2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
56 # define FL_PG_ORDER 0
58 # define FL_PG_ORDER (16 - PAGE_SHIFT)
61 /* RX_PULL_LEN should be <= RX_COPY_THRES */
62 #define RX_COPY_THRES 256
63 #define RX_PULL_LEN 128
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
69 #define RX_PKT_SKB_LEN 512
72 * Max number of Tx descriptors we clean up at a time. Should be modest as
73 * freeing skbs isn't cheap and it happens while holding locks. We just need
74 * to free packets faster than they arrive, we eventually catch up and keep
75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
77 #define MAX_TX_RECLAIM 16
80 * Max number of Rx buffers we replenish at a time. Again keep this modest,
81 * allocating buffers isn't cheap either.
83 #define MAX_RX_REFILL 16U
86 * Period of the Rx queue check timer. This timer is infrequent as it has
87 * something to do only when the system experiences severe memory shortage.
89 #define RX_QCHECK_PERIOD (HZ / 2)
92 * Period of the Tx queue check timer.
94 #define TX_QCHECK_PERIOD (HZ / 2)
97 * Max number of Tx descriptors to be reclaimed by the Tx timer.
99 #define MAX_TIMER_TX_RECLAIM 100
102 * Timer index used when backing off due to memory shortage.
104 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
107 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
108 * attempt to refill it.
110 #define FL_STARVE_THRES 4
113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
114 * This is the same as calc_tx_descs() for a TSO packet with
115 * nr_frags == MAX_SKB_FRAGS.
117 #define ETHTXQ_STOP_THRES \
118 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
121 * Suspension threshold for non-Ethernet Tx queues. We require enough room
122 * for a full sized WR.
124 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
130 #define MAX_IMM_TX_PKT_LEN 128
133 * Max size of a WR sent through a control Tx queue.
135 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
137 struct tx_sw_desc
{ /* SW state per Tx descriptor */
139 struct ulptx_sgl
*sgl
;
142 struct rx_sw_desc
{ /* SW state per Rx descriptor */
148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
149 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
150 * We could easily support more but there doesn't seem to be much need for
153 #define FL_MTU_SMALL 1500
154 #define FL_MTU_LARGE 9000
156 static inline unsigned int fl_mtu_bufsize(struct adapter
*adapter
,
159 struct sge
*s
= &adapter
->sge
;
161 return ALIGN(s
->pktshift
+ ETH_HLEN
+ VLAN_HLEN
+ mtu
, s
->fl_align
);
164 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
165 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
169 * these to specify the buffer size as an index into the SGE Free List Buffer
170 * Size register array. We also use bit 4, when the buffer has been unmapped
171 * for DMA, but this is of course never sent to the hardware and is only used
172 * to prevent double unmappings. All of the above requires that the Free List
173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
174 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
175 * Free List Buffer alignment is 32 bytes, this works out for us ...
178 RX_BUF_FLAGS
= 0x1f, /* bottom five bits are special */
179 RX_BUF_SIZE
= 0x0f, /* bottom three bits are for buf sizes */
180 RX_UNMAPPED_BUF
= 0x10, /* buffer is not mapped */
183 * XXX We shouldn't depend on being able to use these indices.
184 * XXX Especially when some other Master PF has initialized the
185 * XXX adapter or we use the Firmware Configuration File. We
186 * XXX should really search through the Host Buffer Size register
187 * XXX array for the appropriately sized buffer indices.
189 RX_SMALL_PG_BUF
= 0x0, /* small (PAGE_SIZE) page buffer */
190 RX_LARGE_PG_BUF
= 0x1, /* buffer large (FL_PG_ORDER) page buffer */
192 RX_SMALL_MTU_BUF
= 0x2, /* small MTU buffer */
193 RX_LARGE_MTU_BUF
= 0x3, /* large MTU buffer */
196 static inline dma_addr_t
get_buf_addr(const struct rx_sw_desc
*d
)
198 return d
->dma_addr
& ~(dma_addr_t
)RX_BUF_FLAGS
;
201 static inline bool is_buf_mapped(const struct rx_sw_desc
*d
)
203 return !(d
->dma_addr
& RX_UNMAPPED_BUF
);
207 * txq_avail - return the number of available slots in a Tx queue
210 * Returns the number of descriptors in a Tx queue available to write new
213 static inline unsigned int txq_avail(const struct sge_txq
*q
)
215 return q
->size
- 1 - q
->in_use
;
219 * fl_cap - return the capacity of a free-buffer list
222 * Returns the capacity of a free-buffer list. The capacity is less than
223 * the size because one descriptor needs to be left unpopulated, otherwise
224 * HW will think the FL is empty.
226 static inline unsigned int fl_cap(const struct sge_fl
*fl
)
228 return fl
->size
- 8; /* 1 descriptor = 8 buffers */
231 static inline bool fl_starving(const struct sge_fl
*fl
)
233 return fl
->avail
- fl
->pend_cred
<= FL_STARVE_THRES
;
236 static int map_skb(struct device
*dev
, const struct sk_buff
*skb
,
239 const skb_frag_t
*fp
, *end
;
240 const struct skb_shared_info
*si
;
242 *addr
= dma_map_single(dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
243 if (dma_mapping_error(dev
, *addr
))
246 si
= skb_shinfo(skb
);
247 end
= &si
->frags
[si
->nr_frags
];
249 for (fp
= si
->frags
; fp
< end
; fp
++) {
250 *++addr
= skb_frag_dma_map(dev
, fp
, 0, skb_frag_size(fp
),
252 if (dma_mapping_error(dev
, *addr
))
258 while (fp
-- > si
->frags
)
259 dma_unmap_page(dev
, *--addr
, skb_frag_size(fp
), DMA_TO_DEVICE
);
261 dma_unmap_single(dev
, addr
[-1], skb_headlen(skb
), DMA_TO_DEVICE
);
266 #ifdef CONFIG_NEED_DMA_MAP_STATE
267 static void unmap_skb(struct device
*dev
, const struct sk_buff
*skb
,
268 const dma_addr_t
*addr
)
270 const skb_frag_t
*fp
, *end
;
271 const struct skb_shared_info
*si
;
273 dma_unmap_single(dev
, *addr
++, skb_headlen(skb
), DMA_TO_DEVICE
);
275 si
= skb_shinfo(skb
);
276 end
= &si
->frags
[si
->nr_frags
];
277 for (fp
= si
->frags
; fp
< end
; fp
++)
278 dma_unmap_page(dev
, *addr
++, skb_frag_size(fp
), DMA_TO_DEVICE
);
282 * deferred_unmap_destructor - unmap a packet when it is freed
285 * This is the packet destructor used for Tx packets that need to remain
286 * mapped until they are freed rather than until their Tx descriptors are
289 static void deferred_unmap_destructor(struct sk_buff
*skb
)
291 unmap_skb(skb
->dev
->dev
.parent
, skb
, (dma_addr_t
*)skb
->head
);
295 static void unmap_sgl(struct device
*dev
, const struct sk_buff
*skb
,
296 const struct ulptx_sgl
*sgl
, const struct sge_txq
*q
)
298 const struct ulptx_sge_pair
*p
;
299 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
301 if (likely(skb_headlen(skb
)))
302 dma_unmap_single(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
305 dma_unmap_page(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
311 * the complexity below is because of the possibility of a wrap-around
312 * in the middle of an SGL
314 for (p
= sgl
->sge
; nfrags
>= 2; nfrags
-= 2) {
315 if (likely((u8
*)(p
+ 1) <= (u8
*)q
->stat
)) {
316 unmap
: dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
317 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
318 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[1]),
319 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
321 } else if ((u8
*)p
== (u8
*)q
->stat
) {
322 p
= (const struct ulptx_sge_pair
*)q
->desc
;
324 } else if ((u8
*)p
+ 8 == (u8
*)q
->stat
) {
325 const __be64
*addr
= (const __be64
*)q
->desc
;
327 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
328 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
329 dma_unmap_page(dev
, be64_to_cpu(addr
[1]),
330 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
331 p
= (const struct ulptx_sge_pair
*)&addr
[2];
333 const __be64
*addr
= (const __be64
*)q
->desc
;
335 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
336 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
337 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
338 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
339 p
= (const struct ulptx_sge_pair
*)&addr
[1];
345 if ((u8
*)p
== (u8
*)q
->stat
)
346 p
= (const struct ulptx_sge_pair
*)q
->desc
;
347 addr
= (u8
*)p
+ 16 <= (u8
*)q
->stat
? p
->addr
[0] :
348 *(const __be64
*)q
->desc
;
349 dma_unmap_page(dev
, be64_to_cpu(addr
), ntohl(p
->len
[0]),
355 * free_tx_desc - reclaims Tx descriptors and their buffers
356 * @adapter: the adapter
357 * @q: the Tx queue to reclaim descriptors from
358 * @n: the number of descriptors to reclaim
359 * @unmap: whether the buffers should be unmapped for DMA
361 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
362 * Tx buffers. Called with the Tx queue lock held.
364 static void free_tx_desc(struct adapter
*adap
, struct sge_txq
*q
,
365 unsigned int n
, bool unmap
)
367 struct tx_sw_desc
*d
;
368 unsigned int cidx
= q
->cidx
;
369 struct device
*dev
= adap
->pdev_dev
;
373 if (d
->skb
) { /* an SGL is present */
375 unmap_sgl(dev
, d
->skb
, d
->sgl
, q
);
380 if (++cidx
== q
->size
) {
389 * Return the number of reclaimable descriptors in a Tx queue.
391 static inline int reclaimable(const struct sge_txq
*q
)
393 int hw_cidx
= ntohs(q
->stat
->cidx
);
395 return hw_cidx
< 0 ? hw_cidx
+ q
->size
: hw_cidx
;
399 * reclaim_completed_tx - reclaims completed Tx descriptors
401 * @q: the Tx queue to reclaim completed descriptors from
402 * @unmap: whether the buffers should be unmapped for DMA
404 * Reclaims Tx descriptors that the SGE has indicated it has processed,
405 * and frees the associated buffers if possible. Called with the Tx
408 static inline void reclaim_completed_tx(struct adapter
*adap
, struct sge_txq
*q
,
411 int avail
= reclaimable(q
);
415 * Limit the amount of clean up work we do at a time to keep
416 * the Tx lock hold time O(1).
