1 /* sched.c - SPU scheduler.
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
6 * 2006-03-31 NUMA domains added.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/sched/rt.h>
28 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/completion.h>
32 #include <linux/vmalloc.h>
33 #include <linux/smp.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/numa.h>
37 #include <linux/mutex.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/pid_namespace.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
45 #include <asm/mmu_context.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
50 #define CREATE_TRACE_POINTS
53 struct spu_prio_array
{
54 DECLARE_BITMAP(bitmap
, MAX_PRIO
);
55 struct list_head runq
[MAX_PRIO
];
60 static unsigned long spu_avenrun
[3];
61 static struct spu_prio_array
*spu_prio
;
62 static struct task_struct
*spusched_task
;
63 static struct timer_list spusched_timer
;
64 static struct timer_list spuloadavg_timer
;
67 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
69 #define NORMAL_PRIO 120
72 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
73 * tick for every 10 CPU scheduler ticks.
75 #define SPUSCHED_TICK (10)
78 * These are the 'tuning knobs' of the scheduler:
80 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
81 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
84 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
86 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
87 #define SCALE_PRIO(x, prio) \
88 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
91 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
92 * [800ms ... 100ms ... 5ms]
94 * The higher a thread's priority, the bigger timeslices
95 * it gets during one round of execution. But even the lowest
96 * priority thread gets MIN_TIMESLICE worth of execution time.
98 void spu_set_timeslice(struct spu_context
*ctx
)
100 if (ctx
->prio
< NORMAL_PRIO
)
101 ctx
->time_slice
= SCALE_PRIO(DEF_SPU_TIMESLICE
* 4, ctx
->prio
);
103 ctx
->time_slice
= SCALE_PRIO(DEF_SPU_TIMESLICE
, ctx
->prio
);
107 * Update scheduling information from the owning thread.
109 void __spu_update_sched_info(struct spu_context
*ctx
)
112 * assert that the context is not on the runqueue, so it is safe
113 * to change its scheduling parameters.
115 BUG_ON(!list_empty(&ctx
->rq
));
118 * 32-Bit assignments are atomic on powerpc, and we don't care about
119 * memory ordering here because retrieving the controlling thread is
120 * per definition racy.
122 ctx
->tid
= current
->pid
;
125 * We do our own priority calculations, so we normally want
126 * ->static_prio to start with. Unfortunately this field
127 * contains junk for threads with a realtime scheduling
128 * policy so we have to look at ->prio in this case.
130 if (rt_prio(current
->prio
))
131 ctx
->prio
= current
->prio
;
133 ctx
->prio
= current
->static_prio
;
134 ctx
->policy
= current
->policy
;
137 * TO DO: the context may be loaded, so we may need to activate
138 * it again on a different node. But it shouldn't hurt anything
139 * to update its parameters, because we know that the scheduler
140 * is not actively looking at this field, since it is not on the
141 * runqueue. The context will be rescheduled on the proper node
142 * if it is timesliced or preempted.
144 cpumask_copy(&ctx
->cpus_allowed
, tsk_cpus_allowed(current
));
146 /* Save the current cpu id for spu interrupt routing. */
147 ctx
->last_ran
= raw_smp_processor_id();
150 void spu_update_sched_info(struct spu_context
*ctx
)
154 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
155 node
= ctx
->spu
->node
;
158 * Take list_mutex to sync with find_victim().
160 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
161 __spu_update_sched_info(ctx
);
162 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
164 __spu_update_sched_info(ctx
);
168 static int __node_allowed(struct spu_context
*ctx
, int node
)
170 if (nr_cpus_node(node
)) {
171 const struct cpumask
*mask
= cpumask_of_node(node
);
173 if (cpumask_intersects(mask
, &ctx
->cpus_allowed
))
180 static int node_allowed(struct spu_context
*ctx
, int node
)
184 spin_lock(&spu_prio
->runq_lock
);
185 rval
= __node_allowed(ctx
, node
);
186 spin_unlock(&spu_prio
->runq_lock
);
191 void do_notify_spus_active(void)
196 * Wake up the active spu_contexts.
198 * When the awakened processes see their "notify_active" flag is set,
199 * they will call spu_switch_notify().
