x86/boot: Rename overlapping memcpy() to memmove()
[linux/fpc-iii.git] / kernel / sched / rt.c
blobc41ea7ac1764b831fd015531c3d8f40d445bf8ae
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #include "sched.h"
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
11 int sched_rr_timeslice = RR_TIMESLICE;
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
15 struct rt_bandwidth def_rt_bandwidth;
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
79 void init_rt_rq(struct rt_rq *rt_rq)
81 struct rt_prio_array *array;
82 int i;
84 array = &rt_rq->active;
85 for (i = 0; i < MAX_RT_PRIO; i++) {
86 INIT_LIST_HEAD(array->queue + i);
87 __clear_bit(i, array->bitmap);
89 /* delimiter for bitsearch: */
90 __set_bit(MAX_RT_PRIO, array->bitmap);
92 #if defined CONFIG_SMP
93 rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 rt_rq->highest_prio.next = MAX_RT_PRIO;
95 rt_rq->rt_nr_migratory = 0;
96 rt_rq->overloaded = 0;
97 plist_head_init(&rt_rq->pushable_tasks);
99 #ifdef HAVE_RT_PUSH_IPI
100 rt_rq->push_flags = 0;
101 rt_rq->push_cpu = nr_cpu_ids;
102 raw_spin_lock_init(&rt_rq->push_lock);
103 init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106 /* We start is dequeued state, because no RT tasks are queued */
107 rt_rq->rt_queued = 0;
109 rt_rq->rt_time = 0;
110 rt_rq->rt_throttled = 0;
111 rt_rq->rt_runtime = 0;
112 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
118 hrtimer_cancel(&rt_b->rt_period_timer);
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128 return container_of(rt_se, struct task_struct, rt);
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
133 return rt_rq->rq;
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
138 return rt_se->rt_rq;
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
143 struct rt_rq *rt_rq = rt_se->rt_rq;
145 return rt_rq->rq;
148 void free_rt_sched_group(struct task_group *tg)
150 int i;
152 if (tg->rt_se)
153 destroy_rt_bandwidth(&tg->rt_bandwidth);
155 for_each_possible_cpu(i) {
156 if (tg->rt_rq)
157 kfree(tg->rt_rq[i]);
158 if (tg->rt_se)
159 kfree(tg->rt_se[i]);
162 kfree(tg->rt_rq);
163 kfree(tg->rt_se);
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 struct sched_rt_entity *rt_se, int cpu,
168 struct sched_rt_entity *parent)
170 struct rq *rq = cpu_rq(cpu);
172 rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 rt_rq->rt_nr_boosted = 0;
174 rt_rq->rq = rq;
175 rt_rq->tg = tg;
177 tg->rt_rq[cpu] = rt_rq;
178 tg->rt_se[cpu] = rt_se;
180 if (!rt_se)
181 return;
183 if (!parent)
184 rt_se->rt_rq = &rq->rt;
185 else
186 rt_se->rt_rq = parent->my_q;
188 rt_se->my_q = rt_rq;
189 rt_se->parent = parent;
190 INIT_LIST_HEAD(&rt_se->run_list);
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 struct rt_rq *rt_rq;
196 struct sched_rt_entity *rt_se;
197 int i;
199 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 if (!tg->rt_rq)
201 goto err;
202 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 if (!tg->rt_se)
204 goto err;
206 init_rt_bandwidth(&tg->rt_bandwidth,
207 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209 for_each_possible_cpu(i) {
210 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 GFP_KERNEL, cpu_to_node(i));
212 if (!rt_rq)
213 goto err;
215 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 GFP_KERNEL, cpu_to_node(i));
217 if (!rt_se)
218 goto err_free_rq;
220 init_rt_rq(rt_rq);
221 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
225 return 1;
227 err_free_rq:
228 kfree(rt_rq);
229 err:
230 return 0;
233 #else /* CONFIG_RT_GROUP_SCHED */
235 #define rt_entity_is_task(rt_se) (1)
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 return container_of(rt_se, struct task_struct, rt);
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 return container_of(rt_rq, struct rq, rt);
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 struct task_struct *p = rt_task_of(rt_se);
251 return task_rq(p);
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 struct rq *rq = rq_of_rt_se(rt_se);
258 return &rq->rt;
261 void free_rt_sched_group(struct task_group *tg) { }
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
265 return 1;
267 #endif /* CONFIG_RT_GROUP_SCHED */
269 #ifdef CONFIG_SMP
271 static void pull_rt_task(struct rq *this_rq);
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
275 /* Try to pull RT tasks here if we lower this rq's prio */
276 return rq->rt.highest_prio.curr > prev->prio;
279 static inline int rt_overloaded(struct rq *rq)
281 return atomic_read(&rq->rd->rto_count);
284 static inline void rt_set_overload(struct rq *rq)
286 if (!rq->online)
287 return;
289 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
291 * Make sure the mask is visible before we set
292 * the overload count. That is checked to determine
293 * if we should look at the mask. It would be a shame
294 * if we looked at the mask, but the mask was not
295 * updated yet.
297 * Matched by the barrier in pull_rt_task().
