arm64: locks: patch in lse instructions when supported by the CPU
[linux/fpc-iii.git] / mm / migrate.c
blobee401e4e5ef187c92247d03dd6d2ea0893092d1c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head *l)
84 struct page *page;
85 struct page *page2;
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
124 ptep = pte_offset_map(pmd, addr);
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
131 ptl = pte_lockptr(mm, pmd);
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
139 entry = pte_to_swp_entry(pte);
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
173 /* No need to invalidate - it was non-present before */
174 update_mmu_cache(vma, addr, ptep);
175 unlock:
176 pte_unmap_unlock(ptep, ptl);
177 out:
178 return SWAP_AGAIN;
182 * Get rid of all migration entries and replace them by
183 * references to the indicated page.
185 static void remove_migration_ptes(struct page *old, struct page *new)
187 struct rmap_walk_control rwc = {
188 .rmap_one = remove_migration_pte,
189 .arg = old,
192 rmap_walk(new, &rwc);
196 * Something used the pte of a page under migration. We need to
197 * get to the page and wait until migration is finished.
198 * When we return from this function the fault will be retried.
200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
201 spinlock_t *ptl)
203 pte_t pte;
204 swp_entry_t entry;
205 struct page *page;
207 spin_lock(ptl);
208 pte = *ptep;
209 if (!is_swap_pte(pte))
210 goto out;
212 entry = pte_to_swp_entry(pte);
213 if (!is_migration_entry(entry))
214 goto out;
216 page = migration_entry_to_page(entry);
219 * Once radix-tree replacement of page migration started, page_count
220 * *must* be zero. And, we don't want to call wait_on_page_locked()
221 * against a page without get_page().
222 * So, we use get_page_unless_zero(), here. Even failed, page fault
223 * will occur again.
225 if (!get_page_unless_zero(page))
226 goto out;
227 pte_unmap_unlock(ptep, ptl);
228 wait_on_page_locked(page);
229 put_page(page);
230 return;
231 out:
232 pte_unmap_unlock(ptep, ptl);
235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
236 unsigned long address)
238 spinlock_t *ptl = pte_lockptr(mm, pmd);
239 pte_t *ptep = pte_offset_map(pmd, address);
240 __migration_entry_wait(mm, ptep, ptl);
243 void migration_entry_wait_huge(struct vm_area_struct *vma,
244 struct mm_struct *mm, pte_t *pte)
246 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
247 __migration_entry_wait(mm, pte, ptl);
250 #ifdef CONFIG_BLOCK
251 /* Returns true if all buffers are successfully locked */
252 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
253 enum migrate_mode mode)
255 struct buffer_head *bh = head;
257 /* Simple case, sync compaction */
258 if (mode != MIGRATE_ASYNC) {
259 do {
260 get_bh(bh);
261 lock_buffer(bh);
262 bh = bh->b_this_page;
264 } while (bh != head);
266 return true;
269 /* async case, we cannot block on lock_buffer so use trylock_buffer */
270 do {
271 get_bh(bh);
272 if (!trylock_buffer(bh)) {
274 * We failed to lock the buffer and cannot stall in
275 * async migration. Release the taken locks
277 struct buffer_head *failed_bh = bh;
278 put_bh(failed_bh);
279 bh = head;
280 while (bh != failed_bh) {
281 unlock_buffer(bh);
282 put_bh(bh);
283 bh = bh->b_this_page;
285 return false;
288 bh = bh->b_this_page;
289 } while (bh != head);
290 return true;
292 #else
293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
294 enum migrate_mode mode)
296 return true;
298 #endif /* CONFIG_BLOCK */
301 * Replace the page in the mapping.
303 * The number of remaining references must be:
304 * 1 for anonymous pages without a mapping
305 * 2 for pages with a mapping
306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
308 int migrate_page_move_mapping(struct address_space *mapping,
309 struct page *newpage, struct page *page,
310 struct buffer_head *head, enum migrate_mode mode,
311 int extra_count)
313 int expected_count = 1 + extra_count;
314 void **pslot;
316 if (!mapping) {
317 /* Anonymous page without mapping */
318 if (page_count(page) != expected_count)
319 return -EAGAIN;
320 return MIGRATEPAGE_SUCCESS;
323 spin_lock_irq(&mapping->tree_lock);
325 pslot = radix_tree_lookup_slot(&mapping->page_tree,
326 page_index(page));
328 expected_count += 1 + page_has_private(page);
329 if (page_count(page) != expected_count ||
330 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
331 spin_unlock_irq(&mapping->tree_lock);
332 return -EAGAIN;
335 if (!page_freeze_refs(page, expected_count)) {
336 spin_unlock_irq(&mapping->tree_lock);
337 return -EAGAIN;
341 * In the async migration case of moving a page with buffers, lock the
342 * buffers using trylock before the mapping is moved. If the mapping
343 * was moved, we later failed to lock the buffers and could not move
344 * the mapping back due to an elevated page count, we would have to
345 * block waiting on other references to be dropped.
347 if (mode == MIGRATE_ASYNC && head &&
348 !buffer_migrate_lock_buffers(head, mode)) {
349 page_unfreeze_refs(page, expected_count);
350 spin_unlock_irq(&mapping->tree_lock);
351 return -EAGAIN;
355 * Now we know that no one else is looking at the page.
357 get_page(newpage); /* add cache reference */
358 if (PageSwapCache(page)) {
359 SetPageSwapCache(newpage);
360 set_page_private(newpage, page_private(page));
363 radix_tree_replace_slot(pslot, newpage);
366 * Drop cache reference from old page by unfreezing
367 * to one less reference.
368 * We know this isn't the last reference.
370 page_unfreeze_refs(page, expected_count - 1);
373 * If moved to a different zone then also account
374 * the page for that zone. Other VM counters will be
375 * taken care of when we establish references to the
376 * new page and drop references to the old page.
