rtc: stm32: fix misspelling and misalignment issues
[linux/fpc-iii.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
blob7cb3ef466cc7799eea7a9e7cb85465d40b5619e8
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
42 /**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
82 /**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
89 * Sets a register field specified by the supplied mask to the
90 * given value.
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
161 if (is_t4(adap->params.chip))
162 req |= LOCALCFG_F;
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
183 static void t4_report_fw_error(struct adapter *adap)
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
195 u32 pcie_fw;
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F) {
199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 adap->flags &= ~FW_OK;
206 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 u32 mbox_addr)
211 for ( ; nflit; nflit--, mbox_addr += 8)
212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
216 * Handle a FW assertion reported in a mailbox.
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
220 struct fw_debug_cmd asrt;
222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 dev_alert(adap->pdev_dev,
224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231 * @adapter: the adapter
232 * @cmd: the Firmware Mailbox Command or Reply
233 * @size: command length in bytes
234 * @access: the time (ms) needed to access the Firmware Mailbox
235 * @execute: the time (ms) the command spent being executed
237 static void t4_record_mbox(struct adapter *adapter,
238 const __be64 *cmd, unsigned int size,
239 int access, int execute)
241 struct mbox_cmd_log *log = adapter->mbox_log;
242 struct mbox_cmd *entry;
243 int i;
245 entry = mbox_cmd_log_entry(log, log->cursor++);
246 if (log->cursor == log->size)
247 log->cursor = 0;
249 for (i = 0; i < size / 8; i++)
250 entry->cmd[i] = be64_to_cpu(cmd[i]);
251 while (i < MBOX_LEN / 8)
252 entry->cmd[i++] = 0;
253 entry->timestamp = jiffies;
254 entry->seqno = log->seqno++;
255 entry->access = access;
256 entry->execute = execute;
260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261 * @adap: the adapter
262 * @mbox: index of the mailbox to use
263 * @cmd: the command to write
264 * @size: command length in bytes
265 * @rpl: where to optionally store the reply
266 * @sleep_ok: if true we may sleep while awaiting command completion
267 * @timeout: time to wait for command to finish before timing out
269 * Sends the given command to FW through the selected mailbox and waits
270 * for the FW to execute the command. If @rpl is not %NULL it is used to
271 * store the FW's reply to the command. The command and its optional
272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
273 * to respond. @sleep_ok determines whether we may sleep while awaiting
274 * the response. If sleeping is allowed we use progressive backoff
275 * otherwise we spin.
277 * The return value is 0 on success or a negative errno on failure. A
278 * failure can happen either because we are not able to execute the
279 * command or FW executes it but signals an error. In the latter case
280 * the return value is the error code indicated by FW (negated).
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 int size, void *rpl, bool sleep_ok, int timeout)
285 static const int delay[] = {
286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
289 struct mbox_list entry;
290 u16 access = 0;
291 u16 execute = 0;
292 u32 v;
293 u64 res;
294 int i, ms, delay_idx, ret;
295 const __be64 *p = cmd;
296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 __be64 cmd_rpl[MBOX_LEN / 8];
299 u32 pcie_fw;
301 if ((size & 15) || size > MBOX_LEN)
302 return -EINVAL;
305 * If the device is off-line, as in EEH, commands will time out.
306 * Fail them early so we don't waste time waiting.
308 if (adap->pdev->error_state != pci_channel_io_normal)
309 return -EIO;
311 /* If we have a negative timeout, that implies that we can't sleep. */
312 if (timeout < 0) {
313 sleep_ok = false;
314 timeout = -timeout;
317 /* Queue ourselves onto the mailbox access list. When our entry is at
318 * the front of the list, we have rights to access the mailbox. So we
319 * wait [for a while] till we're at the front [or bail out with an
320 * EBUSY] ...
322 spin_lock_bh(&adap->mbox_lock);
323 list_add_tail(&entry.list, &adap->mlist.list);
324 spin_unlock_bh(&adap->mbox_lock);
326 delay_idx = 0;
327 ms = delay[0];
329 for (i = 0; ; i += ms) {
330 /* If we've waited too long, return a busy indication. This
331 * really ought to be based on our initial position in the
332 * mailbox access list but this is a start. We very rearely
333 * contend on access to the mailbox ...
335 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 spin_lock_bh(&adap->mbox_lock);
338 list_del(&entry.list);
339 spin_unlock_bh(&adap->mbox_lock);
340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 t4_record_mbox(adap, cmd, size, access, ret);
342 return ret;
345 /* If we're at the head, break out and start the mailbox
346 * protocol.
348 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 list) == &entry)
350 break;
352 /* Delay for a bit before checking again ... */
353 if (sleep_ok) {
354 ms = delay[delay_idx]; /* last element may repeat */
355 if (delay_idx < ARRAY_SIZE(delay) - 1)
356 delay_idx++;
357 msleep(ms);
358 } else {
359 mdelay(ms);
363 /* Loop trying to get ownership of the mailbox. Return an error
364 * if we can't gain ownership.
366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 if (v != MBOX_OWNER_DRV) {
370 spin_lock_bh(&adap->mbox_lock);
371 list_del(&entry.list);
372 spin_unlock_bh(&adap->mbox_lock);
373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 t4_record_mbox(adap, cmd, size, access, ret);
375 return ret;
378 /* Copy in the new mailbox command and send it on its way ... */
379 t4_record_mbox(adap, cmd, size, access, 0);
380 for (i = 0; i < size; i += 8)
381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 t4_read_reg(adap, ctl_reg); /* flush write */
386 delay_idx = 0;
387 ms = delay[0];
389 for (i = 0;
390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 i < timeout;
392 i += ms) {
393 if (sleep_ok) {
394 ms = delay[delay_idx]; /* last element may repeat */
395 if (delay_idx < ARRAY_SIZE(delay) - 1)
396 delay_idx++;
397 msleep(ms);
398 } else
399 mdelay(ms);
401 v = t4_read_reg(adap, ctl_reg);
402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 if (!(v & MBMSGVALID_F)) {
404 t4_write_reg(adap, ctl_reg, 0);
405 continue;
408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 res = be64_to_cpu(cmd_rpl[0]);
411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 fw_asrt(adap, data_reg);
413 res = FW_CMD_RETVAL_V(EIO);
414 } else if (rpl) {
415 memcpy(rpl, cmd_rpl, size);
418 t4_write_reg(adap, ctl_reg, 0);
420 execute = i + ms;
421 t4_record_mbox(adap, cmd_rpl,
422 MBOX_LEN, access, execute);
423 spin_lock_bh(&adap->mbox_lock);
424 list_del(&entry.list);
425 spin_unlock_bh(&adap->mbox_lock);
426 return -FW_CMD_RETVAL_G((int)res);
430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 t4_record_mbox(adap, cmd, size, access, ret);
432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 *(const u8 *)cmd, mbox);
434 t4_report_fw_error(adap);
435 spin_lock_bh(&adap->mbox_lock);
436 list_del(&entry.list);
437 spin_unlock_bh(&adap->mbox_lock);
438 t4_fatal_err(adap);
439 return ret;
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 void *rpl, bool sleep_ok)
445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 FW_CMD_MAX_TIMEOUT);
449 static int t4_edc_err_read(struct adapter *adap, int idx)
451 u32 edc_ecc_err_addr_reg;
452 u32 rdata_reg;
454 if (is_t4(adap->params.chip)) {
455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 return 0;
458 if (idx != 0 && idx != 1) {
459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 return 0;
463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
466 CH_WARN(adap,
467 "edc%d err addr 0x%x: 0x%x.\n",
468 idx, edc_ecc_err_addr_reg,
469 t4_read_reg(adap, edc_ecc_err_addr_reg));
470 CH_WARN(adap,
471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 rdata_reg,
473 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
483 return 0;
487 * t4_memory_rw_init - Get memory window relative offset, base, and size.
488 * @adap: the adapter
489 * @win: PCI-E Memory Window to use
490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491 * @mem_off: memory relative offset with respect to @mtype.
492 * @mem_base: configured memory base address.
493 * @mem_aperture: configured memory window aperture.
495 * Get the configured memory window's relative offset, base, and size.
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 u32 *mem_base, u32 *mem_aperture)
500 u32 edc_size, mc_size, mem_reg;
502 /* Offset into the region of memory which is being accessed
503 * MEM_EDC0 = 0
504 * MEM_EDC1 = 1
505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
507 * MEM_HMA = 4
509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 if (mtype == MEM_HMA) {
511 *mem_off = 2 * (edc_size * 1024 * 1024);
512 } else if (mtype != MEM_MC1) {
513 *mem_off = (mtype * (edc_size * 1024 * 1024));
514 } else {
515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 MA_EXT_MEMORY0_BAR_A));
517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
520 /* Each PCI-E Memory Window is programmed with a window size -- or
521 * "aperture" -- which controls the granularity of its mapping onto
522 * adapter memory. We need to grab that aperture in order to know
523 * how to use the specified window. The window is also programmed
524 * with the base address of the Memory Window in BAR0's address
525 * space. For T4 this is an absolute PCI-E Bus Address. For T5
526 * the address is relative to BAR0.
528 mem_reg = t4_read_reg(adap,
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 win));
531 /* a dead adapter will return 0xffffffff for PIO reads */
532 if (mem_reg == 0xffffffff)
533 return -ENXIO;
535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 if (is_t4(adap->params.chip))
538 *mem_base -= adap->t4_bar0;
540 return 0;
544 * t4_memory_update_win - Move memory window to specified address.
545 * @adap: the adapter
546 * @win: PCI-E Memory Window to use
547 * @addr: location to move.
549 * Move memory window to specified address.
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
553 t4_write_reg(adap,
554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 addr);
556 /* Read it back to ensure that changes propagate before we
557 * attempt to use the new value.
559 t4_read_reg(adap,
560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
564 * t4_memory_rw_residual - Read/Write residual data.
565 * @adap: the adapter
566 * @off: relative offset within residual to start read/write.
567 * @addr: address within indicated memory type.
568 * @buf: host memory buffer
569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
571 * Read/Write residual data less than 32-bits.
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 int dir)
576 union {
577 u32 word;
578 char byte[4];
579 } last;
580 unsigned char *bp;
581 int i;
583 if (dir == T4_MEMORY_READ) {
584 last.word = le32_to_cpu((__force __le32)
585 t4_read_reg(adap, addr));
586 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 bp[i] = last.byte[i];
588 } else {
589 last.word = *buf;
590 for (i = off; i < 4; i++)
591 last.byte[i] = 0;
592 t4_write_reg(adap, addr,
593 (__force u32)cpu_to_le32(last.word));
598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599 * @adap: the adapter
600 * @win: PCI-E Memory Window to use
601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602 * @addr: address within indicated memory type
603 * @len: amount of memory to transfer
604 * @hbuf: host memory buffer
605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
607 * Reads/writes an [almost] arbitrary memory region in the firmware: the
608 * firmware memory address and host buffer must be aligned on 32-bit
609 * boudaries; the length may be arbitrary. The memory is transferred as
610 * a raw byte sequence from/to the firmware's memory. If this memory
611 * contains data structures which contain multi-byte integers, it's the
612 * caller's responsibility to perform appropriate byte order conversions.
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 u32 len, void *hbuf, int dir)
617 u32 pos, offset, resid, memoffset;
618 u32 win_pf, mem_aperture, mem_base;
619 u32 *buf;
620 int ret;
622 /* Argument sanity checks ...
624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 return -EINVAL;
626 buf = (u32 *)hbuf;
628 /* It's convenient to be able to handle lengths which aren't a
629 * multiple of 32-bits because we often end up transferring files to
630 * the firmware. So we'll handle that by normalizing the length here
631 * and then handling any residual transfer at the end.
633 resid = len & 0x3;
634 len -= resid;
636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 &mem_aperture);
638 if (ret)
639 return ret;
641 /* Determine the PCIE_MEM_ACCESS_OFFSET */
642 addr = addr + memoffset;
644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
646 /* Calculate our initial PCI-E Memory Window Position and Offset into
647 * that Window.
649 pos = addr & ~(mem_aperture - 1);
650 offset = addr - pos;
652 /* Set up initial PCI-E Memory Window to cover the start of our
653 * transfer.
655 t4_memory_update_win(adap, win, pos | win_pf);
657 /* Transfer data to/from the adapter as long as there's an integral
658 * number of 32-bit transfers to complete.
660 * A note on Endianness issues:
662 * The "register" reads and writes below from/to the PCI-E Memory
663 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 * Little-Endian "swizzel." As a result, if we have the following
665 * data in adapter memory:
667 * Memory: ... | b0 | b1 | b2 | b3 | ...
668 * Address: i+0 i+1 i+2 i+3
670 * Then a read of the adapter memory via the PCI-E Memory Window
671 * will yield:
673 * x = readl(i)
674 * 31 0
675 * [ b3 | b2 | b1 | b0 ]
677 * If this value is stored into local memory on a Little-Endian system
678 * it will show up correctly in local memory as:
680 * ( ..., b0, b1, b2, b3, ... )
682 * But on a Big-Endian system, the store will show up in memory
683 * incorrectly swizzled as:
685 * ( ..., b3, b2, b1, b0, ... )
687 * So we need to account for this in the reads and writes to the
688 * PCI-E Memory Window below by undoing the register read/write
689 * swizzels.
691 while (len > 0) {
692 if (dir == T4_MEMORY_READ)
693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 mem_base + offset));
695 else
696 t4_write_reg(adap, mem_base + offset,
697 (__force u32)cpu_to_le32(*buf++));
698 offset += sizeof(__be32);
699 len -= sizeof(__be32);
701 /* If we've reached the end of our current window aperture,
702 * move the PCI-E Memory Window on to the next. Note that
703 * doing this here after "len" may be 0 allows us to set up
704 * the PCI-E Memory Window for a possible final residual
705 * transfer below ...
707 if (offset == mem_aperture) {
708 pos += mem_aperture;
709 offset = 0;
710 t4_memory_update_win(adap, win, pos | win_pf);
714 /* If the original transfer had a length which wasn't a multiple of
715 * 32-bits, now's where we need to finish off the transfer of the
716 * residual amount. The PCI-E Memory Window has already been moved
717 * above (if necessary) to cover this final transfer.
719 if (resid)
720 t4_memory_rw_residual(adap, resid, mem_base + offset,
721 (u8 *)buf, dir);
723 return 0;
726 /* Return the specified PCI-E Configuration Space register from our Physical
727 * Function. We try first via a Firmware LDST Command since we prefer to let
728 * the firmware own all of these registers, but if that fails we go for it
729 * directly ourselves.
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
733 u32 val, ldst_addrspace;
735 /* If fw_attach != 0, construct and send the Firmware LDST Command to
736 * retrieve the specified PCI-E Configuration Space register.
738 struct fw_ldst_cmd ldst_cmd;
739 int ret;
741 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 FW_CMD_REQUEST_F |
745 FW_CMD_READ_F |
746 ldst_addrspace);
747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 ldst_cmd.u.pcie.ctrl_to_fn =
750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 ldst_cmd.u.pcie.r = reg;
753 /* If the LDST Command succeeds, return the result, otherwise
754 * fall through to reading it directly ourselves ...
756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 &ldst_cmd);
758 if (ret == 0)
759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 else
761 /* Read the desired Configuration Space register via the PCI-E
762 * Backdoor mechanism.
764 t4_hw_pci_read_cfg4(adap, reg, &val);
765 return val;
768 /* Get the window based on base passed to it.
769 * Window aperture is currently unhandled, but there is no use case for it
770 * right now
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 u32 memwin_base)
775 u32 ret;
777 if (is_t4(adap->params.chip)) {
778 u32 bar0;
780 /* Truncation intentional: we only read the bottom 32-bits of
781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
782 * mechanism to read BAR0 instead of using
783 * pci_resource_start() because we could be operating from
784 * within a Virtual Machine which is trapping our accesses to
785 * our Configuration Space and we need to set up the PCI-E
786 * Memory Window decoders with the actual addresses which will
787 * be coming across the PCI-E link.
789 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 bar0 &= pci_mask;
791 adap->t4_bar0 = bar0;
793 ret = bar0 + memwin_base;
794 } else {
795 /* For T5, only relative offset inside the PCIe BAR is passed */
796 ret = memwin_base;
798 return ret;
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
804 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
808 /* Set up memory window for accessing adapter memory ranges. (Read
809 * back MA register to ensure that changes propagate before we attempt
810 * to use the new values.)
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
814 t4_write_reg(adap,
815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 memwin_base | BIR_V(0) |
817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 t4_read_reg(adap,
819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
823 * t4_get_regs_len - return the size of the chips register set
824 * @adapter: the adapter
826 * Returns the size of the chip's BAR0 register space.
828 unsigned int t4_get_regs_len(struct adapter *adapter)
830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
832 switch (chip_version) {
833 case CHELSIO_T4:
834 return T4_REGMAP_SIZE;
836 case CHELSIO_T5:
837 case CHELSIO_T6:
838 return T5_REGMAP_SIZE;
841 dev_err(adapter->pdev_dev,
842 "Unsupported chip version %d\n", chip_version);
843 return 0;
847 * t4_get_regs - read chip registers into provided buffer
848 * @adap: the adapter
849 * @buf: register buffer
850 * @buf_size: size (in bytes) of register buffer
852 * If the provided register buffer isn't large enough for the chip's
853 * full register range, the register dump will be truncated to the
854 * register buffer's size.
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
858 static const unsigned int t4_reg_ranges[] = {
859 0x1008, 0x1108,
860 0x1180, 0x1184,
861 0x1190, 0x1194,
862 0x11a0, 0x11a4,
863 0x11b0, 0x11b4,
864 0x11fc, 0x123c,
865 0x1300, 0x173c,
866 0x1800, 0x18fc,
867 0x3000, 0x30d8,
868 0x30e0, 0x30e4,
869 0x30ec, 0x5910,
870 0x5920, 0x5924,
871 0x5960, 0x5960,
872 0x5968, 0x5968,
873 0x5970, 0x5970,
874 0x5978, 0x5978,
875 0x5980, 0x5980,
876 0x5988, 0x5988,
877 0x5990, 0x5990,
878 0x5998, 0x5998,
879 0x59a0, 0x59d4,
880 0x5a00, 0x5ae0,
881 0x5ae8, 0x5ae8,
882 0x5af0, 0x5af0,
883 0x5af8, 0x5af8,
884 0x6000, 0x6098,
885 0x6100, 0x6150,
886 0x6200, 0x6208,
887 0x6240, 0x6248,
888 0x6280, 0x62b0,
889 0x62c0, 0x6338,
890 0x6370, 0x638c,
891 0x6400, 0x643c,
892 0x6500, 0x6524,
893 0x6a00, 0x6a04,
894 0x6a14, 0x6a38,
895 0x6a60, 0x6a70,
896 0x6a78, 0x6a78,
897 0x6b00, 0x6b0c,
898 0x6b1c, 0x6b84,
899 0x6bf0, 0x6bf8,
900 0x6c00, 0x6c0c,
901 0x6c1c, 0x6c84,
902 0x6cf0, 0x6cf8,
903 0x6d00, 0x6d0c,
904 0x6d1c, 0x6d84,
905 0x6df0, 0x6df8,
906 0x6e00, 0x6e0c,
907 0x6e1c, 0x6e84,
908 0x6ef0, 0x6ef8,
909 0x6f00, 0x6f0c,
910 0x6f1c, 0x6f84,
911 0x6ff0, 0x6ff8,
912 0x7000, 0x700c,
913 0x701c, 0x7084,
914 0x70f0, 0x70f8,
915 0x7100, 0x710c,
916 0x711c, 0x7184,
917 0x71f0, 0x71f8,
918 0x7200, 0x720c,
919 0x721c, 0x7284,
920 0x72f0, 0x72f8,
921 0x7300, 0x730c,
922 0x731c, 0x7384,
923 0x73f0, 0x73f8,
924 0x7400, 0x7450,
925 0x7500, 0x7530,
926 0x7600, 0x760c,
927 0x7614, 0x761c,
928 0x7680, 0x76cc,
929 0x7700, 0x7798,
930 0x77c0, 0x77fc,
931 0x7900, 0x79fc,
932 0x7b00, 0x7b58,
933 0x7b60, 0x7b84,
934 0x7b8c, 0x7c38,
935 0x7d00, 0x7d38,
936 0x7d40, 0x7d80,
937 0x7d8c, 0x7ddc,
938 0x7de4, 0x7e04,
939 0x7e10, 0x7e1c,
940 0x7e24, 0x7e38,
941 0x7e40, 0x7e44,
942 0x7e4c, 0x7e78,
943 0x7e80, 0x7ea4,
944 0x7eac, 0x7edc,
945 0x7ee8, 0x7efc,
946 0x8dc0, 0x8e04,
947 0x8e10, 0x8e1c,
948 0x8e30, 0x8e78,
949 0x8ea0, 0x8eb8,
950 0x8ec0, 0x8f6c,
951 0x8fc0, 0x9008,
952 0x9010, 0x9058,
953 0x9060, 0x9060,
954 0x9068, 0x9074,
955 0x90fc, 0x90fc,
956 0x9400, 0x9408,
957 0x9410, 0x9458,
958 0x9600, 0x9600,
959 0x9608, 0x9638,
960 0x9640, 0x96bc,
961 0x9800, 0x9808,
962 0x9820, 0x983c,
963 0x9850, 0x9864,
964 0x9c00, 0x9c6c,
965 0x9c80, 0x9cec,
966 0x9d00, 0x9d6c,
967 0x9d80, 0x9dec,
968 0x9e00, 0x9e6c,
969 0x9e80, 0x9eec,
970 0x9f00, 0x9f6c,
971 0x9f80, 0x9fec,
972 0xd004, 0xd004,
973 0xd010, 0xd03c,
974 0xdfc0, 0xdfe0,
975 0xe000, 0xea7c,
976 0xf000, 0x11110,
977 0x11118, 0x11190,
978 0x19040, 0x1906c,
979 0x19078, 0x19080,
980 0x1908c, 0x190e4,
981 0x190f0, 0x190f8,
982 0x19100, 0x19110,
983 0x19120, 0x19124,
984 0x19150, 0x19194,
985 0x1919c, 0x191b0,
986 0x191d0, 0x191e8,
987 0x19238, 0x1924c,
988 0x193f8, 0x1943c,
989 0x1944c, 0x19474,
990 0x19490, 0x194e0,
991 0x194f0, 0x194f8,
992 0x19800, 0x19c08,
993 0x19c10, 0x19c90,
994 0x19ca0, 0x19ce4,
995 0x19cf0, 0x19d40,
996 0x19d50, 0x19d94,
997 0x19da0, 0x19de8,
998 0x19df0, 0x19e40,
999 0x19e50, 0x19e90,
1000 0x19ea0, 0x19f4c,
1001 0x1a000, 0x1a004,
1002 0x1a010, 0x1a06c,
1003 0x1a0b0, 0x1a0e4,
1004 0x1a0ec, 0x1a0f4,
1005 0x1a100, 0x1a108,
1006 0x1a114, 0x1a120,
1007 0x1a128, 0x1a130,
1008 0x1a138, 0x1a138,
1009 0x1a190, 0x1a1c4,
1010 0x1a1fc, 0x1a1fc,
1011 0x1e040, 0x1e04c,
1012 0x1e284, 0x1e28c,
1013 0x1e2c0, 0x1e2c0,
1014 0x1e2e0, 0x1e2e0,
1015 0x1e300, 0x1e384,
1016 0x1e3c0, 0x1e3c8,
1017 0x1e440, 0x1e44c,
1018 0x1e684, 0x1e68c,
1019 0x1e6c0, 0x1e6c0,
1020 0x1e6e0, 0x1e6e0,
1021 0x1e700, 0x1e784,
1022 0x1e7c0, 0x1e7c8,
1023 0x1e840, 0x1e84c,
1024 0x1ea84, 0x1ea8c,
1025 0x1eac0, 0x1eac0,
1026 0x1eae0, 0x1eae0,
1027 0x1eb00, 0x1eb84,
1028 0x1ebc0, 0x1ebc8,
1029 0x1ec40, 0x1ec4c,
1030 0x1ee84, 0x1ee8c,
1031 0x1eec0, 0x1eec0,
1032 0x1eee0, 0x1eee0,
1033 0x1ef00, 0x1ef84,
1034 0x1efc0, 0x1efc8,
1035 0x1f040, 0x1f04c,
1036 0x1f284, 0x1f28c,
1037 0x1f2c0, 0x1f2c0,
1038 0x1f2e0, 0x1f2e0,
1039 0x1f300, 0x1f384,
1040 0x1f3c0, 0x1f3c8,
1041 0x1f440, 0x1f44c,
1042 0x1f684, 0x1f68c,
1043 0x1f6c0, 0x1f6c0,
1044 0x1f6e0, 0x1f6e0,
1045 0x1f700, 0x1f784,
1046 0x1f7c0, 0x1f7c8,
1047 0x1f840, 0x1f84c,
1048 0x1fa84, 0x1fa8c,
1049 0x1fac0, 0x1fac0,
1050 0x1fae0, 0x1fae0,
1051 0x1fb00, 0x1fb84,
1052 0x1fbc0, 0x1fbc8,
1053 0x1fc40, 0x1fc4c,
1054 0x1fe84, 0x1fe8c,
1055 0x1fec0, 0x1fec0,
1056 0x1fee0, 0x1fee0,
1057 0x1ff00, 0x1ff84,
1058 0x1ffc0, 0x1ffc8,
1059 0x20000, 0x2002c,
1060 0x20100, 0x2013c,
1061 0x20190, 0x201a0,
1062 0x201a8, 0x201b8,
1063 0x201c4, 0x201c8,
1064 0x20200, 0x20318,
1065 0x20400, 0x204b4,
1066 0x204c0, 0x20528,
1067 0x20540, 0x20614,
1068 0x21000, 0x21040,
1069 0x2104c, 0x21060,
1070 0x210c0, 0x210ec,
1071 0x21200, 0x21268,
1072 0x21270, 0x21284,
1073 0x212fc, 0x21388,
1074 0x21400, 0x21404,
1075 0x21500, 0x21500,
1076 0x21510, 0x21518,
1077 0x2152c, 0x21530,
1078 0x2153c, 0x2153c,
1079 0x21550, 0x21554,
1080 0x21600, 0x21600,
1081 0x21608, 0x2161c,
1082 0x21624, 0x21628,
1083 0x21630, 0x21634,
1084 0x2163c, 0x2163c,
1085 0x21700, 0x2171c,
1086 0x21780, 0x2178c,
1087 0x21800, 0x21818,
1088 0x21820, 0x21828,
1089 0x21830, 0x21848,
1090 0x21850, 0x21854,
1091 0x21860, 0x21868,
1092 0x21870, 0x21870,
1093 0x21878, 0x21898,
1094 0x218a0, 0x218a8,
1095 0x218b0, 0x218c8,
1096 0x218d0, 0x218d4,
1097 0x218e0, 0x218e8,
1098 0x218f0, 0x218f0,
1099 0x218f8, 0x21a18,
1100 0x21a20, 0x21a28,
1101 0x21a30, 0x21a48,
1102 0x21a50, 0x21a54,
1103 0x21a60, 0x21a68,
1104 0x21a70, 0x21a70,
1105 0x21a78, 0x21a98,
1106 0x21aa0, 0x21aa8,
1107 0x21ab0, 0x21ac8,
1108 0x21ad0, 0x21ad4,
1109 0x21ae0, 0x21ae8,
1110 0x21af0, 0x21af0,
1111 0x21af8, 0x21c18,
1112 0x21c20, 0x21c20,
1113 0x21c28, 0x21c30,
1114 0x21c38, 0x21c38,
1115 0x21c80, 0x21c98,
1116 0x21ca0, 0x21ca8,
1117 0x21cb0, 0x21cc8,
1118 0x21cd0, 0x21cd4,
1119 0x21ce0, 0x21ce8,
1120 0x21cf0, 0x21cf0,
1121 0x21cf8, 0x21d7c,
1122 0x21e00, 0x21e04,
1123 0x22000, 0x2202c,
1124 0x22100, 0x2213c,
1125 0x22190, 0x221a0,
1126 0x221a8, 0x221b8,
1127 0x221c4, 0x221c8,
1128 0x22200, 0x22318,
1129 0x22400, 0x224b4,
1130 0x224c0, 0x22528,
1131 0x22540, 0x22614,
1132 0x23000, 0x23040,
1133 0x2304c, 0x23060,
1134 0x230c0, 0x230ec,
1135 0x23200, 0x23268,
1136 0x23270, 0x23284,
1137 0x232fc, 0x23388,
1138 0x23400, 0x23404,
1139 0x23500, 0x23500,
1140 0x23510, 0x23518,
1141 0x2352c, 0x23530,
1142 0x2353c, 0x2353c,
1143 0x23550, 0x23554,
1144 0x23600, 0x23600,
1145 0x23608, 0x2361c,
1146 0x23624, 0x23628,
1147 0x23630, 0x23634,
1148 0x2363c, 0x2363c,
1149 0x23700, 0x2371c,
1150 0x23780, 0x2378c,
1151 0x23800, 0x23818,
1152 0x23820, 0x23828,
1153 0x23830, 0x23848,
1154 0x23850, 0x23854,
1155 0x23860, 0x23868,
1156 0x23870, 0x23870,
1157 0x23878, 0x23898,
1158 0x238a0, 0x238a8,
1159 0x238b0, 0x238c8,
1160 0x238d0, 0x238d4,
1161 0x238e0, 0x238e8,
1162 0x238f0, 0x238f0,
1163 0x238f8, 0x23a18,
1164 0x23a20, 0x23a28,
1165 0x23a30, 0x23a48,
1166 0x23a50, 0x23a54,
1167 0x23a60, 0x23a68,
1168 0x23a70, 0x23a70,
1169 0x23a78, 0x23a98,
1170 0x23aa0, 0x23aa8,
1171 0x23ab0, 0x23ac8,
1172 0x23ad0, 0x23ad4,
1173 0x23ae0, 0x23ae8,
1174 0x23af0, 0x23af0,
1175 0x23af8, 0x23c18,