299 smp_wmb();
300 atomic_inc(&rq->rd->rto_count);
303 static inline void rt_clear_overload(struct rq *rq)
305 if (!rq->online)
306 return;
308 /* the order here really doesn't matter */
309 atomic_dec(&rq->rd->rto_count);
310 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
313 static void update_rt_migration(struct rt_rq *rt_rq)
315 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316 if (!rt_rq->overloaded) {
317 rt_set_overload(rq_of_rt_rq(rt_rq));
318 rt_rq->overloaded = 1;
320 } else if (rt_rq->overloaded) {
321 rt_clear_overload(rq_of_rt_rq(rt_rq));
322 rt_rq->overloaded = 0;
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
328 struct task_struct *p;
330 if (!rt_entity_is_task(rt_se))
331 return;
333 p = rt_task_of(rt_se);
334 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
336 rt_rq->rt_nr_total++;
337 if (p->nr_cpus_allowed > 1)
338 rt_rq->rt_nr_migratory++;
340 update_rt_migration(rt_rq);
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
345 struct task_struct *p;
347 if (!rt_entity_is_task(rt_se))
348 return;
350 p = rt_task_of(rt_se);
351 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
353 rt_rq->rt_nr_total--;
354 if (p->nr_cpus_allowed > 1)
355 rt_rq->rt_nr_migratory--;
357 update_rt_migration(rt_rq);
360 static inline int has_pushable_tasks(struct rq *rq)
362 return !plist_head_empty(&rq->rt.pushable_tasks);
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
371 static inline void queue_push_tasks(struct rq *rq)
373 if (!has_pushable_tasks(rq))
374 return;
376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 static inline void queue_pull_task(struct rq *rq)
381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 plist_node_init(&p->pushable_tasks, p->prio);
388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 /* Update the highest prio pushable task */
391 if (p->prio < rq->rt.highest_prio.next)
392 rq->rt.highest_prio.next = p->prio;
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
397 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
399 /* Update the new highest prio pushable task */
400 if (has_pushable_tasks(rq)) {
401 p = plist_first_entry(&rq->rt.pushable_tasks,
402 struct task_struct, pushable_tasks);
403 rq->rt.highest_prio.next = p->prio;
404 } else
405 rq->rt.highest_prio.next = MAX_RT_PRIO;
408 #else
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
430 return false;
433 static inline void pull_rt_task(struct rq *this_rq)
437 static inline void queue_push_tasks(struct rq *rq)
440 #endif /* CONFIG_SMP */
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
447 return rt_se->on_rq;
450 #ifdef CONFIG_RT_GROUP_SCHED
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
454 if (!rt_rq->tg)
455 return RUNTIME_INF;
457 return rt_rq->rt_runtime;
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
462 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
465 typedef struct task_group *rt_rq_iter_t;
467 static inline struct task_group *next_task_group(struct task_group *tg)
469 do {
470 tg = list_entry_rcu(tg->list.next,
471 typeof(struct task_group), list);
472 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
474 if (&tg->list == &task_groups)
475 tg = NULL;
477 return tg;
480 #define for_each_rt_rq(rt_rq, iter, rq) \
481 for (iter = container_of(&task_groups, typeof(*iter), list); \
482 (iter = next_task_group(iter)) && \
483 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
485 #define for_each_sched_rt_entity(rt_se) \
486 for (; rt_se; rt_se = rt_se->parent)
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
490 return rt_se->my_q;
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
498 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499 struct rq *rq = rq_of_rt_rq(rt_rq);
500 struct sched_rt_entity *rt_se;
502 int cpu = cpu_of(rq);
504 rt_se = rt_rq->tg->rt_se[cpu];
506 if (rt_rq->rt_nr_running) {
507 if (!rt_se)
508 enqueue_top_rt_rq(rt_rq);
509 else if (!on_rt_rq(rt_se))
510 enqueue_rt_entity(rt_se, 0);
512 if (rt_rq->highest_prio.curr < curr->prio)
513 resched_curr(rq);
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
519 struct sched_rt_entity *rt_se;
520 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
522 rt_se = rt_rq->tg->rt_se[cpu];
524 if (!rt_se)
525 dequeue_top_rt_rq(rt_rq);
526 else if (on_rt_rq(rt_se))
527 dequeue_rt_entity(rt_se, 0);
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
532 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
537 struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 struct task_struct *p;
540 if (rt_rq)
541 return !!rt_rq->rt_nr_boosted;
543 p = rt_task_of(rt_se);
544 return p->prio != p->normal_prio;
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
550 return this_rq()->rd->span;
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
555 return cpu_online_mask;
557 #endif
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
562 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
567 return &rt_rq->tg->rt_bandwidth;
570 #else /* !CONFIG_RT_GROUP_SCHED */
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
574 return rt_rq->rt_runtime;
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
579 return ktime_to_ns(def_rt_bandwidth.rt_period);
582 typedef struct rt_rq *rt_rq_iter_t;
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
587 #define for_each_sched_rt_entity(rt_se) \
588 for (; rt_se; rt_se = NULL)
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
592 return NULL;
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
597 struct rq *rq = rq_of_rt_rq(rt_rq);
599 if (!rt_rq->rt_nr_running)
600 return;
602 enqueue_top_rt_rq(rt_rq);
603 resched_curr(rq);
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
608 dequeue_top_rt_rq(rt_rq);
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 return rt_rq->rt_throttled;
616 static inline const struct cpumask *sched_rt_period_mask(void)
618 return cpu_online_mask;
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
624 return &cpu_rq(cpu)->rt;
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
629 return &def_rt_bandwidth;
632 #endif /* CONFIG_RT_GROUP_SCHED */
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
636 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
638 return (hrtimer_active(&rt_b->rt_period_timer) ||
639 rt_rq->rt_time < rt_b->rt_runtime);
642 #ifdef CONFIG_SMP
644 * We ran out of runtime, see if we can borrow some from our neighbours.
646 static void do_balance_runtime(struct rt_rq *rt_rq)
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650 int i, weight;
651 u64 rt_period;
653 weight = cpumask_weight(rd->span);
655 raw_spin_lock(&rt_b->rt_runtime_lock);
656 rt_period = ktime_to_ns(rt_b->rt_period);
657 for_each_cpu(i, rd->span) {
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
661 if (iter == rt_rq)
662 continue;
664 raw_spin_lock(&iter->rt_runtime_lock);
666 * Either all rqs have inf runtime and there's nothing to steal
667 * or __disable_runtime() below sets a specific rq to inf to
668 * indicate its been disabled and disalow stealing.
670 if (iter->rt_runtime == RUNTIME_INF)
671 goto next;
674 * From runqueues with spare time, take 1/n part of their
675 * spare time, but no more than our period.
677 diff = iter->rt_runtime - iter->rt_time;
678 if (diff > 0) {
679 diff = div_u64((u64)diff, weight);
680 if (rt_rq->rt_runtime + diff > rt_period)
681 diff = rt_period - rt_rq->rt_runtime;
682 iter->rt_runtime -= diff;
683 rt_rq->rt_runtime += diff;
684 if (rt_rq->rt_runtime == rt_period) {
685 raw_spin_unlock(&iter->rt_runtime_lock);
686 break;
689 next:
690 raw_spin_unlock(&iter->rt_runtime_lock);
692 raw_spin_unlock(&rt_b->rt_runtime_lock);
696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
698 static void __disable_runtime(struct rq *rq)
700 struct root_domain *rd = rq->rd;
701 rt_rq_iter_t iter;
702 struct rt_rq *rt_rq;
704 if (unlikely(!scheduler_running))
705 return;
707 for_each_rt_rq(rt_rq, iter, rq) {
708 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 s64 want;
710 int i;
712 raw_spin_lock(&rt_b->rt_runtime_lock);
713 raw_spin_lock(&rt_rq->rt_runtime_lock);
715 * Either we're all inf and nobody needs to borrow, or we're
716 * already disabled and thus have nothing to do, or we have
717 * exactly the right amount of runtime to take out.