418 if (avail
> MAX_TX_RECLAIM
)
419 avail
= MAX_TX_RECLAIM
;
421 free_tx_desc(adap
, q
, avail
, unmap
);
426 static inline int get_buf_size(struct adapter
*adapter
,
427 const struct rx_sw_desc
*d
)
429 struct sge
*s
= &adapter
->sge
;
430 unsigned int rx_buf_size_idx
= d
->dma_addr
& RX_BUF_SIZE
;
433 switch (rx_buf_size_idx
) {
434 case RX_SMALL_PG_BUF
:
435 buf_size
= PAGE_SIZE
;
438 case RX_LARGE_PG_BUF
:
439 buf_size
= PAGE_SIZE
<< s
->fl_pg_order
;
442 case RX_SMALL_MTU_BUF
:
443 buf_size
= FL_MTU_SMALL_BUFSIZE(adapter
);
446 case RX_LARGE_MTU_BUF
:
447 buf_size
= FL_MTU_LARGE_BUFSIZE(adapter
);
458 * free_rx_bufs - free the Rx buffers on an SGE free list
460 * @q: the SGE free list to free buffers from
461 * @n: how many buffers to free
463 * Release the next @n buffers on an SGE free-buffer Rx queue. The
464 * buffers must be made inaccessible to HW before calling this function.
466 static void free_rx_bufs(struct adapter
*adap
, struct sge_fl
*q
, int n
)
469 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
471 if (is_buf_mapped(d
))
472 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
473 get_buf_size(adap
, d
),
477 if (++q
->cidx
== q
->size
)
484 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
486 * @q: the SGE free list
488 * Unmap the current buffer on an SGE free-buffer Rx queue. The
489 * buffer must be made inaccessible to HW before calling this function.
491 * This is similar to @free_rx_bufs above but does not free the buffer.
492 * Do note that the FL still loses any further access to the buffer.
494 static void unmap_rx_buf(struct adapter
*adap
, struct sge_fl
*q
)
496 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
498 if (is_buf_mapped(d
))
499 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
500 get_buf_size(adap
, d
), PCI_DMA_FROMDEVICE
);
502 if (++q
->cidx
== q
->size
)
507 static inline void ring_fl_db(struct adapter
*adap
, struct sge_fl
*q
)
510 if (q
->pend_cred
>= 8) {
511 val
= PIDX(q
->pend_cred
/ 8);
512 if (!is_t4(adap
->chip
))
515 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
), DBPRIO(1) |
516 QID(q
->cntxt_id
) | val
);
521 static inline void set_rx_sw_desc(struct rx_sw_desc
*sd
, struct page
*pg
,
525 sd
->dma_addr
= mapping
; /* includes size low bits */
529 * refill_fl - refill an SGE Rx buffer ring
531 * @q: the ring to refill
532 * @n: the number of new buffers to allocate
533 * @gfp: the gfp flags for the allocations
535 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
536 * allocated with the supplied gfp flags. The caller must assure that
537 * @n does not exceed the queue's capacity. If afterwards the queue is
538 * found critically low mark it as starving in the bitmap of starving FLs.
540 * Returns the number of buffers allocated.
542 static unsigned int refill_fl(struct adapter
*adap
, struct sge_fl
*q
, int n
,
545 struct sge
*s
= &adap
->sge
;
548 unsigned int cred
= q
->avail
;
549 __be64
*d
= &q
->desc
[q
->pidx
];
550 struct rx_sw_desc
*sd
= &q
->sdesc
[q
->pidx
];
552 gfp
|= __GFP_NOWARN
| __GFP_COLD
;
554 if (s
->fl_pg_order
== 0)
555 goto alloc_small_pages
;
558 * Prefer large buffers
561 pg
= alloc_pages(gfp
| __GFP_COMP
, s
->fl_pg_order
);
563 q
->large_alloc_failed
++;
564 break; /* fall back to single pages */
567 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0,
568 PAGE_SIZE
<< s
->fl_pg_order
,
570 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
571 __free_pages(pg
, s
->fl_pg_order
);
572 goto out
; /* do not try small pages for this error */
574 mapping
|= RX_LARGE_PG_BUF
;
575 *d
++ = cpu_to_be64(mapping
);
577 set_rx_sw_desc(sd
, pg
, mapping
);
581 if (++q
->pidx
== q
->size
) {
591 pg
= __skb_alloc_page(gfp
, NULL
);
597 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0, PAGE_SIZE
,
599 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
603 *d
++ = cpu_to_be64(mapping
);
605 set_rx_sw_desc(sd
, pg
, mapping
);
609 if (++q
->pidx
== q
->size
) {
616 out
: cred
= q
->avail
- cred
;
617 q
->pend_cred
+= cred
;
620 if (unlikely(fl_starving(q
))) {
622 set_bit(q
->cntxt_id
- adap
->sge
.egr_start
,
623 adap
->sge
.starving_fl
);
629 static inline void __refill_fl(struct adapter
*adap
, struct sge_fl
*fl
)
631 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl_cap(fl
) - fl
->avail
),
636 * alloc_ring - allocate resources for an SGE descriptor ring
637 * @dev: the PCI device's core device
638 * @nelem: the number of descriptors
639 * @elem_size: the size of each descriptor
640 * @sw_size: the size of the SW state associated with each ring element
641 * @phys: the physical address of the allocated ring
642 * @metadata: address of the array holding the SW state for the ring
643 * @stat_size: extra space in HW ring for status information
644 * @node: preferred node for memory allocations
646 * Allocates resources for an SGE descriptor ring, such as Tx queues,
647 * free buffer lists, or response queues. Each SGE ring requires
648 * space for its HW descriptors plus, optionally, space for the SW state
649 * associated with each HW entry (the metadata). The function returns
650 * three values: the virtual address for the HW ring (the return value
651 * of the function), the bus address of the HW ring, and the address
654 static void *alloc_ring(struct device
*dev
, size_t nelem
, size_t elem_size
,
655 size_t sw_size
, dma_addr_t
*phys
, void *metadata
,
656 size_t stat_size
, int node
)
658 size_t len
= nelem
* elem_size
+ stat_size
;
660 void *p
= dma_alloc_coherent(dev
, len
, phys
, GFP_KERNEL
);
665 s
= kzalloc_node(nelem
* sw_size
, GFP_KERNEL
, node
);
668 dma_free_coherent(dev
, len
, p
, *phys
);
673 *(void **)metadata
= s
;
679 * sgl_len - calculates the size of an SGL of the given capacity
680 * @n: the number of SGL entries
682 * Calculates the number of flits needed for a scatter/gather list that
683 * can hold the given number of entries.
685 static inline unsigned int sgl_len(unsigned int n
)
688 return (3 * n
) / 2 + (n
& 1) + 2;
692 * flits_to_desc - returns the num of Tx descriptors for the given flits
693 * @n: the number of flits
695 * Returns the number of Tx descriptors needed for the supplied number
698 static inline unsigned int flits_to_desc(unsigned int n
)
700 BUG_ON(n
> SGE_MAX_WR_LEN
/ 8);
701 return DIV_ROUND_UP(n
, 8);
705 * is_eth_imm - can an Ethernet packet be sent as immediate data?
708 * Returns whether an Ethernet packet is small enough to fit as
711 static inline int is_eth_imm(const struct sk_buff
*skb
)
713 return skb
->len
<= MAX_IMM_TX_PKT_LEN
- sizeof(struct cpl_tx_pkt
);
717 * calc_tx_flits - calculate the number of flits for a packet Tx WR
720 * Returns the number of flits needed for a Tx WR for the given Ethernet
721 * packet, including the needed WR and CPL headers.
723 static inline unsigned int calc_tx_flits(const struct sk_buff
*skb
)
728 return DIV_ROUND_UP(skb
->len
+ sizeof(struct cpl_tx_pkt
), 8);
730 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1) + 4;
731 if (skb_shinfo(skb
)->gso_size
)
737 * calc_tx_descs - calculate the number of Tx descriptors for a packet
740 * Returns the number of Tx descriptors needed for the given Ethernet
741 * packet, including the needed WR and CPL headers.
743 static inline unsigned int calc_tx_descs(const struct sk_buff
*skb
)
745 return flits_to_desc(calc_tx_flits(skb
));
749 * write_sgl - populate a scatter/gather list for a packet
751 * @q: the Tx queue we are writing into
752 * @sgl: starting location for writing the SGL
753 * @end: points right after the end of the SGL
754 * @start: start offset into skb main-body data to include in the SGL
755 * @addr: the list of bus addresses for the SGL elements
757 * Generates a gather list for the buffers that make up a packet.
758 * The caller must provide adequate space for the SGL that will be written.
759 * The SGL includes all of the packet's page fragments and the data in its
760 * main body except for the first @start bytes. @sgl must be 16-byte
761 * aligned and within a Tx descriptor with available space. @end points
762 * right after the end of the SGL but does not account for any potential
763 * wrap around, i.e., @end > @sgl.
765 static void write_sgl(const struct sk_buff
*skb
, struct sge_txq
*q
,
766 struct ulptx_sgl
*sgl
, u64
*end
, unsigned int start
,
767 const dma_addr_t
*addr
)
770 struct ulptx_sge_pair
*to
;
771 const struct skb_shared_info
*si
= skb_shinfo(skb
);
772 unsigned int nfrags
= si
->nr_frags
;
773 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1];
775 len
= skb_headlen(skb
) - start
;
777 sgl
->len0
= htonl(len
);
778 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
781 sgl
->len0
= htonl(skb_frag_size(&si
->frags
[0]));
782 sgl
->addr0
= cpu_to_be64(addr
[1]);
785 sgl
->cmd_nsge
= htonl(ULPTX_CMD(ULP_TX_SC_DSGL
) | ULPTX_NSGE(nfrags
));
786 if (likely(--nfrags
== 0))
789 * Most of the complexity below deals with the possibility we hit the
790 * end of the queue in the middle of writing the SGL. For this case
791 * only we create the SGL in a temporary buffer and then copy it.