201 for_each_online_node(node
) {
204 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
205 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
) {
206 if (spu
->alloc_state
!= SPU_FREE
) {
207 struct spu_context
*ctx
= spu
->ctx
;
208 set_bit(SPU_SCHED_NOTIFY_ACTIVE
,
211 wake_up_all(&ctx
->stop_wq
);
214 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
219 * spu_bind_context - bind spu context to physical spu
220 * @spu: physical spu to bind to
221 * @ctx: context to bind
223 static void spu_bind_context(struct spu
*spu
, struct spu_context
*ctx
)
225 spu_context_trace(spu_bind_context__enter
, ctx
, spu
);
227 spuctx_switch_state(ctx
, SPU_UTIL_SYSTEM
);
229 if (ctx
->flags
& SPU_CREATE_NOSCHED
)
230 atomic_inc(&cbe_spu_info
[spu
->node
].reserved_spus
);
232 ctx
->stats
.slb_flt_base
= spu
->stats
.slb_flt
;
233 ctx
->stats
.class2_intr_base
= spu
->stats
.class2_intr
;
235 spu_associate_mm(spu
, ctx
->owner
);
237 spin_lock_irq(&spu
->register_lock
);
241 ctx
->ops
= &spu_hw_ops
;
242 spu
->pid
= current
->pid
;
243 spu
->tgid
= current
->tgid
;
244 spu
->ibox_callback
= spufs_ibox_callback
;
245 spu
->wbox_callback
= spufs_wbox_callback
;
246 spu
->stop_callback
= spufs_stop_callback
;
247 spu
->mfc_callback
= spufs_mfc_callback
;
248 spin_unlock_irq(&spu
->register_lock
);
250 spu_unmap_mappings(ctx
);
252 spu_switch_log_notify(spu
, ctx
, SWITCH_LOG_START
, 0);
253 spu_restore(&ctx
->csa
, spu
);
254 spu
->timestamp
= jiffies
;
255 spu_switch_notify(spu
, ctx
);
256 ctx
->state
= SPU_STATE_RUNNABLE
;
258 spuctx_switch_state(ctx
, SPU_UTIL_USER
);
262 * Must be used with the list_mutex held.
264 static inline int sched_spu(struct spu
*spu
)
266 BUG_ON(!mutex_is_locked(&cbe_spu_info
[spu
->node
].list_mutex
));
268 return (!spu
->ctx
|| !(spu
->ctx
->flags
& SPU_CREATE_NOSCHED
));
271 static void aff_merge_remaining_ctxs(struct spu_gang
*gang
)
273 struct spu_context
*ctx
;
275 list_for_each_entry(ctx
, &gang
->aff_list_head
, aff_list
) {
276 if (list_empty(&ctx
->aff_list
))
277 list_add(&ctx
->aff_list
, &gang
->aff_list_head
);
279 gang
->aff_flags
|= AFF_MERGED
;
282 static void aff_set_offsets(struct spu_gang
*gang
)
284 struct spu_context
*ctx
;
288 list_for_each_entry_reverse(ctx
, &gang
->aff_ref_ctx
->aff_list
,
290 if (&ctx
->aff_list
== &gang
->aff_list_head
)
292 ctx
->aff_offset
= offset
--;
296 list_for_each_entry(ctx
, gang
->aff_ref_ctx
->aff_list
.prev
, aff_list
) {
297 if (&ctx
->aff_list
== &gang
->aff_list_head
)
299 ctx
->aff_offset
= offset
++;
302 gang
->aff_flags
|= AFF_OFFSETS_SET
;
305 static struct spu
*aff_ref_location(struct spu_context
*ctx
, int mem_aff
,
306 int group_size
, int lowest_offset
)
312 * TODO: A better algorithm could be used to find a good spu to be
313 * used as reference location for the ctxs chain.
315 node
= cpu_to_node(raw_smp_processor_id());
316 for (n
= 0; n
< MAX_NUMNODES
; n
++, node
++) {
318 * "available_spus" counts how many spus are not potentially
319 * going to be used by other affinity gangs whose reference
320 * context is already in place. Although this code seeks to
321 * avoid having affinity gangs with a summed amount of
322 * contexts bigger than the amount of spus in the node,
323 * this may happen sporadically. In this case, available_spus
324 * becomes negative, which is harmless.