719 if (rt_rq->rt_runtime == RUNTIME_INF ||
720 rt_rq->rt_runtime == rt_b->rt_runtime)
721 goto balanced;
722 raw_spin_unlock(&rt_rq->rt_runtime_lock);
725 * Calculate the difference between what we started out with
726 * and what we current have, that's the amount of runtime
727 * we lend and now have to reclaim.
729 want = rt_b->rt_runtime - rt_rq->rt_runtime;
732 * Greedy reclaim, take back as much as we can.
734 for_each_cpu(i, rd->span) {
735 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 s64 diff;
739 * Can't reclaim from ourselves or disabled runqueues.
741 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742 continue;
744 raw_spin_lock(&iter->rt_runtime_lock);
745 if (want > 0) {
746 diff = min_t(s64, iter->rt_runtime, want);
747 iter->rt_runtime -= diff;
748 want -= diff;
749 } else {
750 iter->rt_runtime -= want;
751 want -= want;
753 raw_spin_unlock(&iter->rt_runtime_lock);
755 if (!want)
756 break;
759 raw_spin_lock(&rt_rq->rt_runtime_lock);
761 * We cannot be left wanting - that would mean some runtime
762 * leaked out of the system.
764 BUG_ON(want);
765 balanced:
767 * Disable all the borrow logic by pretending we have inf
768 * runtime - in which case borrowing doesn't make sense.
770 rt_rq->rt_runtime = RUNTIME_INF;
771 rt_rq->rt_throttled = 0;
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 raw_spin_unlock(&rt_b->rt_runtime_lock);
775 /* Make rt_rq available for pick_next_task() */
776 sched_rt_rq_enqueue(rt_rq);
780 static void __enable_runtime(struct rq *rq)
782 rt_rq_iter_t iter;
783 struct rt_rq *rt_rq;
785 if (unlikely(!scheduler_running))
786 return;
789 * Reset each runqueue's bandwidth settings
791 for_each_rt_rq(rt_rq, iter, rq) {
792 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
794 raw_spin_lock(&rt_b->rt_runtime_lock);
795 raw_spin_lock(&rt_rq->rt_runtime_lock);
796 rt_rq->rt_runtime = rt_b->rt_runtime;
797 rt_rq->rt_time = 0;
798 rt_rq->rt_throttled = 0;
799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 raw_spin_unlock(&rt_b->rt_runtime_lock);
804 static void balance_runtime(struct rt_rq *rt_rq)
806 if (!sched_feat(RT_RUNTIME_SHARE))
807 return;
809 if (rt_rq->rt_time > rt_rq->rt_runtime) {
810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 do_balance_runtime(rt_rq);
812 raw_spin_lock(&rt_rq->rt_runtime_lock);
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
821 int i, idle = 1, throttled = 0;
822 const struct cpumask *span;
824 span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
827 * FIXME: isolated CPUs should really leave the root task group,
828 * whether they are isolcpus or were isolated via cpusets, lest
829 * the timer run on a CPU which does not service all runqueues,
830 * potentially leaving other CPUs indefinitely throttled. If
831 * isolation is really required, the user will turn the throttle
832 * off to kill the perturbations it causes anyway. Meanwhile,
833 * this maintains functionality for boot and/or troubleshooting.
835 if (rt_b == &root_task_group.rt_bandwidth)
836 span = cpu_online_mask;
837 #endif
838 for_each_cpu(i, span) {
839 int enqueue = 0;
840 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 struct rq *rq = rq_of_rt_rq(rt_rq);
843 raw_spin_lock(&rq->lock);
844 if (rt_rq->rt_time) {
845 u64 runtime;
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
848 if (rt_rq->rt_throttled)
849 balance_runtime(rt_rq);
850 runtime = rt_rq->rt_runtime;
851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 rt_rq->rt_throttled = 0;
854 enqueue = 1;
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
861 * 'runtime'.
863 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864 rq_clock_skip_update(rq, false);
866 if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 idle = 0;
868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
869 } else if (rt_rq->rt_nr_running) {
870 idle = 0;
871 if (!rt_rq_throttled(rt_rq))
872 enqueue = 1;
874 if (rt_rq->rt_throttled)
875 throttled = 1;
877 if (enqueue)
878 sched_rt_rq_enqueue(rt_rq);
879 raw_spin_unlock(&rq->lock);
882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 return 1;
885 return idle;
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
890 #ifdef CONFIG_RT_GROUP_SCHED
891 struct rt_rq *rt_rq = group_rt_rq(rt_se);
893 if (rt_rq)
894 return rt_rq->highest_prio.curr;
895 #endif
897 return rt_task_of(rt_se)->prio;
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
902 u64 runtime = sched_rt_runtime(rt_rq);
904 if (rt_rq->rt_throttled)
905 return rt_rq_throttled(rt_rq);
907 if (runtime >= sched_rt_period(rt_rq))
908 return 0;
910 balance_runtime(rt_rq);
911 runtime = sched_rt_runtime(rt_rq);
912 if (runtime == RUNTIME_INF)
913 return 0;
915 if (rt_rq->rt_time > runtime) {
916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
922 if (likely(rt_b->rt_runtime)) {
923 rt_rq->rt_throttled = 1;
924 printk_deferred_once("sched: RT throttling activated\n");
925 } else {
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
929 * with exactly 0 ns.
