x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / md / bcache / super.c
blob547c4c57b052efbb6fcd3df67c4b52c505023606
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/reboot.h>
23 #include <linux/sysfs.h>
25 MODULE_LICENSE("GPL");
26 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
28 static const char bcache_magic[] = {
29 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
30 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 static const char invalid_uuid[] = {
34 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
35 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 /* Default is -1; we skip past it for struct cached_dev's cache mode */
39 const char * const bch_cache_modes[] = {
40 "default",
41 "writethrough",
42 "writeback",
43 "writearound",
44 "none",
45 NULL
48 struct uuid_entry_v0 {
49 uint8_t uuid[16];
50 uint8_t label[32];
51 uint32_t first_reg;
52 uint32_t last_reg;
53 uint32_t invalidated;
54 uint32_t pad;
57 static struct kobject *bcache_kobj;
58 struct mutex bch_register_lock;
59 LIST_HEAD(bch_cache_sets);
60 static LIST_HEAD(uncached_devices);
62 static int bcache_major, bcache_minor;
63 static wait_queue_head_t unregister_wait;
64 struct workqueue_struct *bcache_wq;
66 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
68 static void bio_split_pool_free(struct bio_split_pool *p)
70 if (p->bio_split_hook)
71 mempool_destroy(p->bio_split_hook);
73 if (p->bio_split)
74 bioset_free(p->bio_split);
77 static int bio_split_pool_init(struct bio_split_pool *p)
79 p->bio_split = bioset_create(4, 0);
80 if (!p->bio_split)
81 return -ENOMEM;
83 p->bio_split_hook = mempool_create_kmalloc_pool(4,
84 sizeof(struct bio_split_hook));
85 if (!p->bio_split_hook)
86 return -ENOMEM;
88 return 0;
91 /* Superblock */
93 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
94 struct page **res)
96 const char *err;
97 struct cache_sb *s;
98 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
99 unsigned i;
101 if (!bh)
102 return "IO error";
104 s = (struct cache_sb *) bh->b_data;
106 sb->offset = le64_to_cpu(s->offset);
107 sb->version = le64_to_cpu(s->version);
109 memcpy(sb->magic, s->magic, 16);
110 memcpy(sb->uuid, s->uuid, 16);
111 memcpy(sb->set_uuid, s->set_uuid, 16);
112 memcpy(sb->label, s->label, SB_LABEL_SIZE);
114 sb->flags = le64_to_cpu(s->flags);
115 sb->seq = le64_to_cpu(s->seq);
116 sb->last_mount = le32_to_cpu(s->last_mount);
117 sb->first_bucket = le16_to_cpu(s->first_bucket);
118 sb->keys = le16_to_cpu(s->keys);
120 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
121 sb->d[i] = le64_to_cpu(s->d[i]);
123 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
124 sb->version, sb->flags, sb->seq, sb->keys);
126 err = "Not a bcache superblock";
127 if (sb->offset != SB_SECTOR)
128 goto err;
130 if (memcmp(sb->magic, bcache_magic, 16))
131 goto err;
133 err = "Too many journal buckets";
134 if (sb->keys > SB_JOURNAL_BUCKETS)
135 goto err;
137 err = "Bad checksum";
138 if (s->csum != csum_set(s))
139 goto err;
141 err = "Bad UUID";
142 if (bch_is_zero(sb->uuid, 16))
143 goto err;
145 sb->block_size = le16_to_cpu(s->block_size);
147 err = "Superblock block size smaller than device block size";
148 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
149 goto err;
151 switch (sb->version) {
152 case BCACHE_SB_VERSION_BDEV:
153 sb->data_offset = BDEV_DATA_START_DEFAULT;
154 break;
155 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
156 sb->data_offset = le64_to_cpu(s->data_offset);
158 err = "Bad data offset";
159 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
160 goto err;
162 break;
163 case BCACHE_SB_VERSION_CDEV:
164 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
165 sb->nbuckets = le64_to_cpu(s->nbuckets);
166 sb->block_size = le16_to_cpu(s->block_size);
167 sb->bucket_size = le16_to_cpu(s->bucket_size);
169 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
170 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
172 err = "Too many buckets";
173 if (sb->nbuckets > LONG_MAX)
174 goto err;
176 err = "Not enough buckets";
177 if (sb->nbuckets < 1 << 7)
178 goto err;
180 err = "Bad block/bucket size";
181 if (!is_power_of_2(sb->block_size) ||
182 sb->block_size > PAGE_SECTORS ||
183 !is_power_of_2(sb->bucket_size) ||
184 sb->bucket_size < PAGE_SECTORS)
185 goto err;
187 err = "Invalid superblock: device too small";
188 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
189 goto err;
191 err = "Bad UUID";
192 if (bch_is_zero(sb->set_uuid, 16))
193 goto err;
195 err = "Bad cache device number in set";
196 if (!sb->nr_in_set ||
197 sb->nr_in_set <= sb->nr_this_dev ||
198 sb->nr_in_set > MAX_CACHES_PER_SET)
199 goto err;
201 err = "Journal buckets not sequential";
202 for (i = 0; i < sb->keys; i++)
203 if (sb->d[i] != sb->first_bucket + i)
204 goto err;
206 err = "Too many journal buckets";
207 if (sb->first_bucket + sb->keys > sb->nbuckets)
208 goto err;
210 err = "Invalid superblock: first bucket comes before end of super";
211 if (sb->first_bucket * sb->bucket_size < 16)
212 goto err;
214 break;
215 default:
216 err = "Unsupported superblock version";
217 goto err;
220 sb->last_mount = get_seconds();
221 err = NULL;
223 get_page(bh->b_page);
224 *res = bh->b_page;
225 err:
226 put_bh(bh);
227 return err;
230 static void write_bdev_super_endio(struct bio *bio, int error)
232 struct cached_dev *dc = bio->bi_private;
233 /* XXX: error checking */
235 closure_put(&dc->sb_write.cl);
238 static void __write_super(struct cache_sb *sb, struct bio *bio)
240 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
241 unsigned i;
243 bio->bi_sector = SB_SECTOR;
244 bio->bi_rw = REQ_SYNC|REQ_META;
245 bio->bi_size = SB_SIZE;
246 bch_bio_map(bio, NULL);
248 out->offset = cpu_to_le64(sb->offset);
249 out->version = cpu_to_le64(sb->version);
251 memcpy(out->uuid, sb->uuid, 16);
252 memcpy(out->set_uuid, sb->set_uuid, 16);