328 node
= (node
< MAX_NUMNODES
) ? node
: 0;
329 if (!node_allowed(ctx
, node
))
333 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
334 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
) {
335 if (spu
->ctx
&& spu
->ctx
->gang
&& !spu
->ctx
->aff_offset
336 && spu
->ctx
->gang
->aff_ref_spu
)
337 available_spus
-= spu
->ctx
->gang
->contexts
;
340 if (available_spus
< ctx
->gang
->contexts
) {
341 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
345 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
) {
346 if ((!mem_aff
|| spu
->has_mem_affinity
) &&
348 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
352 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
357 static void aff_set_ref_point_location(struct spu_gang
*gang
)
359 int mem_aff
, gs
, lowest_offset
;
360 struct spu_context
*ctx
;
363 mem_aff
= gang
->aff_ref_ctx
->flags
& SPU_CREATE_AFFINITY_MEM
;
367 list_for_each_entry(tmp
, &gang
->aff_list_head
, aff_list
)
370 list_for_each_entry_reverse(ctx
, &gang
->aff_ref_ctx
->aff_list
,
372 if (&ctx
->aff_list
== &gang
->aff_list_head
)
374 lowest_offset
= ctx
->aff_offset
;
377 gang
->aff_ref_spu
= aff_ref_location(gang
->aff_ref_ctx
, mem_aff
, gs
,
381 static struct spu
*ctx_location(struct spu
*ref
, int offset
, int node
)
387 list_for_each_entry(spu
, ref
->aff_list
.prev
, aff_list
) {
388 BUG_ON(spu
->node
!= node
);
395 list_for_each_entry_reverse(spu
, ref
->aff_list
.next
, aff_list
) {
396 BUG_ON(spu
->node
!= node
);
408 * affinity_check is called each time a context is going to be scheduled.
409 * It returns the spu ptr on which the context must run.
411 static int has_affinity(struct spu_context
*ctx
)
413 struct spu_gang
*gang
= ctx
->gang
;
415 if (list_empty(&ctx
->aff_list
))
418 if (atomic_read(&ctx
->gang
->aff_sched_count
) == 0)
419 ctx
->gang
->aff_ref_spu
= NULL
;
421 if (!gang
->aff_ref_spu
) {
422 if (!(gang
->aff_flags
& AFF_MERGED
))
423 aff_merge_remaining_ctxs(gang
);
424 if (!(gang
->aff_flags
& AFF_OFFSETS_SET
))
425 aff_set_offsets(gang
);
426 aff_set_ref_point_location(gang
);
429 return gang
->aff_ref_spu
!= NULL
;
433 * spu_unbind_context - unbind spu context from physical spu
434 * @spu: physical spu to unbind from
435 * @ctx: context to unbind
437 static void spu_unbind_context(struct spu
*spu
, struct spu_context
*ctx
)
441 spu_context_trace(spu_unbind_context__enter
, ctx
, spu
);
443 spuctx_switch_state(ctx
, SPU_UTIL_SYSTEM
);
445 if (spu
->ctx
->flags
& SPU_CREATE_NOSCHED
)
446 atomic_dec(&cbe_spu_info
[spu
->node
].reserved_spus
);
450 * If ctx->gang->aff_sched_count is positive, SPU affinity is
451 * being considered in this gang. Using atomic_dec_if_positive
452 * allow us to skip an explicit check for affinity in this gang
454 atomic_dec_if_positive(&ctx
->gang
->aff_sched_count
);
456 spu_switch_notify(spu
, NULL
);
457 spu_unmap_mappings(ctx
);
458 spu_save(&ctx
->csa
, spu
);
459 spu_switch_log_notify(spu
, ctx
, SWITCH_LOG_STOP
, 0);
461 spin_lock_irq(&spu
->register_lock
);
462 spu
->timestamp
= jiffies
;
463 ctx
->state
= SPU_STATE_SAVED
;
464 spu
->ibox_callback
= NULL
;
465 spu
->wbox_callback
= NULL
;
466 spu
->stop_callback
= NULL
;
467 spu
->mfc_callback
= NULL
;
470 ctx
->ops
= &spu_backing_ops
;
473 spin_unlock_irq(&spu
->register_lock
);
475 spu_associate_mm(spu
, NULL
);
477 ctx
->stats
.slb_flt
+=
478 (spu
->stats
.slb_flt
- ctx
->stats
.slb_flt_base
);
479 ctx
->stats
.class2_intr
+=
480 (spu
->stats
.class2_intr
- ctx
->stats
.class2_intr_base
);
482 /* This maps the underlying spu state to idle */
483 spuctx_switch_state(ctx
, SPU_UTIL_IDLE_LOADED
);
486 if (spu_stopped(ctx
, &status
))
487 wake_up_all(&ctx
->stop_wq
);
491 * spu_add_to_rq - add a context to the runqueue
492 * @ctx: context to add
494 static void __spu_add_to_rq(struct spu_context
*ctx
)
497 * Unfortunately this code path can be called from multiple threads
498 * on behalf of a single context due to the way the problem state
499 * mmap support works.