931 rt_rq->rt_time = 0;
934 if (rt_rq_throttled(rt_rq)) {
935 sched_rt_rq_dequeue(rt_rq);
936 return 1;
940 return 0;
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
947 static void update_curr_rt(struct rq *rq)
949 struct task_struct *curr = rq->curr;
950 struct sched_rt_entity *rt_se = &curr->rt;
951 u64 delta_exec;
953 if (curr->sched_class != &rt_sched_class)
954 return;
956 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
957 if (cpu_of(rq) == smp_processor_id())
958 cpufreq_trigger_update(rq_clock(rq));
960 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
961 if (unlikely((s64)delta_exec <= 0))
962 return;
964 schedstat_set(curr->se.statistics.exec_max,
965 max(curr->se.statistics.exec_max, delta_exec));
967 curr->se.sum_exec_runtime += delta_exec;
968 account_group_exec_runtime(curr, delta_exec);
970 curr->se.exec_start = rq_clock_task(rq);
971 cpuacct_charge(curr, delta_exec);
973 sched_rt_avg_update(rq, delta_exec);
975 if (!rt_bandwidth_enabled())
976 return;
978 for_each_sched_rt_entity(rt_se) {
979 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
981 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
982 raw_spin_lock(&rt_rq->rt_runtime_lock);
983 rt_rq->rt_time += delta_exec;
984 if (sched_rt_runtime_exceeded(rt_rq))
985 resched_curr(rq);
986 raw_spin_unlock(&rt_rq->rt_runtime_lock);
991 static void
992 dequeue_top_rt_rq(struct rt_rq *rt_rq)
994 struct rq *rq = rq_of_rt_rq(rt_rq);
996 BUG_ON(&rq->rt != rt_rq);
998 if (!rt_rq->rt_queued)
999 return;
1001 BUG_ON(!rq->nr_running);
1003 sub_nr_running(rq, rt_rq->rt_nr_running);
1004 rt_rq->rt_queued = 0;
1007 static void
1008 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1010 struct rq *rq = rq_of_rt_rq(rt_rq);
1012 BUG_ON(&rq->rt != rt_rq);
1014 if (rt_rq->rt_queued)
1015 return;
1016 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017 return;
1019 add_nr_running(rq, rt_rq->rt_nr_running);
1020 rt_rq->rt_queued = 1;
1023 #if defined CONFIG_SMP
1025 static void
1026 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1030 #ifdef CONFIG_RT_GROUP_SCHED
1032 * Change rq's cpupri only if rt_rq is the top queue.
1034 if (&rq->rt != rt_rq)
1035 return;
1036 #endif
1037 if (rq->online && prio < prev_prio)
1038 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1041 static void
1042 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1044 struct rq *rq = rq_of_rt_rq(rt_rq);
1046 #ifdef CONFIG_RT_GROUP_SCHED
1048 * Change rq's cpupri only if rt_rq is the top queue.
1050 if (&rq->rt != rt_rq)
1051 return;
1052 #endif
1053 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1057 #else /* CONFIG_SMP */
1059 static inline
1060 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061 static inline
1062 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1064 #endif /* CONFIG_SMP */
1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1067 static void
1068 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1070 int prev_prio = rt_rq->highest_prio.curr;
1072 if (prio < prev_prio)
1073 rt_rq->highest_prio.curr = prio;
1075 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1078 static void
1079 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1081 int prev_prio = rt_rq->highest_prio.curr;
1083 if (rt_rq->rt_nr_running) {
1085 WARN_ON(prio < prev_prio);
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
1091 if (prio == prev_prio) {
1092 struct rt_prio_array *array = &rt_rq->active;
1094 rt_rq->highest_prio.curr =
1095 sched_find_first_bit(array->bitmap);
1098 } else
1099 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1101 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1104 #else
1106 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1111 #ifdef CONFIG_RT_GROUP_SCHED
1113 static void
1114 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1116 if (rt_se_boosted(rt_se))
1117 rt_rq->rt_nr_boosted++;
1119 if (rt_rq->tg)
1120 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1123 static void
1124 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted--;
1129 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1132 #else /* CONFIG_RT_GROUP_SCHED */
1134 static void
1135 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 start_rt_bandwidth(&def_rt_bandwidth);
1140 static inline
1141 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1143 #endif /* CONFIG_RT_GROUP_SCHED */
1145 static inline
1146 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1148 struct rt_rq *group_rq = group_rt_rq(rt_se);
1150 if (group_rq)
1151 return group_rq->rt_nr_running;
1152 else
1153 return 1;
1156 static inline
1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1159 struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 struct task_struct *tsk;
1162 if (group_rq)
1163 return group_rq->rr_nr_running;
1165 tsk = rt_task_of(rt_se);
1167 return (tsk->policy == SCHED_RR) ? 1 : 0;
1170 static inline
1171 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1173 int prio = rt_se_prio(rt_se);
1175 WARN_ON(!rt_prio(prio));
1176 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1177 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1179 inc_rt_prio(rt_rq, prio);
1180 inc_rt_migration(rt_se, rt_rq);
1181 inc_rt_group(rt_se, rt_rq);
1184 static inline
1185 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188 WARN_ON(!rt_rq->rt_nr_running);
1189 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1190 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1192 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193 dec_rt_migration(rt_se, rt_rq);
1194 dec_rt_group(rt_se, rt_rq);
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1200 * assumes ENQUEUE/DEQUEUE flags match
1202 static inline bool move_entity(unsigned int flags)
1204 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205 return false;
1207 return true;
1210 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1212 list_del_init(&rt_se->run_list);
1214 if (list_empty(array->queue + rt_se_prio(rt_se)))
1215 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1217 rt_se->on_list = 0;
1220 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223 struct rt_prio_array *array = &rt_rq->active;
1224 struct rt_rq *group_rq = group_rt_rq(rt_se);
1225 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1231 * active members.