253 memcpy(out->label, sb->label, SB_LABEL_SIZE);
255 out->flags = cpu_to_le64(sb->flags);
256 out->seq = cpu_to_le64(sb->seq);
258 out->last_mount = cpu_to_le32(sb->last_mount);
259 out->first_bucket = cpu_to_le16(sb->first_bucket);
260 out->keys = cpu_to_le16(sb->keys);
262 for (i = 0; i < sb->keys; i++)
263 out->d[i] = cpu_to_le64(sb->d[i]);
265 out->csum = csum_set(out);
267 pr_debug("ver %llu, flags %llu, seq %llu",
268 sb->version, sb->flags, sb->seq);
270 submit_bio(REQ_WRITE, bio);
273 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275 struct closure *cl = &dc->sb_write.cl;
276 struct bio *bio = &dc->sb_bio;
278 closure_lock(&dc->sb_write, parent);
280 bio_reset(bio);
281 bio->bi_bdev = dc->bdev;
282 bio->bi_end_io = write_bdev_super_endio;
283 bio->bi_private = dc;
285 closure_get(cl);
286 __write_super(&dc->sb, bio);
288 closure_return(cl);
291 static void write_super_endio(struct bio *bio, int error)
293 struct cache *ca = bio->bi_private;
295 bch_count_io_errors(ca, error, "writing superblock");
296 closure_put(&ca->set->sb_write.cl);
299 void bcache_write_super(struct cache_set *c)
301 struct closure *cl = &c->sb_write.cl;
302 struct cache *ca;
303 unsigned i;
305 closure_lock(&c->sb_write, &c->cl);
307 c->sb.seq++;
309 for_each_cache(ca, c, i) {
310 struct bio *bio = &ca->sb_bio;
312 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
313 ca->sb.seq = c->sb.seq;
314 ca->sb.last_mount = c->sb.last_mount;
316 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
318 bio_reset(bio);
319 bio->bi_bdev = ca->bdev;
320 bio->bi_end_io = write_super_endio;
321 bio->bi_private = ca;
323 closure_get(cl);
324 __write_super(&ca->sb, bio);
327 closure_return(cl);
330 /* UUID io */
332 static void uuid_endio(struct bio *bio, int error)
334 struct closure *cl = bio->bi_private;
335 struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
337 cache_set_err_on(error, c, "accessing uuids");
338 bch_bbio_free(bio, c);
339 closure_put(cl);
342 static void uuid_io(struct cache_set *c, unsigned long rw,
343 struct bkey *k, struct closure *parent)
345 struct closure *cl = &c->uuid_write.cl;
346 struct uuid_entry *u;
347 unsigned i;
348 char buf[80];
350 BUG_ON(!parent);
351 closure_lock(&c->uuid_write, parent);
353 for (i = 0; i < KEY_PTRS(k); i++) {
354 struct bio *bio = bch_bbio_alloc(c);
356 bio->bi_rw = REQ_SYNC|REQ_META|rw;
357 bio->bi_size = KEY_SIZE(k) << 9;
359 bio->bi_end_io = uuid_endio;
360 bio->bi_private = cl;
361 bch_bio_map(bio, c->uuids);
363 bch_submit_bbio(bio, c, k, i);
365 if (!(rw & WRITE))
366 break;
369 bch_bkey_to_text(buf, sizeof(buf), k);
370 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
372 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
373 if (!bch_is_zero(u->uuid, 16))
374 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
375 u - c->uuids, u->uuid, u->label,
376 u->first_reg, u->last_reg, u->invalidated);
378 closure_return(cl);
381 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
383 struct bkey *k = &j->uuid_bucket;
385 if (__bch_ptr_invalid(c, 1, k))
386 return "bad uuid pointer";
388 bkey_copy(&c->uuid_bucket, k);
389 uuid_io(c, READ_SYNC, k, cl);
391 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
392 struct uuid_entry_v0 *u0 = (void *) c->uuids;
393 struct uuid_entry *u1 = (void *) c->uuids;
394 int i;
396 closure_sync(cl);
399 * Since the new uuid entry is bigger than the old, we have to
400 * convert starting at the highest memory address and work down
401 * in order to do it in place
404 for (i = c->nr_uuids - 1;
405 i >= 0;
406 --i) {
407 memcpy(u1[i].uuid, u0[i].uuid, 16);
408 memcpy(u1[i].label, u0[i].label, 32);
410 u1[i].first_reg = u0[i].first_reg;
411 u1[i].last_reg = u0[i].last_reg;
412 u1[i].invalidated = u0[i].invalidated;
414 u1[i].flags = 0;
415 u1[i].sectors = 0;
419 return NULL;
422 static int __uuid_write(struct cache_set *c)
424 BKEY_PADDED(key) k;
425 struct closure cl;
426 closure_init_stack(&cl);
428 lockdep_assert_held(&bch_register_lock);
430 if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
431 return 1;
433 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 uuid_io(c, REQ_WRITE, &k.key, &cl);
435 closure_sync(&cl);
437 bkey_copy(&c->uuid_bucket, &k.key);
438 __bkey_put(c, &k.key);
439 return 0;
442 int bch_uuid_write(struct cache_set *c)
444 int ret = __uuid_write(c);
446 if (!ret)
447 bch_journal_meta(c, NULL);
449 return ret;
452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
454 struct uuid_entry *u;
456 for (u = c->uuids;
457 u < c->uuids + c->nr_uuids; u++)
458 if (!memcmp(u->uuid, uuid, 16))
459 return u;
461 return NULL;
464 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
466 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
467 return uuid_find(c, zero_uuid);
471 * Bucket priorities/gens:
473 * For each bucket, we store on disk its
474 * 8 bit gen
475 * 16 bit priority
477 * See alloc.c for an explanation of the gen. The priority is used to implement
478 * lru (and in the future other) cache replacement policies; for most purposes
479 * it's just an opaque integer.
481 * The gens and the priorities don't have a whole lot to do with each other, and
482 * it's actually the gens that must be written out at specific times - it's no
483 * big deal if the priorities don't get written, if we lose them we just reuse
484 * buckets in suboptimal order.
486 * On disk they're stored in a packed array, and in as many buckets are required
487 * to fit them all. The buckets we use to store them form a list; the journal
488 * header points to the first bucket, the first bucket points to the second
489 * bucket, et cetera.
491 * This code is used by the allocation code; periodically (whenever it runs out
492 * of buckets to allocate from) the allocation code will invalidate some
493 * buckets, but it can't use those buckets until their new gens are safely on
494 * disk.