1176 0x23c20, 0x23c20,
1177 0x23c28, 0x23c30,
1178 0x23c38, 0x23c38,
1179 0x23c80, 0x23c98,
1180 0x23ca0, 0x23ca8,
1181 0x23cb0, 0x23cc8,
1182 0x23cd0, 0x23cd4,
1183 0x23ce0, 0x23ce8,
1184 0x23cf0, 0x23cf0,
1185 0x23cf8, 0x23d7c,
1186 0x23e00, 0x23e04,
1187 0x24000, 0x2402c,
1188 0x24100, 0x2413c,
1189 0x24190, 0x241a0,
1190 0x241a8, 0x241b8,
1191 0x241c4, 0x241c8,
1192 0x24200, 0x24318,
1193 0x24400, 0x244b4,
1194 0x244c0, 0x24528,
1195 0x24540, 0x24614,
1196 0x25000, 0x25040,
1197 0x2504c, 0x25060,
1198 0x250c0, 0x250ec,
1199 0x25200, 0x25268,
1200 0x25270, 0x25284,
1201 0x252fc, 0x25388,
1202 0x25400, 0x25404,
1203 0x25500, 0x25500,
1204 0x25510, 0x25518,
1205 0x2552c, 0x25530,
1206 0x2553c, 0x2553c,
1207 0x25550, 0x25554,
1208 0x25600, 0x25600,
1209 0x25608, 0x2561c,
1210 0x25624, 0x25628,
1211 0x25630, 0x25634,
1212 0x2563c, 0x2563c,
1213 0x25700, 0x2571c,
1214 0x25780, 0x2578c,
1215 0x25800, 0x25818,
1216 0x25820, 0x25828,
1217 0x25830, 0x25848,
1218 0x25850, 0x25854,
1219 0x25860, 0x25868,
1220 0x25870, 0x25870,
1221 0x25878, 0x25898,
1222 0x258a0, 0x258a8,
1223 0x258b0, 0x258c8,
1224 0x258d0, 0x258d4,
1225 0x258e0, 0x258e8,
1226 0x258f0, 0x258f0,
1227 0x258f8, 0x25a18,
1228 0x25a20, 0x25a28,
1229 0x25a30, 0x25a48,
1230 0x25a50, 0x25a54,
1231 0x25a60, 0x25a68,
1232 0x25a70, 0x25a70,
1233 0x25a78, 0x25a98,
1234 0x25aa0, 0x25aa8,
1235 0x25ab0, 0x25ac8,
1236 0x25ad0, 0x25ad4,
1237 0x25ae0, 0x25ae8,
1238 0x25af0, 0x25af0,
1239 0x25af8, 0x25c18,
1240 0x25c20, 0x25c20,
1241 0x25c28, 0x25c30,
1242 0x25c38, 0x25c38,
1243 0x25c80, 0x25c98,
1244 0x25ca0, 0x25ca8,
1245 0x25cb0, 0x25cc8,
1246 0x25cd0, 0x25cd4,
1247 0x25ce0, 0x25ce8,
1248 0x25cf0, 0x25cf0,
1249 0x25cf8, 0x25d7c,
1250 0x25e00, 0x25e04,
1251 0x26000, 0x2602c,
1252 0x26100, 0x2613c,
1253 0x26190, 0x261a0,
1254 0x261a8, 0x261b8,
1255 0x261c4, 0x261c8,
1256 0x26200, 0x26318,
1257 0x26400, 0x264b4,
1258 0x264c0, 0x26528,
1259 0x26540, 0x26614,
1260 0x27000, 0x27040,
1261 0x2704c, 0x27060,
1262 0x270c0, 0x270ec,
1263 0x27200, 0x27268,
1264 0x27270, 0x27284,
1265 0x272fc, 0x27388,
1266 0x27400, 0x27404,
1267 0x27500, 0x27500,
1268 0x27510, 0x27518,
1269 0x2752c, 0x27530,
1270 0x2753c, 0x2753c,
1271 0x27550, 0x27554,
1272 0x27600, 0x27600,
1273 0x27608, 0x2761c,
1274 0x27624, 0x27628,
1275 0x27630, 0x27634,
1276 0x2763c, 0x2763c,
1277 0x27700, 0x2771c,
1278 0x27780, 0x2778c,
1279 0x27800, 0x27818,
1280 0x27820, 0x27828,
1281 0x27830, 0x27848,
1282 0x27850, 0x27854,
1283 0x27860, 0x27868,
1284 0x27870, 0x27870,
1285 0x27878, 0x27898,
1286 0x278a0, 0x278a8,
1287 0x278b0, 0x278c8,
1288 0x278d0, 0x278d4,
1289 0x278e0, 0x278e8,
1290 0x278f0, 0x278f0,
1291 0x278f8, 0x27a18,
1292 0x27a20, 0x27a28,
1293 0x27a30, 0x27a48,
1294 0x27a50, 0x27a54,
1295 0x27a60, 0x27a68,
1296 0x27a70, 0x27a70,
1297 0x27a78, 0x27a98,
1298 0x27aa0, 0x27aa8,
1299 0x27ab0, 0x27ac8,
1300 0x27ad0, 0x27ad4,
1301 0x27ae0, 0x27ae8,
1302 0x27af0, 0x27af0,
1303 0x27af8, 0x27c18,
1304 0x27c20, 0x27c20,
1305 0x27c28, 0x27c30,
1306 0x27c38, 0x27c38,
1307 0x27c80, 0x27c98,
1308 0x27ca0, 0x27ca8,
1309 0x27cb0, 0x27cc8,
1310 0x27cd0, 0x27cd4,
1311 0x27ce0, 0x27ce8,
1312 0x27cf0, 0x27cf0,
1313 0x27cf8, 0x27d7c,
1314 0x27e00, 0x27e04,
1317 static const unsigned int t5_reg_ranges[] = {
1318 0x1008, 0x10c0,
1319 0x10cc, 0x10f8,
1320 0x1100, 0x1100,
1321 0x110c, 0x1148,
1322 0x1180, 0x1184,
1323 0x1190, 0x1194,
1324 0x11a0, 0x11a4,
1325 0x11b0, 0x11b4,
1326 0x11fc, 0x123c,
1327 0x1280, 0x173c,
1328 0x1800, 0x18fc,
1329 0x3000, 0x3028,
1330 0x3060, 0x30b0,
1331 0x30b8, 0x30d8,
1332 0x30e0, 0x30fc,
1333 0x3140, 0x357c,
1334 0x35a8, 0x35cc,
1335 0x35ec, 0x35ec,
1336 0x3600, 0x5624,
1337 0x56cc, 0x56ec,
1338 0x56f4, 0x5720,
1339 0x5728, 0x575c,
1340 0x580c, 0x5814,
1341 0x5890, 0x589c,
1342 0x58a4, 0x58ac,
1343 0x58b8, 0x58bc,
1344 0x5940, 0x59c8,
1345 0x59d0, 0x59dc,
1346 0x59fc, 0x5a18,
1347 0x5a60, 0x5a70,
1348 0x5a80, 0x5a9c,
1349 0x5b94, 0x5bfc,
1350 0x6000, 0x6020,
1351 0x6028, 0x6040,
1352 0x6058, 0x609c,
1353 0x60a8, 0x614c,
1354 0x7700, 0x7798,
1355 0x77c0, 0x78fc,
1356 0x7b00, 0x7b58,
1357 0x7b60, 0x7b84,
1358 0x7b8c, 0x7c54,
1359 0x7d00, 0x7d38,
1360 0x7d40, 0x7d80,
1361 0x7d8c, 0x7ddc,
1362 0x7de4, 0x7e04,
1363 0x7e10, 0x7e1c,
1364 0x7e24, 0x7e38,
1365 0x7e40, 0x7e44,
1366 0x7e4c, 0x7e78,
1367 0x7e80, 0x7edc,
1368 0x7ee8, 0x7efc,
1369 0x8dc0, 0x8de0,
1370 0x8df8, 0x8e04,
1371 0x8e10, 0x8e84,
1372 0x8ea0, 0x8f84,
1373 0x8fc0, 0x9058,
1374 0x9060, 0x9060,
1375 0x9068, 0x90f8,
1376 0x9400, 0x9408,
1377 0x9410, 0x9470,
1378 0x9600, 0x9600,
1379 0x9608, 0x9638,
1380 0x9640, 0x96f4,
1381 0x9800, 0x9808,
1382 0x9820, 0x983c,
1383 0x9850, 0x9864,
1384 0x9c00, 0x9c6c,
1385 0x9c80, 0x9cec,
1386 0x9d00, 0x9d6c,
1387 0x9d80, 0x9dec,
1388 0x9e00, 0x9e6c,
1389 0x9e80, 0x9eec,
1390 0x9f00, 0x9f6c,
1391 0x9f80, 0xa020,
1392 0xd004, 0xd004,
1393 0xd010, 0xd03c,
1394 0xdfc0, 0xdfe0,
1395 0xe000, 0x1106c,
1396 0x11074, 0x11088,
1397 0x1109c, 0x1117c,
1398 0x11190, 0x11204,
1399 0x19040, 0x1906c,
1400 0x19078, 0x19080,
1401 0x1908c, 0x190e8,
1402 0x190f0, 0x190f8,
1403 0x19100, 0x19110,
1404 0x19120, 0x19124,
1405 0x19150, 0x19194,
1406 0x1919c, 0x191b0,
1407 0x191d0, 0x191e8,
1408 0x19238, 0x19290,
1409 0x193f8, 0x19428,
1410 0x19430, 0x19444,
1411 0x1944c, 0x1946c,
1412 0x19474, 0x19474,
1413 0x19490, 0x194cc,
1414 0x194f0, 0x194f8,
1415 0x19c00, 0x19c08,
1416 0x19c10, 0x19c60,
1417 0x19c94, 0x19ce4,
1418 0x19cf0, 0x19d40,
1419 0x19d50, 0x19d94,
1420 0x19da0, 0x19de8,
1421 0x19df0, 0x19e10,
1422 0x19e50, 0x19e90,
1423 0x19ea0, 0x19f24,
1424 0x19f34, 0x19f34,
1425 0x19f40, 0x19f50,
1426 0x19f90, 0x19fb4,
1427 0x19fc4, 0x19fe4,
1428 0x1a000, 0x1a004,
1429 0x1a010, 0x1a06c,
1430 0x1a0b0, 0x1a0e4,
1431 0x1a0ec, 0x1a0f8,
1432 0x1a100, 0x1a108,
1433 0x1a114, 0x1a120,
1434 0x1a128, 0x1a130,
1435 0x1a138, 0x1a138,
1436 0x1a190, 0x1a1c4,
1437 0x1a1fc, 0x1a1fc,
1438 0x1e008, 0x1e00c,
1439 0x1e040, 0x1e044,
1440 0x1e04c, 0x1e04c,
1441 0x1e284, 0x1e290,
1442 0x1e2c0, 0x1e2c0,
1443 0x1e2e0, 0x1e2e0,
1444 0x1e300, 0x1e384,
1445 0x1e3c0, 0x1e3c8,
1446 0x1e408, 0x1e40c,
1447 0x1e440, 0x1e444,
1448 0x1e44c, 0x1e44c,
1449 0x1e684, 0x1e690,
1450 0x1e6c0, 0x1e6c0,
1451 0x1e6e0, 0x1e6e0,
1452 0x1e700, 0x1e784,
1453 0x1e7c0, 0x1e7c8,
1454 0x1e808, 0x1e80c,
1455 0x1e840, 0x1e844,
1456 0x1e84c, 0x1e84c,
1457 0x1ea84, 0x1ea90,
1458 0x1eac0, 0x1eac0,
1459 0x1eae0, 0x1eae0,
1460 0x1eb00, 0x1eb84,
1461 0x1ebc0, 0x1ebc8,
1462 0x1ec08, 0x1ec0c,
1463 0x1ec40, 0x1ec44,
1464 0x1ec4c, 0x1ec4c,
1465 0x1ee84, 0x1ee90,
1466 0x1eec0, 0x1eec0,
1467 0x1eee0, 0x1eee0,
1468 0x1ef00, 0x1ef84,
1469 0x1efc0, 0x1efc8,
1470 0x1f008, 0x1f00c,
1471 0x1f040, 0x1f044,
1472 0x1f04c, 0x1f04c,
1473 0x1f284, 0x1f290,
1474 0x1f2c0, 0x1f2c0,
1475 0x1f2e0, 0x1f2e0,
1476 0x1f300, 0x1f384,
1477 0x1f3c0, 0x1f3c8,
1478 0x1f408, 0x1f40c,
1479 0x1f440, 0x1f444,
1480 0x1f44c, 0x1f44c,
1481 0x1f684, 0x1f690,
1482 0x1f6c0, 0x1f6c0,
1483 0x1f6e0, 0x1f6e0,
1484 0x1f700, 0x1f784,
1485 0x1f7c0, 0x1f7c8,
1486 0x1f808, 0x1f80c,
1487 0x1f840, 0x1f844,
1488 0x1f84c, 0x1f84c,
1489 0x1fa84, 0x1fa90,
1490 0x1fac0, 0x1fac0,
1491 0x1fae0, 0x1fae0,
1492 0x1fb00, 0x1fb84,
1493 0x1fbc0, 0x1fbc8,
1494 0x1fc08, 0x1fc0c,
1495 0x1fc40, 0x1fc44,
1496 0x1fc4c, 0x1fc4c,
1497 0x1fe84, 0x1fe90,
1498 0x1fec0, 0x1fec0,
1499 0x1fee0, 0x1fee0,
1500 0x1ff00, 0x1ff84,
1501 0x1ffc0, 0x1ffc8,
1502 0x30000, 0x30030,
1503 0x30100, 0x30144,
1504 0x30190, 0x301a0,
1505 0x301a8, 0x301b8,
1506 0x301c4, 0x301c8,
1507 0x301d0, 0x301d0,
1508 0x30200, 0x30318,
1509 0x30400, 0x304b4,
1510 0x304c0, 0x3052c,
1511 0x30540, 0x3061c,
1512 0x30800, 0x30828,
1513 0x30834, 0x30834,
1514 0x308c0, 0x30908,
1515 0x30910, 0x309ac,
1516 0x30a00, 0x30a14,
1517 0x30a1c, 0x30a2c,
1518 0x30a44, 0x30a50,
1519 0x30a74, 0x30a74,
1520 0x30a7c, 0x30afc,
1521 0x30b08, 0x30c24,
1522 0x30d00, 0x30d00,
1523 0x30d08, 0x30d14,
1524 0x30d1c, 0x30d20,
1525 0x30d3c, 0x30d3c,
1526 0x30d48, 0x30d50,
1527 0x31200, 0x3120c,
1528 0x31220, 0x31220,
1529 0x31240, 0x31240,
1530 0x31600, 0x3160c,
1531 0x31a00, 0x31a1c,
1532 0x31e00, 0x31e20,
1533 0x31e38, 0x31e3c,
1534 0x31e80, 0x31e80,
1535 0x31e88, 0x31ea8,
1536 0x31eb0, 0x31eb4,
1537 0x31ec8, 0x31ed4,
1538 0x31fb8, 0x32004,
1539 0x32200, 0x32200,
1540 0x32208, 0x32240,
1541 0x32248, 0x32280,
1542 0x32288, 0x322c0,
1543 0x322c8, 0x322fc,
1544 0x32600, 0x32630,
1545 0x32a00, 0x32abc,
1546 0x32b00, 0x32b10,
1547 0x32b20, 0x32b30,
1548 0x32b40, 0x32b50,
1549 0x32b60, 0x32b70,
1550 0x33000, 0x33028,
1551 0x33030, 0x33048,
1552 0x33060, 0x33068,
1553 0x33070, 0x3309c,
1554 0x330f0, 0x33128,
1555 0x33130, 0x33148,
1556 0x33160, 0x33168,
1557 0x33170, 0x3319c,
1558 0x331f0, 0x33238,
1559 0x33240, 0x33240,
1560 0x33248, 0x33250,
1561 0x3325c, 0x33264,
1562 0x33270, 0x332b8,
1563 0x332c0, 0x332e4,
1564 0x332f8, 0x33338,
1565 0x33340, 0x33340,
1566 0x33348, 0x33350,
1567 0x3335c, 0x33364,
1568 0x33370, 0x333b8,
1569 0x333c0, 0x333e4,
1570 0x333f8, 0x33428,
1571 0x33430, 0x33448,
1572 0x33460, 0x33468,
1573 0x33470, 0x3349c,
1574 0x334f0, 0x33528,
1575 0x33530, 0x33548,
1576 0x33560, 0x33568,
1577 0x33570, 0x3359c,
1578 0x335f0, 0x33638,
1579 0x33640, 0x33640,
1580 0x33648, 0x33650,
1581 0x3365c, 0x33664,
1582 0x33670, 0x336b8,
1583 0x336c0, 0x336e4,
1584 0x336f8, 0x33738,
1585 0x33740, 0x33740,
1586 0x33748, 0x33750,
1587 0x3375c, 0x33764,
1588 0x33770, 0x337b8,
1589 0x337c0, 0x337e4,
1590 0x337f8, 0x337fc,
1591 0x33814, 0x33814,
1592 0x3382c, 0x3382c,
1593 0x33880, 0x3388c,
1594 0x338e8, 0x338ec,
1595 0x33900, 0x33928,
1596 0x33930, 0x33948,
1597 0x33960, 0x33968,
1598 0x33970, 0x3399c,
1599 0x339f0, 0x33a38,
1600 0x33a40, 0x33a40,
1601 0x33a48, 0x33a50,
1602 0x33a5c, 0x33a64,
1603 0x33a70, 0x33ab8,
1604 0x33ac0, 0x33ae4,
1605 0x33af8, 0x33b10,
1606 0x33b28, 0x33b28,
1607 0x33b3c, 0x33b50,
1608 0x33bf0, 0x33c10,
1609 0x33c28, 0x33c28,
1610 0x33c3c, 0x33c50,
1611 0x33cf0, 0x33cfc,
1612 0x34000, 0x34030,
1613 0x34100, 0x34144,
1614 0x34190, 0x341a0,
1615 0x341a8, 0x341b8,
1616 0x341c4, 0x341c8,
1617 0x341d0, 0x341d0,
1618 0x34200, 0x34318,
1619 0x34400, 0x344b4,
1620 0x344c0, 0x3452c,
1621 0x34540, 0x3461c,
1622 0x34800, 0x34828,
1623 0x34834, 0x34834,
1624 0x348c0, 0x34908,
1625 0x34910, 0x349ac,
1626 0x34a00, 0x34a14,
1627 0x34a1c, 0x34a2c,
1628 0x34a44, 0x34a50,
1629 0x34a74, 0x34a74,
1630 0x34a7c, 0x34afc,
1631 0x34b08, 0x34c24,
1632 0x34d00, 0x34d00,
1633 0x34d08, 0x34d14,
1634 0x34d1c, 0x34d20,
1635 0x34d3c, 0x34d3c,
1636 0x34d48, 0x34d50,
1637 0x35200, 0x3520c,
1638 0x35220, 0x35220,
1639 0x35240, 0x35240,
1640 0x35600, 0x3560c,
1641 0x35a00, 0x35a1c,
1642 0x35e00, 0x35e20,
1643 0x35e38, 0x35e3c,
1644 0x35e80, 0x35e80,
1645 0x35e88, 0x35ea8,
1646 0x35eb0, 0x35eb4,
1647 0x35ec8, 0x35ed4,
1648 0x35fb8, 0x36004,
1649 0x36200, 0x36200,
1650 0x36208, 0x36240,
1651 0x36248, 0x36280,
1652 0x36288, 0x362c0,
1653 0x362c8, 0x362fc,
1654 0x36600, 0x36630,
1655 0x36a00, 0x36abc,
1656 0x36b00, 0x36b10,
1657 0x36b20, 0x36b30,
1658 0x36b40, 0x36b50,
1659 0x36b60, 0x36b70,
1660 0x37000, 0x37028,
1661 0x37030, 0x37048,
1662 0x37060, 0x37068,
1663 0x37070, 0x3709c,
1664 0x370f0, 0x37128,
1665 0x37130, 0x37148,
1666 0x37160, 0x37168,
1667 0x37170, 0x3719c,
1668 0x371f0, 0x37238,
1669 0x37240, 0x37240,
1670 0x37248, 0x37250,
1671 0x3725c, 0x37264,
1672 0x37270, 0x372b8,
1673 0x372c0, 0x372e4,
1674 0x372f8, 0x37338,
1675 0x37340, 0x37340,
1676 0x37348, 0x37350,
1677 0x3735c, 0x37364,
1678 0x37370, 0x373b8,
1679 0x373c0, 0x373e4,
1680 0x373f8, 0x37428,
1681 0x37430, 0x37448,
1682 0x37460, 0x37468,
1683 0x37470, 0x3749c,
1684 0x374f0, 0x37528,
1685 0x37530, 0x37548,
1686 0x37560, 0x37568,
1687 0x37570, 0x3759c,
1688 0x375f0, 0x37638,
1689 0x37640, 0x37640,
1690 0x37648, 0x37650,
1691 0x3765c, 0x37664,
1692 0x37670, 0x376b8,
1693 0x376c0, 0x376e4,
1694 0x376f8, 0x37738,
1695 0x37740, 0x37740,
1696 0x37748, 0x37750,
1697 0x3775c, 0x37764,
1698 0x37770, 0x377b8,
1699 0x377c0, 0x377e4,
1700 0x377f8, 0x377fc,
1701 0x37814, 0x37814,
1702 0x3782c, 0x3782c,
1703 0x37880, 0x3788c,
1704 0x378e8, 0x378ec,
1705 0x37900, 0x37928,
1706 0x37930, 0x37948,
1707 0x37960, 0x37968,
1708 0x37970, 0x3799c,
1709 0x379f0, 0x37a38,
1710 0x37a40, 0x37a40,
1711 0x37a48, 0x37a50,
1712 0x37a5c, 0x37a64,
1713 0x37a70, 0x37ab8,
1714 0x37ac0, 0x37ae4,
1715 0x37af8, 0x37b10,
1716 0x37b28, 0x37b28,
1717 0x37b3c, 0x37b50,
1718 0x37bf0, 0x37c10,
1719 0x37c28, 0x37c28,
1720 0x37c3c, 0x37c50,
1721 0x37cf0, 0x37cfc,
1722 0x38000, 0x38030,
1723 0x38100, 0x38144,
1724 0x38190, 0x381a0,
1725 0x381a8, 0x381b8,
1726 0x381c4, 0x381c8,
1727 0x381d0, 0x381d0,
1728 0x38200, 0x38318,
1729 0x38400, 0x384b4,
1730 0x384c0, 0x3852c,
1731 0x38540, 0x3861c,
1732 0x38800, 0x38828,
1733 0x38834, 0x38834,
1734 0x388c0, 0x38908,
1735 0x38910, 0x389ac,
1736 0x38a00, 0x38a14,
1737 0x38a1c, 0x38a2c,
1738 0x38a44, 0x38a50,
1739 0x38a74, 0x38a74,
1740 0x38a7c, 0x38afc,
1741 0x38b08, 0x38c24,
1742 0x38d00, 0x38d00,
1743 0x38d08, 0x38d14,
1744 0x38d1c, 0x38d20,
1745 0x38d3c, 0x38d3c,
1746 0x38d48, 0x38d50,
1747 0x39200, 0x3920c,
1748 0x39220, 0x39220,
1749 0x39240, 0x39240,
1750 0x39600, 0x3960c,
1751 0x39a00, 0x39a1c,
1752 0x39e00, 0x39e20,
1753 0x39e38, 0x39e3c,
1754 0x39e80, 0x39e80,
1755 0x39e88, 0x39ea8,
1756 0x39eb0, 0x39eb4,
1757 0x39ec8, 0x39ed4,
1758 0x39fb8, 0x3a004,
1759 0x3a200, 0x3a200,
1760 0x3a208, 0x3a240,
1761 0x3a248, 0x3a280,
1762 0x3a288, 0x3a2c0,
1763 0x3a2c8, 0x3a2fc,
1764 0x3a600, 0x3a630,
1765 0x3aa00, 0x3aabc,
1766 0x3ab00, 0x3ab10,
1767 0x3ab20, 0x3ab30,
1768 0x3ab40, 0x3ab50,
1769 0x3ab60, 0x3ab70,
1770 0x3b000, 0x3b028,
1771 0x3b030, 0x3b048,
1772 0x3b060, 0x3b068,
1773 0x3b070, 0x3b09c,
1774 0x3b0f0, 0x3b128,
1775 0x3b130, 0x3b148,
1776 0x3b160, 0x3b168,
1777 0x3b170, 0x3b19c,
1778 0x3b1f0, 0x3b238,
1779 0x3b240, 0x3b240,
1780 0x3b248, 0x3b250,
1781 0x3b25c, 0x3b264,
1782 0x3b270, 0x3b2b8,
1783 0x3b2c0, 0x3b2e4,
1784 0x3b2f8, 0x3b338,
1785 0x3b340, 0x3b340,
1786 0x3b348, 0x3b350,
1787 0x3b35c, 0x3b364,
1788 0x3b370, 0x3b3b8,
1789 0x3b3c0, 0x3b3e4,
1790 0x3b3f8, 0x3b428,
1791 0x3b430, 0x3b448,
1792 0x3b460, 0x3b468,
1793 0x3b470, 0x3b49c,
1794 0x3b4f0, 0x3b528,
1795 0x3b530, 0x3b548,
1796 0x3b560, 0x3b568,
1797 0x3b570, 0x3b59c,
1798 0x3b5f0, 0x3b638,
1799 0x3b640, 0x3b640,
1800 0x3b648, 0x3b650,
1801 0x3b65c, 0x3b664,
1802 0x3b670, 0x3b6b8,
1803 0x3b6c0, 0x3b6e4,
1804 0x3b6f8, 0x3b738,
1805 0x3b740, 0x3b740,
1806 0x3b748, 0x3b750,
1807 0x3b75c, 0x3b764,
1808 0x3b770, 0x3b7b8,
1809 0x3b7c0, 0x3b7e4,
1810 0x3b7f8, 0x3b7fc,
1811 0x3b814, 0x3b814,
1812 0x3b82c, 0x3b82c,
1813 0x3b880, 0x3b88c,
1814 0x3b8e8, 0x3b8ec,
1815 0x3b900, 0x3b928,
1816 0x3b930, 0x3b948,
1817 0x3b960, 0x3b968,
1818 0x3b970, 0x3b99c,
1819 0x3b9f0, 0x3ba38,
1820 0x3ba40, 0x3ba40,
1821 0x3ba48, 0x3ba50,
1822 0x3ba5c, 0x3ba64,
1823 0x3ba70, 0x3bab8,
1824 0x3bac0, 0x3bae4,
1825 0x3baf8, 0x3bb10,
1826 0x3bb28, 0x3bb28,
1827 0x3bb3c, 0x3bb50,
1828 0x3bbf0, 0x3bc10,
1829 0x3bc28, 0x3bc28,
1830 0x3bc3c, 0x3bc50,
1831 0x3bcf0, 0x3bcfc,
1832 0x3c000, 0x3c030,
1833 0x3c100, 0x3c144,
1834 0x3c190, 0x3c1a0,
1835 0x3c1a8, 0x3c1b8,
1836 0x3c1c4, 0x3c1c8,
1837 0x3c1d0, 0x3c1d0,
1838 0x3c200, 0x3c318,
1839 0x3c400, 0x3c4b4,
1840 0x3c4c0, 0x3c52c,
1841 0x3c540, 0x3c61c,
1842 0x3c800, 0x3c828,
1843 0x3c834, 0x3c834,
1844 0x3c8c0, 0x3c908,
1845 0x3c910, 0x3c9ac,
1846 0x3ca00, 0x3ca14,
1847 0x3ca1c, 0x3ca2c,
1848 0x3ca44, 0x3ca50,
1849 0x3ca74, 0x3ca74,
1850 0x3ca7c, 0x3cafc,
1851 0x3cb08, 0x3cc24,
1852 0x3cd00, 0x3cd00,
1853 0x3cd08, 0x3cd14,
1854 0x3cd1c, 0x3cd20,
1855 0x3cd3c, 0x3cd3c,
1856 0x3cd48, 0x3cd50,
1857 0x3d200, 0x3d20c,
1858 0x3d220, 0x3d220,
1859 0x3d240, 0x3d240,
1860 0x3d600, 0x3d60c,
1861 0x3da00, 0x3da1c,
1862 0x3de00, 0x3de20,
1863 0x3de38, 0x3de3c,
1864 0x3de80, 0x3de80,
1865 0x3de88, 0x3dea8,
1866 0x3deb0, 0x3deb4,
1867 0x3dec8, 0x3ded4,
1868 0x3dfb8, 0x3e004,
1869 0x3e200, 0x3e200,
1870 0x3e208, 0x3e240,
1871 0x3e248, 0x3e280,
1872 0x3e288, 0x3e2c0,
1873 0x3e2c8, 0x3e2fc,
1874 0x3e600, 0x3e630,
1875 0x3ea00, 0x3eabc,
1876 0x3eb00, 0x3eb10,
1877 0x3eb20, 0x3eb30,
1878 0x3eb40, 0x3eb50,
1879 0x3eb60, 0x3eb70,
1880 0x3f000, 0x3f028,
1881 0x3f030, 0x3f048,
1882 0x3f060, 0x3f068,
1883 0x3f070, 0x3f09c,
1884 0x3f0f0, 0x3f128,
1885 0x3f130, 0x3f148,
1886 0x3f160, 0x3f168,
1887 0x3f170, 0x3f19c,
1888 0x3f1f0, 0x3f238,
1889 0x3f240, 0x3f240,
1890 0x3f248, 0x3f250,
1891 0x3f25c, 0x3f264,
1892 0x3f270, 0x3f2b8,
1893 0x3f2c0, 0x3f2e4,
1894 0x3f2f8, 0x3f338,
1895 0x3f340, 0x3f340,
1896 0x3f348, 0x3f350,
1897 0x3f35c, 0x3f364,
1898 0x3f370, 0x3f3b8,
1899 0x3f3c0, 0x3f3e4,
1900 0x3f3f8, 0x3f428,
1901 0x3f430, 0x3f448,
1902 0x3f460, 0x3f468,
1903 0x3f470, 0x3f49c,
1904 0x3f4f0, 0x3f528,
1905 0x3f530, 0x3f548,
1906 0x3f560, 0x3f568,
1907 0x3f570, 0x3f59c,
1908 0x3f5f0, 0x3f638,
1909 0x3f640, 0x3f640,
1910 0x3f648, 0x3f650,
1911 0x3f65c, 0x3f664,
1912 0x3f670, 0x3f6b8,
1913 0x3f6c0, 0x3f6e4,
1914 0x3f6f8, 0x3f738,
1915 0x3f740, 0x3f740,
1916 0x3f748, 0x3f750,
1917 0x3f75c, 0x3f764,
1918 0x3f770, 0x3f7b8,
1919 0x3f7c0, 0x3f7e4,
1920 0x3f7f8, 0x3f7fc,
1921 0x3f814, 0x3f814,
1922 0x3f82c, 0x3f82c,
1923 0x3f880, 0x3f88c,
1924 0x3f8e8, 0x3f8ec,
1925 0x3f900, 0x3f928,
1926 0x3f930, 0x3f948,
1927 0x3f960, 0x3f968,
1928 0x3f970, 0x3f99c,
1929 0x3f9f0, 0x3fa38,
1930 0x3fa40, 0x3fa40,
1931 0x3fa48, 0x3fa50,
1932 0x3fa5c, 0x3fa64,
1933 0x3fa70, 0x3fab8,
1934 0x3fac0, 0x3fae4,
1935 0x3faf8, 0x3fb10,
1936 0x3fb28, 0x3fb28,
1937 0x3fb3c, 0x3fb50,
1938 0x3fbf0, 0x3fc10,
1939 0x3fc28, 0x3fc28,
1940 0x3fc3c, 0x3fc50,
1941 0x3fcf0, 0x3fcfc,
1942 0x40000, 0x4000c,
1943 0x40040, 0x40050,
1944 0x40060, 0x40068,
1945 0x4007c, 0x4008c,
1946 0x40094, 0x400b0,
1947 0x400c0, 0x40144,
1948 0x40180, 0x4018c,
1949 0x40200, 0x40254,
1950 0x40260, 0x40264,
1951 0x40270, 0x40288,
1952 0x40290, 0x40298,
1953 0x402ac, 0x402c8,
1954 0x402d0, 0x402e0,
1955 0x402f0, 0x402f0,
1956 0x40300, 0x4033c,
1957 0x403f8, 0x403fc,
1958 0x41304, 0x413c4,
1959 0x41400, 0x4140c,
1960 0x41414, 0x4141c,
1961 0x41480, 0x414d0,
1962 0x44000, 0x44054,
1963 0x4405c, 0x44078,
1964 0x440c0, 0x44174,
1965 0x44180, 0x441ac,
1966 0x441b4, 0x441b8,
1967 0x441c0, 0x44254,
1968 0x4425c, 0x44278,
1969 0x442c0, 0x44374,
1970 0x44380, 0x443ac,
1971 0x443b4, 0x443b8,
1972 0x443c0, 0x44454,
1973 0x4445c, 0x44478,
1974 0x444c0, 0x44574,
1975 0x44580, 0x445ac,
1976 0x445b4, 0x445b8,
1977 0x445c0, 0x44654,
1978 0x4465c, 0x44678,
1979 0x446c0, 0x44774,
1980 0x44780, 0x447ac,
1981 0x447b4, 0x447b8,
1982 0x447c0, 0x44854,
1983 0x4485c, 0x44878,
1984 0x448c0, 0x44974,
1985 0x44980, 0x449ac,
1986 0x449b4, 0x449b8,
1987 0x449c0, 0x449fc,
1988 0x45000, 0x45004,
1989 0x45010, 0x45030,
1990 0x45040, 0x45060,
1991 0x45068, 0x45068,
1992 0x45080, 0x45084,
1993 0x450a0, 0x450b0,
1994 0x45200, 0x45204,
1995 0x45210, 0x45230,
1996 0x45240, 0x45260,
1997 0x45268, 0x45268,
1998 0x45280, 0x45284,
1999 0x452a0, 0x452b0,
2000 0x460c0, 0x460e4,
2001 0x47000, 0x4703c,
2002 0x47044, 0x4708c,
2003 0x47200, 0x47250,
2004 0x47400, 0x47408,
2005 0x47414, 0x47420,
2006 0x47600, 0x47618,
2007 0x47800, 0x47814,
2008 0x48000, 0x4800c,
2009 0x48040, 0x48050,
2010 0x48060, 0x48068,
2011 0x4807c, 0x4808c,
2012 0x48094, 0x480b0,
2013 0x480c0, 0x48144,
2014 0x48180, 0x4818c,
2015 0x48200, 0x48254,
2016 0x48260, 0x48264,
2017 0x48270, 0x48288,
2018 0x48290, 0x48298,
2019 0x482ac, 0x482c8,
2020 0x482d0, 0x482e0,
2021 0x482f0, 0x482f0,
2022 0x48300, 0x4833c,
2023 0x483f8, 0x483fc,
2024 0x49304, 0x493c4,
2025 0x49400, 0x4940c,
2026 0x49414, 0x4941c,
2027 0x49480, 0x494d0,
2028 0x4c000, 0x4c054,
2029 0x4c05c, 0x4c078,
2030 0x4c0c0, 0x4c174,
2031 0x4c180, 0x4c1ac,
2032 0x4c1b4, 0x4c1b8,
2033 0x4c1c0, 0x4c254,
2034 0x4c25c, 0x4c278,
2035 0x4c2c0, 0x4c374,
2036 0x4c380, 0x4c3ac,
2037 0x4c3b4, 0x4c3b8,
2038 0x4c3c0, 0x4c454,
2039 0x4c45c, 0x4c478,
2040 0x4c4c0, 0x4c574,
2041 0x4c580, 0x4c5ac,
2042 0x4c5b4, 0x4c5b8,
2043 0x4c5c0, 0x4c654,
2044 0x4c65c, 0x4c678,
2045 0x4c6c0, 0x4c774,
2046 0x4c780, 0x4c7ac,
2047 0x4c7b4, 0x4c7b8,
2048 0x4c7c0, 0x4c854,
2049 0x4c85c, 0x4c878,
2050 0x4c8c0, 0x4c974,
2051 0x4c980, 0x4c9ac,
2052 0x4c9b4, 0x4c9b8,
2053 0x4c9c0, 0x4c9fc,
2054 0x4d000, 0x4d004,
2055 0x4d010, 0x4d030,
2056 0x4d040, 0x4d060,
2057 0x4d068, 0x4d068,
2058 0x4d080, 0x4d084,
2059 0x4d0a0, 0x4d0b0,
2060 0x4d200, 0x4d204,
2061 0x4d210, 0x4d230,
2062 0x4d240, 0x4d260,
2063 0x4d268, 0x4d268,
2064 0x4d280, 0x4d284,
2065 0x4d2a0, 0x4d2b0,
2066 0x4e0c0, 0x4e0e4,
2067 0x4f000, 0x4f03c,
2068 0x4f044, 0x4f08c,
2069 0x4f200, 0x4f250,
2070 0x4f400, 0x4f408,
2071 0x4f414, 0x4f420,
2072 0x4f600, 0x4f618,
2073 0x4f800, 0x4f814,
2074 0x50000, 0x50084,
2075 0x50090, 0x500cc,
2076 0x50400, 0x50400,
2077 0x50800, 0x50884,
2078 0x50890, 0x508cc,
2079 0x50c00, 0x50c00,
2080 0x51000, 0x5101c,
2081 0x51300, 0x51308,
2084 static const unsigned int t6_reg_ranges[] = {
2085 0x1008, 0x101c,
2086 0x1024, 0x10a8,
2087 0x10b4, 0x10f8,
2088 0x1100, 0x1114,
2089 0x111c, 0x112c,
2090 0x1138, 0x113c,
2091 0x1144, 0x114c,
2092 0x1180, 0x1184,
2093 0x1190, 0x1194,
2094 0x11a0, 0x11a4,
2095 0x11b0, 0x11b4,
2096 0x11fc, 0x1274,
2097 0x1280, 0x133c,
2098 0x1800, 0x18fc,
2099 0x3000, 0x302c,
2100 0x3060, 0x30b0,
2101 0x30b8, 0x30d8,
2102 0x30e0, 0x30fc,
2103 0x3140, 0x357c,
2104 0x35a8, 0x35cc,
2105 0x35ec, 0x35ec,
2106 0x3600, 0x5624,
2107 0x56cc, 0x56ec,
2108 0x56f4, 0x5720,
2109 0x5728, 0x575c,
2110 0x580c, 0x5814,
2111 0x5890, 0x589c,
2112 0x58a4, 0x58ac,
2113 0x58b8, 0x58bc,
2114 0x5940, 0x595c,
2115 0x5980, 0x598c,
2116 0x59b0, 0x59c8,
2117 0x59d0, 0x59dc,
2118 0x59fc, 0x5a18,
2119 0x5a60, 0x5a6c,
2120 0x5a80, 0x5a8c,
2121 0x5a94, 0x5a9c,
2122 0x5b94, 0x5bfc,
2123 0x5c10, 0x5e48,
2124 0x5e50, 0x5e94,
2125 0x5ea0, 0x5eb0,
2126 0x5ec0, 0x5ec0,
2127 0x5ec8, 0x5ed0,
2128 0x5ee0, 0x5ee0,
2129 0x5ef0, 0x5ef0,
2130 0x5f00, 0x5f00,
2131 0x6000, 0x6020,
2132 0x6028, 0x6040,
2133 0x6058, 0x609c,
2134 0x60a8, 0x619c,
2135 0x7700, 0x7798,
2136 0x77c0, 0x7880,
2137 0x78cc, 0x78fc,
2138 0x7b00, 0x7b58,
2139 0x7b60, 0x7b84,
2140 0x7b8c, 0x7c54,
2141 0x7d00, 0x7d38,
2142 0x7d40, 0x7d84,
2143 0x7d8c, 0x7ddc,
2144 0x7de4, 0x7e04,
2145 0x7e10, 0x7e1c,
2146 0x7e24, 0x7e38,
2147 0x7e40, 0x7e44,
2148 0x7e4c, 0x7e78,
2149 0x7e80, 0x7edc,
2150 0x7ee8, 0x7efc,
2151 0x8dc0, 0x8de4,
2152 0x8df8, 0x8e04,
2153 0x8e10, 0x8e84,
2154 0x8ea0, 0x8f88,
2155 0x8fb8, 0x9058,
2156 0x9060, 0x9060,
2157 0x9068, 0x90f8,
2158 0x9100, 0x9124,
2159 0x9400, 0x9470,
2160 0x9600, 0x9600,
2161 0x9608, 0x9638,
2162 0x9640, 0x9704,
2163 0x9710, 0x971c,
2164 0x9800, 0x9808,
2165 0x9820, 0x983c,
2166 0x9850, 0x9864,
2167 0x9c00, 0x9c6c,
2168 0x9c80, 0x9cec,
2169 0x9d00, 0x9d6c,
2170 0x9d80, 0x9dec,
2171 0x9e00, 0x9e6c,
2172 0x9e80, 0x9eec,
2173 0x9f00, 0x9f6c,
2174 0x9f80, 0xa020,
2175 0xd004, 0xd03c,
2176 0xd100, 0xd118,
2177 0xd200, 0xd214,
2178 0xd220, 0xd234,
2179 0xd240, 0xd254,
2180 0xd260, 0xd274,
2181 0xd280, 0xd294,
2182 0xd2a0, 0xd2b4,
2183 0xd2c0, 0xd2d4,
2184 0xd2e0, 0xd2f4,
2185 0xd300, 0xd31c,
2186 0xdfc0, 0xdfe0,
2187 0xe000, 0xf008,
2188 0xf010, 0xf018,
2189 0xf020, 0xf028,
2190 0x11000, 0x11014,
2191 0x11048, 0x1106c,
2192 0x11074, 0x11088,
2193 0x11098, 0x11120,
2194 0x1112c, 0x1117c,
2195 0x11190, 0x112e0,
2196 0x11300, 0x1130c,
2197 0x12000, 0x1206c,
2198 0x19040, 0x1906c,
2199 0x19078, 0x19080,
2200 0x1908c, 0x190e8,
2201 0x190f0, 0x190f8,
2202 0x19100, 0x19110,
2203 0x19120, 0x19124,
2204 0x19150, 0x19194,
2205 0x1919c, 0x191b0,
2206 0x191d0, 0x191e8,
2207 0x19238, 0x19290,
2208 0x192a4, 0x192b0,
2209 0x192bc, 0x192bc,
2210 0x19348, 0x1934c,
2211 0x193f8, 0x19418,
2212 0x19420, 0x19428,
2213 0x19430, 0x19444,
2214 0x1944c, 0x1946c,
2215 0x19474, 0x19474,
2216 0x19490, 0x194cc,
2217 0x194f0, 0x194f8,
2218 0x19c00, 0x19c48,
2219 0x19c50, 0x19c80,
2220 0x19c94, 0x19c98,
2221 0x19ca0, 0x19cbc,
2222 0x19ce4, 0x19ce4,
2223 0x19cf0, 0x19cf8,
2224 0x19d00, 0x19d28,
2225 0x19d50, 0x19d78,
2226 0x19d94, 0x19d98,
2227 0x19da0, 0x19dc8,
2228 0x19df0, 0x19e10,
2229 0x19e50, 0x19e6c,
2230 0x19ea0, 0x19ebc,
2231 0x19ec4, 0x19ef4,
2232 0x19f04, 0x19f2c,
2233 0x19f34, 0x19f34,
2234 0x19f40, 0x19f50,
2235 0x19f90, 0x19fac,
2236 0x19fc4, 0x19fc8,
2237 0x19fd0, 0x19fe4,
2238 0x1a000, 0x1a004,
2239 0x1a010, 0x1a06c,
2240 0x1a0b0, 0x1a0e4,
2241 0x1a0ec, 0x1a0f8,
2242 0x1a100, 0x1a108,
2243 0x1a114, 0x1a120,
2244 0x1a128, 0x1a130,
2245 0x1a138, 0x1a138,
2246 0x1a190, 0x1a1c4,
2247 0x1a1fc, 0x1a1fc,
2248 0x1e008, 0x1e00c,
2249 0x1e040, 0x1e044,
2250 0x1e04c, 0x1e04c,
2251 0x1e284, 0x1e290,
2252 0x1e2c0, 0x1e2c0,
2253 0x1e2e0, 0x1e2e0,
2254 0x1e300, 0x1e384,
2255 0x1e3c0, 0x1e3c8,
2256 0x1e408, 0x1e40c,
2257 0x1e440, 0x1e444,
2258 0x1e44c, 0x1e44c,
2259 0x1e684, 0x1e690,
2260 0x1e6c0, 0x1e6c0,
2261 0x1e6e0, 0x1e6e0,
2262 0x1e700, 0x1e784,
2263 0x1e7c0, 0x1e7c8,
2264 0x1e808, 0x1e80c,
2265 0x1e840, 0x1e844,
2266 0x1e84c, 0x1e84c,
2267 0x1ea84, 0x1ea90,
2268 0x1eac0, 0x1eac0,
2269 0x1eae0, 0x1eae0,
2270 0x1eb00, 0x1eb84,
2271 0x1ebc0, 0x1ebc8,
2272 0x1ec08, 0x1ec0c,
2273 0x1ec40, 0x1ec44,
2274 0x1ec4c, 0x1ec4c,
2275 0x1ee84, 0x1ee90,
2276 0x1eec0, 0x1eec0,
2277 0x1eee0, 0x1eee0,
2278 0x1ef00, 0x1ef84,
2279 0x1efc0, 0x1efc8,
2280 0x1f008, 0x1f00c,
2281 0x1f040, 0x1f044,
2282 0x1f04c, 0x1f04c,
2283 0x1f284, 0x1f290,
2284 0x1f2c0, 0x1f2c0,
2285 0x1f2e0, 0x1f2e0,
2286 0x1f300, 0x1f384,
2287 0x1f3c0, 0x1f3c8,
2288 0x1f408, 0x1f40c,
2289 0x1f440, 0x1f444,
2290 0x1f44c, 0x1f44c,
2291 0x1f684, 0x1f690,
2292 0x1f6c0, 0x1f6c0,
2293 0x1f6e0, 0x1f6e0,
2294 0x1f700, 0x1f784,
2295 0x1f7c0, 0x1f7c8,
2296 0x1f808, 0x1f80c,
2297 0x1f840, 0x1f844,
2298 0x1f84c, 0x1f84c,
2299 0x1fa84, 0x1fa90,
2300 0x1fac0, 0x1fac0,
2301 0x1fae0, 0x1fae0,
2302 0x1fb00, 0x1fb84,
2303 0x1fbc0, 0x1fbc8,
2304 0x1fc08, 0x1fc0c,
2305 0x1fc40, 0x1fc44,
2306 0x1fc4c, 0x1fc4c,
2307 0x1fe84, 0x1fe90,
2308 0x1fec0, 0x1fec0,
2309 0x1fee0, 0x1fee0,
2310 0x1ff00, 0x1ff84,
2311 0x1ffc0, 0x1ffc8,
2312 0x30000, 0x30030,
2313 0x30100, 0x30168,
2314 0x30190, 0x301a0,
2315 0x301a8, 0x301b8,
2316 0x301c4, 0x301c8,
2317 0x301d0, 0x301d0,
2318 0x30200, 0x30320,
2319 0x30400, 0x304b4,
2320 0x304c0, 0x3052c,
2321 0x30540, 0x3061c,
2322 0x30800, 0x308a0,
2323 0x308c0, 0x30908,
2324 0x30910, 0x309b8,
2325 0x30a00, 0x30a04,
2326 0x30a0c, 0x30a14,
2327 0x30a1c, 0x30a2c,
2328 0x30a44, 0x30a50,
2329 0x30a74, 0x30a74,
2330 0x30a7c, 0x30afc,
2331 0x30b08, 0x30c24,
2332 0x30d00, 0x30d14,
2333 0x30d1c, 0x30d3c,
2334 0x30d44, 0x30d4c,
