);
8380 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8381 hpsa_intx_discard_completions
);
8383 dev_warn(&h
->pdev
->dev
,
8384 "Failed to request_irq after soft reset.\n");
8386 * cannot goto clean7 or free_irqs will be called
8387 * again. Instead, do its work
8389 hpsa_free_performant_mode(h
); /* clean7 */
8390 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8391 hpsa_free_cmd_pool(h
); /* clean5 */
8393 * skip hpsa_free_irqs(h) clean4 since that
8394 * was just called before request_irqs failed
8399 rc
= hpsa_kdump_soft_reset(h
);
8401 /* Neither hard nor soft reset worked, we're hosed. */
8404 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8405 dev_info(&h
->pdev
->dev
,
8406 "Waiting for stale completions to drain.\n");
8407 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8409 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8411 rc
= controller_reset_failed(h
->cfgtable
);
8413 dev_info(&h
->pdev
->dev
,
8414 "Soft reset appears to have failed.\n");
8416 /* since the controller's reset, we have to go back and re-init
8417 * everything. Easiest to just forget what we've done and do it
8420 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8423 /* don't goto clean, we already unallocated */
8426 goto reinit_after_soft_reset
;
8429 /* Enable Accelerated IO path at driver layer */
8430 h
->acciopath_status
= 1;
8431 /* Disable discovery polling.*/
8432 h
->discovery_polling
= 0;
8435 /* Turn the interrupts on so we can service requests */
8436 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8438 hpsa_hba_inquiry(h
);
8440 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8441 if (!h
->lastlogicals
)
8442 dev_info(&h
->pdev
->dev
,
8443 "Can't track change to report lun data\n");
8445 /* hook into SCSI subsystem */
8446 rc
= hpsa_scsi_add_host(h
);
8448 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8450 /* Monitor the controller for firmware lockups */
8451 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8452 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8453 schedule_delayed_work(&h
->monitor_ctlr_work
,
8454 h
->heartbeat_sample_interval
);
8455 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8456 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8457 h
->heartbeat_sample_interval
);
8458 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8459 schedule_delayed_work(&h
->event_monitor_work
,
8460 HPSA_EVENT_MONITOR_INTERVAL
);
8463 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8464 hpsa_free_performant_mode(h
);
8465 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8466 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8467 hpsa_free_sg_chain_blocks(h
);
8468 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8469 hpsa_free_cmd_pool(h
);
8470 clean4
: /* irq, shost, pci, lu, aer/h */
8472 clean3
: /* shost, pci, lu, aer/h */
8473 scsi_host_put(h
->scsi_host
);
8474 h
->scsi_host
= NULL
;
8475 clean2_5
: /* pci, lu, aer/h */
8476 hpsa_free_pci_init(h
);
8477 clean2
: /* lu, aer/h */
8478 if (h
->lockup_detected
) {
8479 free_percpu(h
->lockup_detected
);
8480 h
->lockup_detected
= NULL
;
8482 clean1
: /* wq/aer/h */
8483 if (h
->resubmit_wq
) {
8484 destroy_workqueue(h
->resubmit_wq
);
8485 h
->resubmit_wq
= NULL
;
8487 if (h
->rescan_ctlr_wq
) {
8488 destroy_workqueue(h
->rescan_ctlr_wq
);
8489 h
->rescan_ctlr_wq
= NULL
;
8495 static void hpsa_flush_cache(struct ctlr_info
*h
)
8498 struct CommandList
*c
;
8501 if (unlikely(lockup_detected(h
)))
8503 flush_buf
= kzalloc(4, GFP_KERNEL
);
8509 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8510 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8513 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8514 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8517 if (c
->err_info
->CommandStatus
!= 0)
8519 dev_warn(&h
->pdev
->dev
,
8520 "error flushing cache on controller\n");
8525 /* Make controller gather fresh report lun data each time we
8526 * send down a report luns request
8528 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8531 struct CommandList
*c
;
8534 /* Don't bother trying to set diag options if locked up */
8535 if (unlikely(h
->lockup_detected
))
8538 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8544 /* first, get the current diag options settings */
8545 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8546 RAID_CTLR_LUNID
, TYPE_CMD
))
8549 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8550 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8551 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8554 /* Now, set the bit for disabling the RLD caching */
8555 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8557 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8558 RAID_CTLR_LUNID
, TYPE_CMD
))
8561 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8562 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8563 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8566 /* Now verify that it got set: */
8567 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8568 RAID_CTLR_LUNID
, TYPE_CMD
))
8571 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8572 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8573 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8576 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8580 dev_err(&h
->pdev
->dev
,
8581 "Error: failed to disable report lun data caching.\n");
8587 static void hpsa_shutdown(struct pci_dev
*pdev
)
8589 struct ctlr_info
*h
;
8591 h
= pci_get_drvdata(pdev
);
8592 /* Turn board interrupts off and send the flush cache command
8593 * sendcmd will turn off interrupt, and send the flush...