793 to
= (u8
*)end
> (u8
*)q
->stat
? buf
: sgl
->sge
;
795 for (i
= (nfrags
!= si
->nr_frags
); nfrags
>= 2; nfrags
-= 2, to
++) {
796 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
797 to
->len
[1] = cpu_to_be32(skb_frag_size(&si
->frags
[++i
]));
798 to
->addr
[0] = cpu_to_be64(addr
[i
]);
799 to
->addr
[1] = cpu_to_be64(addr
[++i
]);
802 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
803 to
->len
[1] = cpu_to_be32(0);
804 to
->addr
[0] = cpu_to_be64(addr
[i
+ 1]);
806 if (unlikely((u8
*)end
> (u8
*)q
->stat
)) {
807 unsigned int part0
= (u8
*)q
->stat
- (u8
*)sgl
->sge
, part1
;
810 memcpy(sgl
->sge
, buf
, part0
);
811 part1
= (u8
*)end
- (u8
*)q
->stat
;
812 memcpy(q
->desc
, (u8
*)buf
+ part0
, part1
);
813 end
= (void *)q
->desc
+ part1
;
815 if ((uintptr_t)end
& 8) /* 0-pad to multiple of 16 */
819 /* This function copies 64 byte coalesced work request to
820 * memory mapped BAR2 space(user space writes).
821 * For coalesced WR SGE, fetches data from the FIFO instead of from Host.
823 static void cxgb_pio_copy(u64 __iomem
*dst
, u64
*src
)
836 * ring_tx_db - check and potentially ring a Tx queue's doorbell
839 * @n: number of new descriptors to give to HW
841 * Ring the doorbel for a Tx queue.
843 static inline void ring_tx_db(struct adapter
*adap
, struct sge_txq
*q
, int n
)
845 unsigned int *wr
, index
;
847 wmb(); /* write descriptors before telling HW */
848 spin_lock(&q
->db_lock
);
849 if (!q
->db_disabled
) {
850 if (is_t4(adap
->chip
)) {
851 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
),
852 QID(q
->cntxt_id
) | PIDX(n
));
855 index
= q
->pidx
? (q
->pidx
- 1) : (q
->size
- 1);
856 wr
= (unsigned int *)&q
->desc
[index
];
857 cxgb_pio_copy((u64 __iomem
*)
858 (adap
->bar2
+ q
->udb
+ 64),
861 writel(n
, adap
->bar2
+ q
->udb
+ 8);
865 q
->db_pidx
= q
->pidx
;
866 spin_unlock(&q
->db_lock
);
870 * inline_tx_skb - inline a packet's data into Tx descriptors
872 * @q: the Tx queue where the packet will be inlined
873 * @pos: starting position in the Tx queue where to inline the packet
875 * Inline a packet's contents directly into Tx descriptors, starting at
876 * the given position within the Tx DMA ring.
877 * Most of the complexity of this operation is dealing with wrap arounds
878 * in the middle of the packet we want to inline.
880 static void inline_tx_skb(const struct sk_buff
*skb
, const struct sge_txq
*q
,
884 int left
= (void *)q
->stat
- pos
;
886 if (likely(skb
->len
<= left
)) {
887 if (likely(!skb
->data_len
))
888 skb_copy_from_linear_data(skb
, pos
, skb
->len
);
890 skb_copy_bits(skb
, 0, pos
, skb
->len
);
893 skb_copy_bits(skb
, 0, pos
, left
);
894 skb_copy_bits(skb
, left
, q
->desc
, skb
->len
- left
);
895 pos
= (void *)q
->desc
+ (skb
->len
- left
);
898 /* 0-pad to multiple of 16 */
899 p
= PTR_ALIGN(pos
, 8);
900 if ((uintptr_t)p
& 8)
905 * Figure out what HW csum a packet wants and return the appropriate control
908 static u64
hwcsum(const struct sk_buff
*skb
)
911 const struct iphdr
*iph
= ip_hdr(skb
);
913 if (iph
->version
== 4) {
914 if (iph
->protocol
== IPPROTO_TCP
)
915 csum_type
= TX_CSUM_TCPIP
;
916 else if (iph
->protocol
== IPPROTO_UDP
)
917 csum_type
= TX_CSUM_UDPIP
;
920 * unknown protocol, disable HW csum
921 * and hope a bad packet is detected
923 return TXPKT_L4CSUM_DIS
;
927 * this doesn't work with extension headers
929 const struct ipv6hdr
*ip6h
= (const struct ipv6hdr
*)iph
;
931 if (ip6h
->nexthdr
== IPPROTO_TCP
)
932 csum_type
= TX_CSUM_TCPIP6
;
933 else if (ip6h
->nexthdr
== IPPROTO_UDP
)
934 csum_type
= TX_CSUM_UDPIP6
;
939 if (likely(csum_type
>= TX_CSUM_TCPIP
))
940 return TXPKT_CSUM_TYPE(csum_type
) |
941 TXPKT_IPHDR_LEN(skb_network_header_len(skb
)) |
942 TXPKT_ETHHDR_LEN(skb_network_offset(skb
) - ETH_HLEN
);
944 int start
= skb_transport_offset(skb
);
946 return TXPKT_CSUM_TYPE(csum_type
) | TXPKT_CSUM_START(start
) |
947 TXPKT_CSUM_LOC(start
+ skb
->csum_offset
);
951 static void eth_txq_stop(struct sge_eth_txq
*q
)
953 netif_tx_stop_queue(q
->txq
);
957 static inline void txq_advance(struct sge_txq
*q
, unsigned int n
)
961 if (q
->pidx
>= q
->size
)
966 * t4_eth_xmit - add a packet to an Ethernet Tx queue
968 * @dev: the egress net device
970 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
972 netdev_tx_t
t4_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
977 unsigned int flits
, ndesc
;
978 struct adapter
*adap
;
979 struct sge_eth_txq
*q
;
980 const struct port_info
*pi
;
981 struct fw_eth_tx_pkt_wr
*wr
;
982 struct cpl_tx_pkt_core
*cpl
;
983 const struct skb_shared_info
*ssi
;
984 dma_addr_t addr
[MAX_SKB_FRAGS
+ 1];
987 * The chip min packet length is 10 octets but play safe and reject
988 * anything shorter than an Ethernet header.
990 if (unlikely(skb
->len
< ETH_HLEN
)) {
991 out_free
: dev_kfree_skb(skb
);
995 pi
= netdev_priv(dev
);
997 qidx
= skb_get_queue_mapping(skb
);
998 q
= &adap
->sge
.ethtxq
[qidx
+ pi
->first_qset
];
1000 reclaim_completed_tx(adap
, &q
->q
, true);
1002 flits
= calc_tx_flits(skb
);
1003 ndesc
= flits_to_desc(flits
);
1004 credits
= txq_avail(&q
->q
) - ndesc
;
1006 if (unlikely(credits
< 0)) {
1008 dev_err(adap
->pdev_dev
,
1009 "%s: Tx ring %u full while queue awake!\n",
1011 return NETDEV_TX_BUSY
;
1014 if (!is_eth_imm(skb
) &&
1015 unlikely(map_skb(adap
->pdev_dev
, skb
, addr
) < 0)) {
1020 wr_mid
= FW_WR_LEN16(DIV_ROUND_UP(flits
, 2));
1021 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
1023 wr_mid
|= FW_WR_EQUEQ
| FW_WR_EQUIQ
;
1026 wr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
1027 wr
->equiq_to_len16
= htonl(wr_mid
);
1028 wr
->r3
= cpu_to_be64(0);
1029 end
= (u64
*)wr
+ flits
;
1031 ssi
= skb_shinfo(skb
);
1032 if (ssi
->gso_size
) {
1033 struct cpl_tx_pkt_lso
*lso
= (void *)wr
;
1034 bool v6
= (ssi
->gso_type
& SKB_GSO_TCPV6
) != 0;
1035 int l3hdr_len
= skb_network_header_len(skb
);
1036 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
1038 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
1039 FW_WR_IMMDLEN(sizeof(*lso
)));
1040 lso
->c
.lso_ctrl
= htonl(LSO_OPCODE(CPL_TX_PKT_LSO
) |
1041 LSO_FIRST_SLICE
| LSO_LAST_SLICE
|
1043 LSO_ETHHDR_LEN(eth_xtra_len
/ 4) |
1044 LSO_IPHDR_LEN(l3hdr_len
/ 4) |
1045 LSO_TCPHDR_LEN(tcp_hdr(skb
)->doff
));
1046 lso
->c
.ipid_ofst
= htons(0);
1047 lso
->c
.mss
= htons(ssi
->gso_size
);
1048 lso
->c
.seqno_offset
= htonl(0);
1049 lso
->c
.len
= htonl(skb
->len
);
1050 cpl
= (void *)(lso
+ 1);
1051 cntrl
= TXPKT_CSUM_TYPE(v6
? TX_CSUM_TCPIP6
: TX_CSUM_TCPIP
) |
1052 TXPKT_IPHDR_LEN(l3hdr_len
) |
1053 TXPKT_ETHHDR_LEN(eth_xtra_len
);
1055 q
->tx_cso
+= ssi
->gso_segs
;
1059 len
= is_eth_imm(skb
) ? skb
->len
+ sizeof(*cpl
) : sizeof(*cpl
);
1060 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
1061 FW_WR_IMMDLEN(len
));
1062 cpl
= (void *)(wr
+ 1);
1063 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1064 cntrl
= hwcsum(skb
) | TXPKT_IPCSUM_DIS
;
1067 cntrl
= TXPKT_L4CSUM_DIS
| TXPKT_IPCSUM_DIS
;
1070 if (vlan_tx_tag_present(skb
)) {
1072 cntrl
|= TXPKT_VLAN_VLD
| TXPKT_VLAN(vlan_tx_tag_get(skb
));
1075 cpl
->ctrl0
= htonl(TXPKT_OPCODE(CPL_TX_PKT_XT
) |
1076 TXPKT_INTF(pi
->tx_chan
) | TXPKT_PF(adap
->fn
));
1077 cpl
->pack
= htons(0);
1078 cpl
->len
= htons(skb
->len
);
1079 cpl
->ctrl1
= cpu_to_be64(cntrl
);
1081 if (is_eth_imm(skb
)) {
1082 inline_tx_skb(skb
, &q
->q
, cpl
+ 1);
1087 write_sgl(skb
, &q
->q
, (struct ulptx_sgl
*)(cpl
+ 1), end
, 0,
1091 last_desc
= q
->q
.pidx
+ ndesc
- 1;
1092 if (last_desc
>= q
->q
.size
)
1093 last_desc
-= q
->q
.size
;
1094 q
->q
.sdesc
[last_desc
].skb
= skb
;
1095 q
->q
.sdesc
[last_desc
].sgl
= (struct ulptx_sgl
*)(cpl
+ 1);
1098 txq_advance(&q
->q
, ndesc
);
1100 ring_tx_db(adap
, &q
->q
, ndesc
);
1101 return NETDEV_TX_OK
;
1105 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1106 * @q: the SGE control Tx queue
1108 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1109 * that send only immediate data (presently just the control queues) and
1110 * thus do not have any sk_buffs to release.