1233 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234 if (rt_se->on_list)
1235 __delist_rt_entity(rt_se, array);
1236 return;
1239 if (move_entity(flags)) {
1240 WARN_ON_ONCE(rt_se->on_list);
1241 if (flags & ENQUEUE_HEAD)
1242 list_add(&rt_se->run_list, queue);
1243 else
1244 list_add_tail(&rt_se->run_list, queue);
1246 __set_bit(rt_se_prio(rt_se), array->bitmap);
1247 rt_se->on_list = 1;
1249 rt_se->on_rq = 1;
1251 inc_rt_tasks(rt_se, rt_rq);
1254 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1256 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257 struct rt_prio_array *array = &rt_rq->active;
1259 if (move_entity(flags)) {
1260 WARN_ON_ONCE(!rt_se->on_list);
1261 __delist_rt_entity(rt_se, array);
1263 rt_se->on_rq = 0;
1265 dec_rt_tasks(rt_se, rt_rq);
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
1272 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1274 struct sched_rt_entity *back = NULL;
1276 for_each_sched_rt_entity(rt_se) {
1277 rt_se->back = back;
1278 back = rt_se;
1281 dequeue_top_rt_rq(rt_rq_of_se(back));
1283 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284 if (on_rt_rq(rt_se))
1285 __dequeue_rt_entity(rt_se, flags);
1289 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1291 struct rq *rq = rq_of_rt_se(rt_se);
1293 dequeue_rt_stack(rt_se, flags);
1294 for_each_sched_rt_entity(rt_se)
1295 __enqueue_rt_entity(rt_se, flags);
1296 enqueue_top_rt_rq(&rq->rt);
1299 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1301 struct rq *rq = rq_of_rt_se(rt_se);
1303 dequeue_rt_stack(rt_se, flags);
1305 for_each_sched_rt_entity(rt_se) {
1306 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1308 if (rt_rq && rt_rq->rt_nr_running)
1309 __enqueue_rt_entity(rt_se, flags);
1311 enqueue_top_rt_rq(&rq->rt);
1315 * Adding/removing a task to/from a priority array:
1317 static void
1318 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1320 struct sched_rt_entity *rt_se = &p->rt;
1322 if (flags & ENQUEUE_WAKEUP)
1323 rt_se->timeout = 0;
1325 enqueue_rt_entity(rt_se, flags);
1327 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1328 enqueue_pushable_task(rq, p);
1331 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1333 struct sched_rt_entity *rt_se = &p->rt;
1335 update_curr_rt(rq);
1336 dequeue_rt_entity(rt_se, flags);
1338 dequeue_pushable_task(rq, p);
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
1345 static void
1346 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1348 if (on_rt_rq(rt_se)) {
1349 struct rt_prio_array *array = &rt_rq->active;
1350 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1352 if (head)
1353 list_move(&rt_se->run_list, queue);
1354 else
1355 list_move_tail(&rt_se->run_list, queue);
1359 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1361 struct sched_rt_entity *rt_se = &p->rt;
1362 struct rt_rq *rt_rq;
1364 for_each_sched_rt_entity(rt_se) {
1365 rt_rq = rt_rq_of_se(rt_se);
1366 requeue_rt_entity(rt_rq, rt_se, head);
1370 static void yield_task_rt(struct rq *rq)
1372 requeue_task_rt(rq, rq->curr, 0);
1375 #ifdef CONFIG_SMP
1376 static int find_lowest_rq(struct task_struct *task);
1378 static int
1379 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1381 struct task_struct *curr;
1382 struct rq *rq;
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386 goto out;
1388 rq = cpu_rq(cpu);
1390 rcu_read_lock();
1391 curr = READ_ONCE(rq->curr); /* unlocked access */
1394 * If the current task on @p's runqueue is an RT task, then
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1405 * lock?
1407 * For equal prio tasks, we just let the scheduler sort it out.
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
1415 if (curr && unlikely(rt_task(curr)) &&
1416 (curr->nr_cpus_allowed < 2 ||
1417 curr->prio <= p->prio)) {
1418 int target = find_lowest_rq(p);
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1424 if (target != -1 &&
1425 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1426 cpu = target;
1428 rcu_read_unlock();
1430 out:
1431 return cpu;
1434 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1440 if (rq->curr->nr_cpus_allowed == 1 ||
1441 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1442 return;
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1448 if (p->nr_cpus_allowed != 1
1449 && cpupri_find(&rq->rd->cpupri, p, NULL))
1450 return;
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1457 requeue_task_rt(rq, p, 1);
1458 resched_curr(rq);
1461 #endif /* CONFIG_SMP */
1464 * Preempt the current task with a newly woken task if needed:
1466 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1468 if (p->prio < rq->curr->prio) {
1469 resched_curr(rq);
1470 return;
1473 #ifdef CONFIG_SMP
1475 * If:
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1484 * task.
1486 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1487 check_preempt_equal_prio(rq, p);
1488 #endif
1491 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492 struct rt_rq *rt_rq)
1494 struct rt_prio_array *array = &rt_rq->active;
1495 struct sched_rt_entity *next = NULL;
1496 struct list_head *queue;
1497 int idx;
1499 idx = sched_find_first_bit(array->bitmap);
1500 BUG_ON(idx >= MAX_RT_PRIO);
1502 queue = array->queue + idx;
1503 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1505 return next;
1508 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1510 struct sched_rt_entity *rt_se;
1511 struct task_struct *p;
1512 struct rt_rq *rt_rq = &rq->rt;
1514 do {
1515 rt_se = pick_next_rt_entity(rq, rt_rq);
1516 BUG_ON(!rt_se);
1517 rt_rq = group_rt_rq(rt_se);
1518 } while (rt_rq);
1520 p = rt_task_of(rt_se);
1521 p->se.exec_start = rq_clock_task(rq);
1523 return p;
1526 static struct task_struct *
1527 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1529 struct task_struct *p;
1530 struct rt_rq *rt_rq = &rq->rt;
1532 if (need_pull_rt_task(rq, prev)) {
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1539 lockdep_unpin_lock(&rq->lock);
1540 pull_rt_task(rq);
1541 lockdep_pin_lock(&rq->lock);
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
1547 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1548 rq->dl.dl_nr_running))
1549 return RETRY_TASK;
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1556 if (prev->sched_class == &rt_sched_class)
1557 update_curr_rt(rq);
1559 if (!rt_rq->rt_queued)
1560 return NULL;
1562 put_prev_task(rq, prev);
1564 p = _pick_next_task_rt(rq);
1566 /* The running task is never eligible for pushing */
1567 dequeue_pushable_task(rq, p);
1569 queue_push_tasks(rq);
1571 return p;
1574 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1576 update_curr_rt(rq);
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1582 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1583 enqueue_pushable_task(rq, p);
1586 #ifdef CONFIG_SMP
1588 /* Only try algorithms three times */
1589 #define RT_MAX_TRIES 3
1591 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1593 if (!task_running(rq, p) &&
1594 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1595 return 1;
1596 return 0;
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1603 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1605 struct plist_head *head = &rq->rt.pushable_tasks;
1606 struct task_struct *p;
1608 if (!has_pushable_tasks(rq))
1609 return NULL;
1611 plist_for_each_entry(p, head, pushable_tasks) {
1612 if (pick_rt_task(rq, p, cpu))
1613 return p;
1616 return NULL;
1619 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1621 static int find_lowest_rq(struct task_struct *task)
1623 struct sched_domain *sd;
1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1625 int this_cpu = smp_processor_id();
1626 int cpu = task_cpu(task);
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask))
1630 return -1;
1632 if (task->nr_cpus_allowed == 1)
1633 return -1; /* No other targets possible */
1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 return -1; /* No targets found */
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1646 if (cpumask_test_cpu(cpu, lowest_mask))
1647 return cpu;
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1653 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1656 rcu_read_lock();
1657 for_each_domain(cpu, sd) {
1658 if (sd->flags & SD_WAKE_AFFINE) {
1659 int best_cpu;
1662 * "this_cpu" is cheaper to preempt than a
1663 * remote processor.