8594 * To write all data in the battery backed cache to disks
8596 hpsa_flush_cache(h
);
8597 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8598 hpsa_free_irqs(h
); /* init_one 4 */
8599 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8602 static void hpsa_free_device_info(struct ctlr_info
*h
)
8606 for (i
= 0; i
< h
->ndevices
; i
++) {
8612 static void hpsa_remove_one(struct pci_dev
*pdev
)
8614 struct ctlr_info
*h
;
8615 unsigned long flags
;
8617 if (pci_get_drvdata(pdev
) == NULL
) {
8618 dev_err(&pdev
->dev
, "unable to remove device\n");
8621 h
= pci_get_drvdata(pdev
);
8623 /* Get rid of any controller monitoring work items */
8624 spin_lock_irqsave(&h
->lock
, flags
);
8625 h
->remove_in_progress
= 1;
8626 spin_unlock_irqrestore(&h
->lock
, flags
);
8627 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8628 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8629 cancel_delayed_work_sync(&h
->event_monitor_work
);
8630 destroy_workqueue(h
->rescan_ctlr_wq
);
8631 destroy_workqueue(h
->resubmit_wq
);
8634 * Call before disabling interrupts.
8635 * scsi_remove_host can trigger I/O operations especially
8636 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8637 * operations which cannot complete and will hang the system.
8640 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8641 /* includes hpsa_free_irqs - init_one 4 */
8642 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8643 hpsa_shutdown(pdev
);
8645 hpsa_free_device_info(h
); /* scan */
8647 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8648 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8649 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8650 hpsa_free_performant_mode(h
); /* init_one 7 */
8651 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8652 hpsa_free_cmd_pool(h
); /* init_one 5 */
8653 kfree(h
->lastlogicals
);
8655 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8657 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8658 h
->scsi_host
= NULL
; /* init_one 3 */
8660 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8661 hpsa_free_pci_init(h
); /* init_one 2.5 */
8663 free_percpu(h
->lockup_detected
); /* init_one 2 */
8664 h
->lockup_detected
= NULL
; /* init_one 2 */
8665 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8667 hpsa_delete_sas_host(h
);
8669 kfree(h
); /* init_one 1 */
8672 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8673 __attribute__((unused
)) pm_message_t state
)
8678 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8683 static struct pci_driver hpsa_pci_driver
= {
8685 .probe
= hpsa_init_one
,
8686 .remove
= hpsa_remove_one
,
8687 .id_table
= hpsa_pci_device_id
, /* id_table */
8688 .shutdown
= hpsa_shutdown
,
8689 .suspend
= hpsa_suspend
,
8690 .resume
= hpsa_resume
,
8693 /* Fill in bucket_map[], given nsgs (the max number of
8694 * scatter gather elements supported) and bucket[],
8695 * which is an array of 8 integers. The bucket[] array
8696 * contains 8 different DMA transfer sizes (in 16
8697 * byte increments) which the controller uses to fetch
8698 * commands. This function fills in bucket_map[], which
8699 * maps a given number of scatter gather elements to one of
8700 * the 8 DMA transfer sizes. The point of it is to allow the
8701 * controller to only do as much DMA as needed to fetch the
8702 * command, with the DMA transfer size encoded in the lower
8703 * bits of the command address.