497 static void prio_endio(struct bio *bio, int error)
499 struct cache *ca = bio->bi_private;
501 cache_set_err_on(error, ca->set, "accessing priorities");
502 bch_bbio_free(bio, ca->set);
503 closure_put(&ca->prio);
506 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
508 struct closure *cl = &ca->prio;
509 struct bio *bio = bch_bbio_alloc(ca->set);
511 closure_init_stack(cl);
513 bio->bi_sector = bucket * ca->sb.bucket_size;
514 bio->bi_bdev = ca->bdev;
515 bio->bi_rw = REQ_SYNC|REQ_META|rw;
516 bio->bi_size = bucket_bytes(ca);
518 bio->bi_end_io = prio_endio;
519 bio->bi_private = ca;
520 bch_bio_map(bio, ca->disk_buckets);
522 closure_bio_submit(bio, &ca->prio, ca);
523 closure_sync(cl);
526 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
527 fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
529 void bch_prio_write(struct cache *ca)
531 int i;
532 struct bucket *b;
533 struct closure cl;
535 closure_init_stack(&cl);
537 lockdep_assert_held(&ca->set->bucket_lock);
539 for (b = ca->buckets;
540 b < ca->buckets + ca->sb.nbuckets; b++)
541 b->disk_gen = b->gen;
543 ca->disk_buckets->seq++;
545 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
546 &ca->meta_sectors_written);
548 pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
549 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
551 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
552 long bucket;
553 struct prio_set *p = ca->disk_buckets;
554 struct bucket_disk *d = p->data;
555 struct bucket_disk *end = d + prios_per_bucket(ca);
557 for (b = ca->buckets + i * prios_per_bucket(ca);
558 b < ca->buckets + ca->sb.nbuckets && d < end;
559 b++, d++) {
560 d->prio = cpu_to_le16(b->prio);
561 d->gen = b->gen;
564 p->next_bucket = ca->prio_buckets[i + 1];
565 p->magic = pset_magic(ca);
566 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
568 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
569 BUG_ON(bucket == -1);
571 mutex_unlock(&ca->set->bucket_lock);
572 prio_io(ca, bucket, REQ_WRITE);
573 mutex_lock(&ca->set->bucket_lock);
575 ca->prio_buckets[i] = bucket;
576 atomic_dec_bug(&ca->buckets[bucket].pin);
579 mutex_unlock(&ca->set->bucket_lock);
581 bch_journal_meta(ca->set, &cl);
582 closure_sync(&cl);
584 mutex_lock(&ca->set->bucket_lock);
586 ca->need_save_prio = 0;
589 * Don't want the old priorities to get garbage collected until after we
590 * finish writing the new ones, and they're journalled
592 for (i = 0; i < prio_buckets(ca); i++)
593 ca->prio_last_buckets[i] = ca->prio_buckets[i];
596 static void prio_read(struct cache *ca, uint64_t bucket)
598 struct prio_set *p = ca->disk_buckets;
599 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
600 struct bucket *b;
601 unsigned bucket_nr = 0;
603 for (b = ca->buckets;
604 b < ca->buckets + ca->sb.nbuckets;
605 b++, d++) {
606 if (d == end) {
607 ca->prio_buckets[bucket_nr] = bucket;
608 ca->prio_last_buckets[bucket_nr] = bucket;
609 bucket_nr++;
611 prio_io(ca, bucket, READ_SYNC);
613 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
614 pr_warn("bad csum reading priorities");
616 if (p->magic != pset_magic(ca))
617 pr_warn("bad magic reading priorities");
619 bucket = p->next_bucket;
620 d = p->data;
623 b->prio = le16_to_cpu(d->prio);
624 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
628 /* Bcache device */
630 static int open_dev(struct block_device *b, fmode_t mode)
632 struct bcache_device *d = b->bd_disk->private_data;
633 if (atomic_read(&d->closing))
634 return -ENXIO;
636 closure_get(&d->cl);
637 return 0;
640 static void release_dev(struct gendisk *b, fmode_t mode)
642 struct bcache_device *d = b->private_data;
643 closure_put(&d->cl);
646 static int ioctl_dev(struct block_device *b, fmode_t mode,
647 unsigned int cmd, unsigned long arg)
649 struct bcache_device *d = b->bd_disk->private_data;
650 return d->ioctl(d, mode, cmd, arg);
653 static const struct block_device_operations bcache_ops = {
654 .open = open_dev,
655 .release = release_dev,
656 .ioctl = ioctl_dev,
657 .owner = THIS_MODULE,
660 void bcache_device_stop(struct bcache_device *d)
662 if (!atomic_xchg(&d->closing, 1))
663 closure_queue(&d->cl);
666 static void bcache_device_unlink(struct bcache_device *d)
668 unsigned i;
669 struct cache *ca;
671 sysfs_remove_link(&d->c->kobj, d->name);
672 sysfs_remove_link(&d->kobj, "cache");
674 for_each_cache(ca, d->c, i)
675 bd_unlink_disk_holder(ca->bdev, d->disk);
678 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
679 const char *name)
681 unsigned i;
682 struct cache *ca;
684 for_each_cache(ca, d->c, i)
685 bd_link_disk_holder(ca->bdev, d->disk);
687 snprintf(d->name, BCACHEDEVNAME_SIZE,
688 "%s%u", name, d->id);
690 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
691 sysfs_create_link(&c->kobj, &d->kobj, d->name),
692 "Couldn't create device <-> cache set symlinks");
695 static void bcache_device_detach(struct bcache_device *d)
697 lockdep_assert_held(&bch_register_lock);
699 if (atomic_read(&d->detaching)) {
700 struct uuid_entry *u = d->c->uuids + d->id;
702 SET_UUID_FLASH_ONLY(u, 0);
703 memcpy(u->uuid, invalid_uuid, 16);
704 u->invalidated = cpu_to_le32(get_seconds());
705 bch_uuid_write(d->c);
707 atomic_set(&d->detaching, 0);
710 if (!d->flush_done)
711 bcache_device_unlink(d);
713 d->c->devices[d->id] = NULL;
714 closure_put(&d->c->caching);
715 d->c = NULL;
718 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
719 unsigned id)
721 BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
723 d->id = id;
724 d->c = c;
725 c->devices[id] = d;
727 closure_get(&c->caching);
730 static void bcache_device_free(struct bcache_device *d)
732 lockdep_assert_held(&bch_register_lock);
734 pr_info("%s stopped", d->disk->disk_name);
736 if (d->c)
737 bcache_device_detach(d);
738 if (d->disk && d->disk->flags & GENHD_FL_UP)
739 del_gendisk(d->disk);
740 if (d->disk && d->disk->queue)
741 blk_cleanup_queue(d->disk->queue);