2335 0x30d54, 0x30d74,
2336 0x30d7c, 0x30d7c,
2337 0x30de0, 0x30de0,
2338 0x30e00, 0x30ed4,
2339 0x30f00, 0x30fa4,
2340 0x30fc0, 0x30fc4,
2341 0x31000, 0x31004,
2342 0x31080, 0x310fc,
2343 0x31208, 0x31220,
2344 0x3123c, 0x31254,
2345 0x31300, 0x31300,
2346 0x31308, 0x3131c,
2347 0x31338, 0x3133c,
2348 0x31380, 0x31380,
2349 0x31388, 0x313a8,
2350 0x313b4, 0x313b4,
2351 0x31400, 0x31420,
2352 0x31438, 0x3143c,
2353 0x31480, 0x31480,
2354 0x314a8, 0x314a8,
2355 0x314b0, 0x314b4,
2356 0x314c8, 0x314d4,
2357 0x31a40, 0x31a4c,
2358 0x31af0, 0x31b20,
2359 0x31b38, 0x31b3c,
2360 0x31b80, 0x31b80,
2361 0x31ba8, 0x31ba8,
2362 0x31bb0, 0x31bb4,
2363 0x31bc8, 0x31bd4,
2364 0x32140, 0x3218c,
2365 0x321f0, 0x321f4,
2366 0x32200, 0x32200,
2367 0x32218, 0x32218,
2368 0x32400, 0x32400,
2369 0x32408, 0x3241c,
2370 0x32618, 0x32620,
2371 0x32664, 0x32664,
2372 0x326a8, 0x326a8,
2373 0x326ec, 0x326ec,
2374 0x32a00, 0x32abc,
2375 0x32b00, 0x32b18,
2376 0x32b20, 0x32b38,
2377 0x32b40, 0x32b58,
2378 0x32b60, 0x32b78,
2379 0x32c00, 0x32c00,
2380 0x32c08, 0x32c3c,
2381 0x33000, 0x3302c,
2382 0x33034, 0x33050,
2383 0x33058, 0x33058,
2384 0x33060, 0x3308c,
2385 0x3309c, 0x330ac,
2386 0x330c0, 0x330c0,
2387 0x330c8, 0x330d0,
2388 0x330d8, 0x330e0,
2389 0x330ec, 0x3312c,
2390 0x33134, 0x33150,
2391 0x33158, 0x33158,
2392 0x33160, 0x3318c,
2393 0x3319c, 0x331ac,
2394 0x331c0, 0x331c0,
2395 0x331c8, 0x331d0,
2396 0x331d8, 0x331e0,
2397 0x331ec, 0x33290,
2398 0x33298, 0x332c4,
2399 0x332e4, 0x33390,
2400 0x33398, 0x333c4,
2401 0x333e4, 0x3342c,
2402 0x33434, 0x33450,
2403 0x33458, 0x33458,
2404 0x33460, 0x3348c,
2405 0x3349c, 0x334ac,
2406 0x334c0, 0x334c0,
2407 0x334c8, 0x334d0,
2408 0x334d8, 0x334e0,
2409 0x334ec, 0x3352c,
2410 0x33534, 0x33550,
2411 0x33558, 0x33558,
2412 0x33560, 0x3358c,
2413 0x3359c, 0x335ac,
2414 0x335c0, 0x335c0,
2415 0x335c8, 0x335d0,
2416 0x335d8, 0x335e0,
2417 0x335ec, 0x33690,
2418 0x33698, 0x336c4,
2419 0x336e4, 0x33790,
2420 0x33798, 0x337c4,
2421 0x337e4, 0x337fc,
2422 0x33814, 0x33814,
2423 0x33854, 0x33868,
2424 0x33880, 0x3388c,
2425 0x338c0, 0x338d0,
2426 0x338e8, 0x338ec,
2427 0x33900, 0x3392c,
2428 0x33934, 0x33950,
2429 0x33958, 0x33958,
2430 0x33960, 0x3398c,
2431 0x3399c, 0x339ac,
2432 0x339c0, 0x339c0,
2433 0x339c8, 0x339d0,
2434 0x339d8, 0x339e0,
2435 0x339ec, 0x33a90,
2436 0x33a98, 0x33ac4,
2437 0x33ae4, 0x33b10,
2438 0x33b24, 0x33b28,
2439 0x33b38, 0x33b50,
2440 0x33bf0, 0x33c10,
2441 0x33c24, 0x33c28,
2442 0x33c38, 0x33c50,
2443 0x33cf0, 0x33cfc,
2444 0x34000, 0x34030,
2445 0x34100, 0x34168,
2446 0x34190, 0x341a0,
2447 0x341a8, 0x341b8,
2448 0x341c4, 0x341c8,
2449 0x341d0, 0x341d0,
2450 0x34200, 0x34320,
2451 0x34400, 0x344b4,
2452 0x344c0, 0x3452c,
2453 0x34540, 0x3461c,
2454 0x34800, 0x348a0,
2455 0x348c0, 0x34908,
2456 0x34910, 0x349b8,
2457 0x34a00, 0x34a04,
2458 0x34a0c, 0x34a14,
2459 0x34a1c, 0x34a2c,
2460 0x34a44, 0x34a50,
2461 0x34a74, 0x34a74,
2462 0x34a7c, 0x34afc,
2463 0x34b08, 0x34c24,
2464 0x34d00, 0x34d14,
2465 0x34d1c, 0x34d3c,
2466 0x34d44, 0x34d4c,
2467 0x34d54, 0x34d74,
2468 0x34d7c, 0x34d7c,
2469 0x34de0, 0x34de0,
2470 0x34e00, 0x34ed4,
2471 0x34f00, 0x34fa4,
2472 0x34fc0, 0x34fc4,
2473 0x35000, 0x35004,
2474 0x35080, 0x350fc,
2475 0x35208, 0x35220,
2476 0x3523c, 0x35254,
2477 0x35300, 0x35300,
2478 0x35308, 0x3531c,
2479 0x35338, 0x3533c,
2480 0x35380, 0x35380,
2481 0x35388, 0x353a8,
2482 0x353b4, 0x353b4,
2483 0x35400, 0x35420,
2484 0x35438, 0x3543c,
2485 0x35480, 0x35480,
2486 0x354a8, 0x354a8,
2487 0x354b0, 0x354b4,
2488 0x354c8, 0x354d4,
2489 0x35a40, 0x35a4c,
2490 0x35af0, 0x35b20,
2491 0x35b38, 0x35b3c,
2492 0x35b80, 0x35b80,
2493 0x35ba8, 0x35ba8,
2494 0x35bb0, 0x35bb4,
2495 0x35bc8, 0x35bd4,
2496 0x36140, 0x3618c,
2497 0x361f0, 0x361f4,
2498 0x36200, 0x36200,
2499 0x36218, 0x36218,
2500 0x36400, 0x36400,
2501 0x36408, 0x3641c,
2502 0x36618, 0x36620,
2503 0x36664, 0x36664,
2504 0x366a8, 0x366a8,
2505 0x366ec, 0x366ec,
2506 0x36a00, 0x36abc,
2507 0x36b00, 0x36b18,
2508 0x36b20, 0x36b38,
2509 0x36b40, 0x36b58,
2510 0x36b60, 0x36b78,
2511 0x36c00, 0x36c00,
2512 0x36c08, 0x36c3c,
2513 0x37000, 0x3702c,
2514 0x37034, 0x37050,
2515 0x37058, 0x37058,
2516 0x37060, 0x3708c,
2517 0x3709c, 0x370ac,
2518 0x370c0, 0x370c0,
2519 0x370c8, 0x370d0,
2520 0x370d8, 0x370e0,
2521 0x370ec, 0x3712c,
2522 0x37134, 0x37150,
2523 0x37158, 0x37158,
2524 0x37160, 0x3718c,
2525 0x3719c, 0x371ac,
2526 0x371c0, 0x371c0,
2527 0x371c8, 0x371d0,
2528 0x371d8, 0x371e0,
2529 0x371ec, 0x37290,
2530 0x37298, 0x372c4,
2531 0x372e4, 0x37390,
2532 0x37398, 0x373c4,
2533 0x373e4, 0x3742c,
2534 0x37434, 0x37450,
2535 0x37458, 0x37458,
2536 0x37460, 0x3748c,
2537 0x3749c, 0x374ac,
2538 0x374c0, 0x374c0,
2539 0x374c8, 0x374d0,
2540 0x374d8, 0x374e0,
2541 0x374ec, 0x3752c,
2542 0x37534, 0x37550,
2543 0x37558, 0x37558,
2544 0x37560, 0x3758c,
2545 0x3759c, 0x375ac,
2546 0x375c0, 0x375c0,
2547 0x375c8, 0x375d0,
2548 0x375d8, 0x375e0,
2549 0x375ec, 0x37690,
2550 0x37698, 0x376c4,
2551 0x376e4, 0x37790,
2552 0x37798, 0x377c4,
2553 0x377e4, 0x377fc,
2554 0x37814, 0x37814,
2555 0x37854, 0x37868,
2556 0x37880, 0x3788c,
2557 0x378c0, 0x378d0,
2558 0x378e8, 0x378ec,
2559 0x37900, 0x3792c,
2560 0x37934, 0x37950,
2561 0x37958, 0x37958,
2562 0x37960, 0x3798c,
2563 0x3799c, 0x379ac,
2564 0x379c0, 0x379c0,
2565 0x379c8, 0x379d0,
2566 0x379d8, 0x379e0,
2567 0x379ec, 0x37a90,
2568 0x37a98, 0x37ac4,
2569 0x37ae4, 0x37b10,
2570 0x37b24, 0x37b28,
2571 0x37b38, 0x37b50,
2572 0x37bf0, 0x37c10,
2573 0x37c24, 0x37c28,
2574 0x37c38, 0x37c50,
2575 0x37cf0, 0x37cfc,
2576 0x40040, 0x40040,
2577 0x40080, 0x40084,
2578 0x40100, 0x40100,
2579 0x40140, 0x401bc,
2580 0x40200, 0x40214,
2581 0x40228, 0x40228,
2582 0x40240, 0x40258,
2583 0x40280, 0x40280,
2584 0x40304, 0x40304,
2585 0x40330, 0x4033c,
2586 0x41304, 0x413c8,
2587 0x413d0, 0x413dc,
2588 0x413f0, 0x413f0,
2589 0x41400, 0x4140c,
2590 0x41414, 0x4141c,
2591 0x41480, 0x414d0,
2592 0x44000, 0x4407c,
2593 0x440c0, 0x441ac,
2594 0x441b4, 0x4427c,
2595 0x442c0, 0x443ac,
2596 0x443b4, 0x4447c,
2597 0x444c0, 0x445ac,
2598 0x445b4, 0x4467c,
2599 0x446c0, 0x447ac,
2600 0x447b4, 0x4487c,
2601 0x448c0, 0x449ac,
2602 0x449b4, 0x44a7c,
2603 0x44ac0, 0x44bac,
2604 0x44bb4, 0x44c7c,
2605 0x44cc0, 0x44dac,
2606 0x44db4, 0x44e7c,
2607 0x44ec0, 0x44fac,
2608 0x44fb4, 0x4507c,
2609 0x450c0, 0x451ac,
2610 0x451b4, 0x451fc,
2611 0x45800, 0x45804,
2612 0x45810, 0x45830,
2613 0x45840, 0x45860,
2614 0x45868, 0x45868,
2615 0x45880, 0x45884,
2616 0x458a0, 0x458b0,
2617 0x45a00, 0x45a04,
2618 0x45a10, 0x45a30,
2619 0x45a40, 0x45a60,
2620 0x45a68, 0x45a68,
2621 0x45a80, 0x45a84,
2622 0x45aa0, 0x45ab0,
2623 0x460c0, 0x460e4,
2624 0x47000, 0x4703c,
2625 0x47044, 0x4708c,
2626 0x47200, 0x47250,
2627 0x47400, 0x47408,
2628 0x47414, 0x47420,
2629 0x47600, 0x47618,
2630 0x47800, 0x47814,
2631 0x47820, 0x4782c,
2632 0x50000, 0x50084,
2633 0x50090, 0x500cc,
2634 0x50300, 0x50384,
2635 0x50400, 0x50400,
2636 0x50800, 0x50884,
2637 0x50890, 0x508cc,
2638 0x50b00, 0x50b84,
2639 0x50c00, 0x50c00,
2640 0x51000, 0x51020,
2641 0x51028, 0x510b0,
2642 0x51300, 0x51324,
2645 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646 const unsigned int *reg_ranges;
2647 int reg_ranges_size, range;
2648 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2650 /* Select the right set of register ranges to dump depending on the
2651 * adapter chip type.
2653 switch (chip_version) {
2654 case CHELSIO_T4:
2655 reg_ranges = t4_reg_ranges;
2656 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657 break;
2659 case CHELSIO_T5:
2660 reg_ranges = t5_reg_ranges;
2661 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662 break;
2664 case CHELSIO_T6:
2665 reg_ranges = t6_reg_ranges;
2666 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667 break;
2669 default:
2670 dev_err(adap->pdev_dev,
2671 "Unsupported chip version %d\n", chip_version);
2672 return;
2675 /* Clear the register buffer and insert the appropriate register
2676 * values selected by the above register ranges.
2678 memset(buf, 0, buf_size);
2679 for (range = 0; range < reg_ranges_size; range += 2) {
2680 unsigned int reg = reg_ranges[range];
2681 unsigned int last_reg = reg_ranges[range + 1];
2682 u32 *bufp = (u32 *)((char *)buf + reg);
2684 /* Iterate across the register range filling in the register
2685 * buffer but don't write past the end of the register buffer.
2687 while (reg <= last_reg && bufp < buf_end) {
2688 *bufp++ = t4_read_reg(adap, reg);
2689 reg += sizeof(u32);
2694 #define EEPROM_STAT_ADDR 0x7bfc
2695 #define VPD_BASE 0x400
2696 #define VPD_BASE_OLD 0
2697 #define VPD_LEN 1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2701 * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702 * @phys_addr: the physical EEPROM address
2703 * @fn: the PCI function number
2704 * @sz: size of function-specific area
2706 * Translate a physical EEPROM address to virtual. The first 1K is
2707 * accessed through virtual addresses starting at 31K, the rest is
2708 * accessed through virtual addresses starting at 0.
2710 * The mapping is as follows:
2711 * [0..1K) -> [31K..32K)
2712 * [1K..1K+A) -> [31K-A..31K)
2713 * [1K+A..ES) -> [0..ES-A-1K)
2715 * where A = @fn * @sz, and ES = EEPROM size.
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2719 fn *= sz;
2720 if (phys_addr < 1024)
2721 return phys_addr + (31 << 10);
2722 if (phys_addr < 1024 + fn)
2723 return 31744 - fn + phys_addr - 1024;
2724 if (phys_addr < EEPROMSIZE)
2725 return phys_addr - 1024 - fn;
2726 return -EINVAL;
2730 * t4_seeprom_wp - enable/disable EEPROM write protection
2731 * @adapter: the adapter
2732 * @enable: whether to enable or disable write protection
2734 * Enables or disables write protection on the serial EEPROM.
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2738 unsigned int v = enable ? 0xc : 0;
2739 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740 return ret < 0 ? ret : 0;
2744 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745 * @adapter: adapter to read
2746 * @p: where to store the parameters
2748 * Reads card parameters stored in VPD EEPROM.
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2752 int i, ret = 0, addr;
2753 int ec, sn, pn, na;
2754 u8 *vpd, csum;
2755 unsigned int vpdr_len, kw_offset, id_len;
2757 vpd = vmalloc(VPD_LEN);
2758 if (!vpd)
2759 return -ENOMEM;
2761 /* Card information normally starts at VPD_BASE but early cards had
2762 * it at 0.
2764 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765 if (ret < 0)
2766 goto out;
2768 /* The VPD shall have a unique identifier specified by the PCI SIG.
2769 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771 * is expected to automatically put this entry at the
2772 * beginning of the VPD.
2774 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2776 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777 if (ret < 0)
2778 goto out;
2780 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782 ret = -EINVAL;
2783 goto out;
2786 id_len = pci_vpd_lrdt_size(vpd);
2787 if (id_len > ID_LEN)
2788 id_len = ID_LEN;
2790 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791 if (i < 0) {
2792 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793 ret = -EINVAL;
2794 goto out;
2797 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799 if (vpdr_len + kw_offset > VPD_LEN) {
2800 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801 ret = -EINVAL;
2802 goto out;
2805 #define FIND_VPD_KW(var, name) do { \
2806 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807 if (var < 0) { \
2808 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809 ret = -EINVAL; \
2810 goto out; \
2812 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2815 FIND_VPD_KW(i, "RV");
2816 for (csum = 0; i >= 0; i--)
2817 csum += vpd[i];
2819 if (csum) {
2820 dev_err(adapter->pdev_dev,
2821 "corrupted VPD EEPROM, actual csum %u\n", csum);
2822 ret = -EINVAL;
2823 goto out;
2826 FIND_VPD_KW(ec, "EC");
2827 FIND_VPD_KW(sn, "SN");
2828 FIND_VPD_KW(pn, "PN");
2829 FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2832 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833 strim(p->id);
2834 memcpy(p->ec, vpd + ec, EC_LEN);
2835 strim(p->ec);
2836 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838 strim(p->sn);
2839 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841 strim(p->pn);
2842 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843 strim((char *)p->na);
2845 out:
2846 vfree(vpd);
2847 return ret < 0 ? ret : 0;
2851 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852 * @adapter: adapter to read
2853 * @p: where to store the parameters
2855 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2856 * Clock. This can only be called after a connection to the firmware
2857 * is established.
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2861 u32 cclk_param, cclk_val;
2862 int ret;
2864 /* Grab the raw VPD parameters.
2866 ret = t4_get_raw_vpd_params(adapter, p);
2867 if (ret)
2868 return ret;
2870 /* Ask firmware for the Core Clock since it knows how to translate the
2871 * Reference Clock ('V2') VPD field into a Core Clock value ...
2873 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876 1, &cclk_param, &cclk_val);
2878 if (ret)
2879 return ret;
2880 p->cclk = cclk_val;
2882 return 0;
2885 /* serial flash and firmware constants */
2886 enum {
2887 SF_ATTEMPTS = 10, /* max retries for SF operations */
2889 /* flash command opcodes */
2890 SF_PROG_PAGE = 2, /* program page */
2891 SF_WR_DISABLE = 4, /* disable writes */
2892 SF_RD_STATUS = 5, /* read status register */
2893 SF_WR_ENABLE = 6, /* enable writes */
2894 SF_RD_DATA_FAST = 0xb, /* read flash */
2895 SF_RD_ID = 0x9f, /* read ID */
2896 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2900 * sf1_read - read data from the serial flash
2901 * @adapter: the adapter
2902 * @byte_cnt: number of bytes to read
2903 * @cont: whether another operation will be chained
2904 * @lock: whether to lock SF for PL access only
2905 * @valp: where to store the read data
2907 * Reads up to 4 bytes of data from the serial flash. The location of
2908 * the read needs to be specified prior to calling this by issuing the
2909 * appropriate commands to the serial flash.
2911 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2912 int lock, u32 *valp)
2914 int ret;
2916 if (!byte_cnt || byte_cnt > 4)
2917 return -EINVAL;
2918 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2919 return -EBUSY;
2920 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2921 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2922 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2923 if (!ret)
2924 *valp = t4_read_reg(adapter, SF_DATA_A);
2925 return ret;
2929 * sf1_write - write data to the serial flash
2930 * @adapter: the adapter
2931 * @byte_cnt: number of bytes to write
2932 * @cont: whether another operation will be chained
2933 * @lock: whether to lock SF for PL access only
2934 * @val: value to write
2936 * Writes up to 4 bytes of data to the serial flash. The location of
2937 * the write needs to be specified prior to calling this by issuing the
2938 * appropriate commands to the serial flash.
2940 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2941 int lock, u32 val)
2943 if (!byte_cnt || byte_cnt > 4)
2944 return -EINVAL;
2945 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2946 return -EBUSY;
2947 t4_write_reg(adapter, SF_DATA_A, val);
2948 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2949 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2950 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2954 * flash_wait_op - wait for a flash operation to complete
2955 * @adapter: the adapter
2956 * @attempts: max number of polls of the status register
2957 * @delay: delay between polls in ms
2959 * Wait for a flash operation to complete by polling the status register.
2961 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2963 int ret;
2964 u32 status;
2966 while (1) {
2967 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2968 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2969 return ret;
2970 if (!(status & 1))
2971 return 0;
2972 if (--attempts == 0)
2973 return -EAGAIN;
2974 if (delay)
2975 msleep(delay);
2980 * t4_read_flash - read words from serial flash
2981 * @adapter: the adapter
2982 * @addr: the start address for the read
2983 * @nwords: how many 32-bit words to read
2984 * @data: where to store the read data
2985 * @byte_oriented: whether to store data as bytes or as words
2987 * Read the specified number of 32-bit words from the serial flash.
2988 * If @byte_oriented is set the read data is stored as a byte array
2989 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2990 * natural endianness.
2992 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2993 unsigned int nwords, u32 *data, int byte_oriented)
2995 int ret;
2997 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2998 return -EINVAL;
3000 addr = swab32(addr) | SF_RD_DATA_FAST;
3002 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3003 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3004 return ret;
3006 for ( ; nwords; nwords--, data++) {
3007 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3008 if (nwords == 1)
3009 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3010 if (ret)
3011 return ret;
3012 if (byte_oriented)
3013 *data = (__force __u32)(cpu_to_be32(*data));
3015 return 0;
3019 * t4_write_flash - write up to a page of data to the serial flash
3020 * @adapter: the adapter
3021 * @addr: the start address to write
3022 * @n: length of data to write in bytes
3023 * @data: the data to write
3025 * Writes up to a page of data (256 bytes) to the serial flash starting
3026 * at the given address. All the data must be written to the same page.
3028 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3029 unsigned int n, const u8 *data)
3031 int ret;
3032 u32 buf[64];
3033 unsigned int i, c, left, val, offset = addr & 0xff;
3035 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3036 return -EINVAL;
3038 val = swab32(addr) | SF_PROG_PAGE;
3040 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3041 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3042 goto unlock;
3044 for (left = n; left; left -= c) {
3045 c = min(left, 4U);
3046 for (val = 0, i = 0; i < c; ++i)
3047 val = (val << 8) + *data++;
3049 ret = sf1_write(adapter, c, c != left, 1, val);
3050 if (ret)
3051 goto unlock;
3053 ret = flash_wait_op(adapter, 8, 1);
3054 if (ret)
3055 goto unlock;
3057 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3059 /* Read the page to verify the write succeeded */
3060 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3061 if (ret)
3062 return ret;
3064 if (memcmp(data - n, (u8 *)buf + offset, n)) {
3065 dev_err(adapter->pdev_dev,
3066 "failed to correctly write the flash page at %#x\n",
3067 addr);
3068 return -EIO;
3070 return 0;
3072 unlock:
3073 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3074 return ret;
3078 * t4_get_fw_version - read the firmware version
3079 * @adapter: the adapter
3080 * @vers: where to place the version
3082 * Reads the FW version from flash.
3084 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3086 return t4_read_flash(adapter, FLASH_FW_START +
3087 offsetof(struct fw_hdr, fw_ver), 1,
3088 vers, 0);
3092 * t4_get_bs_version - read the firmware bootstrap version
3093 * @adapter: the adapter
3094 * @vers: where to place the version
3096 * Reads the FW Bootstrap version from flash.
3098 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3100 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3101 offsetof(struct fw_hdr, fw_ver), 1,
3102 vers, 0);
3106 * t4_get_tp_version - read the TP microcode version
3107 * @adapter: the adapter
3108 * @vers: where to place the version
3110 * Reads the TP microcode version from flash.
3112 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3114 return t4_read_flash(adapter, FLASH_FW_START +
3115 offsetof(struct fw_hdr, tp_microcode_ver),
3116 1, vers, 0);
3120 * t4_get_exprom_version - return the Expansion ROM version (if any)
3121 * @adapter: the adapter
3122 * @vers: where to place the version
3124 * Reads the Expansion ROM header from FLASH and returns the version
3125 * number (if present) through the @vers return value pointer. We return
3126 * this in the Firmware Version Format since it's convenient. Return
3127 * 0 on success, -ENOENT if no Expansion ROM is present.
3129 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3131 struct exprom_header {
3132 unsigned char hdr_arr[16]; /* must start with 0x55aa */
3133 unsigned char hdr_ver[4]; /* Expansion ROM version */
3134 } *hdr;
3135 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3136 sizeof(u32))];
3137 int ret;
3139 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3140 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3142 if (ret)
3143 return ret;
3145 hdr = (struct exprom_header *)exprom_header_buf;
3146 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3147 return -ENOENT;
3149 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3150 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3151 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3152 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3153 return 0;
3157 * t4_get_vpd_version - return the VPD version
3158 * @adapter: the adapter
3159 * @vers: where to place the version
3161 * Reads the VPD via the Firmware interface (thus this can only be called
3162 * once we're ready to issue Firmware commands). The format of the
3163 * VPD version is adapter specific. Returns 0 on success, an error on
3164 * failure.
3166 * Note that early versions of the Firmware didn't include the ability
3167 * to retrieve the VPD version, so we zero-out the return-value parameter
3168 * in that case to avoid leaving it with garbage in it.
3170 * Also note that the Firmware will return its cached copy of the VPD
3171 * Revision ID, not the actual Revision ID as written in the Serial
3172 * EEPROM. This is only an issue if a new VPD has been written and the
3173 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best
3174 * to defer calling this routine till after a FW_RESET_CMD has been issued
3175 * if the Host Driver will be performing a full adapter initialization.
3177 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3179 u32 vpdrev_param;
3180 int ret;
3182 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3183 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3184 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3185 1, &vpdrev_param, vers);
3186 if (ret)
3187 *vers = 0;
3188 return ret;
3192 * t4_get_scfg_version - return the Serial Configuration version
3193 * @adapter: the adapter
3194 * @vers: where to place the version
3196 * Reads the Serial Configuration Version via the Firmware interface
3197 * (thus this can only be called once we're ready to issue Firmware
3198 * commands). The format of the Serial Configuration version is
3199 * adapter specific. Returns 0 on success, an error on failure.
3201 * Note that early versions of the Firmware didn't include the ability
3202 * to retrieve the Serial Configuration version, so we zero-out the
3203 * return-value parameter in that case to avoid leaving it with
3204 * garbage in it.
3206 * Also note that the Firmware will return its cached copy of the Serial
3207 * Initialization Revision ID, not the actual Revision ID as written in
3208 * the Serial EEPROM. This is only an issue if a new VPD has been written
3209 * and the Firmware/Chip haven't yet gone through a RESET sequence. So
3210 * it's best to defer calling this routine till after a FW_RESET_CMD has
3211 * been issued if the Host Driver will be performing a full adapter
3212 * initialization.
3214 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3216 u32 scfgrev_param;
3217 int ret;
3219 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3220 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3221 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3222 1, &scfgrev_param, vers);
3223 if (ret)
3224 *vers = 0;
3225 return ret;
3229 * t4_get_version_info - extract various chip/firmware version information
3230 * @adapter: the adapter
3232 * Reads various chip/firmware version numbers and stores them into the
3233 * adapter Adapter Parameters structure. If any of the efforts fails
3234 * the first failure will be returned, but all of the version numbers
3235 * will be read.
3237 int t4_get_version_info(struct adapter *adapter)
3239 int ret = 0;
3241 #define FIRST_RET(__getvinfo) \
3242 do { \
3243 int __ret = __getvinfo; \
3244 if (__ret && !ret) \
3245 ret = __ret; \
3246 } while (0)
3248 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3249 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3250 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3251 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3252 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3253 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3255 #undef FIRST_RET
3256 return ret;
3260 * t4_dump_version_info - dump all of the adapter configuration IDs
3261 * @adapter: the adapter
3263 * Dumps all of the various bits of adapter configuration version/revision
3264 * IDs information. This is typically called at some point after
3265 * t4_get_version_info() has been called.
3267 void t4_dump_version_info(struct adapter *adapter)
3269 /* Device information */
3270 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3271 adapter->params.vpd.id,
3272 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3273 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3274 adapter->params.vpd.sn, adapter->params.vpd.pn);
3276 /* Firmware Version */
3277 if (!adapter->params.fw_vers)
3278 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3279 else
3280 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3281 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3282 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3283 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3284 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3286 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3287 * Firmware, so dev_info() is more appropriate here.)