8705 static void calc_bucket_map(int bucket
[], int num_buckets
,
8706 int nsgs
, int min_blocks
, u32
*bucket_map
)
8710 /* Note, bucket_map must have nsgs+1 entries. */
8711 for (i
= 0; i
<= nsgs
; i
++) {
8712 /* Compute size of a command with i SG entries */
8713 size
= i
+ min_blocks
;
8714 b
= num_buckets
; /* Assume the biggest bucket */
8715 /* Find the bucket that is just big enough */
8716 for (j
= 0; j
< num_buckets
; j
++) {
8717 if (bucket
[j
] >= size
) {
8722 /* for a command with i SG entries, use bucket b. */
8728 * return -ENODEV on err, 0 on success (or no action)
8729 * allocates numerous items that must be freed later
8731 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8734 unsigned long register_value
;
8735 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8736 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8737 CFGTBL_Trans_enable_directed_msix
|
8738 (trans_support
& (CFGTBL_Trans_io_accel1
|
8739 CFGTBL_Trans_io_accel2
));
8740 struct access_method access
= SA5_performant_access
;
8742 /* This is a bit complicated. There are 8 registers on
8743 * the controller which we write to to tell it 8 different
8744 * sizes of commands which there may be. It's a way of
8745 * reducing the DMA done to fetch each command. Encoded into
8746 * each command's tag are 3 bits which communicate to the controller
8747 * which of the eight sizes that command fits within. The size of
8748 * each command depends on how many scatter gather entries there are.
8749 * Each SG entry requires 16 bytes. The eight registers are programmed
8750 * with the number of 16-byte blocks a command of that size requires.
8751 * The smallest command possible requires 5 such 16 byte blocks.
8752 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8753 * blocks. Note, this only extends to the SG entries contained
8754 * within the command block, and does not extend to chained blocks
8755 * of SG elements. bft[] contains the eight values we write to
8756 * the registers. They are not evenly distributed, but have more
8757 * sizes for small commands, and fewer sizes for larger commands.
8759 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8760 #define MIN_IOACCEL2_BFT_ENTRY 5
8761 #define HPSA_IOACCEL2_HEADER_SZ 4
8762 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8763 13, 14, 15, 16, 17, 18, 19,
8764 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8765 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8766 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8767 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8768 16 * MIN_IOACCEL2_BFT_ENTRY
);
8769 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8770 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8771 /* 5 = 1 s/g entry or 4k
8772 * 6 = 2 s/g entry or 8k
8773 * 8 = 4 s/g entry or 16k
8774 * 10 = 6 s/g entry or 24k
8777 /* If the controller supports either ioaccel method then
8778 * we can also use the RAID stack submit path that does not
8779 * perform the superfluous readl() after each command submission.
8781 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8782 access
= SA5_performant_access_no_read
;
8784 /* Controller spec: zero out this buffer. */
8785 for (i
= 0; i
< h
->nreply_queues
; i
++)
8786 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8788 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8789 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8790 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8791 for (i
= 0; i
< 8; i
++)
8792 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8794 /* size of controller ring buffer */
8795 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8796 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8797 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8798 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8800 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8801 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8802 writel(h
->reply_queue
[i
].busaddr
,
8803 &h
->transtable
->RepQAddr
[i
].lower
);
8806 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8807 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8809 * enable outbound interrupt coalescing in accelerator mode;
8811 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8812 access
= SA5_ioaccel_mode1_access
;
8813 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8814 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8816 if (trans_support
& CFGTBL_Trans_io_accel2
)
8817 access
= SA5_ioaccel_mode2_access
;
8818 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8819 if (hpsa_wait_for_mode_change_ack(h
)) {
8820 dev_err(&h
->pdev
->dev
,
8821 "performant mode problem - doorbell timeout\n");
8824 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8825 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8826 dev_err(&h
->pdev
->dev
,
8827 "performant mode problem - transport not active\n");
8830 /* Change the access methods to the performant access methods */
8832 h
->transMethod
= transMethod
;
8834 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8835 (trans_support
& CFGTBL_Trans_io_accel2
)))
8838 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8839 /* Set up I/O accelerator mode */
8840 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8841 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8842 h
->reply_queue
[i
].current_entry
=
8843 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8845 bft
[7] = h
->ioaccel_maxsg
+ 8;
8846 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8847 h
->ioaccel1_blockFetchTable
);
8849 /* initialize all reply queue entries to unused */
8850 for (i
= 0; i
< h
->nreply_queues
; i
++)
8851 memset(h
->reply_queue
[i
].head
,
8852 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8853 h
->reply_queue_size
);
8855 /* set all the constant fields in the accelerator command
8856 * frames once at init time to save CPU cycles later.