742 if (d->disk)
743 put_disk(d->disk);
745 bio_split_pool_free(&d->bio_split_hook);
746 if (d->unaligned_bvec)
747 mempool_destroy(d->unaligned_bvec);
748 if (d->bio_split)
749 bioset_free(d->bio_split);
750 if (is_vmalloc_addr(d->stripe_sectors_dirty))
751 vfree(d->stripe_sectors_dirty);
752 else
753 kfree(d->stripe_sectors_dirty);
755 closure_debug_destroy(&d->cl);
758 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
759 sector_t sectors)
761 struct request_queue *q;
762 size_t n;
764 if (!d->stripe_size_bits)
765 d->stripe_size_bits = 31;
767 d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
768 d->stripe_size_bits;
770 if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
771 return -ENOMEM;
773 n = d->nr_stripes * sizeof(atomic_t);
774 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
775 ? kzalloc(n, GFP_KERNEL)
776 : vzalloc(n);
777 if (!d->stripe_sectors_dirty)
778 return -ENOMEM;
780 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
781 !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
782 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
783 bio_split_pool_init(&d->bio_split_hook) ||
784 !(d->disk = alloc_disk(1)) ||
785 !(q = blk_alloc_queue(GFP_KERNEL)))
786 return -ENOMEM;
788 set_capacity(d->disk, sectors);
789 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
791 d->disk->major = bcache_major;
792 d->disk->first_minor = bcache_minor++;
793 d->disk->fops = &bcache_ops;
794 d->disk->private_data = d;
796 blk_queue_make_request(q, NULL);
797 d->disk->queue = q;
798 q->queuedata = d;
799 q->backing_dev_info.congested_data = d;
800 q->limits.max_hw_sectors = UINT_MAX;
801 q->limits.max_sectors = UINT_MAX;
802 q->limits.max_segment_size = UINT_MAX;
803 q->limits.max_segments = BIO_MAX_PAGES;
804 q->limits.max_discard_sectors = UINT_MAX;
805 q->limits.io_min = block_size;
806 q->limits.logical_block_size = block_size;
807 q->limits.physical_block_size = block_size;
808 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
809 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
811 blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
813 return 0;
816 /* Cached device */
818 static void calc_cached_dev_sectors(struct cache_set *c)
820 uint64_t sectors = 0;
821 struct cached_dev *dc;
823 list_for_each_entry(dc, &c->cached_devs, list)
824 sectors += bdev_sectors(dc->bdev);
826 c->cached_dev_sectors = sectors;
829 void bch_cached_dev_run(struct cached_dev *dc)
831 struct bcache_device *d = &dc->disk;
832 char buf[SB_LABEL_SIZE + 1];
833 char *env[] = {
834 "DRIVER=bcache",
835 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
836 NULL,
837 NULL,
840 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
841 buf[SB_LABEL_SIZE] = '\0';
842 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
844 if (atomic_xchg(&dc->running, 1))
845 return;
847 if (!d->c &&
848 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
849 struct closure cl;
850 closure_init_stack(&cl);
852 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
853 bch_write_bdev_super(dc, &cl);
854 closure_sync(&cl);
857 add_disk(d->disk);
858 bd_link_disk_holder(dc->bdev, dc->disk.disk);
859 /* won't show up in the uevent file, use udevadm monitor -e instead
860 * only class / kset properties are persistent */
861 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
862 kfree(env[1]);
863 kfree(env[2]);
865 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
866 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
867 pr_debug("error creating sysfs link");
870 static void cached_dev_detach_finish(struct work_struct *w)
872 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
873 char buf[BDEVNAME_SIZE];
874 struct closure cl;
875 closure_init_stack(&cl);
877 BUG_ON(!atomic_read(&dc->disk.detaching));
878 BUG_ON(atomic_read(&dc->count));
880 mutex_lock(&bch_register_lock);
882 memset(&dc->sb.set_uuid, 0, 16);
883 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
885 bch_write_bdev_super(dc, &cl);
886 closure_sync(&cl);
888 bcache_device_detach(&dc->disk);
889 list_move(&dc->list, &uncached_devices);
891 mutex_unlock(&bch_register_lock);
893 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
895 /* Drop ref we took in cached_dev_detach() */
896 closure_put(&dc->disk.cl);
899 void bch_cached_dev_detach(struct cached_dev *dc)
901 lockdep_assert_held(&bch_register_lock);
903 if (atomic_read(&dc->disk.closing))
904 return;
906 if (atomic_xchg(&dc->disk.detaching, 1))
907 return;
910 * Block the device from being closed and freed until we're finished
911 * detaching
913 closure_get(&dc->disk.cl);
915 bch_writeback_queue(dc);
916 cached_dev_put(dc);
919 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
921 uint32_t rtime = cpu_to_le32(get_seconds());
922 struct uuid_entry *u;
923 char buf[BDEVNAME_SIZE];
925 bdevname(dc->bdev, buf);
927 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
928 return -ENOENT;
930 if (dc->disk.c) {
931 pr_err("Can't attach %s: already attached", buf);
932 return -EINVAL;
935 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
936 pr_err("Can't attach %s: shutting down", buf);
937 return -EINVAL;
940 if (dc->sb.block_size < c->sb.block_size) {
941 /* Will die */
942 pr_err("Couldn't attach %s: block size less than set's block size",
943 buf);
944 return -EINVAL;
947 u = uuid_find(c, dc->sb.uuid);
949 if (u &&
950 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
951 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
952 memcpy(u->uuid, invalid_uuid, 16);
953 u->invalidated = cpu_to_le32(get_seconds());
954 u = NULL;
957 if (!u) {
958 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
959 pr_err("Couldn't find uuid for %s in set", buf);
960 return -ENOENT;
963 u = uuid_find_empty(c);
964 if (!u) {
965 pr_err("Not caching %s, no room for UUID", buf);
966 return -EINVAL;
970 /* Deadlocks since we're called via sysfs...