501 * Fortunately we need to wake up all these threads at the same time
502 * and can simply skip the runqueue addition for every but the first
503 * thread getting into this codepath.
505 * It's still quite hacky, and long-term we should proxy all other
506 * threads through the owner thread so that spu_run is in control
507 * of all the scheduling activity for a given context.
509 if (list_empty(&ctx
->rq
)) {
510 list_add_tail(&ctx
->rq
, &spu_prio
->runq
[ctx
->prio
]);
511 set_bit(ctx
->prio
, spu_prio
->bitmap
);
512 if (!spu_prio
->nr_waiting
++)
513 mod_timer(&spusched_timer
, jiffies
+ SPUSCHED_TICK
);
517 static void spu_add_to_rq(struct spu_context
*ctx
)
519 spin_lock(&spu_prio
->runq_lock
);
520 __spu_add_to_rq(ctx
);
521 spin_unlock(&spu_prio
->runq_lock
);
524 static void __spu_del_from_rq(struct spu_context
*ctx
)
526 int prio
= ctx
->prio
;
528 if (!list_empty(&ctx
->rq
)) {
529 if (!--spu_prio
->nr_waiting
)
530 del_timer(&spusched_timer
);
531 list_del_init(&ctx
->rq
);
533 if (list_empty(&spu_prio
->runq
[prio
]))
534 clear_bit(prio
, spu_prio
->bitmap
);
538 void spu_del_from_rq(struct spu_context
*ctx
)
540 spin_lock(&spu_prio
->runq_lock
);
541 __spu_del_from_rq(ctx
);
542 spin_unlock(&spu_prio
->runq_lock
);
545 static void spu_prio_wait(struct spu_context
*ctx
)
550 * The caller must explicitly wait for a context to be loaded
551 * if the nosched flag is set. If NOSCHED is not set, the caller
552 * queues the context and waits for an spu event or error.
554 BUG_ON(!(ctx
->flags
& SPU_CREATE_NOSCHED
));
556 spin_lock(&spu_prio
->runq_lock
);
557 prepare_to_wait_exclusive(&ctx
->stop_wq
, &wait
, TASK_INTERRUPTIBLE
);
558 if (!signal_pending(current
)) {
559 __spu_add_to_rq(ctx
);
560 spin_unlock(&spu_prio
->runq_lock
);
561 mutex_unlock(&ctx
->state_mutex
);
563 mutex_lock(&ctx
->state_mutex
);
564 spin_lock(&spu_prio
->runq_lock
);
565 __spu_del_from_rq(ctx
);
567 spin_unlock(&spu_prio
->runq_lock
);
568 __set_current_state(TASK_RUNNING
);
569 remove_wait_queue(&ctx
->stop_wq
, &wait
);
572 static struct spu
*spu_get_idle(struct spu_context
*ctx
)
574 struct spu
*spu
, *aff_ref_spu
;
577 spu_context_nospu_trace(spu_get_idle__enter
, ctx
);
580 mutex_lock(&ctx
->gang
->aff_mutex
);
581 if (has_affinity(ctx
)) {
582 aff_ref_spu
= ctx
->gang
->aff_ref_spu
;
583 atomic_inc(&ctx
->gang
->aff_sched_count
);
584 mutex_unlock(&ctx
->gang
->aff_mutex
);
585 node
= aff_ref_spu
->node
;
587 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
588 spu
= ctx_location(aff_ref_spu
, ctx
->aff_offset
, node
);
589 if (spu
&& spu
->alloc_state
== SPU_FREE
)
591 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
593 atomic_dec(&ctx
->gang
->aff_sched_count
);
596 mutex_unlock(&ctx
->gang
->aff_mutex
);
598 node
= cpu_to_node(raw_smp_processor_id());
599 for (n
= 0; n
< MAX_NUMNODES
; n
++, node
++) {
600 node
= (node
< MAX_NUMNODES
) ? node
: 0;
601 if (!node_allowed(ctx
, node
))
604 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
605 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
) {
606 if (spu
->alloc_state
== SPU_FREE
)
609 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
613 spu_context_nospu_trace(spu_get_idle__not_found
, ctx
);
617 spu
->alloc_state
= SPU_USED
;