8858 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8859 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8861 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8862 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8863 (i
* sizeof(struct ErrorInfo
)));
8864 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8865 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8866 cp
->host_context_flags
=
8867 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8868 cp
->timeout_sec
= 0;
8871 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8873 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8874 (i
* sizeof(struct io_accel1_cmd
)));
8876 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8877 u64 cfg_offset
, cfg_base_addr_index
;
8878 u32 bft2_offset
, cfg_base_addr
;
8881 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8882 &cfg_base_addr_index
, &cfg_offset
);
8883 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8884 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8885 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8886 4, h
->ioaccel2_blockFetchTable
);
8887 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8888 BUILD_BUG_ON(offsetof(struct CfgTable
,
8889 io_accel_request_size_offset
) != 0xb8);
8890 h
->ioaccel2_bft2_regs
=
8891 remap_pci_mem(pci_resource_start(h
->pdev
,
8892 cfg_base_addr_index
) +
8893 cfg_offset
+ bft2_offset
,
8895 sizeof(*h
->ioaccel2_bft2_regs
));
8896 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8897 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
8899 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8900 if (hpsa_wait_for_mode_change_ack(h
)) {
8901 dev_err(&h
->pdev
->dev
,
8902 "performant mode problem - enabling ioaccel mode\n");
8908 /* Free ioaccel1 mode command blocks and block fetch table */
8909 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8911 if (h
->ioaccel_cmd_pool
) {
8912 pci_free_consistent(h
->pdev
,
8913 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8914 h
->ioaccel_cmd_pool
,
8915 h
->ioaccel_cmd_pool_dhandle
);
8916 h
->ioaccel_cmd_pool
= NULL
;
8917 h
->ioaccel_cmd_pool_dhandle
= 0;
8919 kfree(h
->ioaccel1_blockFetchTable
);
8920 h
->ioaccel1_blockFetchTable
= NULL
;
8923 /* Allocate ioaccel1 mode command blocks and block fetch table */
8924 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8927 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8928 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
8929 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
8931 /* Command structures must be aligned on a 128-byte boundary
8932 * because the 7 lower bits of the address are used by the
8935 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
8936 IOACCEL1_COMMANDLIST_ALIGNMENT
);
8937 h
->ioaccel_cmd_pool
=
8938 pci_alloc_consistent(h
->pdev
,
8939 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8940 &(h
->ioaccel_cmd_pool_dhandle
));
8942 h
->ioaccel1_blockFetchTable
=
8943 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8944 sizeof(u32
)), GFP_KERNEL
);
8946 if ((h
->ioaccel_cmd_pool
== NULL
) ||
8947 (h
->ioaccel1_blockFetchTable
== NULL
))
8950 memset(h
->ioaccel_cmd_pool
, 0,
8951 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
8955 hpsa_free_ioaccel1_cmd_and_bft(h
);
8959 /* Free ioaccel2 mode command blocks and block fetch table */
8960 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8962 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8964 if (h
->ioaccel2_cmd_pool
) {
8965 pci_free_consistent(h
->pdev
,
8966 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8967 h
->ioaccel2_cmd_pool
,
8968 h
->ioaccel2_cmd_pool_dhandle
);
8969 h
->ioaccel2_cmd_pool
= NULL
;
8970 h
->ioaccel2_cmd_pool_dhandle
= 0;
8972 kfree(h
->ioaccel2_blockFetchTable
);
8973 h
->ioaccel2_blockFetchTable
= NULL
;
8976 /* Allocate ioaccel2 mode command blocks and block fetch table */
8977 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8981 /* Allocate ioaccel2 mode command blocks and block fetch table */
8984 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8985 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
8986 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
8988 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
8989 IOACCEL2_COMMANDLIST_ALIGNMENT
);
8990 h
->ioaccel2_cmd_pool
=
8991 pci_alloc_consistent(h
->pdev
,
8992 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8993 &(h
->ioaccel2_cmd_pool_dhandle
));
8995 h
->ioaccel2_blockFetchTable
=
8996 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8997 sizeof(u32
)), GFP_KERNEL
);
8999 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9000 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9005 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9009 memset(h
->ioaccel2_cmd_pool
, 0,
9010 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9014 hpsa_free_ioaccel2_cmd_and_bft(h
);