1112 static inline void reclaim_completed_tx_imm(struct sge_txq
*q
)
1114 int hw_cidx
= ntohs(q
->stat
->cidx
);
1115 int reclaim
= hw_cidx
- q
->cidx
;
1120 q
->in_use
-= reclaim
;
1125 * is_imm - check whether a packet can be sent as immediate data
1128 * Returns true if a packet can be sent as a WR with immediate data.
1130 static inline int is_imm(const struct sk_buff
*skb
)
1132 return skb
->len
<= MAX_CTRL_WR_LEN
;
1136 * ctrlq_check_stop - check if a control queue is full and should stop
1138 * @wr: most recent WR written to the queue
1140 * Check if a control queue has become full and should be stopped.
1141 * We clean up control queue descriptors very lazily, only when we are out.
1142 * If the queue is still full after reclaiming any completed descriptors
1143 * we suspend it and have the last WR wake it up.
1145 static void ctrlq_check_stop(struct sge_ctrl_txq
*q
, struct fw_wr_hdr
*wr
)
1147 reclaim_completed_tx_imm(&q
->q
);
1148 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1149 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1156 * ctrl_xmit - send a packet through an SGE control Tx queue
1157 * @q: the control queue
1160 * Send a packet through an SGE control Tx queue. Packets sent through
1161 * a control queue must fit entirely as immediate data.
1163 static int ctrl_xmit(struct sge_ctrl_txq
*q
, struct sk_buff
*skb
)
1166 struct fw_wr_hdr
*wr
;
1168 if (unlikely(!is_imm(skb
))) {
1171 return NET_XMIT_DROP
;
1174 ndesc
= DIV_ROUND_UP(skb
->len
, sizeof(struct tx_desc
));
1175 spin_lock(&q
->sendq
.lock
);
1177 if (unlikely(q
->full
)) {
1178 skb
->priority
= ndesc
; /* save for restart */
1179 __skb_queue_tail(&q
->sendq
, skb
);
1180 spin_unlock(&q
->sendq
.lock
);
1184 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1185 inline_tx_skb(skb
, &q
->q
, wr
);
1187 txq_advance(&q
->q
, ndesc
);
1188 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
))
1189 ctrlq_check_stop(q
, wr
);
1191 ring_tx_db(q
->adap
, &q
->q
, ndesc
);
1192 spin_unlock(&q
->sendq
.lock
);
1195 return NET_XMIT_SUCCESS
;
1199 * restart_ctrlq - restart a suspended control queue
1200 * @data: the control queue to restart
1202 * Resumes transmission on a suspended Tx control queue.
1204 static void restart_ctrlq(unsigned long data
)
1206 struct sk_buff
*skb
;
1207 unsigned int written
= 0;
1208 struct sge_ctrl_txq
*q
= (struct sge_ctrl_txq
*)data
;
1210 spin_lock(&q
->sendq
.lock
);
1211 reclaim_completed_tx_imm(&q
->q
);
1212 BUG_ON(txq_avail(&q
->q
) < TXQ_STOP_THRES
); /* q should be empty */
1214 while ((skb
= __skb_dequeue(&q
->sendq
)) != NULL
) {
1215 struct fw_wr_hdr
*wr
;
1216 unsigned int ndesc
= skb
->priority
; /* previously saved */
1219 * Write descriptors and free skbs outside the lock to limit
1220 * wait times. q->full is still set so new skbs will be queued.
1222 spin_unlock(&q
->sendq
.lock
);
1224 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1225 inline_tx_skb(skb
, &q
->q
, wr
);
1229 txq_advance(&q
->q
, ndesc
);
1230 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1231 unsigned long old
= q
->q
.stops
;
1233 ctrlq_check_stop(q
, wr
);
1234 if (q
->q
.stops
!= old
) { /* suspended anew */
1235 spin_lock(&q
->sendq
.lock
);
1240 ring_tx_db(q
->adap
, &q
->q
, written
);
1243 spin_lock(&q
->sendq
.lock
);
1246 ringdb
: if (written
)
1247 ring_tx_db(q
->adap
, &q
->q
, written
);
1248 spin_unlock(&q
->sendq
.lock
);
1252 * t4_mgmt_tx - send a management message
1253 * @adap: the adapter
1254 * @skb: the packet containing the management message
1256 * Send a management message through control queue 0.
1258 int t4_mgmt_tx(struct adapter
*adap
, struct sk_buff
*skb
)
1263 ret
= ctrl_xmit(&adap
->sge
.ctrlq
[0], skb
);
1269 * is_ofld_imm - check whether a packet can be sent as immediate data
1272 * Returns true if a packet can be sent as an offload WR with immediate
1273 * data. We currently use the same limit as for Ethernet packets.
1275 static inline int is_ofld_imm(const struct sk_buff
*skb
)
1277 return skb
->len
<= MAX_IMM_TX_PKT_LEN
;
1281 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1284 * Returns the number of flits needed for the given offload packet.
1285 * These packets are already fully constructed and no additional headers
1288 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff
*skb
)
1290 unsigned int flits
, cnt
;
1292 if (is_ofld_imm(skb
))
1293 return DIV_ROUND_UP(skb
->len
, 8);
1295 flits
= skb_transport_offset(skb
) / 8U; /* headers */
1296 cnt
= skb_shinfo(skb
)->nr_frags
;
1297 if (skb_tail_pointer(skb
) != skb_transport_header(skb
))
1299 return flits
+ sgl_len(cnt
);
1303 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1304 * @adap: the adapter
1305 * @q: the queue to stop
1307 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1308 * inability to map packets. A periodic timer attempts to restart
1311 static void txq_stop_maperr(struct sge_ofld_txq
*q
)
1315 set_bit(q
->q
.cntxt_id
- q
->adap
->sge
.egr_start
,
1316 q
->adap
->sge
.txq_maperr
);
1320 * ofldtxq_stop - stop an offload Tx queue that has become full
1321 * @q: the queue to stop
1322 * @skb: the packet causing the queue to become full
1324 * Stops an offload Tx queue that has become full and modifies the packet
1325 * being written to request a wakeup.
1327 static void ofldtxq_stop(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1329 struct fw_wr_hdr
*wr
= (struct fw_wr_hdr
*)skb
->data
;
1331 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1337 * service_ofldq - restart a suspended offload queue
1338 * @q: the offload queue
1340 * Services an offload Tx queue by moving packets from its packet queue
1341 * to the HW Tx ring. The function starts and ends with the queue locked.
1343 static void service_ofldq(struct sge_ofld_txq
*q
)
1347 struct sk_buff
*skb
;
1348 unsigned int written
= 0;
1349 unsigned int flits
, ndesc
;
1351 while ((skb
= skb_peek(&q
->sendq
)) != NULL
&& !q
->full
) {
1353 * We drop the lock but leave skb on sendq, thus retaining
1354 * exclusive access to the state of the queue.
1356 spin_unlock(&q
->sendq
.lock
);
1358 reclaim_completed_tx(q
->adap
, &q
->q
, false);
1360 flits
= skb
->priority
; /* previously saved */
1361 ndesc
= flits_to_desc(flits
);
1362 credits
= txq_avail(&q
->q
) - ndesc
;
1363 BUG_ON(credits
< 0);
1364 if (unlikely(credits
< TXQ_STOP_THRES
))
1365 ofldtxq_stop(q
, skb
);
1367 pos
= (u64
*)&q
->q
.desc
[q
->q
.pidx
];
1368 if (is_ofld_imm(skb
))
1369 inline_tx_skb(skb
, &q
->q
, pos
);
1370 else if (map_skb(q
->adap
->pdev_dev
, skb
,
1371 (dma_addr_t
*)skb
->head
)) {
1373 spin_lock(&q
->sendq
.lock
);
1376 int last_desc
, hdr_len
= skb_transport_offset(skb
);
1378 memcpy(pos
, skb
->data
, hdr_len
);
1379 write_sgl(skb
, &q
->q
, (void *)pos
+ hdr_len
,
1380 pos
+ flits
, hdr_len
,
1381 (dma_addr_t
*)skb
->head
);
1382 #ifdef CONFIG_NEED_DMA_MAP_STATE
1383 skb
->dev
= q
->adap
->port
[0];
1384 skb
->destructor
= deferred_unmap_destructor
;
1386 last_desc
= q
->q
.pidx
+ ndesc
- 1;
1387 if (last_desc
>= q
->q
.size
)
1388 last_desc
-= q
->q
.size
;
1389 q
->q
.sdesc
[last_desc
].skb
= skb
;
1392 txq_advance(&q
->q
, ndesc
);
1394 if (unlikely(written
> 32)) {
1395 ring_tx_db(q
->adap
, &q
->q
, written
);
1399 spin_lock(&q
->sendq
.lock
);
1400 __skb_unlink(skb
, &q
->sendq
);
1401 if (is_ofld_imm(skb
))
1404 if (likely(written
))
1405 ring_tx_db(q
->adap
, &q
->q
, written
);
1409 * ofld_xmit - send a packet through an offload queue
1410 * @q: the Tx offload queue
1413 * Send an offload packet through an SGE offload queue.
1415 static int ofld_xmit(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1417 skb
->priority
= calc_tx_flits_ofld(skb
); /* save for restart */
1418 spin_lock(&q
->sendq
.lock
);
1419 __skb_queue_tail(&q
->sendq
, skb
);
1420 if (q
->sendq
.qlen
== 1)
1422 spin_unlock(&q
->sendq
.lock
);
1423 return NET_XMIT_SUCCESS
;
1427 * restart_ofldq - restart a suspended offload queue
1428 * @data: the offload queue to restart
1430 * Resumes transmission on a suspended Tx offload queue.
1432 static void restart_ofldq(unsigned long data
)
1434 struct sge_ofld_txq
*q
= (struct sge_ofld_txq
*)data
;
1436 spin_lock(&q
->sendq
.lock
);
1437 q
->full
= 0; /* the queue actually is completely empty now */
1439 spin_unlock(&q
->sendq
.lock
);
1443 * skb_txq - return the Tx queue an offload packet should use
1446 * Returns the Tx queue an offload packet should use as indicated by bits
1447 * 1-15 in the packet's queue_mapping.