3289 if (!adapter->params.bs_vers)
3290 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3291 else
3292 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3293 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3294 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3295 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3296 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3298 /* TP Microcode Version */
3299 if (!adapter->params.tp_vers)
3300 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3301 else
3302 dev_info(adapter->pdev_dev,
3303 "TP Microcode version: %u.%u.%u.%u\n",
3304 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3305 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3306 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3307 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3309 /* Expansion ROM version */
3310 if (!adapter->params.er_vers)
3311 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3312 else
3313 dev_info(adapter->pdev_dev,
3314 "Expansion ROM version: %u.%u.%u.%u\n",
3315 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3316 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3317 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3318 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3320 /* Serial Configuration version */
3321 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3322 adapter->params.scfg_vers);
3324 /* VPD Version */
3325 dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3326 adapter->params.vpd_vers);
3330 * t4_check_fw_version - check if the FW is supported with this driver
3331 * @adap: the adapter
3333 * Checks if an adapter's FW is compatible with the driver. Returns 0
3334 * if there's exact match, a negative error if the version could not be
3335 * read or there's a major version mismatch
3337 int t4_check_fw_version(struct adapter *adap)
3339 int i, ret, major, minor, micro;
3340 int exp_major, exp_minor, exp_micro;
3341 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3343 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3344 /* Try multiple times before returning error */
3345 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3346 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3348 if (ret)
3349 return ret;
3351 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3352 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3353 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3355 switch (chip_version) {
3356 case CHELSIO_T4:
3357 exp_major = T4FW_MIN_VERSION_MAJOR;
3358 exp_minor = T4FW_MIN_VERSION_MINOR;
3359 exp_micro = T4FW_MIN_VERSION_MICRO;
3360 break;
3361 case CHELSIO_T5:
3362 exp_major = T5FW_MIN_VERSION_MAJOR;
3363 exp_minor = T5FW_MIN_VERSION_MINOR;
3364 exp_micro = T5FW_MIN_VERSION_MICRO;
3365 break;
3366 case CHELSIO_T6:
3367 exp_major = T6FW_MIN_VERSION_MAJOR;
3368 exp_minor = T6FW_MIN_VERSION_MINOR;
3369 exp_micro = T6FW_MIN_VERSION_MICRO;
3370 break;
3371 default:
3372 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3373 adap->chip);
3374 return -EINVAL;
3377 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3378 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3379 dev_err(adap->pdev_dev,
3380 "Card has firmware version %u.%u.%u, minimum "
3381 "supported firmware is %u.%u.%u.\n", major, minor,
3382 micro, exp_major, exp_minor, exp_micro);
3383 return -EFAULT;
3385 return 0;
3388 /* Is the given firmware API compatible with the one the driver was compiled
3389 * with?
3391 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3394 /* short circuit if it's the exact same firmware version */
3395 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3396 return 1;
3398 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3399 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3400 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3401 return 1;
3402 #undef SAME_INTF
3404 return 0;
3407 /* The firmware in the filesystem is usable, but should it be installed?
3408 * This routine explains itself in detail if it indicates the filesystem
3409 * firmware should be installed.
3411 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3412 int k, int c)
3414 const char *reason;
3416 if (!card_fw_usable) {
3417 reason = "incompatible or unusable";
3418 goto install;
3421 if (k > c) {
3422 reason = "older than the version supported with this driver";
3423 goto install;
3426 return 0;
3428 install:
3429 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3430 "installing firmware %u.%u.%u.%u on card.\n",
3431 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3432 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3433 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3434 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3436 return 1;
3439 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3440 const u8 *fw_data, unsigned int fw_size,
3441 struct fw_hdr *card_fw, enum dev_state state,
3442 int *reset)
3444 int ret, card_fw_usable, fs_fw_usable;
3445 const struct fw_hdr *fs_fw;
3446 const struct fw_hdr *drv_fw;
3448 drv_fw = &fw_info->fw_hdr;
3450 /* Read the header of the firmware on the card */
3451 ret = -t4_read_flash(adap, FLASH_FW_START,
3452 sizeof(*card_fw) / sizeof(uint32_t),
3453 (uint32_t *)card_fw, 1);
3454 if (ret == 0) {
3455 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3456 } else {
3457 dev_err(adap->pdev_dev,
3458 "Unable to read card's firmware header: %d\n", ret);
3459 card_fw_usable = 0;
3462 if (fw_data != NULL) {
3463 fs_fw = (const void *)fw_data;
3464 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3465 } else {
3466 fs_fw = NULL;
3467 fs_fw_usable = 0;
3470 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3471 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3472 /* Common case: the firmware on the card is an exact match and
3473 * the filesystem one is an exact match too, or the filesystem
3474 * one is absent/incompatible.
3476 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3477 should_install_fs_fw(adap, card_fw_usable,
3478 be32_to_cpu(fs_fw->fw_ver),
3479 be32_to_cpu(card_fw->fw_ver))) {
3480 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3481 fw_size, 0);
3482 if (ret != 0) {
3483 dev_err(adap->pdev_dev,
3484 "failed to install firmware: %d\n", ret);
3485 goto bye;
3488 /* Installed successfully, update the cached header too. */
3489 *card_fw = *fs_fw;
3490 card_fw_usable = 1;
3491 *reset = 0; /* already reset as part of load_fw */
3494 if (!card_fw_usable) {
3495 uint32_t d, c, k;
3497 d = be32_to_cpu(drv_fw->fw_ver);
3498 c = be32_to_cpu(card_fw->fw_ver);
3499 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3501 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3502 "chip state %d, "
3503 "driver compiled with %d.%d.%d.%d, "
3504 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3505 state,
3506 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3507 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3508 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3509 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3510 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3511 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3512 ret = EINVAL;
3513 goto bye;
3516 /* We're using whatever's on the card and it's known to be good. */
3517 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3518 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3520 bye:
3521 return ret;
3525 * t4_flash_erase_sectors - erase a range of flash sectors
3526 * @adapter: the adapter
3527 * @start: the first sector to erase
3528 * @end: the last sector to erase
3530 * Erases the sectors in the given inclusive range.
3532 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3534 int ret = 0;
3536 if (end >= adapter->params.sf_nsec)
3537 return -EINVAL;
3539 while (start <= end) {
3540 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3541 (ret = sf1_write(adapter, 4, 0, 1,
3542 SF_ERASE_SECTOR | (start << 8))) != 0 ||
3543 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3544 dev_err(adapter->pdev_dev,
3545 "erase of flash sector %d failed, error %d\n",
3546 start, ret);
3547 break;
3549 start++;
3551 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3552 return ret;
3556 * t4_flash_cfg_addr - return the address of the flash configuration file
3557 * @adapter: the adapter
3559 * Return the address within the flash where the Firmware Configuration
3560 * File is stored.
3562 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3564 if (adapter->params.sf_size == 0x100000)
3565 return FLASH_FPGA_CFG_START;
3566 else
3567 return FLASH_CFG_START;
3570 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
3571 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3572 * and emit an error message for mismatched firmware to save our caller the
3573 * effort ...
3575 static bool t4_fw_matches_chip(const struct adapter *adap,
3576 const struct fw_hdr *hdr)
3578 /* The expression below will return FALSE for any unsupported adapter
3579 * which will keep us "honest" in the future ...
3581 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3582 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3583 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3584 return true;
3586 dev_err(adap->pdev_dev,
3587 "FW image (%d) is not suitable for this adapter (%d)\n",
3588 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3589 return false;
3593 * t4_load_fw - download firmware
3594 * @adap: the adapter
3595 * @fw_data: the firmware image to write
3596 * @size: image size
3598 * Write the supplied firmware image to the card's serial flash.
3600 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3602 u32 csum;
3603 int ret, addr;
3604 unsigned int i;
3605 u8 first_page[SF_PAGE_SIZE];
3606 const __be32 *p = (const __be32 *)fw_data;
3607 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3608 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3609 unsigned int fw_start_sec = FLASH_FW_START_SEC;
3610 unsigned int fw_size = FLASH_FW_MAX_SIZE;
3611 unsigned int fw_start = FLASH_FW_START;
3613 if (!size) {
3614 dev_err(adap->pdev_dev, "FW image has no data\n");
3615 return -EINVAL;
3617 if (size & 511) {
3618 dev_err(adap->pdev_dev,
3619 "FW image size not multiple of 512 bytes\n");
3620 return -EINVAL;
3622 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3623 dev_err(adap->pdev_dev,
3624 "FW image size differs from size in FW header\n");
3625 return -EINVAL;
3627 if (size > fw_size) {
3628 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3629 fw_size);
3630 return -EFBIG;
3632 if (!t4_fw_matches_chip(adap, hdr))
3633 return -EINVAL;
3635 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3636 csum += be32_to_cpu(p[i]);
3638 if (csum != 0xffffffff) {
3639 dev_err(adap->pdev_dev,
3640 "corrupted firmware image, checksum %#x\n", csum);
3641 return -EINVAL;
3644 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3645 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3646 if (ret)
3647 goto out;
3650 * We write the correct version at the end so the driver can see a bad
3651 * version if the FW write fails. Start by writing a copy of the
3652 * first page with a bad version.
3654 memcpy(first_page, fw_data, SF_PAGE_SIZE);
3655 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3656 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3657 if (ret)
3658 goto out;
3660 addr = fw_start;
3661 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3662 addr += SF_PAGE_SIZE;
3663 fw_data += SF_PAGE_SIZE;
3664 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3665 if (ret)
3666 goto out;
3669 ret = t4_write_flash(adap,
3670 fw_start + offsetof(struct fw_hdr, fw_ver),
3671 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3672 out:
3673 if (ret)
3674 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3675 ret);
3676 else
3677 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3678 return ret;
3682 * t4_phy_fw_ver - return current PHY firmware version
3683 * @adap: the adapter
3684 * @phy_fw_ver: return value buffer for PHY firmware version
3686 * Returns the current version of external PHY firmware on the
3687 * adapter.
3689 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3691 u32 param, val;
3692 int ret;
3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3696 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3697 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3699 &param, &val);
3700 if (ret < 0)
3701 return ret;
3702 *phy_fw_ver = val;
3703 return 0;
3707 * t4_load_phy_fw - download port PHY firmware
3708 * @adap: the adapter
3709 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3710 * @win_lock: the lock to use to guard the memory copy
3711 * @phy_fw_version: function to check PHY firmware versions
3712 * @phy_fw_data: the PHY firmware image to write
3713 * @phy_fw_size: image size
3715 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3716 * @phy_fw_version is supplied, then it will be used to determine if
3717 * it's necessary to perform the transfer by comparing the version
3718 * of any existing adapter PHY firmware with that of the passed in
3719 * PHY firmware image. If @win_lock is non-NULL then it will be used
3720 * around the call to t4_memory_rw() which transfers the PHY firmware
3721 * to the adapter.
3723 * A negative error number will be returned if an error occurs. If
3724 * version number support is available and there's no need to upgrade
3725 * the firmware, 0 will be returned. If firmware is successfully
3726 * transferred to the adapter, 1 will be retured.
3728 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3729 * a result, a RESET of the adapter would cause that RAM to lose its
3730 * contents. Thus, loading PHY firmware on such adapters must happen
3731 * after any FW_RESET_CMDs ...
3733 int t4_load_phy_fw(struct adapter *adap,
3734 int win, spinlock_t *win_lock,
3735 int (*phy_fw_version)(const u8 *, size_t),
3736 const u8 *phy_fw_data, size_t phy_fw_size)
3738 unsigned long mtype = 0, maddr = 0;
3739 u32 param, val;
3740 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3741 int ret;
3743 /* If we have version number support, then check to see if the adapter
3744 * already has up-to-date PHY firmware loaded.
3746 if (phy_fw_version) {
3747 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3748 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3749 if (ret < 0)
3750 return ret;
3752 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3753 CH_WARN(adap, "PHY Firmware already up-to-date, "
3754 "version %#x\n", cur_phy_fw_ver);
3755 return 0;
3759 /* Ask the firmware where it wants us to copy the PHY firmware image.
3760 * The size of the file requires a special version of the READ coommand
3761 * which will pass the file size via the values field in PARAMS_CMD and
3762 * retrieve the return value from firmware and place it in the same
3763 * buffer values
3765 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3766 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3767 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3768 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3769 val = phy_fw_size;
3770 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3771 &param, &val, 1, true);
3772 if (ret < 0)
3773 return ret;
3774 mtype = val >> 8;
3775 maddr = (val & 0xff) << 16;
3777 /* Copy the supplied PHY Firmware image to the adapter memory location
3778 * allocated by the adapter firmware.
3780 if (win_lock)
3781 spin_lock_bh(win_lock);
3782 ret = t4_memory_rw(adap, win, mtype, maddr,
3783 phy_fw_size, (__be32 *)phy_fw_data,
3784 T4_MEMORY_WRITE);
3785 if (win_lock)
3786 spin_unlock_bh(win_lock);
3787 if (ret)
3788 return ret;
3790 /* Tell the firmware that the PHY firmware image has been written to
3791 * RAM and it can now start copying it over to the PHYs. The chip
3792 * firmware will RESET the affected PHYs as part of this operation
3793 * leaving them running the new PHY firmware image.
3795 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3797 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3798 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3799 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3800 &param, &val, 30000);
3802 /* If we have version number support, then check to see that the new
3803 * firmware got loaded properly.
3805 if (phy_fw_version) {
3806 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3807 if (ret < 0)
3808 return ret;
3810 if (cur_phy_fw_ver != new_phy_fw_vers) {
3811 CH_WARN(adap, "PHY Firmware did not update: "
3812 "version on adapter %#x, "
3813 "version flashed %#x\n",
3814 cur_phy_fw_ver, new_phy_fw_vers);
3815 return -ENXIO;
3819 return 1;
3823 * t4_fwcache - firmware cache operation
3824 * @adap: the adapter
3825 * @op : the operation (flush or flush and invalidate)
3827 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3829 struct fw_params_cmd c;
3831 memset(&c, 0, sizeof(c));
3832 c.op_to_vfn =
3833 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3834 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3835 FW_PARAMS_CMD_PFN_V(adap->pf) |
3836 FW_PARAMS_CMD_VFN_V(0));
3837 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3838 c.param[0].mnem =
3839 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3840 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3841 c.param[0].val = (__force __be32)op;
3843 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3846 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3847 unsigned int *pif_req_wrptr,
3848 unsigned int *pif_rsp_wrptr)
3850 int i, j;
3851 u32 cfg, val, req, rsp;
3853 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3854 if (cfg & LADBGEN_F)
3855 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3857 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3858 req = POLADBGWRPTR_G(val);
3859 rsp = PILADBGWRPTR_G(val);
3860 if (pif_req_wrptr)
3861 *pif_req_wrptr = req;
3862 if (pif_rsp_wrptr)
3863 *pif_rsp_wrptr = rsp;
3865 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3866 for (j = 0; j < 6; j++) {
3867 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3868 PILADBGRDPTR_V(rsp));
3869 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3870 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3871 req++;
3872 rsp++;
3874 req = (req + 2) & POLADBGRDPTR_M;
3875 rsp = (rsp + 2) & PILADBGRDPTR_M;
3877 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3880 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3882 u32 cfg;
3883 int i, j, idx;
3885 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3886 if (cfg & LADBGEN_F)
3887 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3889 for (i = 0; i < CIM_MALA_SIZE; i++) {
3890 for (j = 0; j < 5; j++) {
3891 idx = 8 * i + j;
3892 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3893 PILADBGRDPTR_V(idx));
3894 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3895 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3898 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3901 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3903 unsigned int i, j;
3905 for (i = 0; i < 8; i++) {
3906 u32 *p = la_buf + i;
3908 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3909 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3910 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3911 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3912 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3916 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3917 FW_PORT_CAP32_ANEG)
3920 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3921 * @caps16: a 16-bit Port Capabilities value
3923 * Returns the equivalent 32-bit Port Capabilities value.
3925 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3927 fw_port_cap32_t caps32 = 0;
3929 #define CAP16_TO_CAP32(__cap) \
3930 do { \
3931 if (caps16 & FW_PORT_CAP_##__cap) \
3932 caps32 |= FW_PORT_CAP32_##__cap; \
3933 } while (0)
3935 CAP16_TO_CAP32(SPEED_100M);
3936 CAP16_TO_CAP32(SPEED_1G);
3937 CAP16_TO_CAP32(SPEED_25G);
3938 CAP16_TO_CAP32(SPEED_10G);
3939 CAP16_TO_CAP32(SPEED_40G);
3940 CAP16_TO_CAP32(SPEED_100G);
3941 CAP16_TO_CAP32(FC_RX);
3942 CAP16_TO_CAP32(FC_TX);
3943 CAP16_TO_CAP32(ANEG);
3944 CAP16_TO_CAP32(MDIX);
3945 CAP16_TO_CAP32(MDIAUTO);
3946 CAP16_TO_CAP32(FEC_RS);
3947 CAP16_TO_CAP32(FEC_BASER_RS);
3948 CAP16_TO_CAP32(802_3_PAUSE);
3949 CAP16_TO_CAP32(802_3_ASM_DIR);
3951 #undef CAP16_TO_CAP32
3953 return caps32;
3957 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3958 * @caps32: a 32-bit Port Capabilities value
3960 * Returns the equivalent 16-bit Port Capabilities value. Note that
3961 * not all 32-bit Port Capabilities can be represented in the 16-bit
3962 * Port Capabilities and some fields/values may not make it.
3964 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3966 fw_port_cap16_t caps16 = 0;
3968 #define CAP32_TO_CAP16(__cap) \
3969 do { \
3970 if (caps32 & FW_PORT_CAP32_##__cap) \
3971 caps16 |= FW_PORT_CAP_##__cap; \
3972 } while (0)
3974 CAP32_TO_CAP16(SPEED_100M);
3975 CAP32_TO_CAP16(SPEED_1G);
3976 CAP32_TO_CAP16(SPEED_10G);
3977 CAP32_TO_CAP16(SPEED_25G);
3978 CAP32_TO_CAP16(SPEED_40G);
3979 CAP32_TO_CAP16(SPEED_100G);
3980 CAP32_TO_CAP16(FC_RX);
3981 CAP32_TO_CAP16(FC_TX);
3982 CAP32_TO_CAP16(802_3_PAUSE);
3983 CAP32_TO_CAP16(802_3_ASM_DIR);
3984 CAP32_TO_CAP16(ANEG);
3985 CAP32_TO_CAP16(MDIX);
3986 CAP32_TO_CAP16(MDIAUTO);
3987 CAP32_TO_CAP16(FEC_RS);
3988 CAP32_TO_CAP16(FEC_BASER_RS);
3990 #undef CAP32_TO_CAP16
3992 return caps16;
3995 /* Translate Firmware Port Capabilities Pause specification to Common Code */
3996 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3998 enum cc_pause cc_pause = 0;
4000 if (fw_pause & FW_PORT_CAP32_FC_RX)
4001 cc_pause |= PAUSE_RX;
4002 if (fw_pause & FW_PORT_CAP32_FC_TX)
4003 cc_pause |= PAUSE_TX;
4005 return cc_pause;
4008 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4009 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4011 fw_port_cap32_t fw_pause = 0;
4013 if (cc_pause & PAUSE_RX)
4014 fw_pause |= FW_PORT_CAP32_FC_RX;
4015 if (cc_pause & PAUSE_TX)
4016 fw_pause |= FW_PORT_CAP32_FC_TX;
4018 return fw_pause;
4021 /* Translate Firmware Forward Error Correction specification to Common Code */
4022 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4024 enum cc_fec cc_fec = 0;
4026 if (fw_fec & FW_PORT_CAP32_FEC_RS)
4027 cc_fec |= FEC_RS;
4028 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4029 cc_fec |= FEC_BASER_RS;
4031 return cc_fec;
4034 /* Translate Common Code Forward Error Correction specification to Firmware */
4035 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4037 fw_port_cap32_t fw_fec = 0;
4039 if (cc_fec & FEC_RS)
4040 fw_fec |= FW_PORT_CAP32_FEC_RS;
4041 if (cc_fec & FEC_BASER_RS)
4042 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4044 return fw_fec;
4048 * t4_link_l1cfg - apply link configuration to MAC/PHY
4049 * @adapter: the adapter
4050 * @mbox: the Firmware Mailbox to use
4051 * @port: the Port ID
4052 * @lc: the Port's Link Configuration
4054 * Set up a port's MAC and PHY according to a desired link configuration.
4055 * - If the PHY can auto-negotiate first decide what to advertise, then
4056 * enable/disable auto-negotiation as desired, and reset.
4057 * - If the PHY does not auto-negotiate just reset it.
4058 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4059 * otherwise do it later based on the outcome of auto-negotiation.
4061 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
4062 unsigned int port, struct link_config *lc)
4064 unsigned int fw_caps = adapter->params.fw_caps_support;
4065 struct fw_port_cmd cmd;
4066 unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
4067 fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4069 /* Convert driver coding of Pause Frame Flow Control settings into the
4070 * Firmware's API.
4072 fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4074 /* Convert Common Code Forward Error Control settings into the
4075 * Firmware's API. If the current Requested FEC has "Automatic"
4076 * (IEEE 802.3) specified, then we use whatever the Firmware
4077 * sent us as part of it's IEEE 802.3-based interpratation of
4078 * the Transceiver Module EPROM FEC parameters. Otherwise we
4079 * use whatever is in the current Requested FEC settings.
4081 if (lc->requested_fec & FEC_AUTO)
4082 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4083 else
4084 cc_fec = lc->requested_fec;
4085 fw_fec = cc_to_fwcap_fec(cc_fec);
4087 /* Figure out what our Requested Port Capabilities are going to be.
4089 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4090 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4091 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4092 lc->fec = cc_fec;
4093 } else if (lc->autoneg == AUTONEG_DISABLE) {
4094 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4095 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4096 lc->fec = cc_fec;
4097 } else {
4098 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4101 /* And send that on to the Firmware ...
4103 memset(&cmd, 0, sizeof(cmd));
4104 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4105 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4106 FW_PORT_CMD_PORTID_V(port));
4107 cmd.action_to_len16 =
4108 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4109 ? FW_PORT_ACTION_L1_CFG
4110 : FW_PORT_ACTION_L1_CFG32) |
4111 FW_LEN16(cmd));
4112 if (fw_caps == FW_CAPS16)
4113 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4114 else
4115 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4116 return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4120 * t4_restart_aneg - restart autonegotiation
4121 * @adap: the adapter
4122 * @mbox: mbox to use for the FW command
4123 * @port: the port id
4125 * Restarts autonegotiation for the selected port.
4127 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4129 struct fw_port_cmd c;
4131 memset(&c, 0, sizeof(c));
4132 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4133 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4134 FW_PORT_CMD_PORTID_V(port));
4135 c.action_to_len16 =
4136 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4137 FW_LEN16(c));
4138 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4139 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4142 typedef void (*int_handler_t)(struct adapter *adap);
4144 struct intr_info {
4145 unsigned int mask; /* bits to check in interrupt status */
4146 const char *msg; /* message to print or NULL */
4147 short stat_idx; /* stat counter to increment or -1 */
4148 unsigned short fatal; /* whether the condition reported is fatal */
4149 int_handler_t int_handler; /* platform-specific int handler */
4153 * t4_handle_intr_status - table driven interrupt handler
4154 * @adapter: the adapter that generated the interrupt
4155 * @reg: the interrupt status register to process
4156 * @acts: table of interrupt actions
4158 * A table driven interrupt handler that applies a set of masks to an
4159 * interrupt status word and performs the corresponding actions if the
4160 * interrupts described by the mask have occurred. The actions include
4161 * optionally emitting a warning or alert message. The table is terminated
4162 * by an entry specifying mask 0. Returns the number of fatal interrupt
4163 * conditions.
4165 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4166 const struct intr_info *acts)
4168 int fatal = 0;
4169 unsigned int mask = 0;
4170 unsigned int status = t4_read_reg(adapter, reg);
4172 for ( ; acts->mask; ++acts) {
4173 if (!(status & acts->mask))
4174 continue;
4175 if (acts->fatal) {
4176 fatal++;
4177 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4178 status & acts->mask);
4179 } else if (acts->msg && printk_ratelimit())
4180 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4181 status & acts->mask);
4182 if (acts->int_handler)
4183 acts->int_handler(adapter);
4184 mask |= acts->mask;
4186 status &= mask;
4187 if (status) /* clear processed interrupts */
4188 t4_write_reg(adapter, reg, status);
4189 return fatal;
4193 * Interrupt handler for the PCIE module.
4195 static void pcie_intr_handler(struct adapter *adapter)
4197 static const struct intr_info sysbus_intr_info[] = {
4198 { RNPP_F, "RXNP array parity error", -1, 1 },
4199 { RPCP_F, "RXPC array parity error", -1, 1 },
4200 { RCIP_F, "RXCIF array parity error", -1, 1 },
4201 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4202 { RFTP_F, "RXFT array parity error", -1, 1 },
4203 { 0 }
4205 static const struct intr_info pcie_port_intr_info[] = {
4206 { TPCP_F, "TXPC array parity error", -1, 1 },
4207 { TNPP_F, "TXNP array parity error", -1, 1 },
4208 { TFTP_F, "TXFT array parity error", -1, 1 },
4209 { TCAP_F, "TXCA array parity error", -1, 1 },
4210 { TCIP_F, "TXCIF array parity error", -1, 1 },
4211 { RCAP_F, "RXCA array parity error", -1, 1 },
4212 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4213 { RDPE_F, "Rx data parity error", -1, 1 },
4214 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4215 { 0 }
4217 static const struct intr_info pcie_intr_info[] = {
4218 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4219 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4220 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4221 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4222 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4223 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4224 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4225 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4226 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4227 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4228 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4229 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4230 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4231 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4232 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4233 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4234 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4235 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4236 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4237 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4238 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4239 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4240 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4241 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4242 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4243 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4244 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4245 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4246 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4247 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4248 -1, 0 },
4249 { 0 }
4252 static struct intr_info t5_pcie_intr_info[] = {
4253 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4254 -1, 1 },
4255 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4256 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4257 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4258 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4259 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4260 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4261 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4262 -1, 1 },
4263 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4264 -1, 1 },
4265 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4266 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4267 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4268 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4269 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4270 -1, 1 },
4271 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4272 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4273 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4274 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4275 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4276 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4277 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4278 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4279 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4280 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4281 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4282 -1, 1 },
4283 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4284 -1, 1 },
4285 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4286 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4287 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4288 { READRSPERR_F, "Outbound read error", -1, 0 },
4289 { 0 }
4292 int fat;
4294 if (is_t4(adapter->params.chip))
4295 fat = t4_handle_intr_status(adapter,
4296 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4297 sysbus_intr_info) +
4298 t4_handle_intr_status(adapter,
4299 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4300 pcie_port_intr_info) +
4301 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4302 pcie_intr_info);
4303 else
4304 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4305 t5_pcie_intr_info);
4307 if (fat)
4308 t4_fatal_err(adapter);
4312 * TP interrupt handler.
4314 static void tp_intr_handler(struct adapter *adapter)
4316 static const struct intr_info tp_intr_info[] = {
4317 { 0x3fffffff, "TP parity error", -1, 1 },
4318 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4319 { 0 }
4322 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4323 t4_fatal_err(adapter);
4327 * SGE interrupt handler.
4329 static void sge_intr_handler(struct adapter *adapter)
4331 u64 v;
4332 u32 err;
4334 static const struct intr_info sge_intr_info[] = {
4335 { ERR_CPL_EXCEED_IQE_SIZE_F,
4336 "SGE received CPL exceeding IQE size", -1, 1 },
4337 { ERR_INVALID_CIDX_INC_F,
4338 "SGE GTS CIDX increment too large", -1, 0 },
4339 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4340 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4341 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4342 "SGE IQID > 1023 received CPL for FL", -1, 0 },
4343 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4344 0 },
4345 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4346 0 },
4347 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4348 0 },
4349 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4350 0 },
4351 { ERR_ING_CTXT_PRIO_F,
4352 "SGE too many priority ingress contexts", -1, 0 },
4353 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4354 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4355 { 0 }
4358 static struct intr_info t4t5_sge_intr_info[] = {
4359 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4360 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4361 { ERR_EGR_CTXT_PRIO_F,
4362 "SGE too many priority egress contexts", -1, 0 },
4363 { 0 }
4366 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4367 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4368 if (v) {
4369 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4370 (unsigned long long)v);
4371 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4372 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4375 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4376 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4377 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4378 t4t5_sge_intr_info);
4380 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4381 if (err & ERROR_QID_VALID_F) {
4382 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4383 ERROR_QID_G(err));
4384 if (err & UNCAPTURED_ERROR_F)
4385 dev_err(adapter->pdev_dev,
4386 "SGE UNCAPTURED_ERROR set (clearing)\n");
4387 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4388 UNCAPTURED_ERROR_F);
4391 if (v != 0)
4392 t4_fatal_err(adapter);
4395 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4396 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4397 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4398 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4401 * CIM interrupt handler.
4403 static void cim_intr_handler(struct adapter *adapter)
4405 static const struct intr_info cim_intr_info[] = {
4406 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4407 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4408 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4409 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4410 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4411 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4412 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4413 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4414 { 0 }
4416 static const struct intr_info cim_upintr_info[] = {
4417 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4418 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4419 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4420 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4421 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4422 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4423 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4424 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4425 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4426 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4427 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4428 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4429 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4430 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4431 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4432 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4433 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4434 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4435 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4436 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4437 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4438 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4439 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4440 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4441 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4442 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4443 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4444 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4445 { 0 }
4448 u32 val, fw_err;
4449 int fat;
4451 fw_err = t4_read_reg(adapter, PCIE_FW_A);
4452 if (fw_err & PCIE_FW_ERR_F)
4453 t4_report_fw_error(adapter);
4455 /* When the Firmware detects an internal error which normally
4456 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4457 * in order to make sure the Host sees the Firmware Crash. So
4458 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4459 * ignore the Timer0 interrupt.
4462 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4463 if (val & TIMER0INT_F)
4464 if (!(fw_err & PCIE_FW_ERR_F) ||
4465 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4466 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4467 TIMER0INT_F);
4469 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4470 cim_intr_info) +
4471 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4472 cim_upintr_info);
4473 if (fat)
4474 t4_fatal_err(adapter);
4478 * ULP RX interrupt handler.
4480 static void ulprx_intr_handler(struct adapter *adapter)
4482 static const struct intr_info ulprx_intr_info[] = {
4483 { 0x1800000, "ULPRX context error", -1, 1 },
4484 { 0x7fffff, "ULPRX parity error", -1, 1 },
4485 { 0 }
4488 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4489 t4_fatal_err(adapter);
4493 * ULP TX interrupt handler.
4495 static void ulptx_intr_handler(struct adapter *adapter)
4497 static const struct intr_info ulptx_intr_info[] = {
4498 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4499 0 },
4500 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4501 0 },
4502 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4503 0 },
4504 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4505 0 },
4506 { 0xfffffff, "ULPTX parity error", -1, 1 },
4507 { 0 }
4510 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4511 t4_fatal_err(adapter);
4515 * PM TX interrupt handler.
4517 static void pmtx_intr_handler(struct adapter *adapter)
4519 static const struct intr_info pmtx_intr_info[] = {
4520 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4521 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4522 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4523 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4524 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4525 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4526 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4527 -1, 1 },
4528 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4529 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4530 { 0 }
4533 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4534 t4_fatal_err(adapter);
4538 * PM RX interrupt handler.
4540 static void pmrx_intr_handler(struct adapter *adapter)
4542 static const struct intr_info pmrx_intr_info[] = {
4543 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4544 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4545 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4546 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4547 -1, 1 },
4548 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4549 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4550 { 0 }
4553 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4554 t4_fatal_err(adapter);
4558 * CPL switch interrupt handler.
4560 static void cplsw_intr_handler(struct adapter *adapter)
4562 static const struct intr_info cplsw_intr_info[] = {
4563 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4564 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4565 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4566 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4567 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4568 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4569 { 0 }
4572 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4573 t4_fatal_err(adapter);
4577 * LE interrupt handler.
4579 static void le_intr_handler(struct adapter *adap)
4581 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4582 static const struct intr_info le_intr_info[] = {
4583 { LIPMISS_F, "LE LIP miss", -1, 0 },
4584 { LIP0_F, "LE 0 LIP error", -1, 0 },
4585 { PARITYERR_F, "LE parity error", -1, 1 },
4586 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4587 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4588 { 0 }
4591 static struct intr_info t6_le_intr_info[] = {
4592 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4593 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4594 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4595 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4596 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4597 { 0 }
4600 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4601 (chip <= CHELSIO_T5) ?
4602 le_intr_info : t6_le_intr_info))
4603 t4_fatal_err(adap);
4607 * MPS interrupt handler.
4609 static void mps_intr_handler(struct adapter *adapter)
4611 static const struct intr_info mps_rx_intr_info[] = {
4612 { 0xffffff, "MPS Rx parity error", -1, 1 },
4613 { 0 }
4615 static const struct intr_info mps_tx_intr_info[] = {
4616 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4617 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4618 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4619 -1, 1 },
4620 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4621 -1, 1 },
4622 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4623 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4624 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4625 { 0 }
4627 static const struct intr_info t6_mps_tx_intr_info[] = {
4628 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4629 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4630 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4631 -1, 1 },
4632 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4633 -1, 1 },
4634 /* MPS Tx Bubble is normal for T6 */
4635 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4636 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4637 { 0 }
4639 static const struct intr_info mps_trc_intr_info[] = {
4640 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4641 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4642 -1, 1 },
4643 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4644 { 0 }
4646 static const struct intr_info mps_stat_sram_intr_info[] = {
4647 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4648 { 0 }
4650 static const struct intr_info mps_stat_tx_intr_info[] = {
4651 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4652 { 0 }
4654 static const struct intr_info mps_stat_rx_intr_info[] = {
4655 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4656 { 0 }
4658 static const struct intr_info mps_cls_intr_info[] = {
4659 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4660 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4661 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4662 { 0 }
4665 int fat;
4667 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4668 mps_rx_intr_info) +
4669 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4670 is_t6(adapter->params.chip)
4671 ? t6_mps_tx_intr_info
4672 : mps_tx_intr_info) +
4673 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4674 mps_trc_intr_info) +
4675 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4676 mps_stat_sram_intr_info) +
4677 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4678 mps_stat_tx_intr_info) +
4679 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4680 mps_stat_rx_intr_info) +
4681 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4682 mps_cls_intr_info);
4684 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4685 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
4686 if (fat)
4687 t4_fatal_err(adapter);
4690 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4691 ECC_UE_INT_CAUSE_F)
4694 * EDC/MC interrupt handler.
4696 static void mem_intr_handler(struct adapter *adapter, int idx)
4698 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4700 unsigned int addr, cnt_addr, v;
4702 if (idx <= MEM_EDC1) {
4703 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4704 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4705 } else if (idx == MEM_MC) {
4706 if (is_t4(adapter->params.chip)) {
4707 addr = MC_INT_CAUSE_A;
4708 cnt_addr = MC_ECC_STATUS_A;
4709 } else {
4710 addr = MC_P_INT_CAUSE_A;
4711 cnt_addr = MC_P_ECC_STATUS_A;
4713 } else {
4714 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4715 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4718 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4719 if (v & PERR_INT_CAUSE_F)
4720 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4721 name[idx]);
4722 if (v & ECC_CE_INT_CAUSE_F) {
4723 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4725 t4_edc_err_read(adapter, idx);
4727 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4728 if (printk_ratelimit())
4729 dev_warn(adapter->pdev_dev,
4730 "%u %s correctable ECC data error%s\n",
4731 cnt, name[idx], cnt > 1 ? "s" : "");
4733 if (v & ECC_UE_INT_CAUSE_F)
4734 dev_alert(adapter->pdev_dev,
4735 "%s uncorrectable ECC data error\n", name[idx]);
4737 t4_write_reg(adapter, addr, v);
4738 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4739 t4_fatal_err(adapter);
4743 * MA interrupt handler.