618 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
619 spu_context_trace(spu_get_idle__found
, ctx
, spu
);
620 spu_init_channels(spu
);
625 * find_victim - find a lower priority context to preempt
626 * @ctx: canidate context for running
628 * Returns the freed physical spu to run the new context on.
630 static struct spu
*find_victim(struct spu_context
*ctx
)
632 struct spu_context
*victim
= NULL
;
636 spu_context_nospu_trace(spu_find_victim__enter
, ctx
);
639 * Look for a possible preemption candidate on the local node first.
640 * If there is no candidate look at the other nodes. This isn't
641 * exactly fair, but so far the whole spu scheduler tries to keep
642 * a strong node affinity. We might want to fine-tune this in
646 node
= cpu_to_node(raw_smp_processor_id());
647 for (n
= 0; n
< MAX_NUMNODES
; n
++, node
++) {
648 node
= (node
< MAX_NUMNODES
) ? node
: 0;
649 if (!node_allowed(ctx
, node
))
652 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
653 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
) {
654 struct spu_context
*tmp
= spu
->ctx
;
656 if (tmp
&& tmp
->prio
> ctx
->prio
&&
657 !(tmp
->flags
& SPU_CREATE_NOSCHED
) &&
658 (!victim
|| tmp
->prio
> victim
->prio
)) {
663 get_spu_context(victim
);
664 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
668 * This nests ctx->state_mutex, but we always lock
669 * higher priority contexts before lower priority
670 * ones, so this is safe until we introduce
671 * priority inheritance schemes.
673 * XXX if the highest priority context is locked,
674 * this can loop a long time. Might be better to
675 * look at another context or give up after X retries.
677 if (!mutex_trylock(&victim
->state_mutex
)) {
678 put_spu_context(victim
);
684 if (!spu
|| victim
->prio
<= ctx
->prio
) {
686 * This race can happen because we've dropped
687 * the active list mutex. Not a problem, just
688 * restart the search.
690 mutex_unlock(&victim
->state_mutex
);
691 put_spu_context(victim
);
696 spu_context_trace(__spu_deactivate__unload
, ctx
, spu
);
698 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
699 cbe_spu_info
[node
].nr_active
--;
700 spu_unbind_context(spu
, victim
);
701 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
703 victim
->stats
.invol_ctx_switch
++;
704 spu
->stats
.invol_ctx_switch
++;
705 if (test_bit(SPU_SCHED_SPU_RUN
, &victim
->sched_flags
))
706 spu_add_to_rq(victim
);
708 mutex_unlock(&victim
->state_mutex
);
709 put_spu_context(victim
);
718 static void __spu_schedule(struct spu
*spu
, struct spu_context
*ctx
)
720 int node
= spu
->node
;
723 spu_set_timeslice(ctx
);
725 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
726 if (spu
->ctx
== NULL
) {
727 spu_bind_context(spu
, ctx
);
728 cbe_spu_info
[node
].nr_active
++;
729 spu
->alloc_state
= SPU_USED
;
732 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
735 wake_up_all(&ctx
->run_wq
);
740 static void spu_schedule(struct spu
*spu
, struct spu_context
*ctx
)
742 /* not a candidate for interruptible because it's called either
743 from the scheduler thread or from spu_deactivate */
744 mutex_lock(&ctx
->state_mutex
);
745 if (ctx
->state
== SPU_STATE_SAVED
)
746 __spu_schedule(spu
, ctx
);
751 * spu_unschedule - remove a context from a spu, and possibly release it.