378 * Note that anonymous pages are accounted for
379 * via NR_FILE_PAGES and NR_ANON_PAGES if they
380 * are mapped to swap space.
382 __dec_zone_page_state(page, NR_FILE_PAGES);
383 __inc_zone_page_state(newpage, NR_FILE_PAGES);
384 if (!PageSwapCache(page) && PageSwapBacked(page)) {
385 __dec_zone_page_state(page, NR_SHMEM);
386 __inc_zone_page_state(newpage, NR_SHMEM);
388 spin_unlock_irq(&mapping->tree_lock);
390 return MIGRATEPAGE_SUCCESS;
394 * The expected number of remaining references is the same as that
395 * of migrate_page_move_mapping().
397 int migrate_huge_page_move_mapping(struct address_space *mapping,
398 struct page *newpage, struct page *page)
400 int expected_count;
401 void **pslot;
403 if (!mapping) {
404 if (page_count(page) != 1)
405 return -EAGAIN;
406 return MIGRATEPAGE_SUCCESS;
409 spin_lock_irq(&mapping->tree_lock);
411 pslot = radix_tree_lookup_slot(&mapping->page_tree,
412 page_index(page));
414 expected_count = 2 + page_has_private(page);
415 if (page_count(page) != expected_count ||
416 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
417 spin_unlock_irq(&mapping->tree_lock);
418 return -EAGAIN;
421 if (!page_freeze_refs(page, expected_count)) {
422 spin_unlock_irq(&mapping->tree_lock);
423 return -EAGAIN;
426 get_page(newpage);
428 radix_tree_replace_slot(pslot, newpage);
430 page_unfreeze_refs(page, expected_count - 1);
432 spin_unlock_irq(&mapping->tree_lock);
433 return MIGRATEPAGE_SUCCESS;
437 * Gigantic pages are so large that we do not guarantee that page++ pointer
438 * arithmetic will work across the entire page. We need something more
439 * specialized.
441 static void __copy_gigantic_page(struct page *dst, struct page *src,
442 int nr_pages)
444 int i;
445 struct page *dst_base = dst;
446 struct page *src_base = src;
448 for (i = 0; i < nr_pages; ) {
449 cond_resched();
450 copy_highpage(dst, src);
452 i++;
453 dst = mem_map_next(dst, dst_base, i);
454 src = mem_map_next(src, src_base, i);
458 static void copy_huge_page(struct page *dst, struct page *src)
460 int i;
461 int nr_pages;
463 if (PageHuge(src)) {
464 /* hugetlbfs page */
465 struct hstate *h = page_hstate(src);
466 nr_pages = pages_per_huge_page(h);
468 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
469 __copy_gigantic_page(dst, src, nr_pages);
470 return;
472 } else {
473 /* thp page */
474 BUG_ON(!PageTransHuge(src));
475 nr_pages = hpage_nr_pages(src);
478 for (i = 0; i < nr_pages; i++) {
479 cond_resched();
480 copy_highpage(dst + i, src + i);
485 * Copy the page to its new location
487 void migrate_page_copy(struct page *newpage, struct page *page)
489 int cpupid;
491 if (PageHuge(page) || PageTransHuge(page))
492 copy_huge_page(newpage, page);
493 else
494 copy_highpage(newpage, page);
496 if (PageError(page))
497 SetPageError(newpage);
498 if (PageReferenced(page))
499 SetPageReferenced(newpage);
500 if (PageUptodate(page))
501 SetPageUptodate(newpage);
502 if (TestClearPageActive(page)) {
503 VM_BUG_ON_PAGE(PageUnevictable(page), page);
504 SetPageActive(newpage);
505 } else if (TestClearPageUnevictable(page))
506 SetPageUnevictable(newpage);
507 if (PageChecked(page))
508 SetPageChecked(newpage);
509 if (PageMappedToDisk(page))
510 SetPageMappedToDisk(newpage);
512 if (PageDirty(page)) {
513 clear_page_dirty_for_io(page);
515 * Want to mark the page and the radix tree as dirty, and
516 * redo the accounting that clear_page_dirty_for_io undid,
517 * but we can't use set_page_dirty because that function
518 * is actually a signal that all of the page has become dirty.
519 * Whereas only part of our page may be dirty.
521 if (PageSwapBacked(page))
522 SetPageDirty(newpage);
523 else
524 __set_page_dirty_nobuffers(newpage);
528 * Copy NUMA information to the new page, to prevent over-eager
529 * future migrations of this same page.
531 cpupid = page_cpupid_xchg_last(page, -1);
532 page_cpupid_xchg_last(newpage, cpupid);
534 mlock_migrate_page(newpage, page);
535 ksm_migrate_page(newpage, page);
537 * Please do not reorder this without considering how mm/ksm.c's
538 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
540 if (PageSwapCache(page))
541 ClearPageSwapCache(page);
542 ClearPagePrivate(page);
543 set_page_private(page, 0);
546 * If any waiters have accumulated on the new page then
547 * wake them up.
549 if (PageWriteback(newpage))
550 end_page_writeback(newpage);
553 /************************************************************
554 * Migration functions
555 ***********************************************************/
558 * Common logic to directly migrate a single page suitable for
559 * pages that do not use PagePrivate/PagePrivate2.
561 * Pages are locked upon entry and exit.
563 int migrate_page(struct address_space *mapping,
564 struct page *newpage, struct page *page,
565 enum migrate_mode mode)
567 int rc;
569 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
571 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
573 if (rc != MIGRATEPAGE_SUCCESS)
574 return rc;
576 migrate_page_copy(newpage, page);
577 return MIGRATEPAGE_SUCCESS;
579 EXPORT_SYMBOL(migrate_page);
581 #ifdef CONFIG_BLOCK
583 * Migration function for pages with buffers. This function can only be used
584 * if the underlying filesystem guarantees that no other references to "page"
585 * exist.