9018 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9019 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9021 kfree(h
->blockFetchTable
);
9022 h
->blockFetchTable
= NULL
;
9023 hpsa_free_reply_queues(h
);
9024 hpsa_free_ioaccel1_cmd_and_bft(h
);
9025 hpsa_free_ioaccel2_cmd_and_bft(h
);
9028 /* return -ENODEV on error, 0 on success (or no action)
9029 * allocates numerous items that must be freed later
9031 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9034 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9035 CFGTBL_Trans_use_short_tags
;
9038 if (hpsa_simple_mode
)
9041 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9042 if (!(trans_support
& PERFORMANT_MODE
))
9045 /* Check for I/O accelerator mode support */
9046 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9047 transMethod
|= CFGTBL_Trans_io_accel1
|
9048 CFGTBL_Trans_enable_directed_msix
;
9049 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9052 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9053 transMethod
|= CFGTBL_Trans_io_accel2
|
9054 CFGTBL_Trans_enable_directed_msix
;
9055 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9060 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9061 hpsa_get_max_perf_mode_cmds(h
);
9062 /* Performant mode ring buffer and supporting data structures */
9063 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9065 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9066 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9067 h
->reply_queue_size
,
9068 &(h
->reply_queue
[i
].busaddr
));
9069 if (!h
->reply_queue
[i
].head
) {
9071 goto clean1
; /* rq, ioaccel */
9073 h
->reply_queue
[i
].size
= h
->max_commands
;
9074 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9075 h
->reply_queue
[i
].current_entry
= 0;
9078 /* Need a block fetch table for performant mode */
9079 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9080 sizeof(u32
)), GFP_KERNEL
);
9081 if (!h
->blockFetchTable
) {
9083 goto clean1
; /* rq, ioaccel */
9086 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9088 goto clean2
; /* bft, rq, ioaccel */
9091 clean2
: /* bft, rq, ioaccel */
9092 kfree(h
->blockFetchTable
);
9093 h
->blockFetchTable
= NULL
;
9094 clean1
: /* rq, ioaccel */
9095 hpsa_free_reply_queues(h
);
9096 hpsa_free_ioaccel1_cmd_and_bft(h
);
9097 hpsa_free_ioaccel2_cmd_and_bft(h
);
9101 static int is_accelerated_cmd(struct CommandList
*c
)
9103 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9106 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9108 struct CommandList
*c
= NULL
;
9109 int i
, accel_cmds_out
;
9112 do { /* wait for all outstanding ioaccel commands to drain out */
9114 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9115 c
= h
->cmd_pool
+ i
;
9116 refcount
= atomic_inc_return(&c
->refcount
);
9117 if (refcount
> 1) /* Command is allocated */
9118 accel_cmds_out
+= is_accelerated_cmd(c
);
9121 if (accel_cmds_out
<= 0)
9127 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9128 struct hpsa_sas_port
*hpsa_sas_port
)
9130 struct hpsa_sas_phy
*hpsa_sas_phy
;
9131 struct sas_phy
*phy
;
9133 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9137 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9138 hpsa_sas_port
->next_phy_index
);
9140 kfree(hpsa_sas_phy
);
9144 hpsa_sas_port
->next_phy_index
++;
9145 hpsa_sas_phy
->phy
= phy
;
9146 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9148 return hpsa_sas_phy
;
9151 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9153 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9155 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9157 if (hpsa_sas_phy
->added_to_port
)
9158 list_del(&hpsa_sas_phy
->phy_list_entry
);
9159 kfree(hpsa_sas_phy
);
9162 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9165 struct hpsa_sas_port
*hpsa_sas_port
;
9166 struct sas_phy
*phy
;
9167 struct sas_identify
*identify
;
9169 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9170 phy
= hpsa_sas_phy
->phy
;
9172 identify
= &phy
->identify
;
9173 memset(identify
, 0, sizeof(*identify
));
9174 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9175 identify
->device_type
= SAS_END_DEVICE
;
9176 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9177 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9178 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9179 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9180 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9181 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9182 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9184 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9188 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9189 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9190 &hpsa_sas_port
->phy_list_head
);
9191 hpsa_sas_phy
->added_to_port
= true;
9197 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9198 struct sas_rphy
*rphy
)
9200 struct sas_identify
*identify
;
9202 identify
= &rphy
->identify
;