752 * @spu: The SPU to unschedule from
753 * @ctx: The context currently scheduled on the SPU
754 * @free_spu Whether to free the SPU for other contexts
756 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
757 * SPU is made available for other contexts (ie, may be returned by
758 * spu_get_idle). If this is zero, the caller is expected to schedule another
759 * context to this spu.
761 * Should be called with ctx->state_mutex held.
763 static void spu_unschedule(struct spu
*spu
, struct spu_context
*ctx
,
766 int node
= spu
->node
;
768 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
769 cbe_spu_info
[node
].nr_active
--;
771 spu
->alloc_state
= SPU_FREE
;
772 spu_unbind_context(spu
, ctx
);
773 ctx
->stats
.invol_ctx_switch
++;
774 spu
->stats
.invol_ctx_switch
++;
775 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);
779 * spu_activate - find a free spu for a context and execute it
780 * @ctx: spu context to schedule
781 * @flags: flags (currently ignored)
783 * Tries to find a free spu to run @ctx. If no free spu is available
784 * add the context to the runqueue so it gets woken up once an spu
787 int spu_activate(struct spu_context
*ctx
, unsigned long flags
)
792 * If there are multiple threads waiting for a single context
793 * only one actually binds the context while the others will
794 * only be able to acquire the state_mutex once the context
795 * already is in runnable state.
801 if (signal_pending(current
))
804 spu
= spu_get_idle(ctx
);
806 * If this is a realtime thread we try to get it running by
807 * preempting a lower priority thread.
809 if (!spu
&& rt_prio(ctx
->prio
))
810 spu
= find_victim(ctx
);
812 unsigned long runcntl
;
814 runcntl
= ctx
->ops
->runcntl_read(ctx
);
815 __spu_schedule(spu
, ctx
);
816 if (runcntl
& SPU_RUNCNTL_RUNNABLE
)
817 spuctx_switch_state(ctx
, SPU_UTIL_USER
);
822 if (ctx
->flags
& SPU_CREATE_NOSCHED
) {
824 goto spu_activate_top
;
833 * grab_runnable_context - try to find a runnable context
835 * Remove the highest priority context on the runqueue and return it
836 * to the caller. Returns %NULL if no runnable context was found.
838 static struct spu_context
*grab_runnable_context(int prio
, int node
)
840 struct spu_context
*ctx
;
843 spin_lock(&spu_prio
->runq_lock
);
844 best
= find_first_bit(spu_prio
->bitmap
, prio
);
845 while (best
< prio
) {
846 struct list_head
*rq
= &spu_prio
->runq
[best
];
848 list_for_each_entry(ctx
, rq
, rq
) {
849 /* XXX(hch): check for affinity here as well */
850 if (__node_allowed(ctx
, node
)) {
851 __spu_del_from_rq(ctx
);
859 spin_unlock(&spu_prio
->runq_lock
);
863 static int __spu_deactivate(struct spu_context
*ctx
, int force
, int max_prio
)
865 struct spu
*spu
= ctx
->spu
;
866 struct spu_context
*new = NULL
;
869 new = grab_runnable_context(max_prio
, spu
->node
);
871 spu_unschedule(spu
, ctx
, new == NULL
);
873 if (new->flags
& SPU_CREATE_NOSCHED
)
874 wake_up(&new->stop_wq
);
877 spu_schedule(spu
, new);
878 /* this one can't easily be made
880 mutex_lock(&ctx
->state_mutex
);
890 * spu_deactivate - unbind a context from it's physical spu
891 * @ctx: spu context to unbind
893 * Unbind @ctx from the physical spu it is running on and schedule
894 * the highest priority context to run on the freed physical spu.