4745 static void ma_intr_handler(struct adapter *adap)
4747 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4749 if (status & MEM_PERR_INT_CAUSE_F) {
4750 dev_alert(adap->pdev_dev,
4751 "MA parity error, parity status %#x\n",
4752 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4753 if (is_t5(adap->params.chip))
4754 dev_alert(adap->pdev_dev,
4755 "MA parity error, parity status %#x\n",
4756 t4_read_reg(adap,
4757 MA_PARITY_ERROR_STATUS2_A));
4759 if (status & MEM_WRAP_INT_CAUSE_F) {
4760 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4761 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4762 "client %u to address %#x\n",
4763 MEM_WRAP_CLIENT_NUM_G(v),
4764 MEM_WRAP_ADDRESS_G(v) << 4);
4766 t4_write_reg(adap, MA_INT_CAUSE_A, status);
4767 t4_fatal_err(adap);
4771 * SMB interrupt handler.
4773 static void smb_intr_handler(struct adapter *adap)
4775 static const struct intr_info smb_intr_info[] = {
4776 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4777 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4778 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4779 { 0 }
4782 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4783 t4_fatal_err(adap);
4787 * NC-SI interrupt handler.
4789 static void ncsi_intr_handler(struct adapter *adap)
4791 static const struct intr_info ncsi_intr_info[] = {
4792 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4793 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4794 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4795 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4796 { 0 }
4799 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4800 t4_fatal_err(adap);
4804 * XGMAC interrupt handler.
4806 static void xgmac_intr_handler(struct adapter *adap, int port)
4808 u32 v, int_cause_reg;
4810 if (is_t4(adap->params.chip))
4811 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4812 else
4813 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4815 v = t4_read_reg(adap, int_cause_reg);
4817 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4818 if (!v)
4819 return;
4821 if (v & TXFIFO_PRTY_ERR_F)
4822 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4823 port);
4824 if (v & RXFIFO_PRTY_ERR_F)
4825 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4826 port);
4827 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4828 t4_fatal_err(adap);
4832 * PL interrupt handler.
4834 static void pl_intr_handler(struct adapter *adap)
4836 static const struct intr_info pl_intr_info[] = {
4837 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4838 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4839 { 0 }
4842 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4843 t4_fatal_err(adap);
4846 #define PF_INTR_MASK (PFSW_F)
4847 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4848 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4849 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4852 * t4_slow_intr_handler - control path interrupt handler
4853 * @adapter: the adapter
4855 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4856 * The designation 'slow' is because it involves register reads, while
4857 * data interrupts typically don't involve any MMIOs.
4859 int t4_slow_intr_handler(struct adapter *adapter)
4861 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4863 if (!(cause & GLBL_INTR_MASK))
4864 return 0;
4865 if (cause & CIM_F)
4866 cim_intr_handler(adapter);
4867 if (cause & MPS_F)
4868 mps_intr_handler(adapter);
4869 if (cause & NCSI_F)
4870 ncsi_intr_handler(adapter);
4871 if (cause & PL_F)
4872 pl_intr_handler(adapter);
4873 if (cause & SMB_F)
4874 smb_intr_handler(adapter);
4875 if (cause & XGMAC0_F)
4876 xgmac_intr_handler(adapter, 0);
4877 if (cause & XGMAC1_F)
4878 xgmac_intr_handler(adapter, 1);
4879 if (cause & XGMAC_KR0_F)
4880 xgmac_intr_handler(adapter, 2);
4881 if (cause & XGMAC_KR1_F)
4882 xgmac_intr_handler(adapter, 3);
4883 if (cause & PCIE_F)
4884 pcie_intr_handler(adapter);
4885 if (cause & MC_F)
4886 mem_intr_handler(adapter, MEM_MC);
4887 if (is_t5(adapter->params.chip) && (cause & MC1_F))
4888 mem_intr_handler(adapter, MEM_MC1);
4889 if (cause & EDC0_F)
4890 mem_intr_handler(adapter, MEM_EDC0);
4891 if (cause & EDC1_F)
4892 mem_intr_handler(adapter, MEM_EDC1);
4893 if (cause & LE_F)
4894 le_intr_handler(adapter);
4895 if (cause & TP_F)
4896 tp_intr_handler(adapter);
4897 if (cause & MA_F)
4898 ma_intr_handler(adapter);
4899 if (cause & PM_TX_F)
4900 pmtx_intr_handler(adapter);
4901 if (cause & PM_RX_F)
4902 pmrx_intr_handler(adapter);
4903 if (cause & ULP_RX_F)
4904 ulprx_intr_handler(adapter);
4905 if (cause & CPL_SWITCH_F)
4906 cplsw_intr_handler(adapter);
4907 if (cause & SGE_F)
4908 sge_intr_handler(adapter);
4909 if (cause & ULP_TX_F)
4910 ulptx_intr_handler(adapter);
4912 /* Clear the interrupts just processed for which we are the master. */
4913 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4914 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4915 return 1;
4919 * t4_intr_enable - enable interrupts
4920 * @adapter: the adapter whose interrupts should be enabled
4922 * Enable PF-specific interrupts for the calling function and the top-level
4923 * interrupt concentrator for global interrupts. Interrupts are already
4924 * enabled at each module, here we just enable the roots of the interrupt
4925 * hierarchies.
4927 * Note: this function should be called only when the driver manages
4928 * non PF-specific interrupts from the various HW modules. Only one PCI
4929 * function at a time should be doing this.
4931 void t4_intr_enable(struct adapter *adapter)
4933 u32 val = 0;
4934 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4935 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4936 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4938 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4939 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4940 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4941 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4942 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4943 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4944 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4945 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4946 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4947 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4948 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4952 * t4_intr_disable - disable interrupts
4953 * @adapter: the adapter whose interrupts should be disabled
4955 * Disable interrupts. We only disable the top-level interrupt
4956 * concentrators. The caller must be a PCI function managing global
4957 * interrupts.
4959 void t4_intr_disable(struct adapter *adapter)
4961 u32 whoami, pf;
4963 if (pci_channel_offline(adapter->pdev))
4964 return;
4966 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4967 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4968 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4970 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4971 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4974 unsigned int t4_chip_rss_size(struct adapter *adap)
4976 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
4977 return RSS_NENTRIES;
4978 else
4979 return T6_RSS_NENTRIES;
4983 * t4_config_rss_range - configure a portion of the RSS mapping table
4984 * @adapter: the adapter
4985 * @mbox: mbox to use for the FW command
4986 * @viid: virtual interface whose RSS subtable is to be written
4987 * @start: start entry in the table to write
4988 * @n: how many table entries to write
4989 * @rspq: values for the response queue lookup table
4990 * @nrspq: number of values in @rspq
4992 * Programs the selected part of the VI's RSS mapping table with the
4993 * provided values. If @nrspq < @n the supplied values are used repeatedly
4994 * until the full table range is populated.
4996 * The caller must ensure the values in @rspq are in the range allowed for
4997 * @viid.
4999 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5000 int start, int n, const u16 *rspq, unsigned int nrspq)
5002 int ret;
5003 const u16 *rsp = rspq;
5004 const u16 *rsp_end = rspq + nrspq;
5005 struct fw_rss_ind_tbl_cmd cmd;
5007 memset(&cmd, 0, sizeof(cmd));
5008 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5009 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5010 FW_RSS_IND_TBL_CMD_VIID_V(viid));
5011 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5013 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5014 while (n > 0) {
5015 int nq = min(n, 32);
5016 __be32 *qp = &cmd.iq0_to_iq2;
5018 cmd.niqid = cpu_to_be16(nq);
5019 cmd.startidx = cpu_to_be16(start);
5021 start += nq;
5022 n -= nq;
5024 while (nq > 0) {
5025 unsigned int v;
5027 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5028 if (++rsp >= rsp_end)
5029 rsp = rspq;
5030 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5031 if (++rsp >= rsp_end)
5032 rsp = rspq;
5033 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5034 if (++rsp >= rsp_end)
5035 rsp = rspq;
5037 *qp++ = cpu_to_be32(v);
5038 nq -= 3;
5041 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5042 if (ret)
5043 return ret;
5045 return 0;
5049 * t4_config_glbl_rss - configure the global RSS mode
5050 * @adapter: the adapter
5051 * @mbox: mbox to use for the FW command
5052 * @mode: global RSS mode
5053 * @flags: mode-specific flags
5055 * Sets the global RSS mode.
5057 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5058 unsigned int flags)
5060 struct fw_rss_glb_config_cmd c;
5062 memset(&c, 0, sizeof(c));
5063 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5064 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5065 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5066 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5067 c.u.manual.mode_pkd =
5068 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5069 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5070 c.u.basicvirtual.mode_pkd =
5071 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5072 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5073 } else
5074 return -EINVAL;
5075 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5079 * t4_config_vi_rss - configure per VI RSS settings
5080 * @adapter: the adapter
5081 * @mbox: mbox to use for the FW command
5082 * @viid: the VI id
5083 * @flags: RSS flags
5084 * @defq: id of the default RSS queue for the VI.
5086 * Configures VI-specific RSS properties.
5088 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5089 unsigned int flags, unsigned int defq)
5091 struct fw_rss_vi_config_cmd c;
5093 memset(&c, 0, sizeof(c));
5094 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5095 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5096 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5097 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5098 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5099 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5100 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5103 /* Read an RSS table row */
5104 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5106 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5107 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5108 5, 0, val);
5112 * t4_read_rss - read the contents of the RSS mapping table
5113 * @adapter: the adapter
5114 * @map: holds the contents of the RSS mapping table
5116 * Reads the contents of the RSS hash->queue mapping table.
5118 int t4_read_rss(struct adapter *adapter, u16 *map)
5120 int i, ret, nentries;
5121 u32 val;
5123 nentries = t4_chip_rss_size(adapter);
5124 for (i = 0; i < nentries / 2; ++i) {
5125 ret = rd_rss_row(adapter, i, &val);
5126 if (ret)
5127 return ret;
5128 *map++ = LKPTBLQUEUE0_G(val);
5129 *map++ = LKPTBLQUEUE1_G(val);
5131 return 0;
5134 static unsigned int t4_use_ldst(struct adapter *adap)
5136 return (adap->flags & FW_OK) && !adap->use_bd;
5140 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5141 * @adap: the adapter
5142 * @cmd: TP fw ldst address space type
5143 * @vals: where the indirect register values are stored/written
5144 * @nregs: how many indirect registers to read/write
5145 * @start_idx: index of first indirect register to read/write
5146 * @rw: Read (1) or Write (0)
5147 * @sleep_ok: if true we may sleep while awaiting command completion
5149 * Access TP indirect registers through LDST
5151 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5152 unsigned int nregs, unsigned int start_index,
5153 unsigned int rw, bool sleep_ok)
5155 int ret = 0;
5156 unsigned int i;
5157 struct fw_ldst_cmd c;
5159 for (i = 0; i < nregs; i++) {
5160 memset(&c, 0, sizeof(c));
5161 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5162 FW_CMD_REQUEST_F |
5163 (rw ? FW_CMD_READ_F :
5164 FW_CMD_WRITE_F) |
5165 FW_LDST_CMD_ADDRSPACE_V(cmd));
5166 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5168 c.u.addrval.addr = cpu_to_be32(start_index + i);
5169 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
5170 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5171 sleep_ok);
5172 if (ret)
5173 return ret;
5175 if (rw)
5176 vals[i] = be32_to_cpu(c.u.addrval.val);
5178 return 0;
5182 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5183 * @adap: the adapter
5184 * @reg_addr: Address Register
5185 * @reg_data: Data register
5186 * @buff: where the indirect register values are stored/written
5187 * @nregs: how many indirect registers to read/write
5188 * @start_index: index of first indirect register to read/write
5189 * @rw: READ(1) or WRITE(0)
5190 * @sleep_ok: if true we may sleep while awaiting command completion
5192 * Read/Write TP indirect registers through LDST if possible.
5193 * Else, use backdoor access
5195 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5196 u32 *buff, u32 nregs, u32 start_index, int rw,
5197 bool sleep_ok)
5199 int rc = -EINVAL;
5200 int cmd;
5202 switch (reg_addr) {
5203 case TP_PIO_ADDR_A:
5204 cmd = FW_LDST_ADDRSPC_TP_PIO;
5205 break;
5206 case TP_TM_PIO_ADDR_A:
5207 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5208 break;
5209 case TP_MIB_INDEX_A:
5210 cmd = FW_LDST_ADDRSPC_TP_MIB;
5211 break;
5212 default:
5213 goto indirect_access;
5216 if (t4_use_ldst(adap))
5217 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5218 sleep_ok);
5220 indirect_access:
5222 if (rc) {
5223 if (rw)
5224 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5225 start_index);
5226 else
5227 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5228 start_index);
5233 * t4_tp_pio_read - Read TP PIO registers
5234 * @adap: the adapter
5235 * @buff: where the indirect register values are written
5236 * @nregs: how many indirect registers to read
5237 * @start_index: index of first indirect register to read
5238 * @sleep_ok: if true we may sleep while awaiting command completion
5240 * Read TP PIO Registers
5242 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5243 u32 start_index, bool sleep_ok)
5245 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5246 start_index, 1, sleep_ok);
5250 * t4_tp_pio_write - Write TP PIO registers
5251 * @adap: the adapter
5252 * @buff: where the indirect register values are stored
5253 * @nregs: how many indirect registers to write
5254 * @start_index: index of first indirect register to write
5255 * @sleep_ok: if true we may sleep while awaiting command completion
5257 * Write TP PIO Registers
5259 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5260 u32 start_index, bool sleep_ok)
5262 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5263 start_index, 0, sleep_ok);
5267 * t4_tp_tm_pio_read - Read TP TM PIO registers
5268 * @adap: the adapter
5269 * @buff: where the indirect register values are written
5270 * @nregs: how many indirect registers to read
5271 * @start_index: index of first indirect register to read
5272 * @sleep_ok: if true we may sleep while awaiting command completion
5274 * Read TP TM PIO Registers
5276 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5277 u32 start_index, bool sleep_ok)
5279 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5280 nregs, start_index, 1, sleep_ok);
5284 * t4_tp_mib_read - Read TP MIB registers
5285 * @adap: the adapter
5286 * @buff: where the indirect register values are written
5287 * @nregs: how many indirect registers to read
5288 * @start_index: index of first indirect register to read
5289 * @sleep_ok: if true we may sleep while awaiting command completion
5291 * Read TP MIB Registers
5293 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5294 bool sleep_ok)
5296 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5297 start_index, 1, sleep_ok);
5301 * t4_read_rss_key - read the global RSS key
5302 * @adap: the adapter
5303 * @key: 10-entry array holding the 320-bit RSS key
5304 * @sleep_ok: if true we may sleep while awaiting command completion
5306 * Reads the global 320-bit RSS key.
5308 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5310 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5314 * t4_write_rss_key - program one of the RSS keys
5315 * @adap: the adapter
5316 * @key: 10-entry array holding the 320-bit RSS key
5317 * @idx: which RSS key to write
5318 * @sleep_ok: if true we may sleep while awaiting command completion
5320 * Writes one of the RSS keys with the given 320-bit value. If @idx is
5321 * 0..15 the corresponding entry in the RSS key table is written,
5322 * otherwise the global RSS key is written.
5324 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5325 bool sleep_ok)
5327 u8 rss_key_addr_cnt = 16;
5328 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5330 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5331 * allows access to key addresses 16-63 by using KeyWrAddrX
5332 * as index[5:4](upper 2) into key table
5334 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5335 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5336 rss_key_addr_cnt = 32;
5338 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5340 if (idx >= 0 && idx < rss_key_addr_cnt) {
5341 if (rss_key_addr_cnt > 16)
5342 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5343 KEYWRADDRX_V(idx >> 4) |
5344 T6_VFWRADDR_V(idx) | KEYWREN_F);
5345 else
5346 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5347 KEYWRADDR_V(idx) | KEYWREN_F);
5352 * t4_read_rss_pf_config - read PF RSS Configuration Table
5353 * @adapter: the adapter
5354 * @index: the entry in the PF RSS table to read
5355 * @valp: where to store the returned value
5356 * @sleep_ok: if true we may sleep while awaiting command completion
5358 * Reads the PF RSS Configuration Table at the specified index and returns
5359 * the value found there.
5361 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5362 u32 *valp, bool sleep_ok)
5364 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5368 * t4_read_rss_vf_config - read VF RSS Configuration Table
5369 * @adapter: the adapter
5370 * @index: the entry in the VF RSS table to read
5371 * @vfl: where to store the returned VFL
5372 * @vfh: where to store the returned VFH
5373 * @sleep_ok: if true we may sleep while awaiting command completion
5375 * Reads the VF RSS Configuration Table at the specified index and returns
5376 * the (VFL, VFH) values found there.
5378 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5379 u32 *vfl, u32 *vfh, bool sleep_ok)
5381 u32 vrt, mask, data;
5383 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5384 mask = VFWRADDR_V(VFWRADDR_M);
5385 data = VFWRADDR_V(index);
5386 } else {
5387 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
5388 data = T6_VFWRADDR_V(index);
5391 /* Request that the index'th VF Table values be read into VFL/VFH.
5393 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5394 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5395 vrt |= data | VFRDEN_F;
5396 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5398 /* Grab the VFL/VFH values ...
5400 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5401 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5405 * t4_read_rss_pf_map - read PF RSS Map
5406 * @adapter: the adapter
5407 * @sleep_ok: if true we may sleep while awaiting command completion
5409 * Reads the PF RSS Map register and returns its value.
5411 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5413 u32 pfmap;
5415 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5416 return pfmap;
5420 * t4_read_rss_pf_mask - read PF RSS Mask
5421 * @adapter: the adapter
5422 * @sleep_ok: if true we may sleep while awaiting command completion
5424 * Reads the PF RSS Mask register and returns its value.
5426 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5428 u32 pfmask;
5430 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5431 return pfmask;
5435 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
5436 * @adap: the adapter
5437 * @v4: holds the TCP/IP counter values
5438 * @v6: holds the TCP/IPv6 counter values
5439 * @sleep_ok: if true we may sleep while awaiting command completion
5441 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5442 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5444 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5445 struct tp_tcp_stats *v6, bool sleep_ok)
5447 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5449 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5450 #define STAT(x) val[STAT_IDX(x)]
5451 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5453 if (v4) {
5454 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5455 TP_MIB_TCP_OUT_RST_A, sleep_ok);
5456 v4->tcp_out_rsts = STAT(OUT_RST);
5457 v4->tcp_in_segs = STAT64(IN_SEG);
5458 v4->tcp_out_segs = STAT64(OUT_SEG);
5459 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5461 if (v6) {
5462 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5463 TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5464 v6->tcp_out_rsts = STAT(OUT_RST);
5465 v6->tcp_in_segs = STAT64(IN_SEG);
5466 v6->tcp_out_segs = STAT64(OUT_SEG);
5467 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5469 #undef STAT64
5470 #undef STAT
5471 #undef STAT_IDX
5475 * t4_tp_get_err_stats - read TP's error MIB counters
5476 * @adap: the adapter
5477 * @st: holds the counter values
5478 * @sleep_ok: if true we may sleep while awaiting command completion
5480 * Returns the values of TP's error counters.
5482 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5483 bool sleep_ok)
5485 int nchan = adap->params.arch.nchan;
5487 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5488 sleep_ok);
5489 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5490 sleep_ok);
5491 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5492 sleep_ok);
5493 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5494 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5495 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5496 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5497 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5498 sleep_ok);
5499 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5500 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5501 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5502 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5503 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5504 sleep_ok);
5508 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
5509 * @adap: the adapter
5510 * @st: holds the counter values
5511 * @sleep_ok: if true we may sleep while awaiting command completion
5513 * Returns the values of TP's CPL counters.
5515 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5516 bool sleep_ok)
5518 int nchan = adap->params.arch.nchan;
5520 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5522 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5526 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5527 * @adap: the adapter
5528 * @st: holds the counter values
5529 * @sleep_ok: if true we may sleep while awaiting command completion
5531 * Returns the values of TP's RDMA counters.
5533 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5534 bool sleep_ok)
5536 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5537 sleep_ok);
5541 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5542 * @adap: the adapter
5543 * @idx: the port index
5544 * @st: holds the counter values
5545 * @sleep_ok: if true we may sleep while awaiting command completion
5547 * Returns the values of TP's FCoE counters for the selected port.
5549 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5550 struct tp_fcoe_stats *st, bool sleep_ok)
5552 u32 val[2];
5554 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5555 sleep_ok);
5557 t4_tp_mib_read(adap, &st->frames_drop, 1,
5558 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5560 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5561 sleep_ok);
5563 st->octets_ddp = ((u64)val[0] << 32) | val[1];
5567 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5568 * @adap: the adapter
5569 * @st: holds the counter values
5570 * @sleep_ok: if true we may sleep while awaiting command completion
5572 * Returns the values of TP's counters for non-TCP directly-placed packets.
5574 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5575 bool sleep_ok)
5577 u32 val[4];
5579 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5580 st->frames = val[0];
5581 st->drops = val[1];
5582 st->octets = ((u64)val[2] << 32) | val[3];
5586 * t4_read_mtu_tbl - returns the values in the HW path MTU table
5587 * @adap: the adapter
5588 * @mtus: where to store the MTU values
5589 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
5591 * Reads the HW path MTU table.
5593 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5595 u32 v;
5596 int i;
5598 for (i = 0; i < NMTUS; ++i) {
5599 t4_write_reg(adap, TP_MTU_TABLE_A,
5600 MTUINDEX_V(0xff) | MTUVALUE_V(i));
5601 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5602 mtus[i] = MTUVALUE_G(v);
5603 if (mtu_log)
5604 mtu_log[i] = MTUWIDTH_G(v);
5609 * t4_read_cong_tbl - reads the congestion control table
5610 * @adap: the adapter
5611 * @incr: where to store the alpha values
5613 * Reads the additive increments programmed into the HW congestion
5614 * control table.
5616 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5618 unsigned int mtu, w;
5620 for (mtu = 0; mtu < NMTUS; ++mtu)
5621 for (w = 0; w < NCCTRL_WIN; ++w) {
5622 t4_write_reg(adap, TP_CCTRL_TABLE_A,
5623 ROWINDEX_V(0xffff) | (mtu << 5) | w);
5624 incr[mtu][w] = (u16)t4_read_reg(adap,
5625 TP_CCTRL_TABLE_A) & 0x1fff;
5630 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5631 * @adap: the adapter
5632 * @addr: the indirect TP register address
5633 * @mask: specifies the field within the register to modify
5634 * @val: new value for the field
5636 * Sets a field of an indirect TP register to the given value.
5638 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5639 unsigned int mask, unsigned int val)
5641 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5642 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5643 t4_write_reg(adap, TP_PIO_DATA_A, val);
5647 * init_cong_ctrl - initialize congestion control parameters
5648 * @a: the alpha values for congestion control
5649 * @b: the beta values for congestion control
5651 * Initialize the congestion control parameters.
5653 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5655 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5656 a[9] = 2;
5657 a[10] = 3;
5658 a[11] = 4;
5659 a[12] = 5;
5660 a[13] = 6;
5661 a[14] = 7;
5662 a[15] = 8;
5663 a[16] = 9;
5664 a[17] = 10;
5665 a[18] = 14;
5666 a[19] = 17;
5667 a[20] = 21;
5668 a[21] = 25;
5669 a[22] = 30;
5670 a[23] = 35;
5671 a[24] = 45;
5672 a[25] = 60;
5673 a[26] = 80;
5674 a[27] = 100;
5675 a[28] = 200;
5676 a[29] = 300;
5677 a[30] = 400;
5678 a[31] = 500;
5680 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5681 b[9] = b[10] = 1;
5682 b[11] = b[12] = 2;
5683 b[13] = b[14] = b[15] = b[16] = 3;
5684 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5685 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5686 b[28] = b[29] = 6;
5687 b[30] = b[31] = 7;
5690 /* The minimum additive increment value for the congestion control table */
5691 #define CC_MIN_INCR 2U
5694 * t4_load_mtus - write the MTU and congestion control HW tables
5695 * @adap: the adapter
5696 * @mtus: the values for the MTU table
5697 * @alpha: the values for the congestion control alpha parameter
5698 * @beta: the values for the congestion control beta parameter
5700 * Write the HW MTU table with the supplied MTUs and the high-speed
5701 * congestion control table with the supplied alpha, beta, and MTUs.
5702 * We write the two tables together because the additive increments
5703 * depend on the MTUs.
5705 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5706 const unsigned short *alpha, const unsigned short *beta)
5708 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5709 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5710 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5711 28672, 40960, 57344, 81920, 114688, 163840, 229376
5714 unsigned int i, w;
5716 for (i = 0; i < NMTUS; ++i) {
5717 unsigned int mtu = mtus[i];
5718 unsigned int log2 = fls(mtu);
5720 if (!(mtu & ((1 << log2) >> 2))) /* round */
5721 log2--;
5722 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5723 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5725 for (w = 0; w < NCCTRL_WIN; ++w) {
5726 unsigned int inc;
5728 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5729 CC_MIN_INCR);
5731 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5732 (w << 16) | (beta[w] << 13) | inc);
5737 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5738 * clocks. The formula is
5740 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5742 * which is equivalent to
5744 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5746 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5748 u64 v = bytes256 * adap->params.vpd.cclk;
5750 return v * 62 + v / 2;
5754 * t4_get_chan_txrate - get the current per channel Tx rates
5755 * @adap: the adapter
5756 * @nic_rate: rates for NIC traffic
5757 * @ofld_rate: rates for offloaded traffic
5759 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5760 * for each channel.
5762 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5764 u32 v;
5766 v = t4_read_reg(adap, TP_TX_TRATE_A);
5767 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5768 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5769 if (adap->params.arch.nchan == NCHAN) {
5770 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5771 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5774 v = t4_read_reg(adap, TP_TX_ORATE_A);
5775 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5776 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5777 if (adap->params.arch.nchan == NCHAN) {
5778 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5779 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5784 * t4_set_trace_filter - configure one of the tracing filters
5785 * @adap: the adapter
5786 * @tp: the desired trace filter parameters
5787 * @idx: which filter to configure
5788 * @enable: whether to enable or disable the filter
5790 * Configures one of the tracing filters available in HW. If @enable is
5791 * %0 @tp is not examined and may be %NULL. The user is responsible to
5792 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5794 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5795 int idx, int enable)
5797 int i, ofst = idx * 4;
5798 u32 data_reg, mask_reg, cfg;
5799 u32 multitrc = TRCMULTIFILTER_F;
5801 if (!enable) {
5802 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5803 return 0;
5806 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5807 if (cfg & TRCMULTIFILTER_F) {
5808 /* If multiple tracers are enabled, then maximum
5809 * capture size is 2.5KB (FIFO size of a single channel)
5810 * minus 2 flits for CPL_TRACE_PKT header.
5812 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5813 return -EINVAL;
5814 } else {
5815 /* If multiple tracers are disabled, to avoid deadlocks
5816 * maximum packet capture size of 9600 bytes is recommended.
5817 * Also in this mode, only trace0 can be enabled and running.
5819 multitrc = 0;
5820 if (tp->snap_len > 9600 || idx)
5821 return -EINVAL;
5824 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5825 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5826 tp->min_len > TFMINPKTSIZE_M)
5827 return -EINVAL;
5829 /* stop the tracer we'll be changing */
5830 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5832 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5833 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5834 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5836 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5837 t4_write_reg(adap, data_reg, tp->data[i]);
5838 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5840 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5841 TFCAPTUREMAX_V(tp->snap_len) |
5842 TFMINPKTSIZE_V(tp->min_len));
5843 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5844 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5845 (is_t4(adap->params.chip) ?
5846 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5847 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5848 T5_TFINVERTMATCH_V(tp->invert)));
5850 return 0;
5854 * t4_get_trace_filter - query one of the tracing filters
5855 * @adap: the adapter
5856 * @tp: the current trace filter parameters
5857 * @idx: which trace filter to query
5858 * @enabled: non-zero if the filter is enabled
5860 * Returns the current settings of one of the HW tracing filters.
5862 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5863 int *enabled)
5865 u32 ctla, ctlb;
5866 int i, ofst = idx * 4;
5867 u32 data_reg, mask_reg;
5869 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5870 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5872 if (is_t4(adap->params.chip)) {
5873 *enabled = !!(ctla & TFEN_F);
5874 tp->port = TFPORT_G(ctla);
5875 tp->invert = !!(ctla & TFINVERTMATCH_F);
5876 } else {
5877 *enabled = !!(ctla & T5_TFEN_F);
5878 tp->port = T5_TFPORT_G(ctla);
5879 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5881 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5882 tp->min_len = TFMINPKTSIZE_G(ctlb);
5883 tp->skip_ofst = TFOFFSET_G(ctla);
5884 tp->skip_len = TFLENGTH_G(ctla);
5886 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5887 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5888 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5890 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5891 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5892 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5897 * t4_pmtx_get_stats - returns the HW stats from PMTX
5898 * @adap: the adapter
5899 * @cnt: where to store the count statistics
5900 * @cycles: where to store the cycle statistics
5902 * Returns performance statistics from PMTX.
5904 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5906 int i;
5907 u32 data[2];
5909 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5910 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5911 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5912 if (is_t4(adap->params.chip)) {
5913 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5914 } else {
5915 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5916 PM_TX_DBG_DATA_A, data, 2,
5917 PM_TX_DBG_STAT_MSB_A);
5918 cycles[i] = (((u64)data[0] << 32) | data[1]);
5924 * t4_pmrx_get_stats - returns the HW stats from PMRX
5925 * @adap: the adapter
5926 * @cnt: where to store the count statistics
5927 * @cycles: where to store the cycle statistics
5929 * Returns performance statistics from PMRX.
5931 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5933 int i;
5934 u32 data[2];
5936 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5937 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5938 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5939 if (is_t4(adap->params.chip)) {
5940 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5941 } else {
5942 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5943 PM_RX_DBG_DATA_A, data, 2,
5944 PM_RX_DBG_STAT_MSB_A);
5945 cycles[i] = (((u64)data[0] << 32) | data[1]);
5951 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5952 * @adap: the adapter
5953 * @pidx: the port index
5955 * Computes and returns a bitmap indicating which MPS buffer groups are
5956 * associated with the given Port. Bit i is set if buffer group i is
5957 * used by the Port.
5959 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5960 int pidx)
5962 unsigned int chip_version, nports;
5964 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5965 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5967 switch (chip_version) {
5968 case CHELSIO_T4:
5969 case CHELSIO_T5:
5970 switch (nports) {
5971 case 1: return 0xf;
5972 case 2: return 3 << (2 * pidx);
5973 case 4: return 1 << pidx;
5975 break;
5977 case CHELSIO_T6:
5978 switch (nports) {
5979 case 2: return 1 << (2 * pidx);
5981 break;
5984 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5985 chip_version, nports);
5987 return 0;
5991 * t4_get_mps_bg_map - return the buffer groups associated with a port
5992 * @adapter: the adapter
5993 * @pidx: the port index
5995 * Returns a bitmap indicating which MPS buffer groups are associated
5996 * with the given Port. Bit i is set if buffer group i is used by the
5997 * Port.
5999 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6001 u8 *mps_bg_map;
6002 unsigned int nports;
6004 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6005 if (pidx >= nports) {
6006 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6007 pidx, nports);
6008 return 0;
6011 /* If we've already retrieved/computed this, just return the result.
6013 mps_bg_map = adapter->params.mps_bg_map;
6014 if (mps_bg_map[pidx])
6015 return mps_bg_map[pidx];
6017 /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6018 * If we're talking to such Firmware, let it tell us. If the new
6019 * API isn't supported, revert back to old hardcoded way. The value
6020 * obtained from Firmware is encoded in below format:
6022 * val = (( MPSBGMAP[Port 3] << 24 ) |
6023 * ( MPSBGMAP[Port 2] << 16 ) |
6024 * ( MPSBGMAP[Port 1] << 8 ) |
6025 * ( MPSBGMAP[Port 0] << 0 ))
6027 if (adapter->flags & FW_OK) {
6028 u32 param, val;
6029 int ret;
6031 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6032 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6033 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6034 0, 1, &param, &val);
6035 if (!ret) {
6036 int p;
6038 /* Store the BG Map for all of the Ports in order to
6039 * avoid more calls to the Firmware in the future.
6041 for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6042 mps_bg_map[p] = val & 0xff;
6044 return mps_bg_map[pidx];
6048 /* Either we're not talking to the Firmware or we're dealing with
6049 * older Firmware which doesn't support the new API to get the MPS
6050 * Buffer Group Map. Fall back to computing it ourselves.
6052 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6053 return mps_bg_map[pidx];
6057 * t4_get_tp_ch_map - return TP ingress channels associated with a port
6058 * @adapter: the adapter
6059 * @pidx: the port index
6061 * Returns a bitmap indicating which TP Ingress Channels are associated
6062 * with a given Port. Bit i is set if TP Ingress Channel i is used by
6063 * the Port.
6065 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6067 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6068 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6070 if (pidx >= nports) {
6071 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6072 pidx, nports);
6073 return 0;
6076 switch (chip_version) {
6077 case CHELSIO_T4:
6078 case CHELSIO_T5:
6079 /* Note that this happens to be the same values as the MPS
6080 * Buffer Group Map for these Chips. But we replicate the code
6081 * here because they're really separate concepts.
6083 switch (nports) {
6084 case 1: return 0xf;
6085 case 2: return 3 << (2 * pidx);
6086 case 4: return 1 << pidx;
6088 break;
6090 case CHELSIO_T6:
6091 switch (nports) {
6092 case 1:
6093 case 2: return 1 << pidx;
6095 break;
6098 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6099 chip_version, nports);
6100 return 0;
6104 * t4_get_port_type_description - return Port Type string description
6105 * @port_type: firmware Port Type enumeration
6107 const char *t4_get_port_type_description(enum fw_port_type port_type)
6109 static const char *const port_type_description[] = {
6110 "Fiber_XFI",
6111 "Fiber_XAUI",
6112 "BT_SGMII",
6113 "BT_XFI",
6114 "BT_XAUI",
6115 "KX4",
6116 "CX4",
6117 "KX",
6118 "KR",
6119 "SFP",
6120 "BP_AP",
6121 "BP4_AP",
6122 "QSFP_10G",
6123 "QSA",
6124 "QSFP",
6125 "BP40_BA",
6126 "KR4_100G",
6127 "CR4_QSFP",
6128 "CR_QSFP",
6129 "CR2_QSFP",
6130 "SFP28",
6131 "KR_SFP28",
6132 "KR_XLAUI"
6135 if (port_type < ARRAY_SIZE(port_type_description))
6136 return port_type_description[port_type];
6137 return "UNKNOWN";
6141 * t4_get_port_stats_offset - collect port stats relative to a previous
6142 * snapshot
6143 * @adap: The adapter
6144 * @idx: The port
6145 * @stats: Current stats to fill
6146 * @offset: Previous stats snapshot
6148 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6149 struct port_stats *stats,
6150 struct port_stats *offset)
6152 u64 *s, *o;
6153 int i;
6155 t4_get_port_stats(adap, idx, stats);
6156 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6157 i < (sizeof(struct port_stats) / sizeof(u64));
6158 i++, s++, o++)
6159 *s -= *o;
6163 * t4_get_port_stats - collect port statistics
6164 * @adap: the adapter
6165 * @idx: the port index
6166 * @p: the stats structure to fill
6168 * Collect statistics related to the given port from HW.