971 sysfs_remove_file(&dc->kobj, &sysfs_attach);
974 if (bch_is_zero(u->uuid, 16)) {
975 struct closure cl;
976 closure_init_stack(&cl);
978 memcpy(u->uuid, dc->sb.uuid, 16);
979 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
980 u->first_reg = u->last_reg = rtime;
981 bch_uuid_write(c);
983 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
984 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
986 bch_write_bdev_super(dc, &cl);
987 closure_sync(&cl);
988 } else {
989 u->last_reg = rtime;
990 bch_uuid_write(c);
993 bcache_device_attach(&dc->disk, c, u - c->uuids);
994 list_move(&dc->list, &c->cached_devs);
995 calc_cached_dev_sectors(c);
997 smp_wmb();
999 * dc->c must be set before dc->count != 0 - paired with the mb in
1000 * cached_dev_get()
1002 atomic_set(&dc->count, 1);
1004 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1005 bch_sectors_dirty_init(dc);
1006 atomic_set(&dc->has_dirty, 1);
1007 atomic_inc(&dc->count);
1008 bch_writeback_queue(dc);
1011 bch_cached_dev_run(dc);
1012 bcache_device_link(&dc->disk, c, "bdev");
1014 pr_info("Caching %s as %s on set %pU",
1015 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1016 dc->disk.c->sb.set_uuid);
1017 return 0;
1020 void bch_cached_dev_release(struct kobject *kobj)
1022 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1023 disk.kobj);
1024 kfree(dc);
1025 module_put(THIS_MODULE);
1028 static void cached_dev_free(struct closure *cl)
1030 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1032 cancel_delayed_work_sync(&dc->writeback_rate_update);
1034 mutex_lock(&bch_register_lock);
1036 if (atomic_read(&dc->running))
1037 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1038 bcache_device_free(&dc->disk);
1039 list_del(&dc->list);
1041 mutex_unlock(&bch_register_lock);
1043 if (!IS_ERR_OR_NULL(dc->bdev)) {
1044 if (dc->bdev->bd_disk)
1045 blk_sync_queue(bdev_get_queue(dc->bdev));
1047 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1050 wake_up(&unregister_wait);
1052 kobject_put(&dc->disk.kobj);
1055 static void cached_dev_flush(struct closure *cl)
1057 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1058 struct bcache_device *d = &dc->disk;
1060 mutex_lock(&bch_register_lock);
1061 d->flush_done = 1;
1063 if (d->c)
1064 bcache_device_unlink(d);
1066 mutex_unlock(&bch_register_lock);
1068 bch_cache_accounting_destroy(&dc->accounting);
1069 kobject_del(&d->kobj);
1071 continue_at(cl, cached_dev_free, system_wq);
1074 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1076 int ret;
1077 struct io *io;
1078 struct request_queue *q = bdev_get_queue(dc->bdev);
1080 __module_get(THIS_MODULE);
1081 INIT_LIST_HEAD(&dc->list);
1082 closure_init(&dc->disk.cl, NULL);
1083 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1084 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1085 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1086 closure_init_unlocked(&dc->sb_write);
1087 INIT_LIST_HEAD(&dc->io_lru);
1088 spin_lock_init(&dc->io_lock);
1089 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1091 dc->sequential_merge = true;
1092 dc->sequential_cutoff = 4 << 20;
1094 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1095 list_add(&io->lru, &dc->io_lru);
1096 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1099 ret = bcache_device_init(&dc->disk, block_size,
1100 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1101 if (ret)
1102 return ret;
1104 set_capacity(dc->disk.disk,
1105 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1107 dc->disk.disk->queue->backing_dev_info.ra_pages =
1108 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1109 q->backing_dev_info.ra_pages);
1111 bch_cached_dev_request_init(dc);
1112 bch_cached_dev_writeback_init(dc);
1113 return 0;
1116 /* Cached device - bcache superblock */
1118 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1119 struct block_device *bdev,
1120 struct cached_dev *dc)
1122 char name[BDEVNAME_SIZE];
1123 const char *err = "cannot allocate memory";
1124 struct cache_set *c;
1126 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1127 dc->bdev = bdev;
1128 dc->bdev->bd_holder = dc;
1130 bio_init(&dc->sb_bio);
1131 dc->sb_bio.bi_max_vecs = 1;
1132 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1133 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1134 get_page(sb_page);
1136 if (cached_dev_init(dc, sb->block_size << 9))
1137 goto err;
1139 err = "error creating kobject";
1140 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1141 "bcache"))
1142 goto err;
1143 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1144 goto err;
1146 pr_info("registered backing device %s", bdevname(bdev, name));
1148 list_add(&dc->list, &uncached_devices);
1149 list_for_each_entry(c, &bch_cache_sets, list)
1150 bch_cached_dev_attach(dc, c);
1152 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1153 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1154 bch_cached_dev_run(dc);
1156 return;
1157 err:
1158 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1159 bcache_device_stop(&dc->disk);
1162 /* Flash only volumes */
1164 void bch_flash_dev_release(struct kobject *kobj)
1166 struct bcache_device *d = container_of(kobj, struct bcache_device,
1167 kobj);
1168 kfree(d);
1171 static void flash_dev_free(struct closure *cl)
1173 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1174 bcache_device_free(d);
1175 kobject_put(&d->kobj);
1178 static void flash_dev_flush(struct closure *cl)
1180 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1182 bcache_device_unlink(d);
1183 kobject_del(&d->kobj);
1184 continue_at(cl, flash_dev_free, system_wq);
1187 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1189 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1190 GFP_KERNEL);
1191 if (!d)
1192 return -ENOMEM;
1194 closure_init(&d->cl, NULL);
1195 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1197 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1199 if (bcache_device_init(d, block_bytes(c), u->sectors))
1200 goto err;
1202 bcache_device_attach(d, c, u - c->uuids);
1203 bch_flash_dev_request_init(d);
1204 add_disk(d->disk);
1206 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1207 goto err;
1209 bcache_device_link(d, c, "volume");
1211 return 0;
1212 err:
1213 kobject_put(&d->kobj);
1214 return -ENOMEM;
1217 static int flash_devs_run(struct cache_set *c)
1219 int ret = 0;
1220 struct uuid_entry *u;
1222 for (u = c->uuids;
1223 u < c->uuids + c->nr_uuids && !ret;
1224 u++)
1225 if (UUID_FLASH_ONLY(u))
1226 ret = flash_dev_run(c, u);
1228 return ret;
1231 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1233 struct uuid_entry *u;
1235 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1236 return -EINTR;
1238 u = uuid_find_empty(c);
1239 if (!u) {
1240 pr_err("Can't create volume, no room for UUID");
1241 return -EINVAL;
1244 get_random_bytes(u->uuid, 16);
1245 memset(u->label, 0, 32);
1246 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1248 SET_UUID_FLASH_ONLY(u, 1);
1249 u->sectors = size >> 9;
1251 bch_uuid_write(c);
1253 return flash_dev_run(c, u);
1256 /* Cache set */
1258 __printf(2, 3)
1259 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1261 va_list args;
1263 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1264 return false;
1266 /* XXX: we can be called from atomic context
1267 acquire_console_sem();
1270 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1272 va_start(args, fmt);
1273 vprintk(fmt, args);