896 void spu_deactivate(struct spu_context
*ctx
)
898 spu_context_nospu_trace(spu_deactivate__enter
, ctx
);
899 __spu_deactivate(ctx
, 1, MAX_PRIO
);
903 * spu_yield - yield a physical spu if others are waiting
904 * @ctx: spu context to yield
906 * Check if there is a higher priority context waiting and if yes
907 * unbind @ctx from the physical spu and schedule the highest
908 * priority context to run on the freed physical spu instead.
910 void spu_yield(struct spu_context
*ctx
)
912 spu_context_nospu_trace(spu_yield__enter
, ctx
);
913 if (!(ctx
->flags
& SPU_CREATE_NOSCHED
)) {
914 mutex_lock(&ctx
->state_mutex
);
915 __spu_deactivate(ctx
, 0, MAX_PRIO
);
916 mutex_unlock(&ctx
->state_mutex
);
920 static noinline
void spusched_tick(struct spu_context
*ctx
)
922 struct spu_context
*new = NULL
;
923 struct spu
*spu
= NULL
;
925 if (spu_acquire(ctx
))
926 BUG(); /* a kernel thread never has signals pending */
928 if (ctx
->state
!= SPU_STATE_RUNNABLE
)
930 if (ctx
->flags
& SPU_CREATE_NOSCHED
)
932 if (ctx
->policy
== SCHED_FIFO
)
935 if (--ctx
->time_slice
&& test_bit(SPU_SCHED_SPU_RUN
, &ctx
->sched_flags
))
940 spu_context_trace(spusched_tick__preempt
, ctx
, spu
);
942 new = grab_runnable_context(ctx
->prio
+ 1, spu
->node
);
944 spu_unschedule(spu
, ctx
, 0);
945 if (test_bit(SPU_SCHED_SPU_RUN
, &ctx
->sched_flags
))
948 spu_context_nospu_trace(spusched_tick__newslice
, ctx
);
949 if (!ctx
->time_slice
)
956 spu_schedule(spu
, new);
960 * count_active_contexts - count nr of active tasks
962 * Return the number of tasks currently running or waiting to run.
964 * Note that we don't take runq_lock / list_mutex here. Reading
965 * a single 32bit value is atomic on powerpc, and we don't care
966 * about memory ordering issues here.
968 static unsigned long count_active_contexts(void)
970 int nr_active
= 0, node
;
972 for (node
= 0; node
< MAX_NUMNODES
; node
++)
973 nr_active
+= cbe_spu_info
[node
].nr_active
;
974 nr_active
+= spu_prio
->nr_waiting
;
980 * spu_calc_load - update the avenrun load estimates.
982 * No locking against reading these values from userspace, as for
983 * the CPU loadavg code.
985 static void spu_calc_load(void)
987 unsigned long active_tasks
; /* fixed-point */
989 active_tasks
= count_active_contexts() * FIXED_1
;
990 CALC_LOAD(spu_avenrun
[0], EXP_1
, active_tasks
);
991 CALC_LOAD(spu_avenrun
[1], EXP_5
, active_tasks
);
992 CALC_LOAD(spu_avenrun
[2], EXP_15
, active_tasks
);
995 static void spusched_wake(unsigned long data
)
997 mod_timer(&spusched_timer
, jiffies
+ SPUSCHED_TICK
);
998 wake_up_process(spusched_task
);
1001 static void spuloadavg_wake(unsigned long data
)
1003 mod_timer(&spuloadavg_timer
, jiffies
+ LOAD_FREQ
);
1007 static int spusched_thread(void *unused
)
1012 while (!kthread_should_stop()) {
1013 set_current_state(TASK_INTERRUPTIBLE
);
1015 for (node
= 0; node
< MAX_NUMNODES
; node
++) {
1016 struct mutex
*mtx
= &cbe_spu_info
[node
].list_mutex
;
1019 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
,
1021 struct spu_context
*ctx
= spu
->ctx
;
1024 get_spu_context(ctx
);
1028 put_spu_context(ctx
);
1038 void spuctx_switch_state(struct spu_context
*ctx
,
1039 enum spu_utilization_state new_state
)
1041 unsigned long long curtime
;
1042 signed long long delta
;
1045 enum spu_utilization_state old_state
;
1049 curtime
= timespec_to_ns(&ts
);
1050 delta
= curtime
- ctx
->stats
.tstamp
;
1052 WARN_ON(!mutex_is_locked(&ctx
->state_mutex
));
1056 old_state
= ctx
->stats
.util_state
;
1057 ctx
->stats
.util_state
= new_state
;
1058 ctx
->stats
.tstamp
= curtime
;
1061 * Update the physical SPU utilization statistics.