587 int buffer_migrate_page(struct address_space *mapping,
588 struct page *newpage, struct page *page, enum migrate_mode mode)
590 struct buffer_head *bh, *head;
591 int rc;
593 if (!page_has_buffers(page))
594 return migrate_page(mapping, newpage, page, mode);
596 head = page_buffers(page);
598 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
600 if (rc != MIGRATEPAGE_SUCCESS)
601 return rc;
604 * In the async case, migrate_page_move_mapping locked the buffers
605 * with an IRQ-safe spinlock held. In the sync case, the buffers
606 * need to be locked now
608 if (mode != MIGRATE_ASYNC)
609 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
611 ClearPagePrivate(page);
612 set_page_private(newpage, page_private(page));
613 set_page_private(page, 0);
614 put_page(page);
615 get_page(newpage);
617 bh = head;
618 do {
619 set_bh_page(bh, newpage, bh_offset(bh));
620 bh = bh->b_this_page;
622 } while (bh != head);
624 SetPagePrivate(newpage);
626 migrate_page_copy(newpage, page);
628 bh = head;
629 do {
630 unlock_buffer(bh);
631 put_bh(bh);
632 bh = bh->b_this_page;
634 } while (bh != head);
636 return MIGRATEPAGE_SUCCESS;
638 EXPORT_SYMBOL(buffer_migrate_page);
639 #endif
642 * Writeback a page to clean the dirty state
644 static int writeout(struct address_space *mapping, struct page *page)
646 struct writeback_control wbc = {
647 .sync_mode = WB_SYNC_NONE,
648 .nr_to_write = 1,
649 .range_start = 0,
650 .range_end = LLONG_MAX,
651 .for_reclaim = 1
653 int rc;
655 if (!mapping->a_ops->writepage)
656 /* No write method for the address space */
657 return -EINVAL;
659 if (!clear_page_dirty_for_io(page))
660 /* Someone else already triggered a write */
661 return -EAGAIN;
664 * A dirty page may imply that the underlying filesystem has
665 * the page on some queue. So the page must be clean for
666 * migration. Writeout may mean we loose the lock and the
667 * page state is no longer what we checked for earlier.
668 * At this point we know that the migration attempt cannot
669 * be successful.
671 remove_migration_ptes(page, page);
673 rc = mapping->a_ops->writepage(page, &wbc);
675 if (rc != AOP_WRITEPAGE_ACTIVATE)
676 /* unlocked. Relock */
677 lock_page(page);
679 return (rc < 0) ? -EIO : -EAGAIN;
683 * Default handling if a filesystem does not provide a migration function.
685 static int fallback_migrate_page(struct address_space *mapping,
686 struct page *newpage, struct page *page, enum migrate_mode mode)
688 if (PageDirty(page)) {
689 /* Only writeback pages in full synchronous migration */
690 if (mode != MIGRATE_SYNC)
691 return -EBUSY;
692 return writeout(mapping, page);
696 * Buffers may be managed in a filesystem specific way.
697 * We must have no buffers or drop them.
699 if (page_has_private(page) &&
700 !try_to_release_page(page, GFP_KERNEL))
701 return -EAGAIN;
703 return migrate_page(mapping, newpage, page, mode);
707 * Move a page to a newly allocated page
708 * The page is locked and all ptes have been successfully removed.
710 * The new page will have replaced the old page if this function
711 * is successful.
713 * Return value:
714 * < 0 - error code
715 * MIGRATEPAGE_SUCCESS - success
717 static int move_to_new_page(struct page *newpage, struct page *page,
718 int page_was_mapped, enum migrate_mode mode)
720 struct address_space *mapping;
721 int rc;
724 * Block others from accessing the page when we get around to
725 * establishing additional references. We are the only one
726 * holding a reference to the new page at this point.
728 if (!trylock_page(newpage))
729 BUG();
731 /* Prepare mapping for the new page.*/
732 newpage->index = page->index;
733 newpage->mapping = page->mapping;
734 if (PageSwapBacked(page))
735 SetPageSwapBacked(newpage);
737 mapping = page_mapping(page);
738 if (!mapping)
739 rc = migrate_page(mapping, newpage, page, mode);
740 else if (mapping->a_ops->migratepage)
742 * Most pages have a mapping and most filesystems provide a
743 * migratepage callback. Anonymous pages are part of swap
744 * space which also has its own migratepage callback. This
745 * is the most common path for page migration.
747 rc = mapping->a_ops->migratepage(mapping,
748 newpage, page, mode);
749 else
750 rc = fallback_migrate_page(mapping, newpage, page, mode);
752 if (rc != MIGRATEPAGE_SUCCESS) {
753 newpage->mapping = NULL;
754 } else {
755 mem_cgroup_migrate(page, newpage, false);
756 if (page_was_mapped)
757 remove_migration_ptes(page, newpage);
758 page->mapping = NULL;
761 unlock_page(newpage);
763 return rc;
766 static int __unmap_and_move(struct page *page, struct page *newpage,
767 int force, enum migrate_mode mode)
769 int rc = -EAGAIN;
770 int page_was_mapped = 0;
771 struct anon_vma *anon_vma = NULL;
773 if (!trylock_page(page)) {
774 if (!force || mode == MIGRATE_ASYNC)
775 goto out;
778 * It's not safe for direct compaction to call lock_page.
779 * For example, during page readahead pages are added locked
780 * to the LRU. Later, when the IO completes the pages are
781 * marked uptodate and unlocked. However, the queueing
782 * could be merging multiple pages for one bio (e.g.
783 * mpage_readpages). If an allocation happens for the
784 * second or third page, the process can end up locking
785 * the same page twice and deadlocking. Rather than
786 * trying to be clever about what pages can be locked,
787 * avoid the use of lock_page for direct compaction
788 * altogether.