9203 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9204 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9205 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9207 return sas_rphy_add(rphy
);
9210 static struct hpsa_sas_port
9211 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9215 struct hpsa_sas_port
*hpsa_sas_port
;
9216 struct sas_port
*port
;
9218 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9222 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9223 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9225 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9227 goto free_hpsa_port
;
9229 rc
= sas_port_add(port
);
9233 hpsa_sas_port
->port
= port
;
9234 hpsa_sas_port
->sas_address
= sas_address
;
9235 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9236 &hpsa_sas_node
->port_list_head
);
9238 return hpsa_sas_port
;
9241 sas_port_free(port
);
9243 kfree(hpsa_sas_port
);
9248 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9250 struct hpsa_sas_phy
*hpsa_sas_phy
;
9251 struct hpsa_sas_phy
*next
;
9253 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9254 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9255 hpsa_free_sas_phy(hpsa_sas_phy
);
9257 sas_port_delete(hpsa_sas_port
->port
);
9258 list_del(&hpsa_sas_port
->port_list_entry
);
9259 kfree(hpsa_sas_port
);
9262 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9264 struct hpsa_sas_node
*hpsa_sas_node
;
9266 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9267 if (hpsa_sas_node
) {
9268 hpsa_sas_node
->parent_dev
= parent_dev
;
9269 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9272 return hpsa_sas_node
;
9275 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9277 struct hpsa_sas_port
*hpsa_sas_port
;
9278 struct hpsa_sas_port
*next
;
9283 list_for_each_entry_safe(hpsa_sas_port
, next
,
9284 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9285 hpsa_free_sas_port(hpsa_sas_port
);
9287 kfree(hpsa_sas_node
);
9290 static struct hpsa_scsi_dev_t
9291 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9292 struct sas_rphy
*rphy
)
9295 struct hpsa_scsi_dev_t
*device
;
9297 for (i
= 0; i
< h
->ndevices
; i
++) {
9299 if (!device
->sas_port
)
9301 if (device
->sas_port
->rphy
== rphy
)
9308 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9311 struct device
*parent_dev
;
9312 struct hpsa_sas_node
*hpsa_sas_node
;
9313 struct hpsa_sas_port
*hpsa_sas_port
;
9314 struct hpsa_sas_phy
*hpsa_sas_phy
;
9316 parent_dev
= &h
->scsi_host
->shost_gendev
;
9318 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9322 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9323 if (!hpsa_sas_port
) {
9328 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9329 if (!hpsa_sas_phy
) {
9334 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9338 h
->sas_host
= hpsa_sas_node
;
9343 hpsa_free_sas_phy(hpsa_sas_phy
);
9345 hpsa_free_sas_port(hpsa_sas_port
);
9347 hpsa_free_sas_node(hpsa_sas_node
);
9352 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9354 hpsa_free_sas_node(h
->sas_host
);
9357 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9358 struct hpsa_scsi_dev_t
*device
)
9361 struct hpsa_sas_port
*hpsa_sas_port
;
9362 struct sas_rphy
*rphy
;
9364 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9368 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9374 hpsa_sas_port
->rphy
= rphy
;
9375 device
->sas_port
= hpsa_sas_port
;
9377 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9384 hpsa_free_sas_port(hpsa_sas_port
);
9385 device
->sas_port
= NULL
;
9390 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9392 if (device
->sas_port
) {
9393 hpsa_free_sas_port(device
->sas_port
);
9394 device
->sas_port
= NULL
;
9399 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9405 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9412 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9418 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9424 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9430 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9436 hpsa_sas_phy_release(struct sas_phy
*phy
)
9441 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9446 /* SMP = Serial Management Protocol */
9448 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9449 struct request
*req
)
9454 static struct sas_function_template hpsa_sas_transport_functions
= {
9455 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9456 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9457 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9458 .phy_reset
= hpsa_sas_phy_reset
,
9459 .phy_enable
= hpsa_sas_phy_enable
,
9460 .phy_setup
= hpsa_sas_phy_setup
,
9461 .phy_release
= hpsa_sas_phy_release
,
9462 .set_phy_speed
= hpsa_sas_phy_speed
,
9463 .smp_handler
= hpsa_sas_smp_handler
,
9467 * This is it. Register the PCI driver information for the cards we control
9468 * the OS will call our registered routines when it finds one of our cards.