1274 va_end(args);
1276 printk(", disabling caching\n");
1278 bch_cache_set_unregister(c);
1279 return true;
1282 void bch_cache_set_release(struct kobject *kobj)
1284 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1285 kfree(c);
1286 module_put(THIS_MODULE);
1289 static void cache_set_free(struct closure *cl)
1291 struct cache_set *c = container_of(cl, struct cache_set, cl);
1292 struct cache *ca;
1293 unsigned i;
1295 if (!IS_ERR_OR_NULL(c->debug))
1296 debugfs_remove(c->debug);
1298 bch_open_buckets_free(c);
1299 bch_btree_cache_free(c);
1300 bch_journal_free(c);
1302 for_each_cache(ca, c, i)
1303 if (ca)
1304 kobject_put(&ca->kobj);
1306 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1307 free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1309 if (c->bio_split)
1310 bioset_free(c->bio_split);
1311 if (c->fill_iter)
1312 mempool_destroy(c->fill_iter);
1313 if (c->bio_meta)
1314 mempool_destroy(c->bio_meta);
1315 if (c->search)
1316 mempool_destroy(c->search);
1317 kfree(c->devices);
1319 mutex_lock(&bch_register_lock);
1320 list_del(&c->list);
1321 mutex_unlock(&bch_register_lock);
1323 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1324 wake_up(&unregister_wait);
1326 closure_debug_destroy(&c->cl);
1327 kobject_put(&c->kobj);
1330 static void cache_set_flush(struct closure *cl)
1332 struct cache_set *c = container_of(cl, struct cache_set, caching);
1333 struct cache *ca;
1334 struct btree *b;
1335 unsigned i;
1337 bch_cache_accounting_destroy(&c->accounting);
1339 kobject_put(&c->internal);
1340 kobject_del(&c->kobj);
1342 if (!IS_ERR_OR_NULL(c->root))
1343 list_add(&c->root->list, &c->btree_cache);
1345 /* Should skip this if we're unregistering because of an error */
1346 list_for_each_entry(b, &c->btree_cache, list)
1347 if (btree_node_dirty(b))
1348 bch_btree_node_write(b, NULL);
1350 for_each_cache(ca, c, i)
1351 if (ca->alloc_thread)
1352 kthread_stop(ca->alloc_thread);
1354 closure_return(cl);
1357 static void __cache_set_unregister(struct closure *cl)
1359 struct cache_set *c = container_of(cl, struct cache_set, caching);
1360 struct cached_dev *dc;
1361 size_t i;
1363 mutex_lock(&bch_register_lock);
1365 for (i = 0; i < c->nr_uuids; i++)
1366 if (c->devices[i]) {
1367 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1368 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1369 dc = container_of(c->devices[i],
1370 struct cached_dev, disk);
1371 bch_cached_dev_detach(dc);
1372 } else {
1373 bcache_device_stop(c->devices[i]);
1377 mutex_unlock(&bch_register_lock);
1379 continue_at(cl, cache_set_flush, system_wq);
1382 void bch_cache_set_stop(struct cache_set *c)
1384 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1385 closure_queue(&c->caching);
1388 void bch_cache_set_unregister(struct cache_set *c)
1390 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1391 bch_cache_set_stop(c);
1394 #define alloc_bucket_pages(gfp, c) \
1395 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1397 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1399 int iter_size;
1400 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1401 if (!c)
1402 return NULL;
1404 __module_get(THIS_MODULE);
1405 closure_init(&c->cl, NULL);
1406 set_closure_fn(&c->cl, cache_set_free, system_wq);
1408 closure_init(&c->caching, &c->cl);
1409 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1411 /* Maybe create continue_at_noreturn() and use it here? */
1412 closure_set_stopped(&c->cl);
1413 closure_put(&c->cl);
1415 kobject_init(&c->kobj, &bch_cache_set_ktype);
1416 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1418 bch_cache_accounting_init(&c->accounting, &c->cl);
1420 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1421 c->sb.block_size = sb->block_size;
1422 c->sb.bucket_size = sb->bucket_size;
1423 c->sb.nr_in_set = sb->nr_in_set;
1424 c->sb.last_mount = sb->last_mount;
1425 c->bucket_bits = ilog2(sb->bucket_size);
1426 c->block_bits = ilog2(sb->block_size);
1427 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1429 c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
1430 if (c->btree_pages > BTREE_MAX_PAGES)
1431 c->btree_pages = max_t(int, c->btree_pages / 4,
1432 BTREE_MAX_PAGES);
1434 c->sort_crit_factor = int_sqrt(c->btree_pages);
1436 mutex_init(&c->bucket_lock);
1437 mutex_init(&c->sort_lock);
1438 spin_lock_init(&c->sort_time_lock);
1439 closure_init_unlocked(&c->sb_write);
1440 closure_init_unlocked(&c->uuid_write);
1441 spin_lock_init(&c->btree_read_time_lock);
1442 bch_moving_init_cache_set(c);
1444 INIT_LIST_HEAD(&c->list);
1445 INIT_LIST_HEAD(&c->cached_devs);
1446 INIT_LIST_HEAD(&c->btree_cache);
1447 INIT_LIST_HEAD(&c->btree_cache_freeable);
1448 INIT_LIST_HEAD(&c->btree_cache_freed);
1449 INIT_LIST_HEAD(&c->data_buckets);
1451 c->search = mempool_create_slab_pool(32, bch_search_cache);
1452 if (!c->search)
1453 goto err;
1455 iter_size = (sb->bucket_size / sb->block_size + 1) *
1456 sizeof(struct btree_iter_set);
1458 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1459 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1460 sizeof(struct bbio) + sizeof(struct bio_vec) *
1461 bucket_pages(c))) ||
1462 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1463 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1464 !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1465 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1466 bch_journal_alloc(c) ||
1467 bch_btree_cache_alloc(c) ||
1468 bch_open_buckets_alloc(c))
1469 goto err;
1471 c->congested_read_threshold_us = 2000;
1472 c->congested_write_threshold_us = 20000;
1473 c->error_limit = 8 << IO_ERROR_SHIFT;
1475 return c;
1476 err:
1477 bch_cache_set_unregister(c);
1478 return NULL;
1481 static void run_cache_set(struct cache_set *c)
1483 const char *err = "cannot allocate memory";
1484 struct cached_dev *dc, *t;
1485 struct cache *ca;
1486 unsigned i;
1488 struct btree_op op;
1489 bch_btree_op_init_stack(&op);
1490 op.lock = SHRT_MAX;
1492 for_each_cache(ca, c, i)
1493 c->nbuckets += ca->sb.nbuckets;
1495 if (CACHE_SYNC(&c->sb)) {
1496 LIST_HEAD(journal);
1497 struct bkey *k;
1498 struct jset *j;
1500 err = "cannot allocate memory for journal";
1501 if (bch_journal_read(c, &journal, &op))
1502 goto err;
1504 pr_debug("btree_journal_read() done");
1506 err = "no journal entries found";
1507 if (list_empty(&journal))
1508 goto err;
1510 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1512 err = "IO error reading priorities";
1513 for_each_cache(ca, c, i)
1514 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1517 * If prio_read() fails it'll call cache_set_error and we'll
1518 * tear everything down right away, but if we perhaps checked
1519 * sooner we could avoid journal replay.
1522 k = &j->btree_root;
1524 err = "bad btree root";
1525 if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1526 goto err;
1528 err = "error reading btree root";
1529 c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1530 if (IS_ERR_OR_NULL(c->root))
1531 goto err;
1533 list_del_init(&c->root->list);
1534 rw_unlock(true, c->root);
1536 err = uuid_read(c, j, &op.cl);
1537 if (err)
1538 goto err;
1540 err = "error in recovery";
1541 if (bch_btree_check(c, &op))
1542 goto err;
1544 bch_journal_mark(c, &journal);
1545 bch_btree_gc_finish(c);
1546 pr_debug("btree_check() done");
1549 * bcache_journal_next() can't happen sooner, or
1550 * btree_gc_finish() will give spurious errors about last_gc >
1551 * gc_gen - this is a hack but oh well.