790 if (current->flags & PF_MEMALLOC)
791 goto out;
793 lock_page(page);
796 if (PageWriteback(page)) {
798 * Only in the case of a full synchronous migration is it
799 * necessary to wait for PageWriteback. In the async case,
800 * the retry loop is too short and in the sync-light case,
801 * the overhead of stalling is too much
803 if (mode != MIGRATE_SYNC) {
804 rc = -EBUSY;
805 goto out_unlock;
807 if (!force)
808 goto out_unlock;
809 wait_on_page_writeback(page);
812 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
813 * we cannot notice that anon_vma is freed while we migrates a page.
814 * This get_anon_vma() delays freeing anon_vma pointer until the end
815 * of migration. File cache pages are no problem because of page_lock()
816 * File Caches may use write_page() or lock_page() in migration, then,
817 * just care Anon page here.
819 if (PageAnon(page) && !PageKsm(page)) {
821 * Only page_lock_anon_vma_read() understands the subtleties of
822 * getting a hold on an anon_vma from outside one of its mms.
824 anon_vma = page_get_anon_vma(page);
825 if (anon_vma) {
827 * Anon page
829 } else if (PageSwapCache(page)) {
831 * We cannot be sure that the anon_vma of an unmapped
832 * swapcache page is safe to use because we don't
833 * know in advance if the VMA that this page belonged
834 * to still exists. If the VMA and others sharing the
835 * data have been freed, then the anon_vma could
836 * already be invalid.
838 * To avoid this possibility, swapcache pages get
839 * migrated but are not remapped when migration
840 * completes
842 } else {
843 goto out_unlock;
847 if (unlikely(isolated_balloon_page(page))) {
849 * A ballooned page does not need any special attention from
850 * physical to virtual reverse mapping procedures.
851 * Skip any attempt to unmap PTEs or to remap swap cache,
852 * in order to avoid burning cycles at rmap level, and perform
853 * the page migration right away (proteced by page lock).
855 rc = balloon_page_migrate(newpage, page, mode);
856 goto out_unlock;
860 * Corner case handling:
861 * 1. When a new swap-cache page is read into, it is added to the LRU
862 * and treated as swapcache but it has no rmap yet.
863 * Calling try_to_unmap() against a page->mapping==NULL page will
864 * trigger a BUG. So handle it here.
865 * 2. An orphaned page (see truncate_complete_page) might have
866 * fs-private metadata. The page can be picked up due to memory
867 * offlining. Everywhere else except page reclaim, the page is
868 * invisible to the vm, so the page can not be migrated. So try to
869 * free the metadata, so the page can be freed.
871 if (!page->mapping) {
872 VM_BUG_ON_PAGE(PageAnon(page), page);
873 if (page_has_private(page)) {
874 try_to_free_buffers(page);
875 goto out_unlock;
877 goto skip_unmap;
880 /* Establish migration ptes or remove ptes */
881 if (page_mapped(page)) {
882 try_to_unmap(page,
883 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
884 page_was_mapped = 1;
887 skip_unmap:
888 if (!page_mapped(page))
889 rc = move_to_new_page(newpage, page, page_was_mapped, mode);
891 if (rc && page_was_mapped)
892 remove_migration_ptes(page, page);
894 /* Drop an anon_vma reference if we took one */
895 if (anon_vma)
896 put_anon_vma(anon_vma);
898 out_unlock:
899 unlock_page(page);
900 out:
901 return rc;
905 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
906 * around it.
908 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
909 #define ICE_noinline noinline
910 #else
911 #define ICE_noinline
912 #endif
915 * Obtain the lock on page, remove all ptes and migrate the page
916 * to the newly allocated page in newpage.
918 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
919 free_page_t put_new_page,
920 unsigned long private, struct page *page,
921 int force, enum migrate_mode mode,
922 enum migrate_reason reason)
924 int rc = 0;
925 int *result = NULL;
926 struct page *newpage = get_new_page(page, private, &result);
928 if (!newpage)
929 return -ENOMEM;
931 if (page_count(page) == 1) {
932 /* page was freed from under us. So we are done. */
933 goto out;
936 if (unlikely(PageTransHuge(page)))
937 if (unlikely(split_huge_page(page)))
938 goto out;
940 rc = __unmap_and_move(page, newpage, force, mode);
942 out:
943 if (rc != -EAGAIN) {
945 * A page that has been migrated has all references
946 * removed and will be freed. A page that has not been
947 * migrated will have kepts its references and be
948 * restored.
950 list_del(&page->lru);
951 dec_zone_page_state(page, NR_ISOLATED_ANON +
952 page_is_file_cache(page));
953 if (reason != MR_MEMORY_FAILURE)
954 putback_lru_page(page);
958 * If migration was not successful and there's a freeing callback, use
959 * it. Otherwise, putback_lru_page() will drop the reference grabbed
960 * during isolation.
962 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
963 ClearPageSwapBacked(newpage);
964 put_new_page(newpage, private);
965 } else if (unlikely(__is_movable_balloon_page(newpage))) {
966 /* drop our reference, page already in the balloon */
967 put_page(newpage);
968 } else
969 putback_lru_page(newpage);
971 if (result) {
972 if (rc)
973 *result = rc;
974 else
975 *result = page_to_nid(newpage);
977 return rc;
981 * Counterpart of unmap_and_move_page() for hugepage migration.
983 * This function doesn't wait the completion of hugepage I/O
984 * because there is no race between I/O and migration for hugepage.
985 * Note that currently hugepage I/O occurs only in direct I/O
986 * where no lock is held and PG_writeback is irrelevant,
987 * and writeback status of all subpages are counted in the reference
988 * count of the head page (i.e. if all subpages of a 2MB hugepage are
989 * under direct I/O, the reference of the head page is 512 and a bit more.)
990 * This means that when we try to migrate hugepage whose subpages are
991 * doing direct I/O, some references remain after try_to_unmap() and
992 * hugepage migration fails without data corruption.