6170 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6172 u32 bgmap = t4_get_mps_bg_map(adap, idx);
6173 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6175 #define GET_STAT(name) \
6176 t4_read_reg64(adap, \
6177 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6178 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6179 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6181 p->tx_octets = GET_STAT(TX_PORT_BYTES);
6182 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
6183 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
6184 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
6185 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
6186 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
6187 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
6188 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
6189 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
6190 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
6191 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
6192 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6193 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
6194 p->tx_drop = GET_STAT(TX_PORT_DROP);
6195 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
6196 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
6197 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
6198 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
6199 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
6200 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
6201 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
6202 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
6203 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
6205 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6206 if (stat_ctl & COUNTPAUSESTATTX_F)
6207 p->tx_frames_64 -= p->tx_pause;
6208 if (stat_ctl & COUNTPAUSEMCTX_F)
6209 p->tx_mcast_frames -= p->tx_pause;
6211 p->rx_octets = GET_STAT(RX_PORT_BYTES);
6212 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
6213 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
6214 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
6215 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
6216 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
6217 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6218 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
6219 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
6220 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
6221 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
6222 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
6223 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
6224 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
6225 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
6226 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
6227 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6228 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
6229 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
6230 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
6231 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
6232 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
6233 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
6234 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
6235 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
6236 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
6237 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
6239 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6240 if (stat_ctl & COUNTPAUSESTATRX_F)
6241 p->rx_frames_64 -= p->rx_pause;
6242 if (stat_ctl & COUNTPAUSEMCRX_F)
6243 p->rx_mcast_frames -= p->rx_pause;
6246 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6247 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6248 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6249 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6250 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6251 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6252 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6253 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6255 #undef GET_STAT
6256 #undef GET_STAT_COM
6260 * t4_get_lb_stats - collect loopback port statistics
6261 * @adap: the adapter
6262 * @idx: the loopback port index
6263 * @p: the stats structure to fill
6265 * Return HW statistics for the given loopback port.
6267 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6269 u32 bgmap = t4_get_mps_bg_map(adap, idx);
6271 #define GET_STAT(name) \
6272 t4_read_reg64(adap, \
6273 (is_t4(adap->params.chip) ? \
6274 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6275 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6276 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6278 p->octets = GET_STAT(BYTES);
6279 p->frames = GET_STAT(FRAMES);
6280 p->bcast_frames = GET_STAT(BCAST);
6281 p->mcast_frames = GET_STAT(MCAST);
6282 p->ucast_frames = GET_STAT(UCAST);
6283 p->error_frames = GET_STAT(ERROR);
6285 p->frames_64 = GET_STAT(64B);
6286 p->frames_65_127 = GET_STAT(65B_127B);
6287 p->frames_128_255 = GET_STAT(128B_255B);
6288 p->frames_256_511 = GET_STAT(256B_511B);
6289 p->frames_512_1023 = GET_STAT(512B_1023B);
6290 p->frames_1024_1518 = GET_STAT(1024B_1518B);
6291 p->frames_1519_max = GET_STAT(1519B_MAX);
6292 p->drop = GET_STAT(DROP_FRAMES);
6294 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6295 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6296 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6297 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6298 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6299 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6300 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6301 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6303 #undef GET_STAT
6304 #undef GET_STAT_COM
6307 /* t4_mk_filtdelwr - create a delete filter WR
6308 * @ftid: the filter ID
6309 * @wr: the filter work request to populate
6310 * @qid: ingress queue to receive the delete notification
6312 * Creates a filter work request to delete the supplied filter. If @qid is
6313 * negative the delete notification is suppressed.
6315 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6317 memset(wr, 0, sizeof(*wr));
6318 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6319 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6320 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6321 FW_FILTER_WR_NOREPLY_V(qid < 0));
6322 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6323 if (qid >= 0)
6324 wr->rx_chan_rx_rpl_iq =
6325 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6328 #define INIT_CMD(var, cmd, rd_wr) do { \
6329 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6330 FW_CMD_REQUEST_F | \
6331 FW_CMD_##rd_wr##_F); \
6332 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6333 } while (0)
6335 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6336 u32 addr, u32 val)
6338 u32 ldst_addrspace;
6339 struct fw_ldst_cmd c;
6341 memset(&c, 0, sizeof(c));
6342 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6343 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6344 FW_CMD_REQUEST_F |
6345 FW_CMD_WRITE_F |
6346 ldst_addrspace);
6347 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6348 c.u.addrval.addr = cpu_to_be32(addr);
6349 c.u.addrval.val = cpu_to_be32(val);
6351 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6355 * t4_mdio_rd - read a PHY register through MDIO
6356 * @adap: the adapter
6357 * @mbox: mailbox to use for the FW command
6358 * @phy_addr: the PHY address
6359 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6360 * @reg: the register to read
6361 * @valp: where to store the value
6363 * Issues a FW command through the given mailbox to read a PHY register.
6365 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6366 unsigned int mmd, unsigned int reg, u16 *valp)
6368 int ret;
6369 u32 ldst_addrspace;
6370 struct fw_ldst_cmd c;
6372 memset(&c, 0, sizeof(c));
6373 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6374 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6375 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6376 ldst_addrspace);
6377 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6378 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6379 FW_LDST_CMD_MMD_V(mmd));
6380 c.u.mdio.raddr = cpu_to_be16(reg);
6382 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6383 if (ret == 0)
6384 *valp = be16_to_cpu(c.u.mdio.rval);
6385 return ret;
6389 * t4_mdio_wr - write a PHY register through MDIO
6390 * @adap: the adapter
6391 * @mbox: mailbox to use for the FW command
6392 * @phy_addr: the PHY address
6393 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6394 * @reg: the register to write
6395 * @valp: value to write
6397 * Issues a FW command through the given mailbox to write a PHY register.
6399 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6400 unsigned int mmd, unsigned int reg, u16 val)
6402 u32 ldst_addrspace;
6403 struct fw_ldst_cmd c;
6405 memset(&c, 0, sizeof(c));
6406 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6407 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6408 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6409 ldst_addrspace);
6410 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6411 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6412 FW_LDST_CMD_MMD_V(mmd));
6413 c.u.mdio.raddr = cpu_to_be16(reg);
6414 c.u.mdio.rval = cpu_to_be16(val);
6416 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6420 * t4_sge_decode_idma_state - decode the idma state
6421 * @adap: the adapter
6422 * @state: the state idma is stuck in
6424 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6426 static const char * const t4_decode[] = {
6427 "IDMA_IDLE",
6428 "IDMA_PUSH_MORE_CPL_FIFO",
6429 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6430 "Not used",
6431 "IDMA_PHYSADDR_SEND_PCIEHDR",
6432 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6433 "IDMA_PHYSADDR_SEND_PAYLOAD",
6434 "IDMA_SEND_FIFO_TO_IMSG",
6435 "IDMA_FL_REQ_DATA_FL_PREP",
6436 "IDMA_FL_REQ_DATA_FL",
6437 "IDMA_FL_DROP",
6438 "IDMA_FL_H_REQ_HEADER_FL",
6439 "IDMA_FL_H_SEND_PCIEHDR",
6440 "IDMA_FL_H_PUSH_CPL_FIFO",
6441 "IDMA_FL_H_SEND_CPL",
6442 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6443 "IDMA_FL_H_SEND_IP_HDR",
6444 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6445 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6446 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6447 "IDMA_FL_D_SEND_PCIEHDR",
6448 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6449 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6450 "IDMA_FL_SEND_PCIEHDR",
6451 "IDMA_FL_PUSH_CPL_FIFO",
6452 "IDMA_FL_SEND_CPL",
6453 "IDMA_FL_SEND_PAYLOAD_FIRST",
6454 "IDMA_FL_SEND_PAYLOAD",
6455 "IDMA_FL_REQ_NEXT_DATA_FL",
6456 "IDMA_FL_SEND_NEXT_PCIEHDR",
6457 "IDMA_FL_SEND_PADDING",
6458 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6459 "IDMA_FL_SEND_FIFO_TO_IMSG",
6460 "IDMA_FL_REQ_DATAFL_DONE",
6461 "IDMA_FL_REQ_HEADERFL_DONE",
6463 static const char * const t5_decode[] = {
6464 "IDMA_IDLE",
6465 "IDMA_ALMOST_IDLE",
6466 "IDMA_PUSH_MORE_CPL_FIFO",
6467 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6468 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6469 "IDMA_PHYSADDR_SEND_PCIEHDR",
6470 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6471 "IDMA_PHYSADDR_SEND_PAYLOAD",
6472 "IDMA_SEND_FIFO_TO_IMSG",
6473 "IDMA_FL_REQ_DATA_FL",
6474 "IDMA_FL_DROP",
6475 "IDMA_FL_DROP_SEND_INC",
6476 "IDMA_FL_H_REQ_HEADER_FL",
6477 "IDMA_FL_H_SEND_PCIEHDR",
6478 "IDMA_FL_H_PUSH_CPL_FIFO",
6479 "IDMA_FL_H_SEND_CPL",
6480 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6481 "IDMA_FL_H_SEND_IP_HDR",
6482 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6483 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6484 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6485 "IDMA_FL_D_SEND_PCIEHDR",
6486 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6487 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6488 "IDMA_FL_SEND_PCIEHDR",
6489 "IDMA_FL_PUSH_CPL_FIFO",
6490 "IDMA_FL_SEND_CPL",
6491 "IDMA_FL_SEND_PAYLOAD_FIRST",
6492 "IDMA_FL_SEND_PAYLOAD",
6493 "IDMA_FL_REQ_NEXT_DATA_FL",
6494 "IDMA_FL_SEND_NEXT_PCIEHDR",
6495 "IDMA_FL_SEND_PADDING",
6496 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6498 static const char * const t6_decode[] = {
6499 "IDMA_IDLE",
6500 "IDMA_PUSH_MORE_CPL_FIFO",
6501 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6502 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6503 "IDMA_PHYSADDR_SEND_PCIEHDR",
6504 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6505 "IDMA_PHYSADDR_SEND_PAYLOAD",
6506 "IDMA_FL_REQ_DATA_FL",
6507 "IDMA_FL_DROP",
6508 "IDMA_FL_DROP_SEND_INC",
6509 "IDMA_FL_H_REQ_HEADER_FL",
6510 "IDMA_FL_H_SEND_PCIEHDR",
6511 "IDMA_FL_H_PUSH_CPL_FIFO",
6512 "IDMA_FL_H_SEND_CPL",
6513 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6514 "IDMA_FL_H_SEND_IP_HDR",
6515 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6516 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6517 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6518 "IDMA_FL_D_SEND_PCIEHDR",
6519 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6520 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6521 "IDMA_FL_SEND_PCIEHDR",
6522 "IDMA_FL_PUSH_CPL_FIFO",
6523 "IDMA_FL_SEND_CPL",
6524 "IDMA_FL_SEND_PAYLOAD_FIRST",
6525 "IDMA_FL_SEND_PAYLOAD",
6526 "IDMA_FL_REQ_NEXT_DATA_FL",
6527 "IDMA_FL_SEND_NEXT_PCIEHDR",
6528 "IDMA_FL_SEND_PADDING",
6529 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6531 static const u32 sge_regs[] = {
6532 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6533 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6534 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6536 const char **sge_idma_decode;
6537 int sge_idma_decode_nstates;
6538 int i;
6539 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6541 /* Select the right set of decode strings to dump depending on the
6542 * adapter chip type.
6544 switch (chip_version) {
6545 case CHELSIO_T4:
6546 sge_idma_decode = (const char **)t4_decode;
6547 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6548 break;
6550 case CHELSIO_T5:
6551 sge_idma_decode = (const char **)t5_decode;
6552 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6553 break;
6555 case CHELSIO_T6:
6556 sge_idma_decode = (const char **)t6_decode;
6557 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6558 break;
6560 default:
6561 dev_err(adapter->pdev_dev,
6562 "Unsupported chip version %d\n", chip_version);
6563 return;
6566 if (is_t4(adapter->params.chip)) {
6567 sge_idma_decode = (const char **)t4_decode;
6568 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6569 } else {
6570 sge_idma_decode = (const char **)t5_decode;
6571 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6574 if (state < sge_idma_decode_nstates)
6575 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6576 else
6577 CH_WARN(adapter, "idma state %d unknown\n", state);
6579 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6580 CH_WARN(adapter, "SGE register %#x value %#x\n",
6581 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6585 * t4_sge_ctxt_flush - flush the SGE context cache
6586 * @adap: the adapter
6587 * @mbox: mailbox to use for the FW command
6588 * @ctx_type: Egress or Ingress
6590 * Issues a FW command through the given mailbox to flush the
6591 * SGE context cache.
6593 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6595 int ret;
6596 u32 ldst_addrspace;
6597 struct fw_ldst_cmd c;
6599 memset(&c, 0, sizeof(c));
6600 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6601 FW_LDST_ADDRSPC_SGE_EGRC :
6602 FW_LDST_ADDRSPC_SGE_INGC);
6603 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6604 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6605 ldst_addrspace);
6606 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6607 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6609 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6610 return ret;
6614 * t4_fw_hello - establish communication with FW
6615 * @adap: the adapter
6616 * @mbox: mailbox to use for the FW command
6617 * @evt_mbox: mailbox to receive async FW events
6618 * @master: specifies the caller's willingness to be the device master
6619 * @state: returns the current device state (if non-NULL)
6621 * Issues a command to establish communication with FW. Returns either
6622 * an error (negative integer) or the mailbox of the Master PF.
6624 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6625 enum dev_master master, enum dev_state *state)
6627 int ret;
6628 struct fw_hello_cmd c;
6629 u32 v;
6630 unsigned int master_mbox;
6631 int retries = FW_CMD_HELLO_RETRIES;
6633 retry:
6634 memset(&c, 0, sizeof(c));
6635 INIT_CMD(c, HELLO, WRITE);
6636 c.err_to_clearinit = cpu_to_be32(
6637 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6638 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6639 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6640 mbox : FW_HELLO_CMD_MBMASTER_M) |
6641 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6642 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6643 FW_HELLO_CMD_CLEARINIT_F);
6646 * Issue the HELLO command to the firmware. If it's not successful
6647 * but indicates that we got a "busy" or "timeout" condition, retry
6648 * the HELLO until we exhaust our retry limit. If we do exceed our
6649 * retry limit, check to see if the firmware left us any error
6650 * information and report that if so.
6652 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6653 if (ret < 0) {
6654 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6655 goto retry;
6656 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6657 t4_report_fw_error(adap);
6658 return ret;
6661 v = be32_to_cpu(c.err_to_clearinit);
6662 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6663 if (state) {
6664 if (v & FW_HELLO_CMD_ERR_F)
6665 *state = DEV_STATE_ERR;
6666 else if (v & FW_HELLO_CMD_INIT_F)
6667 *state = DEV_STATE_INIT;
6668 else
6669 *state = DEV_STATE_UNINIT;
6673 * If we're not the Master PF then we need to wait around for the
6674 * Master PF Driver to finish setting up the adapter.
6676 * Note that we also do this wait if we're a non-Master-capable PF and
6677 * there is no current Master PF; a Master PF may show up momentarily
6678 * and we wouldn't want to fail pointlessly. (This can happen when an
6679 * OS loads lots of different drivers rapidly at the same time). In
6680 * this case, the Master PF returned by the firmware will be
6681 * PCIE_FW_MASTER_M so the test below will work ...
6683 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6684 master_mbox != mbox) {
6685 int waiting = FW_CMD_HELLO_TIMEOUT;
6688 * Wait for the firmware to either indicate an error or
6689 * initialized state. If we see either of these we bail out
6690 * and report the issue to the caller. If we exhaust the
6691 * "hello timeout" and we haven't exhausted our retries, try
6692 * again. Otherwise bail with a timeout error.
6694 for (;;) {
6695 u32 pcie_fw;
6697 msleep(50);
6698 waiting -= 50;
6701 * If neither Error nor Initialialized are indicated
6702 * by the firmware keep waiting till we exaust our
6703 * timeout ... and then retry if we haven't exhausted
6704 * our retries ...
6706 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6707 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6708 if (waiting <= 0) {
6709 if (retries-- > 0)
6710 goto retry;
6712 return -ETIMEDOUT;
6714 continue;
6718 * We either have an Error or Initialized condition
6719 * report errors preferentially.
6721 if (state) {
6722 if (pcie_fw & PCIE_FW_ERR_F)
6723 *state = DEV_STATE_ERR;
6724 else if (pcie_fw & PCIE_FW_INIT_F)
6725 *state = DEV_STATE_INIT;
6729 * If we arrived before a Master PF was selected and
6730 * there's not a valid Master PF, grab its identity
6731 * for our caller.
6733 if (master_mbox == PCIE_FW_MASTER_M &&
6734 (pcie_fw & PCIE_FW_MASTER_VLD_F))
6735 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6736 break;
6740 return master_mbox;
6744 * t4_fw_bye - end communication with FW
6745 * @adap: the adapter
6746 * @mbox: mailbox to use for the FW command
6748 * Issues a command to terminate communication with FW.
6750 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6752 struct fw_bye_cmd c;
6754 memset(&c, 0, sizeof(c));
6755 INIT_CMD(c, BYE, WRITE);
6756 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6760 * t4_init_cmd - ask FW to initialize the device
6761 * @adap: the adapter
6762 * @mbox: mailbox to use for the FW command
6764 * Issues a command to FW to partially initialize the device. This
6765 * performs initialization that generally doesn't depend on user input.
6767 int t4_early_init(struct adapter *adap, unsigned int mbox)
6769 struct fw_initialize_cmd c;
6771 memset(&c, 0, sizeof(c));
6772 INIT_CMD(c, INITIALIZE, WRITE);
6773 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6777 * t4_fw_reset - issue a reset to FW
6778 * @adap: the adapter
6779 * @mbox: mailbox to use for the FW command
6780 * @reset: specifies the type of reset to perform
6782 * Issues a reset command of the specified type to FW.
6784 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6786 struct fw_reset_cmd c;
6788 memset(&c, 0, sizeof(c));
6789 INIT_CMD(c, RESET, WRITE);
6790 c.val = cpu_to_be32(reset);
6791 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6795 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6796 * @adap: the adapter
6797 * @mbox: mailbox to use for the FW RESET command (if desired)
6798 * @force: force uP into RESET even if FW RESET command fails
6800 * Issues a RESET command to firmware (if desired) with a HALT indication
6801 * and then puts the microprocessor into RESET state. The RESET command
6802 * will only be issued if a legitimate mailbox is provided (mbox <=
6803 * PCIE_FW_MASTER_M).
6805 * This is generally used in order for the host to safely manipulate the
6806 * adapter without fear of conflicting with whatever the firmware might
6807 * be doing. The only way out of this state is to RESTART the firmware
6808 * ...
6810 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6812 int ret = 0;
6815 * If a legitimate mailbox is provided, issue a RESET command
6816 * with a HALT indication.
6818 if (mbox <= PCIE_FW_MASTER_M) {
6819 struct fw_reset_cmd c;
6821 memset(&c, 0, sizeof(c));
6822 INIT_CMD(c, RESET, WRITE);
6823 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6824 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6825 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6829 * Normally we won't complete the operation if the firmware RESET
6830 * command fails but if our caller insists we'll go ahead and put the
6831 * uP into RESET. This can be useful if the firmware is hung or even
6832 * missing ... We'll have to take the risk of putting the uP into
6833 * RESET without the cooperation of firmware in that case.
6835 * We also force the firmware's HALT flag to be on in case we bypassed
6836 * the firmware RESET command above or we're dealing with old firmware
6837 * which doesn't have the HALT capability. This will serve as a flag
6838 * for the incoming firmware to know that it's coming out of a HALT
6839 * rather than a RESET ... if it's new enough to understand that ...
6841 if (ret == 0 || force) {
6842 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6843 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6844 PCIE_FW_HALT_F);
6848 * And we always return the result of the firmware RESET command
6849 * even when we force the uP into RESET ...
6851 return ret;
6855 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6856 * @adap: the adapter
6857 * @reset: if we want to do a RESET to restart things
6859 * Restart firmware previously halted by t4_fw_halt(). On successful
6860 * return the previous PF Master remains as the new PF Master and there
6861 * is no need to issue a new HELLO command, etc.
6863 * We do this in two ways:
6865 * 1. If we're dealing with newer firmware we'll simply want to take
6866 * the chip's microprocessor out of RESET. This will cause the
6867 * firmware to start up from its start vector. And then we'll loop
6868 * until the firmware indicates it's started again (PCIE_FW.HALT
6869 * reset to 0) or we timeout.
6871 * 2. If we're dealing with older firmware then we'll need to RESET
6872 * the chip since older firmware won't recognize the PCIE_FW.HALT
6873 * flag and automatically RESET itself on startup.
6875 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6877 if (reset) {
6879 * Since we're directing the RESET instead of the firmware
6880 * doing it automatically, we need to clear the PCIE_FW.HALT
6881 * bit.
6883 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6886 * If we've been given a valid mailbox, first try to get the
6887 * firmware to do the RESET. If that works, great and we can
6888 * return success. Otherwise, if we haven't been given a
6889 * valid mailbox or the RESET command failed, fall back to
6890 * hitting the chip with a hammer.
6892 if (mbox <= PCIE_FW_MASTER_M) {
6893 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6894 msleep(100);
6895 if (t4_fw_reset(adap, mbox,
6896 PIORST_F | PIORSTMODE_F) == 0)
6897 return 0;
6900 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6901 msleep(2000);
6902 } else {
6903 int ms;
6905 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6906 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6907 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6908 return 0;
6909 msleep(100);
6910 ms += 100;
6912 return -ETIMEDOUT;
6914 return 0;
6918 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6919 * @adap: the adapter
6920 * @mbox: mailbox to use for the FW RESET command (if desired)
6921 * @fw_data: the firmware image to write
6922 * @size: image size
6923 * @force: force upgrade even if firmware doesn't cooperate
6925 * Perform all of the steps necessary for upgrading an adapter's
6926 * firmware image. Normally this requires the cooperation of the
6927 * existing firmware in order to halt all existing activities
6928 * but if an invalid mailbox token is passed in we skip that step
6929 * (though we'll still put the adapter microprocessor into RESET in
6930 * that case).
6932 * On successful return the new firmware will have been loaded and
6933 * the adapter will have been fully RESET losing all previous setup
6934 * state. On unsuccessful return the adapter may be completely hosed ...
6935 * positive errno indicates that the adapter is ~probably~ intact, a
6936 * negative errno indicates that things are looking bad ...
6938 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6939 const u8 *fw_data, unsigned int size, int force)
6941 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6942 int reset, ret;
6944 if (!t4_fw_matches_chip(adap, fw_hdr))
6945 return -EINVAL;
6947 /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6948 * wont be sent when we are flashing FW.
6950 adap->flags &= ~FW_OK;
6952 ret = t4_fw_halt(adap, mbox, force);
6953 if (ret < 0 && !force)
6954 goto out;
6956 ret = t4_load_fw(adap, fw_data, size);
6957 if (ret < 0)
6958 goto out;
6961 * If there was a Firmware Configuration File stored in FLASH,
6962 * there's a good chance that it won't be compatible with the new
6963 * Firmware. In order to prevent difficult to diagnose adapter
6964 * initialization issues, we clear out the Firmware Configuration File
6965 * portion of the FLASH . The user will need to re-FLASH a new
6966 * Firmware Configuration File which is compatible with the new
6967 * Firmware if that's desired.
6969 (void)t4_load_cfg(adap, NULL, 0);
6972 * Older versions of the firmware don't understand the new
6973 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6974 * restart. So for newly loaded older firmware we'll have to do the
6975 * RESET for it so it starts up on a clean slate. We can tell if
6976 * the newly loaded firmware will handle this right by checking
6977 * its header flags to see if it advertises the capability.
6979 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6980 ret = t4_fw_restart(adap, mbox, reset);
6982 /* Grab potentially new Firmware Device Log parameters so we can see
6983 * how healthy the new Firmware is. It's okay to contact the new
6984 * Firmware for these parameters even though, as far as it's
6985 * concerned, we've never said "HELLO" to it ...
6987 (void)t4_init_devlog_params(adap);
6988 out:
6989 adap->flags |= FW_OK;
6990 return ret;
6994 * t4_fl_pkt_align - return the fl packet alignment
6995 * @adap: the adapter
6997 * T4 has a single field to specify the packing and padding boundary.
6998 * T5 onwards has separate fields for this and hence the alignment for
6999 * next packet offset is maximum of these two.
7002 int t4_fl_pkt_align(struct adapter *adap)
7004 u32 sge_control, sge_control2;
7005 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7007 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7009 /* T4 uses a single control field to specify both the PCIe Padding and
7010 * Packing Boundary. T5 introduced the ability to specify these
7011 * separately. The actual Ingress Packet Data alignment boundary
7012 * within Packed Buffer Mode is the maximum of these two
7013 * specifications. (Note that it makes no real practical sense to
7014 * have the Pading Boudary be larger than the Packing Boundary but you
7015 * could set the chip up that way and, in fact, legacy T4 code would
7016 * end doing this because it would initialize the Padding Boundary and
7017 * leave the Packing Boundary initialized to 0 (16 bytes).)
7018 * Padding Boundary values in T6 starts from 8B,
7019 * where as it is 32B for T4 and T5.
7021 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7022 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7023 else
7024 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7026 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7028 fl_align = ingpadboundary;
7029 if (!is_t4(adap->params.chip)) {
7030 /* T5 has a weird interpretation of one of the PCIe Packing
7031 * Boundary values. No idea why ...
7033 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7034 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7035 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7036 ingpackboundary = 16;
7037 else
7038 ingpackboundary = 1 << (ingpackboundary +
7039 INGPACKBOUNDARY_SHIFT_X);
7041 fl_align = max(ingpadboundary, ingpackboundary);
7043 return fl_align;
7047 * t4_fixup_host_params - fix up host-dependent parameters
7048 * @adap: the adapter
7049 * @page_size: the host's Base Page Size
7050 * @cache_line_size: the host's Cache Line Size
7052 * Various registers in T4 contain values which are dependent on the
7053 * host's Base Page and Cache Line Sizes. This function will fix all of
7054 * those registers with the appropriate values as passed in ...
7056 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7057 unsigned int cache_line_size)
7059 unsigned int page_shift = fls(page_size) - 1;
7060 unsigned int sge_hps = page_shift - 10;
7061 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7062 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7063 unsigned int fl_align_log = fls(fl_align) - 1;
7065 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7066 HOSTPAGESIZEPF0_V(sge_hps) |
7067 HOSTPAGESIZEPF1_V(sge_hps) |
7068 HOSTPAGESIZEPF2_V(sge_hps) |
7069 HOSTPAGESIZEPF3_V(sge_hps) |
7070 HOSTPAGESIZEPF4_V(sge_hps) |
7071 HOSTPAGESIZEPF5_V(sge_hps) |
7072 HOSTPAGESIZEPF6_V(sge_hps) |
7073 HOSTPAGESIZEPF7_V(sge_hps));
7075 if (is_t4(adap->params.chip)) {
7076 t4_set_reg_field(adap, SGE_CONTROL_A,
7077 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7078 EGRSTATUSPAGESIZE_F,
7079 INGPADBOUNDARY_V(fl_align_log -
7080 INGPADBOUNDARY_SHIFT_X) |
7081 EGRSTATUSPAGESIZE_V(stat_len != 64));
7082 } else {
7083 unsigned int pack_align;
7084 unsigned int ingpad, ingpack;
7085 unsigned int pcie_cap;
7087 /* T5 introduced the separation of the Free List Padding and
7088 * Packing Boundaries. Thus, we can select a smaller Padding
7089 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7090 * Bandwidth, and use a Packing Boundary which is large enough
7091 * to avoid false sharing between CPUs, etc.
7093 * For the PCI Link, the smaller the Padding Boundary the
7094 * better. For the Memory Controller, a smaller Padding
7095 * Boundary is better until we cross under the Memory Line
7096 * Size (the minimum unit of transfer to/from Memory). If we
7097 * have a Padding Boundary which is smaller than the Memory
7098 * Line Size, that'll involve a Read-Modify-Write cycle on the
7099 * Memory Controller which is never good.
7102 /* We want the Packing Boundary to be based on the Cache Line
7103 * Size in order to help avoid False Sharing performance
7104 * issues between CPUs, etc. We also want the Packing
7105 * Boundary to incorporate the PCI-E Maximum Payload Size. We
7106 * get best performance when the Packing Boundary is a
7107 * multiple of the Maximum Payload Size.
7109 pack_align = fl_align;
7110 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7111 if (pcie_cap) {
7112 unsigned int mps, mps_log;
7113 u16 devctl;
7115 /* The PCIe Device Control Maximum Payload Size field
7116 * [bits 7:5] encodes sizes as powers of 2 starting at
7117 * 128 bytes.
7119 pci_read_config_word(adap->pdev,
7120 pcie_cap + PCI_EXP_DEVCTL,
7121 &devctl);
7122 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7123 mps = 1 << mps_log;
7124 if (mps > pack_align)
7125 pack_align = mps;
7128 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7129 * value for the Packing Boundary. This corresponds to 16
7130 * bytes instead of the expected 32 bytes. So if we want 32
7131 * bytes, the best we can really do is 64 bytes ...
7133 if (pack_align <= 16) {
7134 ingpack = INGPACKBOUNDARY_16B_X;
7135 fl_align = 16;
7136 } else if (pack_align == 32) {
7137 ingpack = INGPACKBOUNDARY_64B_X;
7138 fl_align = 64;
7139 } else {
7140 unsigned int pack_align_log = fls(pack_align) - 1;
7142 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7143 fl_align = pack_align;
7146 /* Use the smallest Ingress Padding which isn't smaller than
7147 * the Memory Controller Read/Write Size. We'll take that as
7148 * being 8 bytes since we don't know of any system with a
7149 * wider Memory Controller Bus Width.
7151 if (is_t5(adap->params.chip))
7152 ingpad = INGPADBOUNDARY_32B_X;
7153 else
7154 ingpad = T6_INGPADBOUNDARY_8B_X;
7156 t4_set_reg_field(adap, SGE_CONTROL_A,
7157 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7158 EGRSTATUSPAGESIZE_F,
7159 INGPADBOUNDARY_V(ingpad) |
7160 EGRSTATUSPAGESIZE_V(stat_len != 64));
7161 t4_set_reg_field(adap, SGE_CONTROL2_A,
7162 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7163 INGPACKBOUNDARY_V(ingpack));
7166 * Adjust various SGE Free List Host Buffer Sizes.
7168 * This is something of a crock since we're using fixed indices into
7169 * the array which are also known by the sge.c code and the T4
7170 * Firmware Configuration File. We need to come up with a much better
7171 * approach to managing this array. For now, the first four entries
7172 * are:
7174 * 0: Host Page Size
7175 * 1: 64KB
7176 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7177 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7179 * For the single-MTU buffers in unpacked mode we need to include
7180 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7181 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7182 * Padding boundary. All of these are accommodated in the Factory
7183 * Default Firmware Configuration File but we need to adjust it for
7184 * this host's cache line size.
7186 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7187 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7188 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7189 & ~(fl_align-1));
7190 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7191 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7192 & ~(fl_align-1));
7194 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7196 return 0;
7200 * t4_fw_initialize - ask FW to initialize the device
7201 * @adap: the adapter
7202 * @mbox: mailbox to use for the FW command
7204 * Issues a command to FW to partially initialize the device. This
7205 * performs initialization that generally doesn't depend on user input.
7207 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7209 struct fw_initialize_cmd c;
7211 memset(&c, 0, sizeof(c));
7212 INIT_CMD(c, INITIALIZE, WRITE);
7213 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7217 * t4_query_params_rw - query FW or device parameters
7218 * @adap: the adapter
7219 * @mbox: mailbox to use for the FW command
7220 * @pf: the PF
7221 * @vf: the VF
7222 * @nparams: the number of parameters
7223 * @params: the parameter names
7224 * @val: the parameter values
7225 * @rw: Write and read flag
7226 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7228 * Reads the value of FW or device parameters. Up to 7 parameters can be
7229 * queried at once.
7231 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7232 unsigned int vf, unsigned int nparams, const u32 *params,
7233 u32 *val, int rw, bool sleep_ok)
7235 int i, ret;
7236 struct fw_params_cmd c;
7237 __be32 *p = &c.param[0].mnem;
7239 if (nparams > 7)
7240 return -EINVAL;
7242 memset(&c, 0, sizeof(c));
7243 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7244 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7245 FW_PARAMS_CMD_PFN_V(pf) |
7246 FW_PARAMS_CMD_VFN_V(vf));
7247 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7249 for (i = 0; i < nparams; i++) {
7250 *p++ = cpu_to_be32(*params++);
7251 if (rw)
7252 *p = cpu_to_be32(*(val + i));
7253 p++;
7256 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7257 if (ret == 0)
7258 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7259 *val++ = be32_to_cpu(*p);
7260 return ret;
7263 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7264 unsigned int vf, unsigned int nparams, const u32 *params,
7265 u32 *val)
7267 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7268 true);
7271 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7272 unsigned int vf, unsigned int nparams, const u32 *params,
7273 u32 *val)
7275 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7276 false);
7280 * t4_set_params_timeout - sets FW or device parameters
7281 * @adap: the adapter
7282 * @mbox: mailbox to use for the FW command
7283 * @pf: the PF
7284 * @vf: the VF
7285 * @nparams: the number of parameters
7286 * @params: the parameter names
7287 * @val: the parameter values
7288 * @timeout: the timeout time
7290 * Sets the value of FW or device parameters. Up to 7 parameters can be
7291 * specified at once.
7293 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7294 unsigned int pf, unsigned int vf,
7295 unsigned int nparams, const u32 *params,
7296 const u32 *val, int timeout)
7298 struct fw_params_cmd c;
7299 __be32 *p = &c.param[0].mnem;
7301 if (nparams > 7)
7302 return -EINVAL;
7304 memset(&c, 0, sizeof(c));
7305 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7306 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7307 FW_PARAMS_CMD_PFN_V(pf) |
7308 FW_PARAMS_CMD_VFN_V(vf));
7309 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7311 while (nparams--) {
7312 *p++ = cpu_to_be32(*params++);
7313 *p++ = cpu_to_be32(*val++);
7316 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7320 * t4_set_params - sets FW or device parameters
7321 * @adap: the adapter
7322 * @mbox: mailbox to use for the FW command
7323 * @pf: the PF
7324 * @vf: the VF
7325 * @nparams: the number of parameters
7326 * @params: the parameter names
7327 * @val: the parameter values
7329 * Sets the value of FW or device parameters. Up to 7 parameters can be
7330 * specified at once.
7332 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7333 unsigned int vf, unsigned int nparams, const u32 *params,
7334 const u32 *val)
7336 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7337 FW_CMD_MAX_TIMEOUT);
7341 * t4_cfg_pfvf - configure PF/VF resource limits
7342 * @adap: the adapter
7343 * @mbox: mailbox to use for the FW command
7344 * @pf: the PF being configured
7345 * @vf: the VF being configured
7346 * @txq: the max number of egress queues
7347 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
7348 * @rxqi: the max number of interrupt-capable ingress queues
7349 * @rxq: the max number of interruptless ingress queues
7350 * @tc: the PCI traffic class
7351 * @vi: the max number of virtual interfaces
7352 * @cmask: the channel access rights mask for the PF/VF
7353 * @pmask: the port access rights mask for the PF/VF
7354 * @nexact: the maximum number of exact MPS filters
7355 * @rcaps: read capabilities
7356 * @wxcaps: write/execute capabilities
7358 * Configures resource limits and capabilities for a physical or virtual
7359 * function.
7361 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7362 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7363 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7364 unsigned int vi, unsigned int cmask, unsigned int pmask,
7365 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7367 struct fw_pfvf_cmd c;
7369 memset(&c, 0, sizeof(c));
7370 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7371 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7372 FW_PFVF_CMD_VFN_V(vf));
7373 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7374 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7375 FW_PFVF_CMD_NIQ_V(rxq));
7376 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7377 FW_PFVF_CMD_PMASK_V(pmask) |
7378 FW_PFVF_CMD_NEQ_V(txq));
7379 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7380 FW_PFVF_CMD_NVI_V(vi) |
7381 FW_PFVF_CMD_NEXACTF_V(nexact));
7382 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7383 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7384 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7385 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7389 * t4_alloc_vi - allocate a virtual interface
7390 * @adap: the adapter
7391 * @mbox: mailbox to use for the FW command
7392 * @port: physical port associated with the VI
7393 * @pf: the PF owning the VI
7394 * @vf: the VF owning the VI
7395 * @nmac: number of MAC addresses needed (1 to 5)
7396 * @mac: the MAC addresses of the VI
7397 * @rss_size: size of RSS table slice associated with this VI
7399 * Allocates a virtual interface for the given physical port. If @mac is
7400 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
7401 * @mac should be large enough to hold @nmac Ethernet addresses, they are
7402 * stored consecutively so the space needed is @nmac * 6 bytes.