1553 bch_journal_next(&c->journal);
1555 err = "error starting allocator thread";
1556 for_each_cache(ca, c, i)
1557 if (bch_cache_allocator_start(ca))
1558 goto err;
1561 * First place it's safe to allocate: btree_check() and
1562 * btree_gc_finish() have to run before we have buckets to
1563 * allocate, and bch_bucket_alloc_set() might cause a journal
1564 * entry to be written so bcache_journal_next() has to be called
1565 * first.
1567 * If the uuids were in the old format we have to rewrite them
1568 * before the next journal entry is written:
1570 if (j->version < BCACHE_JSET_VERSION_UUID)
1571 __uuid_write(c);
1573 bch_journal_replay(c, &journal, &op);
1574 } else {
1575 pr_notice("invalidating existing data");
1576 /* Don't want invalidate_buckets() to queue a gc yet */
1577 closure_lock(&c->gc, NULL);
1579 for_each_cache(ca, c, i) {
1580 unsigned j;
1582 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1583 2, SB_JOURNAL_BUCKETS);
1585 for (j = 0; j < ca->sb.keys; j++)
1586 ca->sb.d[j] = ca->sb.first_bucket + j;
1589 bch_btree_gc_finish(c);
1591 err = "error starting allocator thread";
1592 for_each_cache(ca, c, i)
1593 if (bch_cache_allocator_start(ca))
1594 goto err;
1596 mutex_lock(&c->bucket_lock);
1597 for_each_cache(ca, c, i)
1598 bch_prio_write(ca);
1599 mutex_unlock(&c->bucket_lock);
1601 err = "cannot allocate new UUID bucket";
1602 if (__uuid_write(c))
1603 goto err_unlock_gc;
1605 err = "cannot allocate new btree root";
1606 c->root = bch_btree_node_alloc(c, 0, &op.cl);
1607 if (IS_ERR_OR_NULL(c->root))
1608 goto err_unlock_gc;
1610 bkey_copy_key(&c->root->key, &MAX_KEY);
1611 bch_btree_node_write(c->root, &op.cl);
1613 bch_btree_set_root(c->root);
1614 rw_unlock(true, c->root);
1617 * We don't want to write the first journal entry until
1618 * everything is set up - fortunately journal entries won't be
1619 * written until the SET_CACHE_SYNC() here:
1621 SET_CACHE_SYNC(&c->sb, true);
1623 bch_journal_next(&c->journal);
1624 bch_journal_meta(c, &op.cl);
1626 /* Unlock */
1627 closure_set_stopped(&c->gc.cl);
1628 closure_put(&c->gc.cl);
1631 closure_sync(&op.cl);
1632 c->sb.last_mount = get_seconds();
1633 bcache_write_super(c);
1635 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1636 bch_cached_dev_attach(dc, c);
1638 flash_devs_run(c);
1640 return;
1641 err_unlock_gc:
1642 closure_set_stopped(&c->gc.cl);
1643 closure_put(&c->gc.cl);
1644 err:
1645 closure_sync(&op.cl);
1646 /* XXX: test this, it's broken */
1647 bch_cache_set_error(c, err);
1650 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1652 return ca->sb.block_size == c->sb.block_size &&
1653 ca->sb.bucket_size == c->sb.block_size &&
1654 ca->sb.nr_in_set == c->sb.nr_in_set;
1657 static const char *register_cache_set(struct cache *ca)
1659 char buf[12];
1660 const char *err = "cannot allocate memory";
1661 struct cache_set *c;
1663 list_for_each_entry(c, &bch_cache_sets, list)
1664 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1665 if (c->cache[ca->sb.nr_this_dev])
1666 return "duplicate cache set member";
1668 if (!can_attach_cache(ca, c))
1669 return "cache sb does not match set";
1671 if (!CACHE_SYNC(&ca->sb))
1672 SET_CACHE_SYNC(&c->sb, false);
1674 goto found;
1677 c = bch_cache_set_alloc(&ca->sb);
1678 if (!c)
1679 return err;
1681 err = "error creating kobject";
1682 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1683 kobject_add(&c->internal, &c->kobj, "internal"))
1684 goto err;
1686 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1687 goto err;
1689 bch_debug_init_cache_set(c);
1691 list_add(&c->list, &bch_cache_sets);
1692 found:
1693 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1694 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1695 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1696 goto err;
1698 if (ca->sb.seq > c->sb.seq) {
1699 c->sb.version = ca->sb.version;
1700 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1701 c->sb.flags = ca->sb.flags;
1702 c->sb.seq = ca->sb.seq;
1703 pr_debug("set version = %llu", c->sb.version);
1706 ca->set = c;
1707 ca->set->cache[ca->sb.nr_this_dev] = ca;
1708 c->cache_by_alloc[c->caches_loaded++] = ca;
1710 if (c->caches_loaded == c->sb.nr_in_set)
1711 run_cache_set(c);
1713 return NULL;
1714 err:
1715 bch_cache_set_unregister(c);
1716 return err;
1719 /* Cache device */
1721 void bch_cache_release(struct kobject *kobj)
1723 struct cache *ca = container_of(kobj, struct cache, kobj);
1725 if (ca->set)
1726 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1728 bch_cache_allocator_exit(ca);
1730 bio_split_pool_free(&ca->bio_split_hook);
1732 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1733 kfree(ca->prio_buckets);
1734 vfree(ca->buckets);
1736 free_heap(&ca->heap);
1737 free_fifo(&ca->unused);
1738 free_fifo(&ca->free_inc);
1739 free_fifo(&ca->free);
1741 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1742 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1744 if (!IS_ERR_OR_NULL(ca->bdev)) {
1745 blk_sync_queue(bdev_get_queue(ca->bdev));
1746 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1749 kfree(ca);
1750 module_put(THIS_MODULE);
1753 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1755 size_t free;
1756 struct bucket *b;
1758 __module_get(THIS_MODULE);
1759 kobject_init(&ca->kobj, &bch_cache_ktype);
1761 INIT_LIST_HEAD(&ca->discards);
1763 bio_init(&ca->journal.bio);
1764 ca->journal.bio.bi_max_vecs = 8;
1765 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1767 free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1768 free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1770 if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
1771 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1772 !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
1773 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1774 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1775 ca->sb.nbuckets)) ||
1776 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1777 2, GFP_KERNEL)) ||
1778 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1779 bio_split_pool_init(&ca->bio_split_hook))
1780 return -ENOMEM;
1782 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1784 for_each_bucket(b, ca)
1785 atomic_set(&b->pin, 0);
1787 if (bch_cache_allocator_init(ca))
1788 goto err;
1790 return 0;
1791 err:
1792 kobject_put(&ca->kobj);
1793 return -ENOMEM;