994 * There is also no race when direct I/O is issued on the page under migration,
995 * because then pte is replaced with migration swap entry and direct I/O code
996 * will wait in the page fault for migration to complete.
998 static int unmap_and_move_huge_page(new_page_t get_new_page,
999 free_page_t put_new_page, unsigned long private,
1000 struct page *hpage, int force,
1001 enum migrate_mode mode)
1003 int rc = 0;
1004 int *result = NULL;
1005 int page_was_mapped = 0;
1006 struct page *new_hpage;
1007 struct anon_vma *anon_vma = NULL;
1010 * Movability of hugepages depends on architectures and hugepage size.
1011 * This check is necessary because some callers of hugepage migration
1012 * like soft offline and memory hotremove don't walk through page
1013 * tables or check whether the hugepage is pmd-based or not before
1014 * kicking migration.
1016 if (!hugepage_migration_supported(page_hstate(hpage))) {
1017 putback_active_hugepage(hpage);
1018 return -ENOSYS;
1021 new_hpage = get_new_page(hpage, private, &result);
1022 if (!new_hpage)
1023 return -ENOMEM;
1025 rc = -EAGAIN;
1027 if (!trylock_page(hpage)) {
1028 if (!force || mode != MIGRATE_SYNC)
1029 goto out;
1030 lock_page(hpage);
1033 if (PageAnon(hpage))
1034 anon_vma = page_get_anon_vma(hpage);
1036 if (page_mapped(hpage)) {
1037 try_to_unmap(hpage,
1038 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1039 page_was_mapped = 1;
1042 if (!page_mapped(hpage))
1043 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1045 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1046 remove_migration_ptes(hpage, hpage);
1048 if (anon_vma)
1049 put_anon_vma(anon_vma);
1051 if (rc == MIGRATEPAGE_SUCCESS)
1052 hugetlb_cgroup_migrate(hpage, new_hpage);
1054 unlock_page(hpage);
1055 out:
1056 if (rc != -EAGAIN)
1057 putback_active_hugepage(hpage);
1060 * If migration was not successful and there's a freeing callback, use
1061 * it. Otherwise, put_page() will drop the reference grabbed during
1062 * isolation.
1064 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1065 put_new_page(new_hpage, private);
1066 else
1067 put_page(new_hpage);
1069 if (result) {
1070 if (rc)
1071 *result = rc;
1072 else
1073 *result = page_to_nid(new_hpage);
1075 return rc;
1079 * migrate_pages - migrate the pages specified in a list, to the free pages
1080 * supplied as the target for the page migration
1082 * @from: The list of pages to be migrated.
1083 * @get_new_page: The function used to allocate free pages to be used
1084 * as the target of the page migration.
1085 * @put_new_page: The function used to free target pages if migration
1086 * fails, or NULL if no special handling is necessary.
1087 * @private: Private data to be passed on to get_new_page()
1088 * @mode: The migration mode that specifies the constraints for
1089 * page migration, if any.
1090 * @reason: The reason for page migration.
1092 * The function returns after 10 attempts or if no pages are movable any more
1093 * because the list has become empty or no retryable pages exist any more.
1094 * The caller should call putback_lru_pages() to return pages to the LRU
1095 * or free list only if ret != 0.
1097 * Returns the number of pages that were not migrated, or an error code.
1099 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1100 free_page_t put_new_page, unsigned long private,
1101 enum migrate_mode mode, int reason)
1103 int retry = 1;
1104 int nr_failed = 0;
1105 int nr_succeeded = 0;
1106 int pass = 0;
1107 struct page *page;
1108 struct page *page2;
1109 int swapwrite = current->flags & PF_SWAPWRITE;
1110 int rc;
1112 if (!swapwrite)
1113 current->flags |= PF_SWAPWRITE;
1115 for(pass = 0; pass < 10 && retry; pass++) {
1116 retry = 0;
1118 list_for_each_entry_safe(page, page2, from, lru) {
1119 cond_resched();
1121 if (PageHuge(page))
1122 rc = unmap_and_move_huge_page(get_new_page,
1123 put_new_page, private, page,
1124 pass > 2, mode);
1125 else
1126 rc = unmap_and_move(get_new_page, put_new_page,
1127 private, page, pass > 2, mode,
1128 reason);
1130 switch(rc) {
1131 case -ENOMEM:
1132 goto out;
1133 case -EAGAIN:
1134 retry++;
1135 break;
1136 case MIGRATEPAGE_SUCCESS:
1137 nr_succeeded++;
1138 break;
1139 default:
1141 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1142 * unlike -EAGAIN case, the failed page is
1143 * removed from migration page list and not
1144 * retried in the next outer loop.
1146 nr_failed++;
1147 break;
1151 rc = nr_failed + retry;
1152 out:
1153 if (nr_succeeded)
1154 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1155 if (nr_failed)
1156 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1157 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1159 if (!swapwrite)
1160 current->flags &= ~PF_SWAPWRITE;
1162 return rc;
1165 #ifdef CONFIG_NUMA
1167 * Move a list of individual pages
1169 struct page_to_node {
1170 unsigned long addr;
1171 struct page *page;
1172 int node;
1173 int status;
1176 static struct page *new_page_node(struct page *p, unsigned long private,
1177 int **result)
1179 struct page_to_node *pm = (struct page_to_node *)private;
1181 while (pm->node != MAX_NUMNODES && pm->page != p)
1182 pm++;
1184 if (pm->node == MAX_NUMNODES)
1185 return NULL;
1187 *result = &pm->status;
1189 if (PageHuge(p))
1190 return alloc_huge_page_node(page_hstate(compound_head(p)),
1191 pm->node);
1192 else
1193 return alloc_pages_exact_node(pm->node,
1194 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1198 * Move a set of pages as indicated in the pm array. The addr
1199 * field must be set to the virtual address of the page to be moved
1200 * and the node number must contain a valid target node.