1449 static inline unsigned int skb_txq(const struct sk_buff
*skb
)
1451 return skb
->queue_mapping
>> 1;
1455 * is_ctrl_pkt - return whether an offload packet is a control packet
1458 * Returns whether an offload packet should use an OFLD or a CTRL
1459 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1461 static inline unsigned int is_ctrl_pkt(const struct sk_buff
*skb
)
1463 return skb
->queue_mapping
& 1;
1466 static inline int ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1468 unsigned int idx
= skb_txq(skb
);
1470 if (unlikely(is_ctrl_pkt(skb
)))
1471 return ctrl_xmit(&adap
->sge
.ctrlq
[idx
], skb
);
1472 return ofld_xmit(&adap
->sge
.ofldtxq
[idx
], skb
);
1476 * t4_ofld_send - send an offload packet
1477 * @adap: the adapter
1480 * Sends an offload packet. We use the packet queue_mapping to select the
1481 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1482 * should be sent as regular or control, bits 1-15 select the queue.
1484 int t4_ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1489 ret
= ofld_send(adap
, skb
);
1495 * cxgb4_ofld_send - send an offload packet
1496 * @dev: the net device
1499 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1500 * intended for ULDs.
1502 int cxgb4_ofld_send(struct net_device
*dev
, struct sk_buff
*skb
)
1504 return t4_ofld_send(netdev2adap(dev
), skb
);
1506 EXPORT_SYMBOL(cxgb4_ofld_send
);
1508 static inline void copy_frags(struct sk_buff
*skb
,
1509 const struct pkt_gl
*gl
, unsigned int offset
)
1513 /* usually there's just one frag */
1514 __skb_fill_page_desc(skb
, 0, gl
->frags
[0].page
,
1515 gl
->frags
[0].offset
+ offset
,
1516 gl
->frags
[0].size
- offset
);
1517 skb_shinfo(skb
)->nr_frags
= gl
->nfrags
;
1518 for (i
= 1; i
< gl
->nfrags
; i
++)
1519 __skb_fill_page_desc(skb
, i
, gl
->frags
[i
].page
,
1520 gl
->frags
[i
].offset
,
1523 /* get a reference to the last page, we don't own it */
1524 get_page(gl
->frags
[gl
->nfrags
- 1].page
);
1528 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1529 * @gl: the gather list
1530 * @skb_len: size of sk_buff main body if it carries fragments
1531 * @pull_len: amount of data to move to the sk_buff's main body
1533 * Builds an sk_buff from the given packet gather list. Returns the
1534 * sk_buff or %NULL if sk_buff allocation failed.
1536 struct sk_buff
*cxgb4_pktgl_to_skb(const struct pkt_gl
*gl
,
1537 unsigned int skb_len
, unsigned int pull_len
)
1539 struct sk_buff
*skb
;
1542 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1543 * size, which is expected since buffers are at least PAGE_SIZEd.
1544 * In this case packets up to RX_COPY_THRES have only one fragment.
1546 if (gl
->tot_len
<= RX_COPY_THRES
) {
1547 skb
= dev_alloc_skb(gl
->tot_len
);
1550 __skb_put(skb
, gl
->tot_len
);
1551 skb_copy_to_linear_data(skb
, gl
->va
, gl
->tot_len
);
1553 skb
= dev_alloc_skb(skb_len
);
1556 __skb_put(skb
, pull_len
);
1557 skb_copy_to_linear_data(skb
, gl
->va
, pull_len
);
1559 copy_frags(skb
, gl
, pull_len
);
1560 skb
->len
= gl
->tot_len
;
1561 skb
->data_len
= skb
->len
- pull_len
;
1562 skb
->truesize
+= skb
->data_len
;
1566 EXPORT_SYMBOL(cxgb4_pktgl_to_skb
);
1569 * t4_pktgl_free - free a packet gather list
1570 * @gl: the gather list
1572 * Releases the pages of a packet gather list. We do not own the last
1573 * page on the list and do not free it.
1575 static void t4_pktgl_free(const struct pkt_gl
*gl
)
1578 const struct page_frag
*p
;
1580 for (p
= gl
->frags
, n
= gl
->nfrags
- 1; n
--; p
++)
1585 * Process an MPS trace packet. Give it an unused protocol number so it won't
1586 * be delivered to anyone and send it to the stack for capture.
1588 static noinline
int handle_trace_pkt(struct adapter
*adap
,
1589 const struct pkt_gl
*gl
)
1591 struct sk_buff
*skb
;
1593 skb
= cxgb4_pktgl_to_skb(gl
, RX_PULL_LEN
, RX_PULL_LEN
);
1594 if (unlikely(!skb
)) {
1599 if (is_t4(adap
->chip
))
1600 __skb_pull(skb
, sizeof(struct cpl_trace_pkt
));
1602 __skb_pull(skb
, sizeof(struct cpl_t5_trace_pkt
));
1604 skb_reset_mac_header(skb
);
1605 skb
->protocol
= htons(0xffff);
1606 skb
->dev
= adap
->port
[0];
1607 netif_receive_skb(skb
);
1611 static void do_gro(struct sge_eth_rxq
*rxq
, const struct pkt_gl
*gl
,
1612 const struct cpl_rx_pkt
*pkt
)
1614 struct adapter
*adapter
= rxq
->rspq
.adap
;
1615 struct sge
*s
= &adapter
->sge
;
1617 struct sk_buff
*skb
;
1619 skb
= napi_get_frags(&rxq
->rspq
.napi
);
1620 if (unlikely(!skb
)) {
1622 rxq
->stats
.rx_drops
++;
1626 copy_frags(skb
, gl
, s
->pktshift
);
1627 skb
->len
= gl
->tot_len
- s
->pktshift
;
1628 skb
->data_len
= skb
->len
;
1629 skb
->truesize
+= skb
->data_len
;
1630 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1631 skb_record_rx_queue(skb
, rxq
->rspq
.idx
);
1632 if (rxq
->rspq
.netdev
->features
& NETIF_F_RXHASH
)
1633 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1635 if (unlikely(pkt
->vlan_ex
)) {
1636 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(pkt
->vlan
));
1637 rxq
->stats
.vlan_ex
++;
1639 ret
= napi_gro_frags(&rxq
->rspq
.napi
);
1640 if (ret
== GRO_HELD
)
1641 rxq
->stats
.lro_pkts
++;
1642 else if (ret
== GRO_MERGED
|| ret
== GRO_MERGED_FREE
)
1643 rxq
->stats
.lro_merged
++;
1645 rxq
->stats
.rx_cso
++;
1649 * t4_ethrx_handler - process an ingress ethernet packet
1650 * @q: the response queue that received the packet
1651 * @rsp: the response queue descriptor holding the RX_PKT message
1652 * @si: the gather list of packet fragments
1654 * Process an ingress ethernet packet and deliver it to the stack.
1656 int t4_ethrx_handler(struct sge_rspq
*q
, const __be64
*rsp
,
1657 const struct pkt_gl
*si
)
1660 struct sk_buff
*skb
;
1661 const struct cpl_rx_pkt
*pkt
;
1662 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1663 struct sge
*s
= &q
->adap
->sge
;
1664 int cpl_trace_pkt
= is_t4(q
->adap
->chip
) ?
1665 CPL_TRACE_PKT
: CPL_TRACE_PKT_T5
;
1667 if (unlikely(*(u8
*)rsp
== cpl_trace_pkt
))
1668 return handle_trace_pkt(q
->adap
, si
);
1670 pkt
= (const struct cpl_rx_pkt
*)rsp
;
1671 csum_ok
= pkt
->csum_calc
&& !pkt
->err_vec
;
1672 if ((pkt
->l2info
& htonl(RXF_TCP
)) &&
1673 (q
->netdev
->features
& NETIF_F_GRO
) && csum_ok
&& !pkt
->ip_frag
) {
1674 do_gro(rxq
, si
, pkt
);
1678 skb
= cxgb4_pktgl_to_skb(si
, RX_PKT_SKB_LEN
, RX_PULL_LEN
);
1679 if (unlikely(!skb
)) {
1681 rxq
->stats
.rx_drops
++;
1685 __skb_pull(skb
, s
->pktshift
); /* remove ethernet header padding */
1686 skb
->protocol
= eth_type_trans(skb
, q
->netdev
);
1687 skb_record_rx_queue(skb
, q
->idx
);
1688 if (skb
->dev
->features
& NETIF_F_RXHASH
)
1689 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1693 if (csum_ok
&& (q
->netdev
->features
& NETIF_F_RXCSUM
) &&
1694 (pkt
->l2info
& htonl(RXF_UDP
| RXF_TCP
))) {
1695 if (!pkt
->ip_frag
) {
1696 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1697 rxq
->stats
.rx_cso
++;
1698 } else if (pkt
->l2info
& htonl(RXF_IP
)) {
1699 __sum16 c
= (__force __sum16
)pkt
->csum
;
1700 skb
->csum
= csum_unfold(c
);
1701 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1702 rxq
->stats
.rx_cso
++;
1705 skb_checksum_none_assert(skb
);
1707 if (unlikely(pkt
->vlan_ex
)) {
1708 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(pkt
->vlan
));
1709 rxq
->stats
.vlan_ex
++;
1711 netif_receive_skb(skb
);
1716 * restore_rx_bufs - put back a packet's Rx buffers
1717 * @si: the packet gather list
1718 * @q: the SGE free list
1719 * @frags: number of FL buffers to restore
1721 * Puts back on an FL the Rx buffers associated with @si. The buffers
1722 * have already been unmapped and are left unmapped, we mark them so to
1723 * prevent further unmapping attempts.
1725 * This function undoes a series of @unmap_rx_buf calls when we find out
1726 * that the current packet can't be processed right away afterall and we
1727 * need to come back to it later. This is a very rare event and there's
1728 * no effort to make this particularly efficient.