7403 * Returns a negative error number or the non-negative VI id.
7405 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7406 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7407 unsigned int *rss_size)
7409 int ret;
7410 struct fw_vi_cmd c;
7412 memset(&c, 0, sizeof(c));
7413 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7414 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7415 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7416 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7417 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7418 c.nmac = nmac - 1;
7420 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7421 if (ret)
7422 return ret;
7424 if (mac) {
7425 memcpy(mac, c.mac, sizeof(c.mac));
7426 switch (nmac) {
7427 case 5:
7428 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7429 case 4:
7430 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7431 case 3:
7432 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7433 case 2:
7434 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
7437 if (rss_size)
7438 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7439 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7443 * t4_free_vi - free a virtual interface
7444 * @adap: the adapter
7445 * @mbox: mailbox to use for the FW command
7446 * @pf: the PF owning the VI
7447 * @vf: the VF owning the VI
7448 * @viid: virtual interface identifiler
7450 * Free a previously allocated virtual interface.
7452 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7453 unsigned int vf, unsigned int viid)
7455 struct fw_vi_cmd c;
7457 memset(&c, 0, sizeof(c));
7458 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7459 FW_CMD_REQUEST_F |
7460 FW_CMD_EXEC_F |
7461 FW_VI_CMD_PFN_V(pf) |
7462 FW_VI_CMD_VFN_V(vf));
7463 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7464 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7466 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7470 * t4_set_rxmode - set Rx properties of a virtual interface
7471 * @adap: the adapter
7472 * @mbox: mailbox to use for the FW command
7473 * @viid: the VI id
7474 * @mtu: the new MTU or -1
7475 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7476 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7477 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7478 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7479 * @sleep_ok: if true we may sleep while awaiting command completion
7481 * Sets Rx properties of a virtual interface.
7483 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7484 int mtu, int promisc, int all_multi, int bcast, int vlanex,
7485 bool sleep_ok)
7487 struct fw_vi_rxmode_cmd c;
7489 /* convert to FW values */
7490 if (mtu < 0)
7491 mtu = FW_RXMODE_MTU_NO_CHG;
7492 if (promisc < 0)
7493 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7494 if (all_multi < 0)
7495 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7496 if (bcast < 0)
7497 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7498 if (vlanex < 0)
7499 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7501 memset(&c, 0, sizeof(c));
7502 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7503 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7504 FW_VI_RXMODE_CMD_VIID_V(viid));
7505 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7506 c.mtu_to_vlanexen =
7507 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7508 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7509 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7510 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7511 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7512 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7516 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7517 * @adap: the adapter
7518 * @viid: the VI id
7519 * @addr: the MAC address
7520 * @mask: the mask
7521 * @idx: index of the entry in mps tcam
7522 * @lookup_type: MAC address for inner (1) or outer (0) header
7523 * @port_id: the port index
7524 * @sleep_ok: call is allowed to sleep
7526 * Removes the mac entry at the specified index using raw mac interface.
7528 * Returns a negative error number on failure.
7530 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7531 const u8 *addr, const u8 *mask, unsigned int idx,
7532 u8 lookup_type, u8 port_id, bool sleep_ok)
7534 struct fw_vi_mac_cmd c;
7535 struct fw_vi_mac_raw *p = &c.u.raw;
7536 u32 val;
7538 memset(&c, 0, sizeof(c));
7539 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7540 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7541 FW_CMD_EXEC_V(0) |
7542 FW_VI_MAC_CMD_VIID_V(viid));
7543 val = FW_CMD_LEN16_V(1) |
7544 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7545 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7546 FW_CMD_LEN16_V(val));
7548 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7549 FW_VI_MAC_ID_BASED_FREE);
7551 /* Lookup Type. Outer header: 0, Inner header: 1 */
7552 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7553 DATAPORTNUM_V(port_id));
7554 /* Lookup mask and port mask */
7555 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7556 DATAPORTNUM_V(DATAPORTNUM_M));
7558 /* Copy the address and the mask */
7559 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7560 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7562 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7566 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7567 * @adap: the adapter
7568 * @viid: the VI id
7569 * @mac: the MAC address
7570 * @mask: the mask
7571 * @idx: index at which to add this entry
7572 * @port_id: the port index
7573 * @lookup_type: MAC address for inner (1) or outer (0) header
7574 * @sleep_ok: call is allowed to sleep
7576 * Adds the mac entry at the specified index using raw mac interface.
7578 * Returns a negative error number or the allocated index for this mac.
7580 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7581 const u8 *addr, const u8 *mask, unsigned int idx,
7582 u8 lookup_type, u8 port_id, bool sleep_ok)
7584 int ret = 0;
7585 struct fw_vi_mac_cmd c;
7586 struct fw_vi_mac_raw *p = &c.u.raw;
7587 u32 val;
7589 memset(&c, 0, sizeof(c));
7590 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7591 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7592 FW_VI_MAC_CMD_VIID_V(viid));
7593 val = FW_CMD_LEN16_V(1) |
7594 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7595 c.freemacs_to_len16 = cpu_to_be32(val);
7597 /* Specify that this is an inner mac address */
7598 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7600 /* Lookup Type. Outer header: 0, Inner header: 1 */
7601 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7602 DATAPORTNUM_V(port_id));
7603 /* Lookup mask and port mask */
7604 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7605 DATAPORTNUM_V(DATAPORTNUM_M));
7607 /* Copy the address and the mask */
7608 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7609 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7611 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7612 if (ret == 0) {
7613 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7614 if (ret != idx)
7615 ret = -ENOMEM;
7618 return ret;
7622 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7623 * @adap: the adapter
7624 * @mbox: mailbox to use for the FW command
7625 * @viid: the VI id
7626 * @free: if true any existing filters for this VI id are first removed
7627 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
7628 * @addr: the MAC address(es)
7629 * @idx: where to store the index of each allocated filter
7630 * @hash: pointer to hash address filter bitmap
7631 * @sleep_ok: call is allowed to sleep
7633 * Allocates an exact-match filter for each of the supplied addresses and
7634 * sets it to the corresponding address. If @idx is not %NULL it should
7635 * have at least @naddr entries, each of which will be set to the index of
7636 * the filter allocated for the corresponding MAC address. If a filter
7637 * could not be allocated for an address its index is set to 0xffff.
7638 * If @hash is not %NULL addresses that fail to allocate an exact filter
7639 * are hashed and update the hash filter bitmap pointed at by @hash.
7641 * Returns a negative error number or the number of filters allocated.
7643 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7644 unsigned int viid, bool free, unsigned int naddr,
7645 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7647 int offset, ret = 0;
7648 struct fw_vi_mac_cmd c;
7649 unsigned int nfilters = 0;
7650 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7651 unsigned int rem = naddr;
7653 if (naddr > max_naddr)
7654 return -EINVAL;
7656 for (offset = 0; offset < naddr ; /**/) {
7657 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7658 rem : ARRAY_SIZE(c.u.exact));
7659 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7660 u.exact[fw_naddr]), 16);
7661 struct fw_vi_mac_exact *p;
7662 int i;
7664 memset(&c, 0, sizeof(c));
7665 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7666 FW_CMD_REQUEST_F |
7667 FW_CMD_WRITE_F |
7668 FW_CMD_EXEC_V(free) |
7669 FW_VI_MAC_CMD_VIID_V(viid));
7670 c.freemacs_to_len16 =
7671 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7672 FW_CMD_LEN16_V(len16));
7674 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7675 p->valid_to_idx =
7676 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7677 FW_VI_MAC_CMD_IDX_V(
7678 FW_VI_MAC_ADD_MAC));
7679 memcpy(p->macaddr, addr[offset + i],
7680 sizeof(p->macaddr));
7683 /* It's okay if we run out of space in our MAC address arena.
7684 * Some of the addresses we submit may get stored so we need
7685 * to run through the reply to see what the results were ...
7687 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7688 if (ret && ret != -FW_ENOMEM)
7689 break;
7691 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7692 u16 index = FW_VI_MAC_CMD_IDX_G(
7693 be16_to_cpu(p->valid_to_idx));
7695 if (idx)
7696 idx[offset + i] = (index >= max_naddr ?
7697 0xffff : index);
7698 if (index < max_naddr)
7699 nfilters++;
7700 else if (hash)
7701 *hash |= (1ULL <<
7702 hash_mac_addr(addr[offset + i]));
7705 free = false;
7706 offset += fw_naddr;
7707 rem -= fw_naddr;
7710 if (ret == 0 || ret == -FW_ENOMEM)
7711 ret = nfilters;
7712 return ret;
7716 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
7717 * @adap: the adapter
7718 * @mbox: mailbox to use for the FW command
7719 * @viid: the VI id
7720 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
7721 * @addr: the MAC address(es)
7722 * @sleep_ok: call is allowed to sleep
7724 * Frees the exact-match filter for each of the supplied addresses
7726 * Returns a negative error number or the number of filters freed.
7728 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7729 unsigned int viid, unsigned int naddr,
7730 const u8 **addr, bool sleep_ok)
7732 int offset, ret = 0;
7733 struct fw_vi_mac_cmd c;
7734 unsigned int nfilters = 0;
7735 unsigned int max_naddr = is_t4(adap->params.chip) ?
7736 NUM_MPS_CLS_SRAM_L_INSTANCES :
7737 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7738 unsigned int rem = naddr;
7740 if (naddr > max_naddr)
7741 return -EINVAL;
7743 for (offset = 0; offset < (int)naddr ; /**/) {
7744 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7745 ? rem
7746 : ARRAY_SIZE(c.u.exact));
7747 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7748 u.exact[fw_naddr]), 16);
7749 struct fw_vi_mac_exact *p;
7750 int i;
7752 memset(&c, 0, sizeof(c));
7753 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7754 FW_CMD_REQUEST_F |
7755 FW_CMD_WRITE_F |
7756 FW_CMD_EXEC_V(0) |
7757 FW_VI_MAC_CMD_VIID_V(viid));
7758 c.freemacs_to_len16 =
7759 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7760 FW_CMD_LEN16_V(len16));
7762 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7763 p->valid_to_idx = cpu_to_be16(
7764 FW_VI_MAC_CMD_VALID_F |
7765 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7766 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7769 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7770 if (ret)
7771 break;
7773 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7774 u16 index = FW_VI_MAC_CMD_IDX_G(
7775 be16_to_cpu(p->valid_to_idx));
7777 if (index < max_naddr)
7778 nfilters++;
7781 offset += fw_naddr;
7782 rem -= fw_naddr;
7785 if (ret == 0)
7786 ret = nfilters;
7787 return ret;
7791 * t4_change_mac - modifies the exact-match filter for a MAC address
7792 * @adap: the adapter
7793 * @mbox: mailbox to use for the FW command
7794 * @viid: the VI id
7795 * @idx: index of existing filter for old value of MAC address, or -1
7796 * @addr: the new MAC address value
7797 * @persist: whether a new MAC allocation should be persistent
7798 * @add_smt: if true also add the address to the HW SMT
7800 * Modifies an exact-match filter and sets it to the new MAC address.
7801 * Note that in general it is not possible to modify the value of a given
7802 * filter so the generic way to modify an address filter is to free the one
7803 * being used by the old address value and allocate a new filter for the
7804 * new address value. @idx can be -1 if the address is a new addition.
7806 * Returns a negative error number or the index of the filter with the new
7807 * MAC value.
7809 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7810 int idx, const u8 *addr, bool persist, bool add_smt)
7812 int ret, mode;
7813 struct fw_vi_mac_cmd c;
7814 struct fw_vi_mac_exact *p = c.u.exact;
7815 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7817 if (idx < 0) /* new allocation */
7818 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7819 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7821 memset(&c, 0, sizeof(c));
7822 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7823 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7824 FW_VI_MAC_CMD_VIID_V(viid));
7825 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7826 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7827 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7828 FW_VI_MAC_CMD_IDX_V(idx));
7829 memcpy(p->macaddr, addr, sizeof(p->macaddr));
7831 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7832 if (ret == 0) {
7833 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7834 if (ret >= max_mac_addr)
7835 ret = -ENOMEM;
7837 return ret;
7841 * t4_set_addr_hash - program the MAC inexact-match hash filter
7842 * @adap: the adapter
7843 * @mbox: mailbox to use for the FW command
7844 * @viid: the VI id
7845 * @ucast: whether the hash filter should also match unicast addresses
7846 * @vec: the value to be written to the hash filter
7847 * @sleep_ok: call is allowed to sleep
7849 * Sets the 64-bit inexact-match hash filter for a virtual interface.
7851 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7852 bool ucast, u64 vec, bool sleep_ok)
7854 struct fw_vi_mac_cmd c;
7856 memset(&c, 0, sizeof(c));
7857 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7858 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7859 FW_VI_ENABLE_CMD_VIID_V(viid));
7860 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7861 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7862 FW_CMD_LEN16_V(1));
7863 c.u.hash.hashvec = cpu_to_be64(vec);
7864 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7868 * t4_enable_vi_params - enable/disable a virtual interface
7869 * @adap: the adapter
7870 * @mbox: mailbox to use for the FW command
7871 * @viid: the VI id
7872 * @rx_en: 1=enable Rx, 0=disable Rx
7873 * @tx_en: 1=enable Tx, 0=disable Tx
7874 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
7876 * Enables/disables a virtual interface. Note that setting DCB Enable
7877 * only makes sense when enabling a Virtual Interface ...
7879 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7880 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7882 struct fw_vi_enable_cmd c;
7884 memset(&c, 0, sizeof(c));
7885 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7886 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7887 FW_VI_ENABLE_CMD_VIID_V(viid));
7888 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7889 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7890 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7891 FW_LEN16(c));
7892 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7896 * t4_enable_vi - enable/disable a virtual interface
7897 * @adap: the adapter
7898 * @mbox: mailbox to use for the FW command
7899 * @viid: the VI id
7900 * @rx_en: 1=enable Rx, 0=disable Rx
7901 * @tx_en: 1=enable Tx, 0=disable Tx
7903 * Enables/disables a virtual interface.
7905 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7906 bool rx_en, bool tx_en)
7908 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7912 * t4_identify_port - identify a VI's port by blinking its LED
7913 * @adap: the adapter
7914 * @mbox: mailbox to use for the FW command
7915 * @viid: the VI id
7916 * @nblinks: how many times to blink LED at 2.5 Hz
7918 * Identifies a VI's port by blinking its LED.
7920 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7921 unsigned int nblinks)
7923 struct fw_vi_enable_cmd c;
7925 memset(&c, 0, sizeof(c));
7926 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7927 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7928 FW_VI_ENABLE_CMD_VIID_V(viid));
7929 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7930 c.blinkdur = cpu_to_be16(nblinks);
7931 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7935 * t4_iq_stop - stop an ingress queue and its FLs
7936 * @adap: the adapter
7937 * @mbox: mailbox to use for the FW command
7938 * @pf: the PF owning the queues
7939 * @vf: the VF owning the queues
7940 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7941 * @iqid: ingress queue id
7942 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7943 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7945 * Stops an ingress queue and its associated FLs, if any. This causes
7946 * any current or future data/messages destined for these queues to be
7947 * tossed.
7949 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7950 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7951 unsigned int fl0id, unsigned int fl1id)
7953 struct fw_iq_cmd c;
7955 memset(&c, 0, sizeof(c));
7956 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7957 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7958 FW_IQ_CMD_VFN_V(vf));
7959 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7960 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7961 c.iqid = cpu_to_be16(iqid);
7962 c.fl0id = cpu_to_be16(fl0id);
7963 c.fl1id = cpu_to_be16(fl1id);
7964 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7968 * t4_iq_free - free an ingress queue and its FLs
7969 * @adap: the adapter
7970 * @mbox: mailbox to use for the FW command
7971 * @pf: the PF owning the queues
7972 * @vf: the VF owning the queues
7973 * @iqtype: the ingress queue type
7974 * @iqid: ingress queue id
7975 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7976 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7978 * Frees an ingress queue and its associated FLs, if any.
7980 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7981 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7982 unsigned int fl0id, unsigned int fl1id)
7984 struct fw_iq_cmd c;
7986 memset(&c, 0, sizeof(c));
7987 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7988 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7989 FW_IQ_CMD_VFN_V(vf));
7990 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7991 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7992 c.iqid = cpu_to_be16(iqid);
7993 c.fl0id = cpu_to_be16(fl0id);
7994 c.fl1id = cpu_to_be16(fl1id);
7995 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7999 * t4_eth_eq_free - free an Ethernet egress queue
8000 * @adap: the adapter
8001 * @mbox: mailbox to use for the FW command
8002 * @pf: the PF owning the queue
8003 * @vf: the VF owning the queue
8004 * @eqid: egress queue id
8006 * Frees an Ethernet egress queue.
8008 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8009 unsigned int vf, unsigned int eqid)
8011 struct fw_eq_eth_cmd c;
8013 memset(&c, 0, sizeof(c));
8014 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8015 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8016 FW_EQ_ETH_CMD_PFN_V(pf) |
8017 FW_EQ_ETH_CMD_VFN_V(vf));
8018 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8019 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8020 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8024 * t4_ctrl_eq_free - free a control egress queue
8025 * @adap: the adapter
8026 * @mbox: mailbox to use for the FW command
8027 * @pf: the PF owning the queue
8028 * @vf: the VF owning the queue
8029 * @eqid: egress queue id
8031 * Frees a control egress queue.
8033 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8034 unsigned int vf, unsigned int eqid)
8036 struct fw_eq_ctrl_cmd c;
8038 memset(&c, 0, sizeof(c));
8039 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8040 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8041 FW_EQ_CTRL_CMD_PFN_V(pf) |
8042 FW_EQ_CTRL_CMD_VFN_V(vf));
8043 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8044 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8045 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8049 * t4_ofld_eq_free - free an offload egress queue
8050 * @adap: the adapter
8051 * @mbox: mailbox to use for the FW command
8052 * @pf: the PF owning the queue
8053 * @vf: the VF owning the queue
8054 * @eqid: egress queue id
8056 * Frees a control egress queue.
8058 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8059 unsigned int vf, unsigned int eqid)
8061 struct fw_eq_ofld_cmd c;
8063 memset(&c, 0, sizeof(c));
8064 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8065 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8066 FW_EQ_OFLD_CMD_PFN_V(pf) |
8067 FW_EQ_OFLD_CMD_VFN_V(vf));
8068 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8069 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8070 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8074 * t4_link_down_rc_str - return a string for a Link Down Reason Code
8075 * @adap: the adapter
8076 * @link_down_rc: Link Down Reason Code
8078 * Returns a string representation of the Link Down Reason Code.
8080 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8082 static const char * const reason[] = {
8083 "Link Down",
8084 "Remote Fault",
8085 "Auto-negotiation Failure",
8086 "Reserved",
8087 "Insufficient Airflow",
8088 "Unable To Determine Reason",
8089 "No RX Signal Detected",
8090 "Reserved",
8093 if (link_down_rc >= ARRAY_SIZE(reason))
8094 return "Bad Reason Code";
8096 return reason[link_down_rc];
8100 * Return the highest speed set in the port capabilities, in Mb/s.
8102 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8104 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8105 do { \
8106 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8107 return __speed; \
8108 } while (0)
8110 TEST_SPEED_RETURN(400G, 400000);
8111 TEST_SPEED_RETURN(200G, 200000);
8112 TEST_SPEED_RETURN(100G, 100000);
8113 TEST_SPEED_RETURN(50G, 50000);
8114 TEST_SPEED_RETURN(40G, 40000);
8115 TEST_SPEED_RETURN(25G, 25000);
8116 TEST_SPEED_RETURN(10G, 10000);
8117 TEST_SPEED_RETURN(1G, 1000);
8118 TEST_SPEED_RETURN(100M, 100);
8120 #undef TEST_SPEED_RETURN
8122 return 0;
8126 * fwcap_to_fwspeed - return highest speed in Port Capabilities
8127 * @acaps: advertised Port Capabilities
8129 * Get the highest speed for the port from the advertised Port
8130 * Capabilities. It will be either the highest speed from the list of
8131 * speeds or whatever user has set using ethtool.
8133 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8135 #define TEST_SPEED_RETURN(__caps_speed) \
8136 do { \
8137 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8138 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8139 } while (0)
8141 TEST_SPEED_RETURN(400G);
8142 TEST_SPEED_RETURN(200G);
8143 TEST_SPEED_RETURN(100G);
8144 TEST_SPEED_RETURN(50G);
8145 TEST_SPEED_RETURN(40G);
8146 TEST_SPEED_RETURN(25G);
8147 TEST_SPEED_RETURN(10G);
8148 TEST_SPEED_RETURN(1G);
8149 TEST_SPEED_RETURN(100M);
8151 #undef TEST_SPEED_RETURN
8153 return 0;
8157 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8158 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8160 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8161 * 32-bit Port Capabilities value.
8163 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8165 fw_port_cap32_t linkattr = 0;
8167 /* Unfortunately the format of the Link Status in the old
8168 * 16-bit Port Information message isn't the same as the
8169 * 16-bit Port Capabilities bitfield used everywhere else ...
8171 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8172 linkattr |= FW_PORT_CAP32_FC_RX;
8173 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8174 linkattr |= FW_PORT_CAP32_FC_TX;
8175 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8176 linkattr |= FW_PORT_CAP32_SPEED_100M;
8177 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8178 linkattr |= FW_PORT_CAP32_SPEED_1G;
8179 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8180 linkattr |= FW_PORT_CAP32_SPEED_10G;
8181 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8182 linkattr |= FW_PORT_CAP32_SPEED_25G;
8183 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8184 linkattr |= FW_PORT_CAP32_SPEED_40G;
8185 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8186 linkattr |= FW_PORT_CAP32_SPEED_100G;
8188 return linkattr;
8192 * t4_handle_get_port_info - process a FW reply message
8193 * @pi: the port info
8194 * @rpl: start of the FW message
8196 * Processes a GET_PORT_INFO FW reply message.
8198 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8200 const struct fw_port_cmd *cmd = (const void *)rpl;
8201 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8202 struct adapter *adapter = pi->adapter;
8203 struct link_config *lc = &pi->link_cfg;
8204 int link_ok, linkdnrc;
8205 enum fw_port_type port_type;
8206 enum fw_port_module_type mod_type;
8207 unsigned int speed, fc, fec;
8208 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8210 /* Extract the various fields from the Port Information message.
8212 switch (action) {
8213 case FW_PORT_ACTION_GET_PORT_INFO: {
8214 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8216 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8217 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8218 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8219 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8220 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8221 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8222 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8223 linkattr = lstatus_to_fwcap(lstatus);
8224 break;
8227 case FW_PORT_ACTION_GET_PORT_INFO32: {
8228 u32 lstatus32;
8230 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8231 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8232 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8233 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8234 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8235 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8236 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8237 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8238 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8239 break;
8242 default:
8243 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8244 be32_to_cpu(cmd->action_to_len16));
8245 return;
8248 fec = fwcap_to_cc_fec(acaps);
8249 fc = fwcap_to_cc_pause(linkattr);
8250 speed = fwcap_to_speed(linkattr);
8252 if (mod_type != pi->mod_type) {
8253 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8254 * various fundamental Port Capabilities which used to be
8255 * immutable can now change radically. We can now have
8256 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8257 * all change based on what Transceiver Module is inserted.
8258 * So we need to record the Physical "Port" Capabilities on
8259 * every Transceiver Module change.
8261 lc->pcaps = pcaps;
8263 /* When a new Transceiver Module is inserted, the Firmware
8264 * will examine its i2c EPROM to determine its type and
8265 * general operating parameters including things like Forward
8266 * Error Control, etc. Various IEEE 802.3 standards dictate
8267 * how to interpret these i2c values to determine default
8268 * "sutomatic" settings. We record these for future use when
8269 * the user explicitly requests these standards-based values.
8271 lc->def_acaps = acaps;
8273 /* Some versions of the early T6 Firmware "cheated" when
8274 * handling different Transceiver Modules by changing the
8275 * underlaying Port Type reported to the Host Drivers. As
8276 * such we need to capture whatever Port Type the Firmware
8277 * sends us and record it in case it's different from what we
8278 * were told earlier. Unfortunately, since Firmware is
8279 * forever, we'll need to keep this code here forever, but in
8280 * later T6 Firmware it should just be an assignment of the
8281 * same value already recorded.
8283 pi->port_type = port_type;
8285 pi->mod_type = mod_type;
8286 t4_os_portmod_changed(adapter, pi->port_id);
8289 if (link_ok != lc->link_ok || speed != lc->speed ||
8290 fc != lc->fc || fec != lc->fec) { /* something changed */
8291 if (!link_ok && lc->link_ok) {
8292 lc->link_down_rc = linkdnrc;
8293 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8294 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8296 lc->link_ok = link_ok;
8297 lc->speed = speed;
8298 lc->fc = fc;
8299 lc->fec = fec;
8301 lc->lpacaps = lpacaps;
8302 lc->acaps = acaps & ADVERT_MASK;
8304 if (lc->acaps & FW_PORT_CAP32_ANEG) {
8305 lc->autoneg = AUTONEG_ENABLE;
8306 } else {
8307 /* When Autoneg is disabled, user needs to set
8308 * single speed.
8309 * Similar to cxgb4_ethtool.c: set_link_ksettings
8311 lc->acaps = 0;
8312 lc->speed_caps = fwcap_to_fwspeed(acaps);
8313 lc->autoneg = AUTONEG_DISABLE;
8316 t4_os_link_changed(adapter, pi->port_id, link_ok);
8321 * t4_update_port_info - retrieve and update port information if changed
8322 * @pi: the port_info
8324 * We issue a Get Port Information Command to the Firmware and, if
8325 * successful, we check to see if anything is different from what we
8326 * last recorded and update things accordingly.
8328 int t4_update_port_info(struct port_info *pi)
8330 unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8331 struct fw_port_cmd port_cmd;
8332 int ret;
8334 memset(&port_cmd, 0, sizeof(port_cmd));
8335 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8336 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8337 FW_PORT_CMD_PORTID_V(pi->tx_chan));
8338 port_cmd.action_to_len16 = cpu_to_be32(
8339 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8340 ? FW_PORT_ACTION_GET_PORT_INFO
8341 : FW_PORT_ACTION_GET_PORT_INFO32) |
8342 FW_LEN16(port_cmd));
8343 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8344 &port_cmd, sizeof(port_cmd), &port_cmd);
8345 if (ret)
8346 return ret;
8348 t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8349 return 0;
8353 * t4_get_link_params - retrieve basic link parameters for given port
8354 * @pi: the port
8355 * @link_okp: value return pointer for link up/down
8356 * @speedp: value return pointer for speed (Mb/s)
8357 * @mtup: value return pointer for mtu
8359 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8360 * and MTU for a specified port. A negative error is returned on
8361 * failure; 0 on success.
8363 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8364 unsigned int *speedp, unsigned int *mtup)
8366 unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8367 struct fw_port_cmd port_cmd;
8368 unsigned int action, link_ok, speed, mtu;
8369 fw_port_cap32_t linkattr;
8370 int ret;
8372 memset(&port_cmd, 0, sizeof(port_cmd));
8373 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8374 FW_CMD_REQUEST_F | FW_CMD_READ_F |
8375 FW_PORT_CMD_PORTID_V(pi->tx_chan));
8376 action = (fw_caps == FW_CAPS16
8377 ? FW_PORT_ACTION_GET_PORT_INFO
8378 : FW_PORT_ACTION_GET_PORT_INFO32);
8379 port_cmd.action_to_len16 = cpu_to_be32(
8380 FW_PORT_CMD_ACTION_V(action) |
8381 FW_LEN16(port_cmd));
8382 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8383 &port_cmd, sizeof(port_cmd), &port_cmd);
8384 if (ret)
8385 return ret;
8387 if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8388 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8390 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8391 linkattr = lstatus_to_fwcap(lstatus);
8392 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8393 } else {
8394 u32 lstatus32 =
8395 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8397 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8398 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8399 mtu = FW_PORT_CMD_MTU32_G(
8400 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8402 speed = fwcap_to_speed(linkattr);
8404 *link_okp = link_ok;
8405 *speedp = fwcap_to_speed(linkattr);
8406 *mtup = mtu;
8408 return 0;
8412 * t4_handle_fw_rpl - process a FW reply message
8413 * @adap: the adapter
8414 * @rpl: start of the FW message
8416 * Processes a FW message, such as link state change messages.
8418 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8420 u8 opcode = *(const u8 *)rpl;
8422 /* This might be a port command ... this simplifies the following
8423 * conditionals ... We can get away with pre-dereferencing
8424 * action_to_len16 because it's in the first 16 bytes and all messages
8425 * will be at least that long.
8427 const struct fw_port_cmd *p = (const void *)rpl;
8428 unsigned int action =
8429 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8431 if (opcode == FW_PORT_CMD &&
8432 (action == FW_PORT_ACTION_GET_PORT_INFO ||
8433 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8434 int i;
8435 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8436 struct port_info *pi = NULL;
8438 for_each_port(adap, i) {
8439 pi = adap2pinfo(adap, i);
8440 if (pi->tx_chan == chan)
8441 break;
8444 t4_handle_get_port_info(pi, rpl);
8445 } else {
8446 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8447 opcode);
8448 return -EINVAL;
8450 return 0;
8453 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8455 u16 val;
8457 if (pci_is_pcie(adapter->pdev)) {
8458 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8459 p->speed = val & PCI_EXP_LNKSTA_CLS;
8460 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8465 * init_link_config - initialize a link's SW state
8466 * @lc: pointer to structure holding the link state
8467 * @pcaps: link Port Capabilities
8468 * @acaps: link current Advertised Port Capabilities
8470 * Initializes the SW state maintained for each link, including the link's
8471 * capabilities and default speed/flow-control/autonegotiation settings.
8473 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8474 fw_port_cap32_t acaps)
8476 lc->pcaps = pcaps;
8477 lc->def_acaps = acaps;
8478 lc->lpacaps = 0;
8479 lc->speed_caps = 0;
8480 lc->speed = 0;
8481 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8483 /* For Forward Error Control, we default to whatever the Firmware
8484 * tells us the Link is currently advertising.
8486 lc->requested_fec = FEC_AUTO;
8487 lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8489 if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8490 lc->acaps = lc->pcaps & ADVERT_MASK;
8491 lc->autoneg = AUTONEG_ENABLE;
8492 lc->requested_fc |= PAUSE_AUTONEG;
8493 } else {
8494 lc->acaps = 0;
8495 lc->autoneg = AUTONEG_DISABLE;
8499 #define CIM_PF_NOACCESS 0xeeeeeeee
8501 int t4_wait_dev_ready(void __iomem *regs)
8503 u32 whoami;
8505 whoami = readl(regs + PL_WHOAMI_A);
8506 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8507 return 0;
8509 msleep(500);
8510 whoami = readl(regs + PL_WHOAMI_A);
8511 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8514 struct flash_desc {
8515 u32 vendor_and_model_id;
8516 u32 size_mb;
8519 static int t4_get_flash_params(struct adapter *adap)
8521 /* Table for non-Numonix supported flash parts. Numonix parts are left
8522 * to the preexisting code. All flash parts have 64KB sectors.
8524 static struct flash_desc supported_flash[] = {
8525 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
8528 unsigned int part, manufacturer;
8529 unsigned int density, size;
8530 u32 flashid = 0;
8531 int ret;
8533 /* Issue a Read ID Command to the Flash part. We decode supported
8534 * Flash parts and their sizes from this. There's a newer Query
8535 * Command which can retrieve detailed geometry information but many
8536 * Flash parts don't support it.
8539 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8540 if (!ret)
8541 ret = sf1_read(adap, 3, 0, 1, &flashid);
8542 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
8543 if (ret)
8544 return ret;
8546 /* Check to see if it's one of our non-standard supported Flash parts.
8548 for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8549 if (supported_flash[part].vendor_and_model_id == flashid) {
8550 adap->params.sf_size = supported_flash[part].size_mb;
8551 adap->params.sf_nsec =
8552 adap->params.sf_size / SF_SEC_SIZE;
8553 goto found;
8556 /* Decode Flash part size. The code below looks repetative with
8557 * common encodings, but that's not guaranteed in the JEDEC
8558 * specification for the Read JADEC ID command. The only thing that
8559 * we're guaranteed by the JADEC specification is where the
8560 * Manufacturer ID is in the returned result. After that each
8561 * Manufacturer ~could~ encode things completely differently.
8562 * Note, all Flash parts must have 64KB sectors.
8564 manufacturer = flashid & 0xff;
8565 switch (manufacturer) {
8566 case 0x20: { /* Micron/Numonix */
8567 /* This Density -> Size decoding table is taken from Micron
8568 * Data Sheets.
8570 density = (flashid >> 16) & 0xff;
8571 switch (density) {
8572 case 0x14: /* 1MB */
8573 size = 1 << 20;
8574 break;
8575 case 0x15: /* 2MB */
8576 size = 1 << 21;
8577 break;
8578 case 0x16: /* 4MB */
8579 size = 1 << 22;
8580 break;
8581 case 0x17: /* 8MB */
8582 size = 1 << 23;
8583 break;
8584 case 0x18: /* 16MB */
8585 size = 1 << 24;
8586 break;
8587 case 0x19: /* 32MB */
8588 size = 1 << 25;
8589 break;
8590 case 0x20: /* 64MB */
8591 size = 1 << 26;
8592 break;
8593 case 0x21: /* 128MB */
8594 size = 1 << 27;
8595 break;
8596 case 0x22: /* 256MB */
8597 size = 1 << 28;
8598 break;
8600 default:
8601 dev_err(adap->pdev_dev, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
8602 flashid, density);
8603 return -EINVAL;
8605 break;
8607 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8608 /* This Density -> Size decoding table is taken from ISSI
8609 * Data Sheets.
8611 density = (flashid >> 16) & 0xff;
8612 switch (density) {
8613 case 0x16: /* 32 MB */
8614 size = 1 << 25;
8615 break;
8616 case 0x17: /* 64MB */
8617 size = 1 << 26;
8618 break;
8619 default:
8620 dev_err(adap->pdev_dev, "ISSI Flash Part has bad size, ID = %#x, Density code = %#x\n",
8621 flashid, density);
8622 return -EINVAL;
8624 break;
8626 case 0xc2: { /* Macronix */
8627 /* This Density -> Size decoding table is taken from Macronix
8628 * Data Sheets.
8630 density = (flashid >> 16) & 0xff;
8631 switch (density) {
8632 case 0x17: /* 8MB */
8633 size = 1 << 23;
8634 break;
8635 case 0x18: /* 16MB */
8636 size = 1 << 24;
8637 break;
8638 default:
8639 dev_err(adap->pdev_dev, "Macronix Flash Part has bad size, ID = %#x, Density code = %#x\n",
8640 flashid, density);
8641 return -EINVAL;
8643 break;
8645 case 0xef: { /* Winbond */
8646 /* This Density -> Size decoding table is taken from Winbond
8647 * Data Sheets.