1201 * The pm array ends with node = MAX_NUMNODES.
1203 static int do_move_page_to_node_array(struct mm_struct *mm,
1204 struct page_to_node *pm,
1205 int migrate_all)
1207 int err;
1208 struct page_to_node *pp;
1209 LIST_HEAD(pagelist);
1211 down_read(&mm->mmap_sem);
1214 * Build a list of pages to migrate
1216 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1217 struct vm_area_struct *vma;
1218 struct page *page;
1220 err = -EFAULT;
1221 vma = find_vma(mm, pp->addr);
1222 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1223 goto set_status;
1225 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1227 err = PTR_ERR(page);
1228 if (IS_ERR(page))
1229 goto set_status;
1231 err = -ENOENT;
1232 if (!page)
1233 goto set_status;
1235 /* Use PageReserved to check for zero page */
1236 if (PageReserved(page))
1237 goto put_and_set;
1239 pp->page = page;
1240 err = page_to_nid(page);
1242 if (err == pp->node)
1244 * Node already in the right place
1246 goto put_and_set;
1248 err = -EACCES;
1249 if (page_mapcount(page) > 1 &&
1250 !migrate_all)
1251 goto put_and_set;
1253 if (PageHuge(page)) {
1254 if (PageHead(page))
1255 isolate_huge_page(page, &pagelist);
1256 goto put_and_set;
1259 err = isolate_lru_page(page);
1260 if (!err) {
1261 list_add_tail(&page->lru, &pagelist);
1262 inc_zone_page_state(page, NR_ISOLATED_ANON +
1263 page_is_file_cache(page));
1265 put_and_set:
1267 * Either remove the duplicate refcount from
1268 * isolate_lru_page() or drop the page ref if it was
1269 * not isolated.
1271 put_page(page);
1272 set_status:
1273 pp->status = err;
1276 err = 0;
1277 if (!list_empty(&pagelist)) {
1278 err = migrate_pages(&pagelist, new_page_node, NULL,
1279 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1280 if (err)
1281 putback_movable_pages(&pagelist);
1284 up_read(&mm->mmap_sem);
1285 return err;
1289 * Migrate an array of page address onto an array of nodes and fill
1290 * the corresponding array of status.
1292 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1293 unsigned long nr_pages,
1294 const void __user * __user *pages,
1295 const int __user *nodes,
1296 int __user *status, int flags)
1298 struct page_to_node *pm;
1299 unsigned long chunk_nr_pages;
1300 unsigned long chunk_start;
1301 int err;
1303 err = -ENOMEM;
1304 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1305 if (!pm)
1306 goto out;
1308 migrate_prep();
1311 * Store a chunk of page_to_node array in a page,
1312 * but keep the last one as a marker
1314 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1316 for (chunk_start = 0;
1317 chunk_start < nr_pages;
1318 chunk_start += chunk_nr_pages) {
1319 int j;
1321 if (chunk_start + chunk_nr_pages > nr_pages)
1322 chunk_nr_pages = nr_pages - chunk_start;
1324 /* fill the chunk pm with addrs and nodes from user-space */
1325 for (j = 0; j < chunk_nr_pages; j++) {
1326 const void __user *p;
1327 int node;
1329 err = -EFAULT;
1330 if (get_user(p, pages + j + chunk_start))
1331 goto out_pm;
1332 pm[j].addr = (unsigned long) p;
1334 if (get_user(node, nodes + j + chunk_start))
1335 goto out_pm;
1337 err = -ENODEV;
1338 if (node < 0 || node >= MAX_NUMNODES)
1339 goto out_pm;
1341 if (!node_state(node, N_MEMORY))
1342 goto out_pm;
1344 err = -EACCES;
1345 if (!node_isset(node, task_nodes))
1346 goto out_pm;
1348 pm[j].node = node;
1351 /* End marker for this chunk */
1352 pm[chunk_nr_pages].node = MAX_NUMNODES;
1354 /* Migrate this chunk */
1355 err = do_move_page_to_node_array(mm, pm,
1356 flags & MPOL_MF_MOVE_ALL);
1357 if (err < 0)
1358 goto out_pm;
1360 /* Return status information */
1361 for (j = 0; j < chunk_nr_pages; j++)
1362 if (put_user(pm[j].status, status + j + chunk_start)) {
1363 err = -EFAULT;
1364 goto out_pm;
1367 err = 0;
1369 out_pm:
1370 free_page((unsigned long)pm);
1371 out:
1372 return err;
1376 * Determine the nodes of an array of pages and store it in an array of status.
1378 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1379 const void __user **pages, int *status)
1381 unsigned long i;
1383 down_read(&mm->mmap_sem);
1385 for (i = 0; i < nr_pages; i++) {
1386 unsigned long addr = (unsigned long)(*pages);
1387 struct vm_area_struct *vma;
1388 struct page *page;
1389 int err = -EFAULT;
1391 vma = find_vma(mm, addr);
1392 if (!vma || addr < vma->vm_start)
1393 goto set_status;
1395 page = follow_page(vma, addr, 0);
1397 err = PTR_ERR(page);
1398 if (IS_ERR(page))
1399 goto set_status;
1401 err = -ENOENT;
1402 /* Use PageReserved to check for zero page */
1403 if (!page || PageReserved(page))
1404 goto set_status;
1406 err = page_to_nid(page);
1407 set_status:
1408 *status = err;
1410 pages++;
1411 status++;
1414 up_read(&mm->mmap_sem);
1418 * Determine the nodes of a user array of pages and store it in
1419 * a user array of status.