1665 if (this_cpu != -1 &&
1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 rcu_read_unlock();
1668 return this_cpu;
1671 best_cpu = cpumask_first_and(lowest_mask,
1672 sched_domain_span(sd));
1673 if (best_cpu < nr_cpu_ids) {
1674 rcu_read_unlock();
1675 return best_cpu;
1679 rcu_read_unlock();
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1684 * locations.
1686 if (this_cpu != -1)
1687 return this_cpu;
1689 cpu = cpumask_any(lowest_mask);
1690 if (cpu < nr_cpu_ids)
1691 return cpu;
1692 return -1;
1695 /* Will lock the rq it finds */
1696 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1698 struct rq *lowest_rq = NULL;
1699 int tries;
1700 int cpu;
1702 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703 cpu = find_lowest_rq(task);
1705 if ((cpu == -1) || (cpu == rq->cpu))
1706 break;
1708 lowest_rq = cpu_rq(cpu);
1710 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1716 lowest_rq = NULL;
1717 break;
1720 /* if the prio of this runqueue changed, try again */
1721 if (double_lock_balance(rq, lowest_rq)) {
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1728 if (unlikely(task_rq(task) != rq ||
1729 !cpumask_test_cpu(lowest_rq->cpu,
1730 tsk_cpus_allowed(task)) ||
1731 task_running(rq, task) ||
1732 !task_on_rq_queued(task))) {
1734 double_unlock_balance(rq, lowest_rq);
1735 lowest_rq = NULL;
1736 break;
1740 /* If this rq is still suitable use it. */
1741 if (lowest_rq->rt.highest_prio.curr > task->prio)
1742 break;
1744 /* try again */
1745 double_unlock_balance(rq, lowest_rq);
1746 lowest_rq = NULL;
1749 return lowest_rq;
1752 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754 struct task_struct *p;
1756 if (!has_pushable_tasks(rq))
1757 return NULL;
1759 p = plist_first_entry(&rq->rt.pushable_tasks,
1760 struct task_struct, pushable_tasks);
1762 BUG_ON(rq->cpu != task_cpu(p));
1763 BUG_ON(task_current(rq, p));
1764 BUG_ON(p->nr_cpus_allowed <= 1);
1766 BUG_ON(!task_on_rq_queued(p));
1767 BUG_ON(!rt_task(p));
1769 return p;
1773 * If the current CPU has more than one RT task, see if the non
1774 * running task can migrate over to a CPU that is running a task
1775 * of lesser priority.
1777 static int push_rt_task(struct rq *rq)
1779 struct task_struct *next_task;
1780 struct rq *lowest_rq;
1781 int ret = 0;
1783 if (!rq->rt.overloaded)
1784 return 0;
1786 next_task = pick_next_pushable_task(rq);
1787 if (!next_task)
1788 return 0;
1790 retry:
1791 if (unlikely(next_task == rq->curr)) {
1792 WARN_ON(1);
1793 return 0;
1797 * It's possible that the next_task slipped in of
1798 * higher priority than current. If that's the case
1799 * just reschedule current.
1801 if (unlikely(next_task->prio < rq->curr->prio)) {
1802 resched_curr(rq);
1803 return 0;
1806 /* We might release rq lock */
1807 get_task_struct(next_task);
1809 /* find_lock_lowest_rq locks the rq if found */
1810 lowest_rq = find_lock_lowest_rq(next_task, rq);
1811 if (!lowest_rq) {
1812 struct task_struct *task;
1814 * find_lock_lowest_rq releases rq->lock
1815 * so it is possible that next_task has migrated.
1817 * We need to make sure that the task is still on the same
1818 * run-queue and is also still the next task eligible for
1819 * pushing.
1821 task = pick_next_pushable_task(rq);
1822 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1824 * The task hasn't migrated, and is still the next
1825 * eligible task, but we failed to find a run-queue
1826 * to push it to. Do not retry in this case, since
1827 * other cpus will pull from us when ready.
1829 goto out;
1832 if (!task)
1833 /* No more tasks, just exit */
1834 goto out;
1837 * Something has shifted, try again.
1839 put_task_struct(next_task);
1840 next_task = task;
1841 goto retry;
1844 deactivate_task(rq, next_task, 0);
1845 set_task_cpu(next_task, lowest_rq->cpu);
1846 activate_task(lowest_rq, next_task, 0);
1847 ret = 1;
1849 resched_curr(lowest_rq);
1851 double_unlock_balance(rq, lowest_rq);
1853 out:
1854 put_task_struct(next_task);
1856 return ret;
1859 static void push_rt_tasks(struct rq *rq)
1861 /* push_rt_task will return true if it moved an RT */
1862 while (push_rt_task(rq))
1866 #ifdef HAVE_RT_PUSH_IPI
1868 * The search for the next cpu always starts at rq->cpu and ends
1869 * when we reach rq->cpu again. It will never return rq->cpu.
1870 * This returns the next cpu to check, or nr_cpu_ids if the loop
1871 * is complete.
1873 * rq->rt.push_cpu holds the last cpu returned by this function,
1874 * or if this is the first instance, it must hold rq->cpu.
1876 static int rto_next_cpu(struct rq *rq)
1878 int prev_cpu = rq->rt.push_cpu;
1879 int cpu;
1881 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1884 * If the previous cpu is less than the rq's CPU, then it already
1885 * passed the end of the mask, and has started from the beginning.
1886 * We end if the next CPU is greater or equal to rq's CPU.