8649 density = (flashid >> 16) & 0xff;
8650 switch (density) {
8651 case 0x17: /* 8MB */
8652 size = 1 << 23;
8653 break;
8654 case 0x18: /* 16MB */
8655 size = 1 << 24;
8656 break;
8657 default:
8658 dev_err(adap->pdev_dev, "Winbond Flash Part has bad size, ID = %#x, Density code = %#x\n",
8659 flashid, density);
8660 return -EINVAL;
8662 break;
8664 default:
8665 dev_err(adap->pdev_dev, "Unsupported Flash Part, ID = %#x\n",
8666 flashid);
8667 return -EINVAL;
8670 /* Store decoded Flash size and fall through into vetting code. */
8671 adap->params.sf_size = size;
8672 adap->params.sf_nsec = size / SF_SEC_SIZE;
8674 found:
8675 if (adap->params.sf_size < FLASH_MIN_SIZE)
8676 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8677 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8678 return 0;
8682 * t4_prep_adapter - prepare SW and HW for operation
8683 * @adapter: the adapter
8684 * @reset: if true perform a HW reset
8686 * Initialize adapter SW state for the various HW modules, set initial
8687 * values for some adapter tunables, take PHYs out of reset, and
8688 * initialize the MDIO interface.
8690 int t4_prep_adapter(struct adapter *adapter)
8692 int ret, ver;
8693 uint16_t device_id;
8694 u32 pl_rev;
8696 get_pci_mode(adapter, &adapter->params.pci);
8697 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8699 ret = t4_get_flash_params(adapter);
8700 if (ret < 0) {
8701 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8702 return ret;
8705 /* Retrieve adapter's device ID
8707 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8708 ver = device_id >> 12;
8709 adapter->params.chip = 0;
8710 switch (ver) {
8711 case CHELSIO_T4:
8712 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8713 adapter->params.arch.sge_fl_db = DBPRIO_F;
8714 adapter->params.arch.mps_tcam_size =
8715 NUM_MPS_CLS_SRAM_L_INSTANCES;
8716 adapter->params.arch.mps_rplc_size = 128;
8717 adapter->params.arch.nchan = NCHAN;
8718 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8719 adapter->params.arch.vfcount = 128;
8720 /* Congestion map is for 4 channels so that
8721 * MPS can have 4 priority per port.
8723 adapter->params.arch.cng_ch_bits_log = 2;
8724 break;
8725 case CHELSIO_T5:
8726 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8727 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8728 adapter->params.arch.mps_tcam_size =
8729 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8730 adapter->params.arch.mps_rplc_size = 128;
8731 adapter->params.arch.nchan = NCHAN;
8732 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8733 adapter->params.arch.vfcount = 128;
8734 adapter->params.arch.cng_ch_bits_log = 2;
8735 break;
8736 case CHELSIO_T6:
8737 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8738 adapter->params.arch.sge_fl_db = 0;
8739 adapter->params.arch.mps_tcam_size =
8740 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8741 adapter->params.arch.mps_rplc_size = 256;
8742 adapter->params.arch.nchan = 2;
8743 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8744 adapter->params.arch.vfcount = 256;
8745 /* Congestion map will be for 2 channels so that
8746 * MPS can have 8 priority per port.
8748 adapter->params.arch.cng_ch_bits_log = 3;
8749 break;
8750 default:
8751 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8752 device_id);
8753 return -EINVAL;
8756 adapter->params.cim_la_size = CIMLA_SIZE;
8757 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8760 * Default port for debugging in case we can't reach FW.
8762 adapter->params.nports = 1;
8763 adapter->params.portvec = 1;
8764 adapter->params.vpd.cclk = 50000;
8766 /* Set PCIe completion timeout to 4 seconds. */
8767 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
8768 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
8769 return 0;
8773 * t4_shutdown_adapter - shut down adapter, host & wire
8774 * @adapter: the adapter
8776 * Perform an emergency shutdown of the adapter and stop it from
8777 * continuing any further communication on the ports or DMA to the
8778 * host. This is typically used when the adapter and/or firmware
8779 * have crashed and we want to prevent any further accidental
8780 * communication with the rest of the world. This will also force
8781 * the port Link Status to go down -- if register writes work --
8782 * which should help our peers figure out that we're down.
8784 int t4_shutdown_adapter(struct adapter *adapter)
8786 int port;
8788 t4_intr_disable(adapter);
8789 t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8790 for_each_port(adapter, port) {
8791 u32 a_port_cfg = is_t4(adapter->params.chip) ?
8792 PORT_REG(port, XGMAC_PORT_CFG_A) :
8793 T5_PORT_REG(port, MAC_PORT_CFG_A);
8795 t4_write_reg(adapter, a_port_cfg,
8796 t4_read_reg(adapter, a_port_cfg)
8797 & ~SIGNAL_DET_V(1));
8799 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8801 return 0;
8805 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8806 * @adapter: the adapter
8807 * @qid: the Queue ID
8808 * @qtype: the Ingress or Egress type for @qid
8809 * @user: true if this request is for a user mode queue
8810 * @pbar2_qoffset: BAR2 Queue Offset
8811 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8813 * Returns the BAR2 SGE Queue Registers information associated with the
8814 * indicated Absolute Queue ID. These are passed back in return value
8815 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8816 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8818 * This may return an error which indicates that BAR2 SGE Queue
8819 * registers aren't available. If an error is not returned, then the
8820 * following values are returned:
8822 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8823 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8825 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8826 * require the "Inferred Queue ID" ability may be used. E.g. the
8827 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8828 * then these "Inferred Queue ID" register may not be used.
8830 int t4_bar2_sge_qregs(struct adapter *adapter,
8831 unsigned int qid,
8832 enum t4_bar2_qtype qtype,
8833 int user,
8834 u64 *pbar2_qoffset,
8835 unsigned int *pbar2_qid)
8837 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8838 u64 bar2_page_offset, bar2_qoffset;
8839 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8841 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8842 if (!user && is_t4(adapter->params.chip))
8843 return -EINVAL;
8845 /* Get our SGE Page Size parameters.
8847 page_shift = adapter->params.sge.hps + 10;
8848 page_size = 1 << page_shift;
8850 /* Get the right Queues per Page parameters for our Queue.
8852 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8853 ? adapter->params.sge.eq_qpp
8854 : adapter->params.sge.iq_qpp);
8855 qpp_mask = (1 << qpp_shift) - 1;
8857 /* Calculate the basics of the BAR2 SGE Queue register area:
8858 * o The BAR2 page the Queue registers will be in.
8859 * o The BAR2 Queue ID.
8860 * o The BAR2 Queue ID Offset into the BAR2 page.
8862 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8863 bar2_qid = qid & qpp_mask;
8864 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8866 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
8867 * hardware will infer the Absolute Queue ID simply from the writes to
8868 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8869 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
8870 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8871 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8872 * from the BAR2 Page and BAR2 Queue ID.
8874 * One important censequence of this is that some BAR2 SGE registers
8875 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8876 * there. But other registers synthesize the SGE Queue ID purely
8877 * from the writes to the registers -- the Write Combined Doorbell
8878 * Buffer is a good example. These BAR2 SGE Registers are only
8879 * available for those BAR2 SGE Register areas where the SGE Absolute
8880 * Queue ID can be inferred from simple writes.
8882 bar2_qoffset = bar2_page_offset;
8883 bar2_qinferred = (bar2_qid_offset < page_size);
8884 if (bar2_qinferred) {
8885 bar2_qoffset += bar2_qid_offset;
8886 bar2_qid = 0;
8889 *pbar2_qoffset = bar2_qoffset;
8890 *pbar2_qid = bar2_qid;
8891 return 0;
8895 * t4_init_devlog_params - initialize adapter->params.devlog
8896 * @adap: the adapter
8898 * Initialize various fields of the adapter's Firmware Device Log
8899 * Parameters structure.
8901 int t4_init_devlog_params(struct adapter *adap)
8903 struct devlog_params *dparams = &adap->params.devlog;
8904 u32 pf_dparams;
8905 unsigned int devlog_meminfo;
8906 struct fw_devlog_cmd devlog_cmd;
8907 int ret;
8909 /* If we're dealing with newer firmware, the Device Log Paramerters
8910 * are stored in a designated register which allows us to access the
8911 * Device Log even if we can't talk to the firmware.
8913 pf_dparams =
8914 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8915 if (pf_dparams) {
8916 unsigned int nentries, nentries128;
8918 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8919 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8921 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8922 nentries = (nentries128 + 1) * 128;
8923 dparams->size = nentries * sizeof(struct fw_devlog_e);
8925 return 0;
8928 /* Otherwise, ask the firmware for it's Device Log Parameters.
8930 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8931 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8932 FW_CMD_REQUEST_F | FW_CMD_READ_F);
8933 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8934 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8935 &devlog_cmd);
8936 if (ret)
8937 return ret;
8939 devlog_meminfo =
8940 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8941 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8942 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8943 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8945 return 0;
8949 * t4_init_sge_params - initialize adap->params.sge
8950 * @adapter: the adapter
8952 * Initialize various fields of the adapter's SGE Parameters structure.
8954 int t4_init_sge_params(struct adapter *adapter)
8956 struct sge_params *sge_params = &adapter->params.sge;
8957 u32 hps, qpp;
8958 unsigned int s_hps, s_qpp;
8960 /* Extract the SGE Page Size for our PF.
8962 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8963 s_hps = (HOSTPAGESIZEPF0_S +
8964 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8965 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8967 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8969 s_qpp = (QUEUESPERPAGEPF0_S +
8970 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8971 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8972 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8973 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8974 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8976 return 0;
8980 * t4_init_tp_params - initialize adap->params.tp
8981 * @adap: the adapter
8982 * @sleep_ok: if true we may sleep while awaiting command completion
8984 * Initialize various fields of the adapter's TP Parameters structure.
8986 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8988 int chan;
8989 u32 v;
8991 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8992 adap->params.tp.tre = TIMERRESOLUTION_G(v);
8993 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8995 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8996 for (chan = 0; chan < NCHAN; chan++)
8997 adap->params.tp.tx_modq[chan] = chan;
8999 /* Cache the adapter's Compressed Filter Mode and global Incress
9000 * Configuration.
9002 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9003 TP_VLAN_PRI_MAP_A, sleep_ok);
9004 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9005 TP_INGRESS_CONFIG_A, sleep_ok);
9007 /* For T6, cache the adapter's compressed error vector
9008 * and passing outer header info for encapsulated packets.
9010 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9011 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9012 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9015 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9016 * shift positions of several elements of the Compressed Filter Tuple
9017 * for this adapter which we need frequently ...
9019 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9020 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9021 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9022 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9023 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9024 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9025 PROTOCOL_F);
9026 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9027 ETHERTYPE_F);
9028 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9029 MACMATCH_F);
9030 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9031 MPSHITTYPE_F);
9032 adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9033 FRAGMENTATION_F);
9035 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9036 * represents the presence of an Outer VLAN instead of a VNIC ID.
9038 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9039 adap->params.tp.vnic_shift = -1;
9041 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9042 adap->params.tp.hash_filter_mask = v;
9043 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9044 adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9045 return 0;
9049 * t4_filter_field_shift - calculate filter field shift
9050 * @adap: the adapter
9051 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9053 * Return the shift position of a filter field within the Compressed
9054 * Filter Tuple. The filter field is specified via its selection bit
9055 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
9057 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9059 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9060 unsigned int sel;
9061 int field_shift;
9063 if ((filter_mode & filter_sel) == 0)
9064 return -1;
9066 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9067 switch (filter_mode & sel) {
9068 case FCOE_F:
9069 field_shift += FT_FCOE_W;
9070 break;
9071 case PORT_F:
9072 field_shift += FT_PORT_W;
9073 break;
9074 case VNIC_ID_F:
9075 field_shift += FT_VNIC_ID_W;
9076 break;
9077 case VLAN_F:
9078 field_shift += FT_VLAN_W;
9079 break;
9080 case TOS_F:
9081 field_shift += FT_TOS_W;
9082 break;
9083 case PROTOCOL_F:
9084 field_shift += FT_PROTOCOL_W;
9085 break;
9086 case ETHERTYPE_F:
9087 field_shift += FT_ETHERTYPE_W;
9088 break;
9089 case MACMATCH_F:
9090 field_shift += FT_MACMATCH_W;
9091 break;
9092 case MPSHITTYPE_F:
9093 field_shift += FT_MPSHITTYPE_W;
9094 break;
9095 case FRAGMENTATION_F:
9096 field_shift += FT_FRAGMENTATION_W;
9097 break;
9100 return field_shift;
9103 int t4_init_rss_mode(struct adapter *adap, int mbox)
9105 int i, ret;
9106 struct fw_rss_vi_config_cmd rvc;
9108 memset(&rvc, 0, sizeof(rvc));
9110 for_each_port(adap, i) {
9111 struct port_info *p = adap2pinfo(adap, i);
9113 rvc.op_to_viid =
9114 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9115 FW_CMD_REQUEST_F | FW_CMD_READ_F |
9116 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9117 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9118 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9119 if (ret)
9120 return ret;
9121 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9123 return 0;
9127 * t4_init_portinfo - allocate a virtual interface and initialize port_info
9128 * @pi: the port_info
9129 * @mbox: mailbox to use for the FW command
9130 * @port: physical port associated with the VI
9131 * @pf: the PF owning the VI
9132 * @vf: the VF owning the VI
9133 * @mac: the MAC address of the VI
9135 * Allocates a virtual interface for the given physical port. If @mac is
9136 * not %NULL it contains the MAC address of the VI as assigned by FW.
9137 * @mac should be large enough to hold an Ethernet address.
9138 * Returns < 0 on error.
9140 int t4_init_portinfo(struct port_info *pi, int mbox,
9141 int port, int pf, int vf, u8 mac[])
9143 struct adapter *adapter = pi->adapter;
9144 unsigned int fw_caps = adapter->params.fw_caps_support;
9145 struct fw_port_cmd cmd;
9146 unsigned int rss_size;
9147 enum fw_port_type port_type;
9148 int mdio_addr;
9149 fw_port_cap32_t pcaps, acaps;
9150 int ret;
9152 /* If we haven't yet determined whether we're talking to Firmware
9153 * which knows the new 32-bit Port Capabilities, it's time to find
9154 * out now. This will also tell new Firmware to send us Port Status
9155 * Updates using the new 32-bit Port Capabilities version of the
9156 * Port Information message.
9158 if (fw_caps == FW_CAPS_UNKNOWN) {
9159 u32 param, val;
9161 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9162 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9163 val = 1;
9164 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9165 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9166 adapter->params.fw_caps_support = fw_caps;
9169 memset(&cmd, 0, sizeof(cmd));
9170 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9171 FW_CMD_REQUEST_F | FW_CMD_READ_F |
9172 FW_PORT_CMD_PORTID_V(port));
9173 cmd.action_to_len16 = cpu_to_be32(
9174 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9175 ? FW_PORT_ACTION_GET_PORT_INFO
9176 : FW_PORT_ACTION_GET_PORT_INFO32) |
9177 FW_LEN16(cmd));
9178 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9179 if (ret)
9180 return ret;
9182 /* Extract the various fields from the Port Information message.
9184 if (fw_caps == FW_CAPS16) {
9185 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9187 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9188 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9189 ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9190 : -1);
9191 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9192 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9193 } else {
9194 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9196 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9197 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9198 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9199 : -1);
9200 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9201 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9204 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
9205 if (ret < 0)
9206 return ret;
9208 pi->viid = ret;
9209 pi->tx_chan = port;
9210 pi->lport = port;
9211 pi->rss_size = rss_size;
9213 pi->port_type = port_type;
9214 pi->mdio_addr = mdio_addr;
9215 pi->mod_type = FW_PORT_MOD_TYPE_NA;
9217 init_link_config(&pi->link_cfg, pcaps, acaps);
9218 return 0;
9221 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9223 u8 addr[6];
9224 int ret, i, j = 0;
9226 for_each_port(adap, i) {
9227 struct port_info *pi = adap2pinfo(adap, i);
9229 while ((adap->params.portvec & (1 << j)) == 0)
9230 j++;
9232 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9233 if (ret)
9234 return ret;
9236 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9237 j++;
9239 return 0;
9243 * t4_read_cimq_cfg - read CIM queue configuration
9244 * @adap: the adapter
9245 * @base: holds the queue base addresses in bytes
9246 * @size: holds the queue sizes in bytes
9247 * @thres: holds the queue full thresholds in bytes
9249 * Returns the current configuration of the CIM queues, starting with
9250 * the IBQs, then the OBQs.
9252 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9254 unsigned int i, v;
9255 int cim_num_obq = is_t4(adap->params.chip) ?
9256 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9258 for (i = 0; i < CIM_NUM_IBQ; i++) {
9259 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9260 QUENUMSELECT_V(i));
9261 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9262 /* value is in 256-byte units */
9263 *base++ = CIMQBASE_G(v) * 256;
9264 *size++ = CIMQSIZE_G(v) * 256;
9265 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9267 for (i = 0; i < cim_num_obq; i++) {
9268 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9269 QUENUMSELECT_V(i));
9270 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9271 /* value is in 256-byte units */
9272 *base++ = CIMQBASE_G(v) * 256;
9273 *size++ = CIMQSIZE_G(v) * 256;
9278 * t4_read_cim_ibq - read the contents of a CIM inbound queue
9279 * @adap: the adapter
9280 * @qid: the queue index
9281 * @data: where to store the queue contents
9282 * @n: capacity of @data in 32-bit words
9284 * Reads the contents of the selected CIM queue starting at address 0 up
9285 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
9286 * error and the number of 32-bit words actually read on success.
9288 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9290 int i, err, attempts;
9291 unsigned int addr;
9292 const unsigned int nwords = CIM_IBQ_SIZE * 4;
9294 if (qid > 5 || (n & 3))
9295 return -EINVAL;
9297 addr = qid * nwords;
9298 if (n > nwords)
9299 n = nwords;
9301 /* It might take 3-10ms before the IBQ debug read access is allowed.
9302 * Wait for 1 Sec with a delay of 1 usec.
9304 attempts = 1000000;
9306 for (i = 0; i < n; i++, addr++) {
9307 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9308 IBQDBGEN_F);
9309 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9310 attempts, 1);
9311 if (err)
9312 return err;
9313 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9315 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9316 return i;
9320 * t4_read_cim_obq - read the contents of a CIM outbound queue
9321 * @adap: the adapter
9322 * @qid: the queue index
9323 * @data: where to store the queue contents
9324 * @n: capacity of @data in 32-bit words
9326 * Reads the contents of the selected CIM queue starting at address 0 up
9327 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
9328 * error and the number of 32-bit words actually read on success.
9330 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9332 int i, err;
9333 unsigned int addr, v, nwords;
9334 int cim_num_obq = is_t4(adap->params.chip) ?
9335 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9337 if ((qid > (cim_num_obq - 1)) || (n & 3))
9338 return -EINVAL;
9340 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9341 QUENUMSELECT_V(qid));
9342 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9344 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
9345 nwords = CIMQSIZE_G(v) * 64; /* same */
9346 if (n > nwords)
9347 n = nwords;
9349 for (i = 0; i < n; i++, addr++) {
9350 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9351 OBQDBGEN_F);
9352 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9353 2, 1);
9354 if (err)
9355 return err;
9356 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9358 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9359 return i;
9363 * t4_cim_read - read a block from CIM internal address space
9364 * @adap: the adapter
9365 * @addr: the start address within the CIM address space
9366 * @n: number of words to read
9367 * @valp: where to store the result
9369 * Reads a block of 4-byte words from the CIM intenal address space.
9371 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9372 unsigned int *valp)
9374 int ret = 0;
9376 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9377 return -EBUSY;
9379 for ( ; !ret && n--; addr += 4) {
9380 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9381 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9382 0, 5, 2);
9383 if (!ret)
9384 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9386 return ret;
9390 * t4_cim_write - write a block into CIM internal address space
9391 * @adap: the adapter
9392 * @addr: the start address within the CIM address space
9393 * @n: number of words to write
9394 * @valp: set of values to write
9396 * Writes a block of 4-byte words into the CIM intenal address space.
9398 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9399 const unsigned int *valp)
9401 int ret = 0;
9403 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9404 return -EBUSY;
9406 for ( ; !ret && n--; addr += 4) {
9407 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9408 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9409 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9410 0, 5, 2);
9412 return ret;
9415 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9416 unsigned int val)
9418 return t4_cim_write(adap, addr, 1, &val);
9422 * t4_cim_read_la - read CIM LA capture buffer
9423 * @adap: the adapter
9424 * @la_buf: where to store the LA data
9425 * @wrptr: the HW write pointer within the capture buffer
9427 * Reads the contents of the CIM LA buffer with the most recent entry at
9428 * the end of the returned data and with the entry at @wrptr first.
9429 * We try to leave the LA in the running state we find it in.
9431 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9433 int i, ret;
9434 unsigned int cfg, val, idx;
9436 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9437 if (ret)
9438 return ret;
9440 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
9441 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9442 if (ret)
9443 return ret;
9446 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9447 if (ret)
9448 goto restart;
9450 idx = UPDBGLAWRPTR_G(val);
9451 if (wrptr)
9452 *wrptr = idx;
9454 for (i = 0; i < adap->params.cim_la_size; i++) {
9455 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9456 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9457 if (ret)
9458 break;
9459 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9460 if (ret)
9461 break;
9462 if (val & UPDBGLARDEN_F) {
9463 ret = -ETIMEDOUT;
9464 break;
9466 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9467 if (ret)
9468 break;
9470 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9471 * identify the 32-bit portion of the full 312-bit data
9473 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9474 idx = (idx & 0xff0) + 0x10;
9475 else
9476 idx++;
9477 /* address can't exceed 0xfff */
9478 idx &= UPDBGLARDPTR_M;
9480 restart:
9481 if (cfg & UPDBGLAEN_F) {
9482 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9483 cfg & ~UPDBGLARDEN_F);
9484 if (!ret)
9485 ret = r;
9487 return ret;
9491 * t4_tp_read_la - read TP LA capture buffer
9492 * @adap: the adapter
9493 * @la_buf: where to store the LA data
9494 * @wrptr: the HW write pointer within the capture buffer
9496 * Reads the contents of the TP LA buffer with the most recent entry at
9497 * the end of the returned data and with the entry at @wrptr first.
9498 * We leave the LA in the running state we find it in.
9500 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9502 bool last_incomplete;
9503 unsigned int i, cfg, val, idx;
9505 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9506 if (cfg & DBGLAENABLE_F) /* freeze LA */
9507 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9508 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9510 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9511 idx = DBGLAWPTR_G(val);
9512 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9513 if (last_incomplete)
9514 idx = (idx + 1) & DBGLARPTR_M;
9515 if (wrptr)
9516 *wrptr = idx;
9518 val &= 0xffff;
9519 val &= ~DBGLARPTR_V(DBGLARPTR_M);
9520 val |= adap->params.tp.la_mask;
9522 for (i = 0; i < TPLA_SIZE; i++) {
9523 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9524 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9525 idx = (idx + 1) & DBGLARPTR_M;
9528 /* Wipe out last entry if it isn't valid */
9529 if (last_incomplete)
9530 la_buf[TPLA_SIZE - 1] = ~0ULL;
9532 if (cfg & DBGLAENABLE_F) /* restore running state */
9533 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9534 cfg | adap->params.tp.la_mask);
9537 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9538 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
9539 * state for more than the Warning Threshold then we'll issue a warning about
9540 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
9541 * appears to be hung every Warning Repeat second till the situation clears.
9542 * If the situation clears, we'll note that as well.
9544 #define SGE_IDMA_WARN_THRESH 1
9545 #define SGE_IDMA_WARN_REPEAT 300
9548 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9549 * @adapter: the adapter
9550 * @idma: the adapter IDMA Monitor state
9552 * Initialize the state of an SGE Ingress DMA Monitor.
9554 void t4_idma_monitor_init(struct adapter *adapter,
9555 struct sge_idma_monitor_state *idma)
9557 /* Initialize the state variables for detecting an SGE Ingress DMA
9558 * hang. The SGE has internal counters which count up on each clock
9559 * tick whenever the SGE finds its Ingress DMA State Engines in the
9560 * same state they were on the previous clock tick. The clock used is
9561 * the Core Clock so we have a limit on the maximum "time" they can
9562 * record; typically a very small number of seconds. For instance,
9563 * with a 600MHz Core Clock, we can only count up to a bit more than
9564 * 7s. So we'll synthesize a larger counter in order to not run the
9565 * risk of having the "timers" overflow and give us the flexibility to
9566 * maintain a Hung SGE State Machine of our own which operates across
9567 * a longer time frame.
9569 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9570 idma->idma_stalled[0] = 0;
9571 idma->idma_stalled[1] = 0;
9575 * t4_idma_monitor - monitor SGE Ingress DMA state
9576 * @adapter: the adapter
9577 * @idma: the adapter IDMA Monitor state
9578 * @hz: number of ticks/second
9579 * @ticks: number of ticks since the last IDMA Monitor call
9581 void t4_idma_monitor(struct adapter *adapter,
9582 struct sge_idma_monitor_state *idma,
9583 int hz, int ticks)
9585 int i, idma_same_state_cnt[2];
9587 /* Read the SGE Debug Ingress DMA Same State Count registers. These
9588 * are counters inside the SGE which count up on each clock when the
9589 * SGE finds its Ingress DMA State Engines in the same states they
9590 * were in the previous clock. The counters will peg out at
9591 * 0xffffffff without wrapping around so once they pass the 1s
9592 * threshold they'll stay above that till the IDMA state changes.
9594 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9595 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9596 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9598 for (i = 0; i < 2; i++) {
9599 u32 debug0, debug11;
9601 /* If the Ingress DMA Same State Counter ("timer") is less
9602 * than 1s, then we can reset our synthesized Stall Timer and
9603 * continue. If we have previously emitted warnings about a
9604 * potential stalled Ingress Queue, issue a note indicating
9605 * that the Ingress Queue has resumed forward progress.
9607 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9608 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9609 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9610 "resumed after %d seconds\n",
9611 i, idma->idma_qid[i],
9612 idma->idma_stalled[i] / hz);
9613 idma->idma_stalled[i] = 0;
9614 continue;
9617 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9618 * domain. The first time we get here it'll be because we
9619 * passed the 1s Threshold; each additional time it'll be
9620 * because the RX Timer Callback is being fired on its regular
9621 * schedule.
9623 * If the stall is below our Potential Hung Ingress Queue
9624 * Warning Threshold, continue.
9626 if (idma->idma_stalled[i] == 0) {
9627 idma->idma_stalled[i] = hz;
9628 idma->idma_warn[i] = 0;
9629 } else {
9630 idma->idma_stalled[i] += ticks;
9631 idma->idma_warn[i] -= ticks;
9634 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9635 continue;
9637 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9639 if (idma->idma_warn[i] > 0)
9640 continue;
9641 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9643 /* Read and save the SGE IDMA State and Queue ID information.
9644 * We do this every time in case it changes across time ...
9645 * can't be too careful ...
9647 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9648 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9649 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9651 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9652 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9653 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9655 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9656 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9657 i, idma->idma_qid[i], idma->idma_state[i],
9658 idma->idma_stalled[i] / hz,
9659 debug0, debug11);
9660 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9665 * t4_load_cfg - download config file
9666 * @adap: the adapter
9667 * @cfg_data: the cfg text file to write
9668 * @size: text file size
9670 * Write the supplied config text file to the card's serial flash.
9672 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9674 int ret, i, n, cfg_addr;
9675 unsigned int addr;
9676 unsigned int flash_cfg_start_sec;
9677 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9679 cfg_addr = t4_flash_cfg_addr(adap);
9680 if (cfg_addr < 0)
9681 return cfg_addr;
9683 addr = cfg_addr;
9684 flash_cfg_start_sec = addr / SF_SEC_SIZE;
9686 if (size > FLASH_CFG_MAX_SIZE) {
9687 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9688 FLASH_CFG_MAX_SIZE);
9689 return -EFBIG;
9692 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
9693 sf_sec_size);
9694 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9695 flash_cfg_start_sec + i - 1);
9696 /* If size == 0 then we're simply erasing the FLASH sectors associated
9697 * with the on-adapter Firmware Configuration File.
9699 if (ret || size == 0)
9700 goto out;
9702 /* this will write to the flash up to SF_PAGE_SIZE at a time */
9703 for (i = 0; i < size; i += SF_PAGE_SIZE) {
9704 if ((size - i) < SF_PAGE_SIZE)
9705 n = size - i;
9706 else
9707 n = SF_PAGE_SIZE;
9708 ret = t4_write_flash(adap, addr, n, cfg_data);
9709 if (ret)
9710 goto out;
9712 addr += SF_PAGE_SIZE;
9713 cfg_data += SF_PAGE_SIZE;
9716 out:
9717 if (ret)
9718 dev_err(adap->pdev_dev, "config file %s failed %d\n",
9719 (size == 0 ? "clear" : "download"), ret);
9720 return ret;
9724 * t4_set_vf_mac - Set MAC address for the specified VF
9725 * @adapter: The adapter
9726 * @vf: one of the VFs instantiated by the specified PF
9727 * @naddr: the number of MAC addresses
9728 * @addr: the MAC address(es) to be set to the specified VF
9730 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9731 unsigned int naddr, u8 *addr)
9733 struct fw_acl_mac_cmd cmd;
9735 memset(&cmd, 0, sizeof(cmd));
9736 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9737 FW_CMD_REQUEST_F |
9738 FW_CMD_WRITE_F |
9739 FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9740 FW_ACL_MAC_CMD_VFN_V(vf));
9742 /* Note: Do not enable the ACL */
9743 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9744 cmd.nmac = naddr;
9746 switch (adapter->pf) {
9747 case 3:
9748 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9749 break;
9750 case 2:
9751 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9752 break;
9753 case 1:
9754 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9755 break;
9756 case 0:
9757 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9758 break;
9761 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9765 * t4_read_pace_tbl - read the pace table
9766 * @adap: the adapter
9767 * @pace_vals: holds the returned values
9769 * Returns the values of TP's pace table in microseconds.
9771 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9773 unsigned int i, v;
9775 for (i = 0; i < NTX_SCHED; i++) {
9776 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
9777 v = t4_read_reg(adap, TP_PACE_TABLE_A);
9778 pace_vals[i] = dack_ticks_to_usec(adap, v);
9783 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9784 * @adap: the adapter
9785 * @sched: the scheduler index
9786 * @kbps: the byte rate in Kbps
9787 * @ipg: the interpacket delay in tenths of nanoseconds
9788 * @sleep_ok: if true we may sleep while awaiting command completion
9790 * Return the current configuration of a HW Tx scheduler.
9792 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
9793 unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
9795 unsigned int v, addr, bpt, cpt;
9797 if (kbps) {
9798 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
9799 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9800 if (sched & 1)
9801 v >>= 16;
9802 bpt = (v >> 8) & 0xff;
9803 cpt = v & 0xff;
9804 if (!cpt) {
9805 *kbps = 0; /* scheduler disabled */
9806 } else {
9807 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9808 *kbps = (v * bpt) / 125;
9811 if (ipg) {
9812 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
9813 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9814 if (sched & 1)
9815 v >>= 16;
9816 v &= 0xffff;
9817 *ipg = (10000 * v) / core_ticks_per_usec(adap);
9821 /* t4_sge_ctxt_rd - read an SGE context through FW
9822 * @adap: the adapter
9823 * @mbox: mailbox to use for the FW command
9824 * @cid: the context id
9825 * @ctype: the context type
9826 * @data: where to store the context data
9828 * Issues a FW command through the given mailbox to read an SGE context.
9830 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9831 enum ctxt_type ctype, u32 *data)
9833 struct fw_ldst_cmd c;
9834 int ret;
9836 if (ctype == CTXT_FLM)
9837 ret = FW_LDST_ADDRSPC_SGE_FLMC;
9838 else
9839 ret = FW_LDST_ADDRSPC_SGE_CONMC;
9841 memset(&c, 0, sizeof(c));
9842 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9843 FW_CMD_REQUEST_F | FW_CMD_READ_F |
9844 FW_LDST_CMD_ADDRSPACE_V(ret));
9845 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9846 c.u.idctxt.physid = cpu_to_be32(cid);
9848 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9849 if (ret == 0) {
9850 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9851 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9852 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9853 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9854 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9855 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9857 return ret;
9861 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9862 * @adap: the adapter
9863 * @cid: the context id
9864 * @ctype: the context type
9865 * @data: where to store the context data
9867 * Reads an SGE context directly, bypassing FW. This is only for
9868 * debugging when FW is unavailable.
9870 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
9871 enum ctxt_type ctype, u32 *data)
9873 int i, ret;
9875 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
9876 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
9877 if (!ret)
9878 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
9879 *data++ = t4_read_reg(adap, i);
9880 return ret;
9883 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9884 int rateunit, int ratemode, int channel, int class,
9885 int minrate, int maxrate, int weight, int pktsize)
9887 struct fw_sched_cmd cmd;
9889 memset(&cmd, 0, sizeof(cmd));
9890 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9891 FW_CMD_REQUEST_F |
9892 FW_CMD_WRITE_F);
9893 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9895 cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9896 cmd.u.params.type = type;
9897 cmd.u.params.level = level;
9898 cmd.u.params.mode = mode;
9899 cmd.u.params.ch = channel;
9900 cmd.u.params.cl = class;
9901 cmd.u.params.unit = rateunit;
9902 cmd.u.params.rate = ratemode;
9903 cmd.u.params.min = cpu_to_be32(minrate);
9904 cmd.u.params.max = cpu_to_be32(maxrate);
9905 cmd.u.params.weight = cpu_to_be16(weight);
9906 cmd.u.params.pktsize = cpu_to_be16(pktsize);
9908 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9909 NULL, 1);
9913 * t4_i2c_rd - read I2C data from adapter
9914 * @adap: the adapter
9915 * @port: Port number if per-port device; <0 if not
9916 * @devid: per-port device ID or absolute device ID
9917 * @offset: byte offset into device I2C space
9918 * @len: byte length of I2C space data
9919 * @buf: buffer in which to return I2C data
9921 * Reads the I2C data from the indicated device and location.
9923 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
9924 unsigned int devid, unsigned int offset,
9925 unsigned int len, u8 *buf)
9927 struct fw_ldst_cmd ldst_cmd, ldst_rpl;
9928 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
9929 int ret = 0;
9931 if (len > I2C_PAGE_SIZE)
9932 return -EINVAL;
9934 /* Dont allow reads that spans multiple pages */
9935 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
9936 return -EINVAL;
9938 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
9939 ldst_cmd.op_to_addrspace =
9940 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
9941 FW_CMD_REQUEST_F |
9942 FW_CMD_READ_F |
9943 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
9944 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
9945 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
9946 ldst_cmd.u.i2c.did = devid;
9948 while (len > 0) {
9949 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
9951 ldst_cmd.u.i2c.boffset = offset;
9952 ldst_cmd.u.i2c.blen = i2c_len;
9954 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
9955 &ldst_rpl);
9956 if (ret)
9957 break;
9959 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
9960 offset += i2c_len;
9961 buf += i2c_len;
9962 len -= i2c_len;
9965 return ret;
9969 * t4_set_vlan_acl - Set a VLAN id for the specified VF
9970 * @adapter: the adapter
9971 * @mbox: mailbox to use for the FW command
9972 * @vf: one of the VFs instantiated by the specified PF
9973 * @vlan: The vlanid to be set
9975 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
9976 u16 vlan)
9978 struct fw_acl_vlan_cmd vlan_cmd;
9979 unsigned int enable;
9981 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
9982 memset(&vlan_cmd, 0, sizeof(vlan_cmd));
9983 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
9984 FW_CMD_REQUEST_F |
9985 FW_CMD_WRITE_F |
9986 FW_CMD_EXEC_F |
9987 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
9988 FW_ACL_VLAN_CMD_VFN_V(vf));
9989 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
9990 /* Drop all packets that donot match vlan id */
9991 vlan_cmd.dropnovlan_fm = FW_ACL_VLAN_CMD_FM_F;
9992 if (enable != 0) {
9993 vlan_cmd.nvlan = 1;
9994 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
9997 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);