1421 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1422 const void __user * __user *pages,
1423 int __user *status)
1425 #define DO_PAGES_STAT_CHUNK_NR 16
1426 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1427 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1429 while (nr_pages) {
1430 unsigned long chunk_nr;
1432 chunk_nr = nr_pages;
1433 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1434 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1436 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1437 break;
1439 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1441 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1442 break;
1444 pages += chunk_nr;
1445 status += chunk_nr;
1446 nr_pages -= chunk_nr;
1448 return nr_pages ? -EFAULT : 0;
1452 * Move a list of pages in the address space of the currently executing
1453 * process.
1455 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1456 const void __user * __user *, pages,
1457 const int __user *, nodes,
1458 int __user *, status, int, flags)
1460 const struct cred *cred = current_cred(), *tcred;
1461 struct task_struct *task;
1462 struct mm_struct *mm;
1463 int err;
1464 nodemask_t task_nodes;
1466 /* Check flags */
1467 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1468 return -EINVAL;
1470 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1471 return -EPERM;
1473 /* Find the mm_struct */
1474 rcu_read_lock();
1475 task = pid ? find_task_by_vpid(pid) : current;
1476 if (!task) {
1477 rcu_read_unlock();
1478 return -ESRCH;
1480 get_task_struct(task);
1483 * Check if this process has the right to modify the specified
1484 * process. The right exists if the process has administrative
1485 * capabilities, superuser privileges or the same
1486 * userid as the target process.
1488 tcred = __task_cred(task);
1489 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1490 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1491 !capable(CAP_SYS_NICE)) {
1492 rcu_read_unlock();
1493 err = -EPERM;
1494 goto out;
1496 rcu_read_unlock();
1498 err = security_task_movememory(task);
1499 if (err)
1500 goto out;
1502 task_nodes = cpuset_mems_allowed(task);
1503 mm = get_task_mm(task);
1504 put_task_struct(task);
1506 if (!mm)
1507 return -EINVAL;
1509 if (nodes)
1510 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1511 nodes, status, flags);
1512 else
1513 err = do_pages_stat(mm, nr_pages, pages, status);
1515 mmput(mm);
1516 return err;
1518 out:
1519 put_task_struct(task);
1520 return err;
1523 #ifdef CONFIG_NUMA_BALANCING
1525 * Returns true if this is a safe migration target node for misplaced NUMA
1526 * pages. Currently it only checks the watermarks which crude
1528 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1529 unsigned long nr_migrate_pages)
1531 int z;
1532 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1533 struct zone *zone = pgdat->node_zones + z;
1535 if (!populated_zone(zone))
1536 continue;
1538 if (!zone_reclaimable(zone))
1539 continue;
1541 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1542 if (!zone_watermark_ok(zone, 0,
1543 high_wmark_pages(zone) +
1544 nr_migrate_pages,
1545 0, 0))
1546 continue;
1547 return true;
1549 return false;
1552 static struct page *alloc_misplaced_dst_page(struct page *page,
1553 unsigned long data,
1554 int **result)
1556 int nid = (int) data;
1557 struct page *newpage;
1559 newpage = alloc_pages_exact_node(nid,
1560 (GFP_HIGHUSER_MOVABLE |
1561 __GFP_THISNODE | __GFP_NOMEMALLOC |
1562 __GFP_NORETRY | __GFP_NOWARN) &
1563 ~GFP_IOFS, 0);
1565 return newpage;
1569 * page migration rate limiting control.
1570 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1571 * window of time. Default here says do not migrate more than 1280M per second.
1573 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1574 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1576 /* Returns true if the node is migrate rate-limited after the update */
1577 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1578 unsigned long nr_pages)
1581 * Rate-limit the amount of data that is being migrated to a node.
1582 * Optimal placement is no good if the memory bus is saturated and
1583 * all the time is being spent migrating!
1585 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1586 spin_lock(&pgdat->numabalancing_migrate_lock);
1587 pgdat->numabalancing_migrate_nr_pages = 0;
1588 pgdat->numabalancing_migrate_next_window = jiffies +
1589 msecs_to_jiffies(migrate_interval_millisecs);
1590 spin_unlock(&pgdat->numabalancing_migrate_lock);
1592 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1593 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1594 nr_pages);
1595 return true;
1599 * This is an unlocked non-atomic update so errors are possible.
1600 * The consequences are failing to migrate when we potentiall should
1601 * have which is not severe enough to warrant locking. If it is ever
1602 * a problem, it can be converted to a per-cpu counter.
1604 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1605 return false;
1608 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1610 int page_lru;
1612 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1614 /* Avoid migrating to a node that is nearly full */
1615 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1616 return 0;
1618 if (isolate_lru_page(page))
1619 return 0;
1622 * migrate_misplaced_transhuge_page() skips page migration's usual
1623 * check on page_count(), so we must do it here, now that the page
1624 * has been isolated: a GUP pin, or any other pin, prevents migration.
1625 * The expected page count is 3: 1 for page's mapcount and 1 for the
1626 * caller's pin and 1 for the reference taken by isolate_lru_page().
1628 if (PageTransHuge(page) && page_count(page) != 3) {
1629 putback_lru_page(page);
1630 return 0;
1633 page_lru = page_is_file_cache(page);
1634 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1635 hpage_nr_pages(page));
1638 * Isolating the page has taken another reference, so the
1639 * caller's reference can be safely dropped without the page
1640 * disappearing underneath us during migration.
1642 put_page(page);
1643 return 1;
1646 bool pmd_trans_migrating(pmd_t pmd)
1648 struct page *page = pmd_page(pmd);
1649 return PageLocked(page);
1653 * Attempt to migrate a misplaced page to the specified destination
1654 * node. Caller is expected to have an elevated reference count on
1655 * the page that will be dropped by this function before returning.
1657 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1658 int node)
1660 pg_data_t *pgdat = NODE_DATA(node);
1661 int isolated;
1662 int nr_remaining;
1663 LIST_HEAD(migratepages);
1666 * Don't migrate file pages that are mapped in multiple processes
1667 * with execute permissions as they are probably shared libraries.