1730 static void restore_rx_bufs(const struct pkt_gl
*si
, struct sge_fl
*q
,
1733 struct rx_sw_desc
*d
;
1737 q
->cidx
= q
->size
- 1;
1740 d
= &q
->sdesc
[q
->cidx
];
1741 d
->page
= si
->frags
[frags
].page
;
1742 d
->dma_addr
|= RX_UNMAPPED_BUF
;
1748 * is_new_response - check if a response is newly written
1749 * @r: the response descriptor
1750 * @q: the response queue
1752 * Returns true if a response descriptor contains a yet unprocessed
1755 static inline bool is_new_response(const struct rsp_ctrl
*r
,
1756 const struct sge_rspq
*q
)
1758 return RSPD_GEN(r
->type_gen
) == q
->gen
;
1762 * rspq_next - advance to the next entry in a response queue
1765 * Updates the state of a response queue to advance it to the next entry.
1767 static inline void rspq_next(struct sge_rspq
*q
)
1769 q
->cur_desc
= (void *)q
->cur_desc
+ q
->iqe_len
;
1770 if (unlikely(++q
->cidx
== q
->size
)) {
1773 q
->cur_desc
= q
->desc
;
1778 * process_responses - process responses from an SGE response queue
1779 * @q: the ingress queue to process
1780 * @budget: how many responses can be processed in this round
1782 * Process responses from an SGE response queue up to the supplied budget.
1783 * Responses include received packets as well as control messages from FW
1786 * Additionally choose the interrupt holdoff time for the next interrupt
1787 * on this queue. If the system is under memory shortage use a fairly
1788 * long delay to help recovery.
1790 static int process_responses(struct sge_rspq
*q
, int budget
)
1793 int budget_left
= budget
;
1794 const struct rsp_ctrl
*rc
;
1795 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1796 struct adapter
*adapter
= q
->adap
;
1797 struct sge
*s
= &adapter
->sge
;
1799 while (likely(budget_left
)) {
1800 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1801 if (!is_new_response(rc
, q
))
1805 rsp_type
= RSPD_TYPE(rc
->type_gen
);
1806 if (likely(rsp_type
== RSP_TYPE_FLBUF
)) {
1807 struct page_frag
*fp
;
1809 const struct rx_sw_desc
*rsd
;
1810 u32 len
= ntohl(rc
->pldbuflen_qid
), bufsz
, frags
;
1812 if (len
& RSPD_NEWBUF
) {
1813 if (likely(q
->offset
> 0)) {
1814 free_rx_bufs(q
->adap
, &rxq
->fl
, 1);
1817 len
= RSPD_LEN(len
);
1821 /* gather packet fragments */
1822 for (frags
= 0, fp
= si
.frags
; ; frags
++, fp
++) {
1823 rsd
= &rxq
->fl
.sdesc
[rxq
->fl
.cidx
];
1824 bufsz
= get_buf_size(adapter
, rsd
);
1825 fp
->page
= rsd
->page
;
1826 fp
->offset
= q
->offset
;
1827 fp
->size
= min(bufsz
, len
);
1831 unmap_rx_buf(q
->adap
, &rxq
->fl
);
1835 * Last buffer remains mapped so explicitly make it
1836 * coherent for CPU access.
1838 dma_sync_single_for_cpu(q
->adap
->pdev_dev
,
1840 fp
->size
, DMA_FROM_DEVICE
);
1842 si
.va
= page_address(si
.frags
[0].page
) +
1846 si
.nfrags
= frags
+ 1;
1847 ret
= q
->handler(q
, q
->cur_desc
, &si
);
1848 if (likely(ret
== 0))
1849 q
->offset
+= ALIGN(fp
->size
, s
->fl_align
);
1851 restore_rx_bufs(&si
, &rxq
->fl
, frags
);
1852 } else if (likely(rsp_type
== RSP_TYPE_CPL
)) {
1853 ret
= q
->handler(q
, q
->cur_desc
, NULL
);
1855 ret
= q
->handler(q
, (const __be64
*)rc
, CXGB4_MSG_AN
);
1858 if (unlikely(ret
)) {
1859 /* couldn't process descriptor, back off for recovery */
1860 q
->next_intr_params
= QINTR_TIMER_IDX(NOMEM_TMR_IDX
);
1868 if (q
->offset
>= 0 && rxq
->fl
.size
- rxq
->fl
.avail
>= 16)
1869 __refill_fl(q
->adap
, &rxq
->fl
);
1870 return budget
- budget_left
;
1874 * napi_rx_handler - the NAPI handler for Rx processing
1875 * @napi: the napi instance
1876 * @budget: how many packets we can process in this round
1878 * Handler for new data events when using NAPI. This does not need any
1879 * locking or protection from interrupts as data interrupts are off at
1880 * this point and other adapter interrupts do not interfere (the latter
1881 * in not a concern at all with MSI-X as non-data interrupts then have
1882 * a separate handler).
1884 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
1886 unsigned int params
;
1887 struct sge_rspq
*q
= container_of(napi
, struct sge_rspq
, napi
);
1888 int work_done
= process_responses(q
, budget
);
1890 if (likely(work_done
< budget
)) {
1891 napi_complete(napi
);
1892 params
= q
->next_intr_params
;
1893 q
->next_intr_params
= q
->intr_params
;
1895 params
= QINTR_TIMER_IDX(7);
1897 t4_write_reg(q
->adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(work_done
) |
1898 INGRESSQID((u32
)q
->cntxt_id
) | SEINTARM(params
));
1903 * The MSI-X interrupt handler for an SGE response queue.
1905 irqreturn_t
t4_sge_intr_msix(int irq
, void *cookie
)
1907 struct sge_rspq
*q
= cookie
;
1909 napi_schedule(&q
->napi
);
1914 * Process the indirect interrupt entries in the interrupt queue and kick off
1915 * NAPI for each queue that has generated an entry.
1917 static unsigned int process_intrq(struct adapter
*adap
)
1919 unsigned int credits
;
1920 const struct rsp_ctrl
*rc
;
1921 struct sge_rspq
*q
= &adap
->sge
.intrq
;
1923 spin_lock(&adap
->sge
.intrq_lock
);
1924 for (credits
= 0; ; credits
++) {
1925 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1926 if (!is_new_response(rc
, q
))
1930 if (RSPD_TYPE(rc
->type_gen
) == RSP_TYPE_INTR
) {
1931 unsigned int qid
= ntohl(rc
->pldbuflen_qid
);
1933 qid
-= adap
->sge
.ingr_start
;
1934 napi_schedule(&adap
->sge
.ingr_map
[qid
]->napi
);
1940 t4_write_reg(adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(credits
) |
1941 INGRESSQID(q
->cntxt_id
) | SEINTARM(q
->intr_params
));
1942 spin_unlock(&adap
->sge
.intrq_lock
);
1947 * The MSI interrupt handler, which handles data events from SGE response queues
1948 * as well as error and other async events as they all use the same MSI vector.
1950 static irqreturn_t
t4_intr_msi(int irq
, void *cookie
)
1952 struct adapter
*adap
= cookie
;
1954 t4_slow_intr_handler(adap
);
1955 process_intrq(adap
);
1960 * Interrupt handler for legacy INTx interrupts.
1961 * Handles data events from SGE response queues as well as error and other
1962 * async events as they all use the same interrupt line.
1964 static irqreturn_t
t4_intr_intx(int irq
, void *cookie
)
1966 struct adapter
*adap
= cookie
;
1968 t4_write_reg(adap
, MYPF_REG(PCIE_PF_CLI
), 0);
1969 if (t4_slow_intr_handler(adap
) | process_intrq(adap
))
1971 return IRQ_NONE
; /* probably shared interrupt */
1975 * t4_intr_handler - select the top-level interrupt handler
1976 * @adap: the adapter
1978 * Selects the top-level interrupt handler based on the type of interrupts
1979 * (MSI-X, MSI, or INTx).