1796 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1797 struct block_device *bdev, struct cache *ca)
1799 char name[BDEVNAME_SIZE];
1800 const char *err = "cannot allocate memory";
1802 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1803 ca->bdev = bdev;
1804 ca->bdev->bd_holder = ca;
1806 bio_init(&ca->sb_bio);
1807 ca->sb_bio.bi_max_vecs = 1;
1808 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1809 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1810 get_page(sb_page);
1812 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1813 ca->discard = CACHE_DISCARD(&ca->sb);
1815 if (cache_alloc(sb, ca) != 0)
1816 goto err;
1818 err = "error creating kobject";
1819 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1820 goto err;
1822 err = register_cache_set(ca);
1823 if (err)
1824 goto err;
1826 pr_info("registered cache device %s", bdevname(bdev, name));
1827 return;
1828 err:
1829 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1830 kobject_put(&ca->kobj);
1833 /* Global interfaces/init */
1835 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1836 const char *, size_t);
1838 kobj_attribute_write(register, register_bcache);
1839 kobj_attribute_write(register_quiet, register_bcache);
1841 static bool bch_is_open_backing(struct block_device *bdev) {
1842 struct cache_set *c, *tc;
1843 struct cached_dev *dc, *t;
1845 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1846 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1847 if (dc->bdev == bdev)
1848 return true;
1849 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1850 if (dc->bdev == bdev)
1851 return true;
1852 return false;
1855 static bool bch_is_open_cache(struct block_device *bdev) {
1856 struct cache_set *c, *tc;
1857 struct cache *ca;
1858 unsigned i;
1860 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1861 for_each_cache(ca, c, i)
1862 if (ca->bdev == bdev)
1863 return true;
1864 return false;
1867 static bool bch_is_open(struct block_device *bdev) {
1868 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1871 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1872 const char *buffer, size_t size)
1874 ssize_t ret = size;
1875 const char *err = "cannot allocate memory";
1876 char *path = NULL;
1877 struct cache_sb *sb = NULL;
1878 struct block_device *bdev = NULL;
1879 struct page *sb_page = NULL;
1881 if (!try_module_get(THIS_MODULE))
1882 return -EBUSY;
1884 mutex_lock(&bch_register_lock);
1886 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1887 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1888 goto err;
1890 err = "failed to open device";
1891 bdev = blkdev_get_by_path(strim(path),
1892 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1893 sb);
1894 if (IS_ERR(bdev)) {
1895 if (bdev == ERR_PTR(-EBUSY)) {
1896 bdev = lookup_bdev(strim(path));
1897 if (!IS_ERR(bdev) && bch_is_open(bdev))
1898 err = "device already registered";
1899 else
1900 err = "device busy";
1902 goto err;
1905 err = "failed to set blocksize";
1906 if (set_blocksize(bdev, 4096))
1907 goto err_close;
1909 err = read_super(sb, bdev, &sb_page);
1910 if (err)
1911 goto err_close;
1913 if (SB_IS_BDEV(sb)) {
1914 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1915 if (!dc)
1916 goto err_close;
1918 register_bdev(sb, sb_page, bdev, dc);
1919 } else {
1920 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1921 if (!ca)
1922 goto err_close;
1924 register_cache(sb, sb_page, bdev, ca);
1926 out:
1927 if (sb_page)
1928 put_page(sb_page);
1929 kfree(sb);
1930 kfree(path);
1931 mutex_unlock(&bch_register_lock);
1932 module_put(THIS_MODULE);
1933 return ret;
1935 err_close:
1936 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1937 err:
1938 if (attr != &ksysfs_register_quiet)
1939 pr_info("error opening %s: %s", path, err);
1940 ret = -EINVAL;
1941 goto out;
1944 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1946 if (code == SYS_DOWN ||
1947 code == SYS_HALT ||
1948 code == SYS_POWER_OFF) {
1949 DEFINE_WAIT(wait);
1950 unsigned long start = jiffies;
1951 bool stopped = false;
1953 struct cache_set *c, *tc;
1954 struct cached_dev *dc, *tdc;
1956 mutex_lock(&bch_register_lock);
1958 if (list_empty(&bch_cache_sets) &&
1959 list_empty(&uncached_devices))
1960 goto out;
1962 pr_info("Stopping all devices:");
1964 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1965 bch_cache_set_stop(c);
1967 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1968 bcache_device_stop(&dc->disk);
1970 /* What's a condition variable? */
1971 while (1) {
1972 long timeout = start + 2 * HZ - jiffies;
1974 stopped = list_empty(&bch_cache_sets) &&
1975 list_empty(&uncached_devices);
1977 if (timeout < 0 || stopped)
1978 break;
1980 prepare_to_wait(&unregister_wait, &wait,
1981 TASK_UNINTERRUPTIBLE);
1983 mutex_unlock(&bch_register_lock);
1984 schedule_timeout(timeout);
1985 mutex_lock(&bch_register_lock);
1988 finish_wait(&unregister_wait, &wait);
1990 if (stopped)
1991 pr_info("All devices stopped");
1992 else
1993 pr_notice("Timeout waiting for devices to be closed");
1994 out:
1995 mutex_unlock(&bch_register_lock);
1998 return NOTIFY_DONE;
2001 static struct notifier_block reboot = {
2002 .notifier_call = bcache_reboot,
2003 .priority = INT_MAX, /* before any real devices */
2006 static void bcache_exit(void)
2008 bch_debug_exit();
2009 bch_writeback_exit();
2010 bch_request_exit();
2011 bch_btree_exit();
2012 if (bcache_kobj)
2013 kobject_put(bcache_kobj);
2014 if (bcache_wq)
2015 destroy_workqueue(bcache_wq);
2016 unregister_blkdev(bcache_major, "bcache");
2017 unregister_reboot_notifier(&reboot);
2020 static int __init bcache_init(void)
2022 static const struct attribute *files[] = {
2023 &ksysfs_register.attr,
2024 &ksysfs_register_quiet.attr,
2025 NULL
2028 mutex_init(&bch_register_lock);
2029 init_waitqueue_head(&unregister_wait);
2030 register_reboot_notifier(&reboot);
2031 closure_debug_init();
2033 bcache_major = register_blkdev(0, "bcache");
2034 if (bcache_major < 0)
2035 return bcache_major;
2037 if (!(bcache_wq = create_workqueue("bcache")) ||
2038 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2039 sysfs_create_files(bcache_kobj, files) ||
2040 bch_btree_init() ||
2041 bch_request_init() ||
2042 bch_writeback_init() ||
2043 bch_debug_init(bcache_kobj))
2044 goto err;
2046 return 0;
2047 err:
2048 bcache_exit();
2049 return -ENOMEM;
2052 module_exit(bcache_exit);
2053 module_init(bcache_init);