1669 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1670 (vma->vm_flags & VM_EXEC))
1671 goto out;
1674 * Rate-limit the amount of data that is being migrated to a node.
1675 * Optimal placement is no good if the memory bus is saturated and
1676 * all the time is being spent migrating!
1678 if (numamigrate_update_ratelimit(pgdat, 1))
1679 goto out;
1681 isolated = numamigrate_isolate_page(pgdat, page);
1682 if (!isolated)
1683 goto out;
1685 list_add(&page->lru, &migratepages);
1686 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1687 NULL, node, MIGRATE_ASYNC,
1688 MR_NUMA_MISPLACED);
1689 if (nr_remaining) {
1690 if (!list_empty(&migratepages)) {
1691 list_del(&page->lru);
1692 dec_zone_page_state(page, NR_ISOLATED_ANON +
1693 page_is_file_cache(page));
1694 putback_lru_page(page);
1696 isolated = 0;
1697 } else
1698 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1699 BUG_ON(!list_empty(&migratepages));
1700 return isolated;
1702 out:
1703 put_page(page);
1704 return 0;
1706 #endif /* CONFIG_NUMA_BALANCING */
1708 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1710 * Migrates a THP to a given target node. page must be locked and is unlocked
1711 * before returning.
1713 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1714 struct vm_area_struct *vma,
1715 pmd_t *pmd, pmd_t entry,
1716 unsigned long address,
1717 struct page *page, int node)
1719 spinlock_t *ptl;
1720 pg_data_t *pgdat = NODE_DATA(node);
1721 int isolated = 0;
1722 struct page *new_page = NULL;
1723 int page_lru = page_is_file_cache(page);
1724 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1725 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1726 pmd_t orig_entry;
1729 * Rate-limit the amount of data that is being migrated to a node.
1730 * Optimal placement is no good if the memory bus is saturated and
1731 * all the time is being spent migrating!
1733 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1734 goto out_dropref;
1736 new_page = alloc_pages_node(node,
1737 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1738 HPAGE_PMD_ORDER);
1739 if (!new_page)
1740 goto out_fail;
1742 isolated = numamigrate_isolate_page(pgdat, page);
1743 if (!isolated) {
1744 put_page(new_page);
1745 goto out_fail;
1748 if (mm_tlb_flush_pending(mm))
1749 flush_tlb_range(vma, mmun_start, mmun_end);
1751 /* Prepare a page as a migration target */
1752 __set_page_locked(new_page);
1753 SetPageSwapBacked(new_page);
1755 /* anon mapping, we can simply copy page->mapping to the new page: */
1756 new_page->mapping = page->mapping;
1757 new_page->index = page->index;
1758 migrate_page_copy(new_page, page);
1759 WARN_ON(PageLRU(new_page));
1761 /* Recheck the target PMD */
1762 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1763 ptl = pmd_lock(mm, pmd);
1764 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1765 fail_putback:
1766 spin_unlock(ptl);
1767 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1769 /* Reverse changes made by migrate_page_copy() */
1770 if (TestClearPageActive(new_page))
1771 SetPageActive(page);
1772 if (TestClearPageUnevictable(new_page))
1773 SetPageUnevictable(page);
1774 mlock_migrate_page(page, new_page);
1776 unlock_page(new_page);
1777 put_page(new_page); /* Free it */
1779 /* Retake the callers reference and putback on LRU */
1780 get_page(page);
1781 putback_lru_page(page);
1782 mod_zone_page_state(page_zone(page),
1783 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1785 goto out_unlock;
1788 orig_entry = *pmd;
1789 entry = mk_pmd(new_page, vma->vm_page_prot);
1790 entry = pmd_mkhuge(entry);
1791 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1794 * Clear the old entry under pagetable lock and establish the new PTE.
1795 * Any parallel GUP will either observe the old page blocking on the
1796 * page lock, block on the page table lock or observe the new page.
1797 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1798 * guarantee the copy is visible before the pagetable update.
1800 flush_cache_range(vma, mmun_start, mmun_end);
1801 page_add_anon_rmap(new_page, vma, mmun_start);
1802 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1803 set_pmd_at(mm, mmun_start, pmd, entry);
1804 flush_tlb_range(vma, mmun_start, mmun_end);
1805 update_mmu_cache_pmd(vma, address, &entry);
1807 if (page_count(page) != 2) {
1808 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1809 flush_tlb_range(vma, mmun_start, mmun_end);
1810 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1811 update_mmu_cache_pmd(vma, address, &entry);
1812 page_remove_rmap(new_page);
1813 goto fail_putback;
1816 mem_cgroup_migrate(page, new_page, false);
1818 page_remove_rmap(page);
1820 spin_unlock(ptl);
1821 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1823 /* Take an "isolate" reference and put new page on the LRU. */
1824 get_page(new_page);
1825 putback_lru_page(new_page);
1827 unlock_page(new_page);
1828 unlock_page(page);
1829 put_page(page); /* Drop the rmap reference */
1830 put_page(page); /* Drop the LRU isolation reference */
1832 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1833 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1835 mod_zone_page_state(page_zone(page),
1836 NR_ISOLATED_ANON + page_lru,
1837 -HPAGE_PMD_NR);
1838 return isolated;
1840 out_fail:
1841 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1842 out_dropref:
1843 ptl = pmd_lock(mm, pmd);
1844 if (pmd_same(*pmd, entry)) {
1845 entry = pmd_modify(entry, vma->vm_page_prot);
1846 set_pmd_at(mm, mmun_start, pmd, entry);
1847 update_mmu_cache_pmd(vma, address, &entry);
1849 spin_unlock(ptl);
1851 out_unlock:
1852 unlock_page(page);
1853 put_page(page);
1854 return 0;
1856 #endif /* CONFIG_NUMA_BALANCING */
1858 #endif /* CONFIG_NUMA */