9470 static int __init
hpsa_init(void)
9474 hpsa_sas_transport_template
=
9475 sas_attach_transport(&hpsa_sas_transport_functions
);
9476 if (!hpsa_sas_transport_template
)
9479 rc
= pci_register_driver(&hpsa_pci_driver
);
9482 sas_release_transport(hpsa_sas_transport_template
);
9487 static void __exit
hpsa_cleanup(void)
9489 pci_unregister_driver(&hpsa_pci_driver
);
9490 sas_release_transport(hpsa_sas_transport_template
);
9493 static void __attribute__((unused
)) verify_offsets(void)
9495 #define VERIFY_OFFSET(member, offset) \
9496 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9498 VERIFY_OFFSET(structure_size
, 0);
9499 VERIFY_OFFSET(volume_blk_size
, 4);
9500 VERIFY_OFFSET(volume_blk_cnt
, 8);
9501 VERIFY_OFFSET(phys_blk_shift
, 16);
9502 VERIFY_OFFSET(parity_rotation_shift
, 17);
9503 VERIFY_OFFSET(strip_size
, 18);
9504 VERIFY_OFFSET(disk_starting_blk
, 20);
9505 VERIFY_OFFSET(disk_blk_cnt
, 28);
9506 VERIFY_OFFSET(data_disks_per_row
, 36);
9507 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9508 VERIFY_OFFSET(row_cnt
, 40);
9509 VERIFY_OFFSET(layout_map_count
, 42);
9510 VERIFY_OFFSET(flags
, 44);
9511 VERIFY_OFFSET(dekindex
, 46);
9512 /* VERIFY_OFFSET(reserved, 48 */
9513 VERIFY_OFFSET(data
, 64);
9515 #undef VERIFY_OFFSET
9517 #define VERIFY_OFFSET(member, offset) \
9518 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9520 VERIFY_OFFSET(IU_type
, 0);
9521 VERIFY_OFFSET(direction
, 1);
9522 VERIFY_OFFSET(reply_queue
, 2);
9523 /* VERIFY_OFFSET(reserved1, 3); */
9524 VERIFY_OFFSET(scsi_nexus
, 4);
9525 VERIFY_OFFSET(Tag
, 8);
9526 VERIFY_OFFSET(cdb
, 16);
9527 VERIFY_OFFSET(cciss_lun
, 32);
9528 VERIFY_OFFSET(data_len
, 40);
9529 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9530 VERIFY_OFFSET(sg_count
, 45);
9531 /* VERIFY_OFFSET(reserved3 */
9532 VERIFY_OFFSET(err_ptr
, 48);
9533 VERIFY_OFFSET(err_len
, 56);
9534 /* VERIFY_OFFSET(reserved4 */
9535 VERIFY_OFFSET(sg
, 64);
9537 #undef VERIFY_OFFSET
9539 #define VERIFY_OFFSET(member, offset) \
9540 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9542 VERIFY_OFFSET(dev_handle
, 0x00);
9543 VERIFY_OFFSET(reserved1
, 0x02);
9544 VERIFY_OFFSET(function
, 0x03);
9545 VERIFY_OFFSET(reserved2
, 0x04);
9546 VERIFY_OFFSET(err_info
, 0x0C);
9547 VERIFY_OFFSET(reserved3
, 0x10);
9548 VERIFY_OFFSET(err_info_len
, 0x12);
9549 VERIFY_OFFSET(reserved4
, 0x13);
9550 VERIFY_OFFSET(sgl_offset
, 0x14);
9551 VERIFY_OFFSET(reserved5
, 0x15);
9552 VERIFY_OFFSET(transfer_len
, 0x1C);
9553 VERIFY_OFFSET(reserved6
, 0x20);
9554 VERIFY_OFFSET(io_flags
, 0x24);
9555 VERIFY_OFFSET(reserved7
, 0x26);
9556 VERIFY_OFFSET(LUN
, 0x34);
9557 VERIFY_OFFSET(control
, 0x3C);
9558 VERIFY_OFFSET(CDB
, 0x40);
9559 VERIFY_OFFSET(reserved8
, 0x50);
9560 VERIFY_OFFSET(host_context_flags
, 0x60);
9561 VERIFY_OFFSET(timeout_sec
, 0x62);
9562 VERIFY_OFFSET(ReplyQueue
, 0x64);
9563 VERIFY_OFFSET(reserved9
, 0x65);
9564 VERIFY_OFFSET(tag
, 0x68);
9565 VERIFY_OFFSET(host_addr
, 0x70);
9566 VERIFY_OFFSET(CISS_LUN
, 0x78);
9567 VERIFY_OFFSET(SG
, 0x78 + 8);
9568 #undef VERIFY_OFFSET
9571 module_init(hpsa_init
);
9572 module_exit(hpsa_cleanup
);