1888 if (prev_cpu < rq->cpu) {
1889 if (cpu >= rq->cpu)
1890 return nr_cpu_ids;
1892 } else if (cpu >= nr_cpu_ids) {
1894 * We passed the end of the mask, start at the beginning.
1895 * If the result is greater or equal to the rq's CPU, then
1896 * the loop is finished.
1898 cpu = cpumask_first(rq->rd->rto_mask);
1899 if (cpu >= rq->cpu)
1900 return nr_cpu_ids;
1902 rq->rt.push_cpu = cpu;
1904 /* Return cpu to let the caller know if the loop is finished or not */
1905 return cpu;
1908 static int find_next_push_cpu(struct rq *rq)
1910 struct rq *next_rq;
1911 int cpu;
1913 while (1) {
1914 cpu = rto_next_cpu(rq);
1915 if (cpu >= nr_cpu_ids)
1916 break;
1917 next_rq = cpu_rq(cpu);
1919 /* Make sure the next rq can push to this rq */
1920 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921 break;
1924 return cpu;
1927 #define RT_PUSH_IPI_EXECUTING 1
1928 #define RT_PUSH_IPI_RESTART 2
1930 static void tell_cpu_to_push(struct rq *rq)
1932 int cpu;
1934 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1935 raw_spin_lock(&rq->rt.push_lock);
1936 /* Make sure it's still executing */
1937 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1939 * Tell the IPI to restart the loop as things have
1940 * changed since it started.
1942 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1943 raw_spin_unlock(&rq->rt.push_lock);
1944 return;
1946 raw_spin_unlock(&rq->rt.push_lock);
1949 /* When here, there's no IPI going around */
1951 rq->rt.push_cpu = rq->cpu;
1952 cpu = find_next_push_cpu(rq);
1953 if (cpu >= nr_cpu_ids)
1954 return;
1956 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1958 irq_work_queue_on(&rq->rt.push_work, cpu);
1961 /* Called from hardirq context */
1962 static void try_to_push_tasks(void *arg)
1964 struct rt_rq *rt_rq = arg;
1965 struct rq *rq, *src_rq;
1966 int this_cpu;
1967 int cpu;
1969 this_cpu = rt_rq->push_cpu;
1971 /* Paranoid check */
1972 BUG_ON(this_cpu != smp_processor_id());
1974 rq = cpu_rq(this_cpu);
1975 src_rq = rq_of_rt_rq(rt_rq);
1977 again:
1978 if (has_pushable_tasks(rq)) {
1979 raw_spin_lock(&rq->lock);
1980 push_rt_task(rq);
1981 raw_spin_unlock(&rq->lock);
1984 /* Pass the IPI to the next rt overloaded queue */
1985 raw_spin_lock(&rt_rq->push_lock);
1987 * If the source queue changed since the IPI went out,
1988 * we need to restart the search from that CPU again.
1990 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1991 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1992 rt_rq->push_cpu = src_rq->cpu;
1995 cpu = find_next_push_cpu(src_rq);
1997 if (cpu >= nr_cpu_ids)
1998 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1999 raw_spin_unlock(&rt_rq->push_lock);
2001 if (cpu >= nr_cpu_ids)
2002 return;
2005 * It is possible that a restart caused this CPU to be
2006 * chosen again. Don't bother with an IPI, just see if we
2007 * have more to push.
2009 if (unlikely(cpu == rq->cpu))
2010 goto again;
2012 /* Try the next RT overloaded CPU */
2013 irq_work_queue_on(&rt_rq->push_work, cpu);
2016 static void push_irq_work_func(struct irq_work *work)
2018 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2020 try_to_push_tasks(rt_rq);
2022 #endif /* HAVE_RT_PUSH_IPI */
2024 static void pull_rt_task(struct rq *this_rq)
2026 int this_cpu = this_rq->cpu, cpu;
2027 bool resched = false;
2028 struct task_struct *p;
2029 struct rq *src_rq;
2031 if (likely(!rt_overloaded(this_rq)))
2032 return;
2035 * Match the barrier from rt_set_overloaded; this guarantees that if we
2036 * see overloaded we must also see the rto_mask bit.
2038 smp_rmb();
2040 #ifdef HAVE_RT_PUSH_IPI
2041 if (sched_feat(RT_PUSH_IPI)) {
2042 tell_cpu_to_push(this_rq);
2043 return;
2045 #endif
2047 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2048 if (this_cpu == cpu)
2049 continue;
2051 src_rq = cpu_rq(cpu);
2054 * Don't bother taking the src_rq->lock if the next highest
2055 * task is known to be lower-priority than our current task.
2056 * This may look racy, but if this value is about to go
2057 * logically higher, the src_rq will push this task away.
2058 * And if its going logically lower, we do not care
2060 if (src_rq->rt.highest_prio.next >=
2061 this_rq->rt.highest_prio.curr)
2062 continue;
2065 * We can potentially drop this_rq's lock in
2066 * double_lock_balance, and another CPU could
2067 * alter this_rq
2069 double_lock_balance(this_rq, src_rq);
2072 * We can pull only a task, which is pushable
2073 * on its rq, and no others.
2075 p = pick_highest_pushable_task(src_rq, this_cpu);
2078 * Do we have an RT task that preempts
2079 * the to-be-scheduled task?
2081 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2082 WARN_ON(p == src_rq->curr);
2083 WARN_ON(!task_on_rq_queued(p));
2086 * There's a chance that p is higher in priority
2087 * than what's currently running on its cpu.