1981 irq_handler_t
t4_intr_handler(struct adapter
*adap
)
1983 if (adap
->flags
& USING_MSIX
)
1984 return t4_sge_intr_msix
;
1985 if (adap
->flags
& USING_MSI
)
1987 return t4_intr_intx
;
1990 static void sge_rx_timer_cb(unsigned long data
)
1993 unsigned int i
, cnt
[2];
1994 struct adapter
*adap
= (struct adapter
*)data
;
1995 struct sge
*s
= &adap
->sge
;
1997 for (i
= 0; i
< ARRAY_SIZE(s
->starving_fl
); i
++)
1998 for (m
= s
->starving_fl
[i
]; m
; m
&= m
- 1) {
1999 struct sge_eth_rxq
*rxq
;
2000 unsigned int id
= __ffs(m
) + i
* BITS_PER_LONG
;
2001 struct sge_fl
*fl
= s
->egr_map
[id
];
2003 clear_bit(id
, s
->starving_fl
);
2004 smp_mb__after_clear_bit();
2006 if (fl_starving(fl
)) {
2007 rxq
= container_of(fl
, struct sge_eth_rxq
, fl
);
2008 if (napi_reschedule(&rxq
->rspq
.napi
))
2011 set_bit(id
, s
->starving_fl
);
2015 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 13);
2016 cnt
[0] = t4_read_reg(adap
, SGE_DEBUG_DATA_HIGH
);
2017 cnt
[1] = t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
);
2019 for (i
= 0; i
< 2; i
++)
2020 if (cnt
[i
] >= s
->starve_thres
) {
2021 if (s
->idma_state
[i
] || cnt
[i
] == 0xffffffff)
2023 s
->idma_state
[i
] = 1;
2024 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 11);
2025 m
= t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
) >> (i
* 16);
2026 dev_warn(adap
->pdev_dev
,
2027 "SGE idma%u starvation detected for "
2028 "queue %lu\n", i
, m
& 0xffff);
2029 } else if (s
->idma_state
[i
])
2030 s
->idma_state
[i
] = 0;
2032 mod_timer(&s
->rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2035 static void sge_tx_timer_cb(unsigned long data
)
2038 unsigned int i
, budget
;
2039 struct adapter
*adap
= (struct adapter
*)data
;
2040 struct sge
*s
= &adap
->sge
;
2042 for (i
= 0; i
< ARRAY_SIZE(s
->txq_maperr
); i
++)
2043 for (m
= s
->txq_maperr
[i
]; m
; m
&= m
- 1) {
2044 unsigned long id
= __ffs(m
) + i
* BITS_PER_LONG
;
2045 struct sge_ofld_txq
*txq
= s
->egr_map
[id
];
2047 clear_bit(id
, s
->txq_maperr
);
2048 tasklet_schedule(&txq
->qresume_tsk
);
2051 budget
= MAX_TIMER_TX_RECLAIM
;
2052 i
= s
->ethtxq_rover
;
2054 struct sge_eth_txq
*q
= &s
->ethtxq
[i
];
2057 time_after_eq(jiffies
, q
->txq
->trans_start
+ HZ
/ 100) &&
2058 __netif_tx_trylock(q
->txq
)) {
2059 int avail
= reclaimable(&q
->q
);
2065 free_tx_desc(adap
, &q
->q
, avail
, true);
2066 q
->q
.in_use
-= avail
;
2069 __netif_tx_unlock(q
->txq
);
2072 if (++i
>= s
->ethqsets
)
2074 } while (budget
&& i
!= s
->ethtxq_rover
);
2075 s
->ethtxq_rover
= i
;
2076 mod_timer(&s
->tx_timer
, jiffies
+ (budget
? TX_QCHECK_PERIOD
: 2));
2079 int t4_sge_alloc_rxq(struct adapter
*adap
, struct sge_rspq
*iq
, bool fwevtq
,
2080 struct net_device
*dev
, int intr_idx
,
2081 struct sge_fl
*fl
, rspq_handler_t hnd
)
2085 struct sge
*s
= &adap
->sge
;
2086 struct port_info
*pi
= netdev_priv(dev
);
2088 /* Size needs to be multiple of 16, including status entry. */
2089 iq
->size
= roundup(iq
->size
, 16);
2091 iq
->desc
= alloc_ring(adap
->pdev_dev
, iq
->size
, iq
->iqe_len
, 0,
2092 &iq
->phys_addr
, NULL
, 0, NUMA_NO_NODE
);
2096 memset(&c
, 0, sizeof(c
));
2097 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_IQ_CMD
) | FW_CMD_REQUEST
|
2098 FW_CMD_WRITE
| FW_CMD_EXEC
|
2099 FW_IQ_CMD_PFN(adap
->fn
) | FW_IQ_CMD_VFN(0));
2100 c
.alloc_to_len16
= htonl(FW_IQ_CMD_ALLOC
| FW_IQ_CMD_IQSTART(1) |
2102 c
.type_to_iqandstindex
= htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP
) |
2103 FW_IQ_CMD_IQASYNCH(fwevtq
) | FW_IQ_CMD_VIID(pi
->viid
) |
2104 FW_IQ_CMD_IQANDST(intr_idx
< 0) | FW_IQ_CMD_IQANUD(1) |
2105 FW_IQ_CMD_IQANDSTINDEX(intr_idx
>= 0 ? intr_idx
:
2107 c
.iqdroprss_to_iqesize
= htons(FW_IQ_CMD_IQPCIECH(pi
->tx_chan
) |
2108 FW_IQ_CMD_IQGTSMODE
|
2109 FW_IQ_CMD_IQINTCNTTHRESH(iq
->pktcnt_idx
) |
2110 FW_IQ_CMD_IQESIZE(ilog2(iq
->iqe_len
) - 4));
2111 c
.iqsize
= htons(iq
->size
);
2112 c
.iqaddr
= cpu_to_be64(iq
->phys_addr
);
2115 fl
->size
= roundup(fl
->size
, 8);
2116 fl
->desc
= alloc_ring(adap
->pdev_dev
, fl
->size
, sizeof(__be64
),
2117 sizeof(struct rx_sw_desc
), &fl
->addr
,
2118 &fl
->sdesc
, s
->stat_len
, NUMA_NO_NODE
);
2122 flsz
= fl
->size
/ 8 + s
->stat_len
/ sizeof(struct tx_desc
);
2123 c
.iqns_to_fl0congen
= htonl(FW_IQ_CMD_FL0PACKEN(1) |
2124 FW_IQ_CMD_FL0FETCHRO(1) |
2125 FW_IQ_CMD_FL0DATARO(1) |
2126 FW_IQ_CMD_FL0PADEN(1));
2127 c
.fl0dcaen_to_fl0cidxfthresh
= htons(FW_IQ_CMD_FL0FBMIN(2) |
2128 FW_IQ_CMD_FL0FBMAX(3));
2129 c
.fl0size
= htons(flsz
);
2130 c
.fl0addr
= cpu_to_be64(fl
->addr
);
2133 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2137 netif_napi_add(dev
, &iq
->napi
, napi_rx_handler
, 64);
2138 iq
->cur_desc
= iq
->desc
;
2141 iq
->next_intr_params
= iq
->intr_params
;
2142 iq
->cntxt_id
= ntohs(c
.iqid
);
2143 iq
->abs_id
= ntohs(c
.physiqid
);
2144 iq
->size
--; /* subtract status entry */
2149 /* set offset to -1 to distinguish ingress queues without FL */
2150 iq
->offset
= fl
? 0 : -1;
2152 adap
->sge
.ingr_map
[iq
->cntxt_id
- adap
->sge
.ingr_start
] = iq
;
2155 fl
->cntxt_id
= ntohs(c
.fl0id
);
2156 fl
->avail
= fl
->pend_cred
= 0;
2157 fl
->pidx
= fl
->cidx
= 0;
2158 fl
->alloc_failed
= fl
->large_alloc_failed
= fl
->starving
= 0;
2159 adap
->sge
.egr_map
[fl
->cntxt_id
- adap
->sge
.egr_start
] = fl
;
2160 refill_fl(adap
, fl
, fl_cap(fl
), GFP_KERNEL
);
2168 dma_free_coherent(adap
->pdev_dev
, iq
->size
* iq
->iqe_len
,
2169 iq
->desc
, iq
->phys_addr
);
2172 if (fl
&& fl
->desc
) {
2175 dma_free_coherent(adap
->pdev_dev
, flsz
* sizeof(struct tx_desc
),
2176 fl
->desc
, fl
->addr
);
2182 static void init_txq(struct adapter
*adap
, struct sge_txq
*q
, unsigned int id
)
2185 if (!is_t4(adap
->chip
)) {
2187 unsigned short udb_density
;
2188 unsigned long qpshift
;
2191 s_qpp
= QUEUESPERPAGEPF1
* adap
->fn
;
2192 udb_density
= 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap
,
2193 SGE_EGRESS_QUEUES_PER_PAGE_PF
) >> s_qpp
));
2194 qpshift
= PAGE_SHIFT
- ilog2(udb_density
);
2195 q
->udb
= q
->cntxt_id
<< qpshift
;
2196 q
->udb
&= PAGE_MASK
;
2197 page
= q
->udb
/ PAGE_SIZE
;
2198 q
->udb
+= (q
->cntxt_id
- (page
* udb_density
)) * 128;
2202 q
->cidx
= q
->pidx
= 0;
2203 q
->stops
= q
->restarts
= 0;
2204 q
->stat
= (void *)&q
->desc
[q
->size
];
2205 spin_lock_init(&q
->db_lock
);
2206 adap
->sge
.egr_map
[id
- adap
->sge
.egr_start
] = q
;
2209 int t4_sge_alloc_eth_txq(struct adapter
*adap
, struct sge_eth_txq
*txq
,
2210 struct net_device
*dev
, struct netdev_queue
*netdevq
,
2214 struct fw_eq_eth_cmd c
;
2215 struct sge
*s
= &adap
->sge
;
2216 struct port_info
*pi
= netdev_priv(dev
);
2218 /* Add status entries */
2219 nentries
= txq
->q
.size
+ s
->stat_len
/ sizeof(struct tx_desc
);
2221 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2222 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2223 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, s
->stat_len
,
2224 netdev_queue_numa_node_read(netdevq
));
2228 memset(&c
, 0, sizeof(c
));
2229 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_ETH_CMD
) | FW_CMD_REQUEST
|
2230 FW_CMD_WRITE
| FW_CMD_EXEC
|
2231 FW_EQ_ETH_CMD_PFN(adap
->fn
) | FW_EQ_ETH_CMD_VFN(0));
2232 c
.alloc_to_len16
= htonl(FW_EQ_ETH_CMD_ALLOC
|
2233 FW_EQ_ETH_CMD_EQSTART
| FW_LEN16(c
));
2234 c
.viid_pkd
= htonl(FW_EQ_ETH_CMD_VIID(pi
->viid
));
2235 c
.fetchszm_to_iqid
= htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2236 FW_EQ_ETH_CMD_PCIECHN(pi
->tx_chan
) |
2237 FW_EQ_ETH_CMD_FETCHRO(1) |
2238 FW_EQ_ETH_CMD_IQID(iqid
));
2239 c
.dcaen_to_eqsize
= htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2240 FW_EQ_ETH_CMD_FBMAX(3) |
2241 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2242 FW_EQ_ETH_CMD_EQSIZE(nentries
));
2243 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2245 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2247 kfree(txq
->q
.sdesc
);
2248 txq
->q
.sdesc
= NULL
;
2249 dma_free_coherent(adap
->pdev_dev
,
2250 nentries
* sizeof(struct tx_desc
),
2251 txq
->q
.desc
, txq
->q
.phys_addr
);
2256 init_txq(adap
, &txq
->q
, FW_EQ_ETH_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2258 txq
->tso
= txq
->tx_cso
= txq
->vlan_ins
= 0;
2259 txq
->mapping_err
= 0;
2263 int t4_sge_alloc_ctrl_txq(struct adapter
*adap
, struct sge_ctrl_txq
*txq
,
2264 struct net_device
*dev
, unsigned int iqid
,
2265 unsigned int cmplqid
)
2268 struct fw_eq_ctrl_cmd c
;
2269 struct sge
*s
= &adap
->sge
;
2270 struct port_info
*pi
= netdev_priv(dev
);
2272 /* Add status entries */
2273 nentries
= txq
->q
.size
+ s
->stat_len
/ sizeof(struct tx_desc
);
2275 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, nentries
,
2276 sizeof(struct tx_desc
), 0, &txq
->q
.phys_addr
,
2277 NULL
, 0, NUMA_NO_NODE