1064 ctx
->stats
.times
[old_state
] += delta
;
1065 spu
->stats
.times
[old_state
] += delta
;
1066 spu
->stats
.util_state
= new_state
;
1067 spu
->stats
.tstamp
= curtime
;
1069 if (old_state
== SPU_UTIL_USER
)
1070 atomic_dec(&cbe_spu_info
[node
].busy_spus
);
1071 if (new_state
== SPU_UTIL_USER
)
1072 atomic_inc(&cbe_spu_info
[node
].busy_spus
);
1076 #define LOAD_INT(x) ((x) >> FSHIFT)
1077 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1079 static int show_spu_loadavg(struct seq_file
*s
, void *private)
1083 a
= spu_avenrun
[0] + (FIXED_1
/200);
1084 b
= spu_avenrun
[1] + (FIXED_1
/200);
1085 c
= spu_avenrun
[2] + (FIXED_1
/200);
1088 * Note that last_pid doesn't really make much sense for the
1089 * SPU loadavg (it even seems very odd on the CPU side...),
1090 * but we include it here to have a 100% compatible interface.
1092 seq_printf(s
, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1093 LOAD_INT(a
), LOAD_FRAC(a
),
1094 LOAD_INT(b
), LOAD_FRAC(b
),
1095 LOAD_INT(c
), LOAD_FRAC(c
),
1096 count_active_contexts(),
1097 atomic_read(&nr_spu_contexts
),
1098 task_active_pid_ns(current
)->last_pid
);
1102 static int spu_loadavg_open(struct inode
*inode
, struct file
*file
)
1104 return single_open(file
, show_spu_loadavg
, NULL
);
1107 static const struct file_operations spu_loadavg_fops
= {
1108 .open
= spu_loadavg_open
,
1110 .llseek
= seq_lseek
,
1111 .release
= single_release
,
1114 int __init
spu_sched_init(void)
1116 struct proc_dir_entry
*entry
;
1117 int err
= -ENOMEM
, i
;
1119 spu_prio
= kzalloc(sizeof(struct spu_prio_array
), GFP_KERNEL
);
1123 for (i
= 0; i
< MAX_PRIO
; i
++) {
1124 INIT_LIST_HEAD(&spu_prio
->runq
[i
]);
1125 __clear_bit(i
, spu_prio
->bitmap
);
1127 spin_lock_init(&spu_prio
->runq_lock
);
1129 setup_timer(&spusched_timer
, spusched_wake
, 0);
1130 setup_timer(&spuloadavg_timer
, spuloadavg_wake
, 0);
1132 spusched_task
= kthread_run(spusched_thread
, NULL
, "spusched");
1133 if (IS_ERR(spusched_task
)) {
1134 err
= PTR_ERR(spusched_task
);
1135 goto out_free_spu_prio
;
1138 mod_timer(&spuloadavg_timer
, 0);
1140 entry
= proc_create("spu_loadavg", 0, NULL
, &spu_loadavg_fops
);
1142 goto out_stop_kthread
;
1144 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1145 SPUSCHED_TICK
, MIN_SPU_TIMESLICE
, DEF_SPU_TIMESLICE
);
1149 kthread_stop(spusched_task
);
1156 void spu_sched_exit(void)
1161 remove_proc_entry("spu_loadavg", NULL
);
1163 del_timer_sync(&spusched_timer
);
1164 del_timer_sync(&spuloadavg_timer
);
1165 kthread_stop(spusched_task
);
1167 for (node
= 0; node
< MAX_NUMNODES
; node
++) {
1168 mutex_lock(&cbe_spu_info
[node
].list_mutex
);
1169 list_for_each_entry(spu
, &cbe_spu_info
[node
].spus
, cbe_list
)
1170 if (spu
->alloc_state
!= SPU_FREE
)
1171 spu
->alloc_state
= SPU_FREE
;
1172 mutex_unlock(&cbe_spu_info
[node
].list_mutex
);