2088 * This is just that p is wakeing up and hasn't
2089 * had a chance to schedule. We only pull
2090 * p if it is lower in priority than the
2091 * current task on the run queue
2093 if (p->prio < src_rq->curr->prio)
2094 goto skip;
2096 resched = true;
2098 deactivate_task(src_rq, p, 0);
2099 set_task_cpu(p, this_cpu);
2100 activate_task(this_rq, p, 0);
2102 * We continue with the search, just in
2103 * case there's an even higher prio task
2104 * in another runqueue. (low likelihood
2105 * but possible)
2108 skip:
2109 double_unlock_balance(this_rq, src_rq);
2112 if (resched)
2113 resched_curr(this_rq);
2117 * If we are not running and we are not going to reschedule soon, we should
2118 * try to push tasks away now
2120 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2122 if (!task_running(rq, p) &&
2123 !test_tsk_need_resched(rq->curr) &&
2124 p->nr_cpus_allowed > 1 &&
2125 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2126 (rq->curr->nr_cpus_allowed < 2 ||
2127 rq->curr->prio <= p->prio))
2128 push_rt_tasks(rq);
2131 /* Assumes rq->lock is held */
2132 static void rq_online_rt(struct rq *rq)
2134 if (rq->rt.overloaded)
2135 rt_set_overload(rq);
2137 __enable_runtime(rq);
2139 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2142 /* Assumes rq->lock is held */
2143 static void rq_offline_rt(struct rq *rq)
2145 if (rq->rt.overloaded)
2146 rt_clear_overload(rq);
2148 __disable_runtime(rq);
2150 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2154 * When switch from the rt queue, we bring ourselves to a position
2155 * that we might want to pull RT tasks from other runqueues.
2157 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2160 * If there are other RT tasks then we will reschedule
2161 * and the scheduling of the other RT tasks will handle
2162 * the balancing. But if we are the last RT task
2163 * we may need to handle the pulling of RT tasks
2164 * now.
2166 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2167 return;
2169 queue_pull_task(rq);
2172 void __init init_sched_rt_class(void)
2174 unsigned int i;
2176 for_each_possible_cpu(i) {
2177 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2178 GFP_KERNEL, cpu_to_node(i));
2181 #endif /* CONFIG_SMP */
2184 * When switching a task to RT, we may overload the runqueue
2185 * with RT tasks. In this case we try to push them off to
2186 * other runqueues.
2188 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2191 * If we are already running, then there's nothing
2192 * that needs to be done. But if we are not running
2193 * we may need to preempt the current running task.
2194 * If that current running task is also an RT task
2195 * then see if we can move to another run queue.
2197 if (task_on_rq_queued(p) && rq->curr != p) {
2198 #ifdef CONFIG_SMP
2199 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2200 queue_push_tasks(rq);
2201 #else
2202 if (p->prio < rq->curr->prio)
2203 resched_curr(rq);
2204 #endif /* CONFIG_SMP */
2209 * Priority of the task has changed. This may cause
2210 * us to initiate a push or pull.
2212 static void
2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2215 if (!task_on_rq_queued(p))
2216 return;
2218 if (rq->curr == p) {
2219 #ifdef CONFIG_SMP
2221 * If our priority decreases while running, we
2222 * may need to pull tasks to this runqueue.
2224 if (oldprio < p->prio)
2225 queue_pull_task(rq);
2228 * If there's a higher priority task waiting to run
2229 * then reschedule.
2231 if (p->prio > rq->rt.highest_prio.curr)
2232 resched_curr(rq);
2233 #else
2234 /* For UP simply resched on drop of prio */
2235 if (oldprio < p->prio)
2236 resched_curr(rq);
2237 #endif /* CONFIG_SMP */
2238 } else {
2240 * This task is not running, but if it is
2241 * greater than the current running task
2242 * then reschedule.
2244 if (p->prio < rq->curr->prio)
2245 resched_curr(rq);
2249 static void watchdog(struct rq *rq, struct task_struct *p)
2251 unsigned long soft, hard;
2253 /* max may change after cur was read, this will be fixed next tick */
2254 soft = task_rlimit(p, RLIMIT_RTTIME);
2255 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2257 if (soft != RLIM_INFINITY) {
2258 unsigned long next;
2260 if (p->rt.watchdog_stamp != jiffies) {
2261 p->rt.timeout++;
2262 p->rt.watchdog_stamp = jiffies;
2265 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2266 if (p->rt.timeout > next)
2267 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2273 struct sched_rt_entity *rt_se = &p->rt;
2275 update_curr_rt(rq);
2277 watchdog(rq, p);
2280 * RR tasks need a special form of timeslice management.
2281 * FIFO tasks have no timeslices.
2283 if (p->policy != SCHED_RR)
2284 return;
2286 if (--p->rt.time_slice)
2287 return;
2289 p->rt.time_slice = sched_rr_timeslice;
2292 * Requeue to the end of queue if we (and all of our ancestors) are not
2293 * the only element on the queue
2295 for_each_sched_rt_entity(rt_se) {
2296 if (rt_se->run_list.prev != rt_se->run_list.next) {
2297 requeue_task_rt(rq, p, 0);
2298 resched_curr(rq);
2299 return;
2304 static void set_curr_task_rt(struct rq *rq)
2306 struct task_struct *p = rq->curr;
2308 p->se.exec_start = rq_clock_task(rq);
2310 /* The running task is never eligible for pushing */
2311 dequeue_pushable_task(rq, p);
2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2317 * Time slice is 0 for SCHED_FIFO tasks
2319 if (task->policy == SCHED_RR)
2320 return sched_rr_timeslice;
2321 else
2322 return 0;
2325 const struct sched_class rt_sched_class = {
2326 .next = &fair_sched_class,
2327 .enqueue_task = enqueue_task_rt,
2328 .dequeue_task = dequeue_task_rt,
2329 .yield_task = yield_task_rt,
2331 .check_preempt_curr = check_preempt_curr_rt,
2333 .pick_next_task = pick_next_task_rt,
2334 .put_prev_task = put_prev_task_rt,
2336 #ifdef CONFIG_SMP
2337 .select_task_rq = select_task_rq_rt,
2339 .set_cpus_allowed = set_cpus_allowed_common,
2340 .rq_online = rq_online_rt,
2341 .rq_offline = rq_offline_rt,
2342 .task_woken = task_woken_rt,
2343 .switched_from = switched_from_rt,
2344 #endif
2346 .set_curr_task = set_curr_task_rt,
2347 .task_tick = task_tick_rt,
2349 .get_rr_interval = get_rr_interval_rt,
2351 .prio_changed = prio_changed_rt,
2352 .switched_to = switched_to_rt,
2354 .update_curr = update_curr_rt,
2357 #ifdef CONFIG_SCHED_DEBUG
2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2360 void print_rt_stats(struct seq_file *m, int cpu)
2362 rt_rq_iter_t iter;
2363 struct rt_rq *rt_rq;
2365 rcu_read_lock();
2366 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2367 print_rt_rq(m, cpu, rt_rq);
2368 rcu_read_unlock();
2370 #endif /* CONFIG_SCHED_DEBUG */