);
2281 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_CTRL_CMD
) | FW_CMD_REQUEST
|
2282 FW_CMD_WRITE
| FW_CMD_EXEC
|
2283 FW_EQ_CTRL_CMD_PFN(adap
->fn
) |
2284 FW_EQ_CTRL_CMD_VFN(0));
2285 c
.alloc_to_len16
= htonl(FW_EQ_CTRL_CMD_ALLOC
|
2286 FW_EQ_CTRL_CMD_EQSTART
| FW_LEN16(c
));
2287 c
.cmpliqid_eqid
= htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid
));
2288 c
.physeqid_pkd
= htonl(0);
2289 c
.fetchszm_to_iqid
= htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2290 FW_EQ_CTRL_CMD_PCIECHN(pi
->tx_chan
) |
2291 FW_EQ_CTRL_CMD_FETCHRO
|
2292 FW_EQ_CTRL_CMD_IQID(iqid
));
2293 c
.dcaen_to_eqsize
= htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2294 FW_EQ_CTRL_CMD_FBMAX(3) |
2295 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2296 FW_EQ_CTRL_CMD_EQSIZE(nentries
));
2297 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2299 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2301 dma_free_coherent(adap
->pdev_dev
,
2302 nentries
* sizeof(struct tx_desc
),
2303 txq
->q
.desc
, txq
->q
.phys_addr
);
2308 init_txq(adap
, &txq
->q
, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c
.cmpliqid_eqid
)));
2310 skb_queue_head_init(&txq
->sendq
);
2311 tasklet_init(&txq
->qresume_tsk
, restart_ctrlq
, (unsigned long)txq
);
2316 int t4_sge_alloc_ofld_txq(struct adapter
*adap
, struct sge_ofld_txq
*txq
,
2317 struct net_device
*dev
, unsigned int iqid
)
2320 struct fw_eq_ofld_cmd c
;
2321 struct sge
*s
= &adap
->sge
;
2322 struct port_info
*pi
= netdev_priv(dev
);
2324 /* Add status entries */
2325 nentries
= txq
->q
.size
+ s
->stat_len
/ sizeof(struct tx_desc
);
2327 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2328 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2329 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, s
->stat_len
,
2334 memset(&c
, 0, sizeof(c
));
2335 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_OFLD_CMD
) | FW_CMD_REQUEST
|
2336 FW_CMD_WRITE
| FW_CMD_EXEC
|
2337 FW_EQ_OFLD_CMD_PFN(adap
->fn
) |
2338 FW_EQ_OFLD_CMD_VFN(0));
2339 c
.alloc_to_len16
= htonl(FW_EQ_OFLD_CMD_ALLOC
|
2340 FW_EQ_OFLD_CMD_EQSTART
| FW_LEN16(c
));
2341 c
.fetchszm_to_iqid
= htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2342 FW_EQ_OFLD_CMD_PCIECHN(pi
->tx_chan
) |
2343 FW_EQ_OFLD_CMD_FETCHRO(1) |
2344 FW_EQ_OFLD_CMD_IQID(iqid
));
2345 c
.dcaen_to_eqsize
= htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2346 FW_EQ_OFLD_CMD_FBMAX(3) |
2347 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2348 FW_EQ_OFLD_CMD_EQSIZE(nentries
));
2349 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2351 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2353 kfree(txq
->q
.sdesc
);
2354 txq
->q
.sdesc
= NULL
;
2355 dma_free_coherent(adap
->pdev_dev
,
2356 nentries
* sizeof(struct tx_desc
),
2357 txq
->q
.desc
, txq
->q
.phys_addr
);
2362 init_txq(adap
, &txq
->q
, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2364 skb_queue_head_init(&txq
->sendq
);
2365 tasklet_init(&txq
->qresume_tsk
, restart_ofldq
, (unsigned long)txq
);
2367 txq
->mapping_err
= 0;
2371 static void free_txq(struct adapter
*adap
, struct sge_txq
*q
)
2373 struct sge
*s
= &adap
->sge
;
2375 dma_free_coherent(adap
->pdev_dev
,
2376 q
->size
* sizeof(struct tx_desc
) + s
->stat_len
,
2377 q
->desc
, q
->phys_addr
);
2383 static void free_rspq_fl(struct adapter
*adap
, struct sge_rspq
*rq
,
2386 struct sge
*s
= &adap
->sge
;
2387 unsigned int fl_id
= fl
? fl
->cntxt_id
: 0xffff;
2389 adap
->sge
.ingr_map
[rq
->cntxt_id
- adap
->sge
.ingr_start
] = NULL
;
2390 t4_iq_free(adap
, adap
->fn
, adap
->fn
, 0, FW_IQ_TYPE_FL_INT_CAP
,
2391 rq
->cntxt_id
, fl_id
, 0xffff);
2392 dma_free_coherent(adap
->pdev_dev
, (rq
->size
+ 1) * rq
->iqe_len
,
2393 rq
->desc
, rq
->phys_addr
);
2394 netif_napi_del(&rq
->napi
);
2396 rq
->cntxt_id
= rq
->abs_id
= 0;
2400 free_rx_bufs(adap
, fl
, fl
->avail
);
2401 dma_free_coherent(adap
->pdev_dev
, fl
->size
* 8 + s
->stat_len
,
2402 fl
->desc
, fl
->addr
);
2411 * t4_free_sge_resources - free SGE resources
2412 * @adap: the adapter
2414 * Frees resources used by the SGE queue sets.
2416 void t4_free_sge_resources(struct adapter
*adap
)
2419 struct sge_eth_rxq
*eq
= adap
->sge
.ethrxq
;
2420 struct sge_eth_txq
*etq
= adap
->sge
.ethtxq
;
2421 struct sge_ofld_rxq
*oq
= adap
->sge
.ofldrxq
;
2423 /* clean up Ethernet Tx/Rx queues */
2424 for (i
= 0; i
< adap
->sge
.ethqsets
; i
++, eq
++, etq
++) {
2426 free_rspq_fl(adap
, &eq
->rspq
, &eq
->fl
);
2428 t4_eth_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2430 free_tx_desc(adap
, &etq
->q
, etq
->q
.in_use
, true);
2431 kfree(etq
->q
.sdesc
);
2432 free_txq(adap
, &etq
->q
);
2436 /* clean up RDMA and iSCSI Rx queues */
2437 for (i
= 0; i
< adap
->sge
.ofldqsets
; i
++, oq
++) {
2439 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2441 for (i
= 0, oq
= adap
->sge
.rdmarxq
; i
< adap
->sge
.rdmaqs
; i
++, oq
++) {
2443 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2446 /* clean up offload Tx queues */
2447 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ofldtxq
); i
++) {
2448 struct sge_ofld_txq
*q
= &adap
->sge
.ofldtxq
[i
];
2451 tasklet_kill(&q
->qresume_tsk
);
2452 t4_ofld_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2454 free_tx_desc(adap
, &q
->q
, q
->q
.in_use
, false);
2456 __skb_queue_purge(&q
->sendq
);
2457 free_txq(adap
, &q
->q
);
2461 /* clean up control Tx queues */
2462 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ctrlq
); i
++) {
2463 struct sge_ctrl_txq
*cq
= &adap
->sge
.ctrlq
[i
];
2466 tasklet_kill(&cq
->qresume_tsk
);
2467 t4_ctrl_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2469 __skb_queue_purge(&cq
->sendq
);
2470 free_txq(adap
, &cq
->q
);
2474 if (adap
->sge
.fw_evtq
.desc
)
2475 free_rspq_fl(adap
, &adap
->sge
.fw_evtq
, NULL
);
2477 if (adap
->sge
.intrq
.desc
)
2478 free_rspq_fl(adap
, &adap
->sge
.intrq
, NULL
);
2480 /* clear the reverse egress queue map */
2481 memset(adap
->sge
.egr_map
, 0, sizeof(adap
->sge
.egr_map
));
2484 void t4_sge_start(struct adapter
*adap
)
2486 adap
->sge
.ethtxq_rover
= 0;
2487 mod_timer(&adap
->sge
.rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2488 mod_timer(&adap
->sge
.tx_timer
, jiffies
+ TX_QCHECK_PERIOD
);
2492 * t4_sge_stop - disable SGE operation
2493 * @adap: the adapter
2495 * Stop tasklets and timers associated with the DMA engine. Note that
2496 * this is effective only if measures have been taken to disable any HW
2497 * events that may restart them.
2499 void t4_sge_stop(struct adapter
*adap
)
2502 struct sge
*s
= &adap
->sge
;
2504 if (in_interrupt()) /* actions below require waiting */
2507 if (s
->rx_timer
.function
)
2508 del_timer_sync(&s
->rx_timer
);
2509 if (s
->tx_timer
.function
)
2510 del_timer_sync(&s
->tx_timer
);
2512 for (i
= 0; i
< ARRAY_SIZE(s
->ofldtxq
); i
++) {
2513 struct sge_ofld_txq
*q
= &s
->ofldtxq
[i
];
2516 tasklet_kill(&q
->qresume_tsk
);
2518 for (i
= 0; i
< ARRAY_SIZE(s
->ctrlq
); i
++) {
2519 struct sge_ctrl_txq
*cq
= &s
->ctrlq
[i
];
2522 tasklet_kill(&cq
->qresume_tsk
);
2527 * t4_sge_init - initialize SGE
2528 * @adap: the adapter
2530 * Performs SGE initialization needed every time after a chip reset.
2531 * We do not initialize any of the queues here, instead the driver
2532 * top-level must request them individually.
2534 * Called in two different modes:
2536 * 1. Perform actual hardware initialization and record hard-coded
2537 * parameters which were used. This gets used when we're the
2538 * Master PF and the Firmware Configuration File support didn't
2539 * work for some reason.
2541 * 2. We're not the Master PF or initialization was performed with
2542 * a Firmware Configuration File. In this case we need to grab
2543 * any of the SGE operating parameters that we need to have in
2544 * order to do our job and make sure we can live with them ...
2547 static int t4_sge_init_soft(struct adapter
*adap
)
2549 struct sge
*s
= &adap
->sge
;
2550 u32 fl_small_pg
, fl_large_pg
, fl_small_mtu
, fl_large_mtu
;
2551 u32 timer_value_0_and_1
, timer_value_2_and_3
, timer_value_4_and_5
;
2552 u32 ingress_rx_threshold
;
2555 * Verify that CPL messages are going to the Ingress Queue for
2556 * process_responses() and that only packet data is going to the
2559 if ((t4_read_reg(adap
, SGE_CONTROL
) & RXPKTCPLMODE_MASK
) !=
2560 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT
)) {
2561 dev_err(adap
->pdev_dev
, "bad SGE CPL MODE\n");
2566 * Validate the Host Buffer Register Array indices that we want to
2569 * XXX Note that we should really read through the Host Buffer Size
2570 * XXX register array and find the indices of the Buffer Sizes which
2571 * XXX meet our needs!
2573 #define READ_FL_BUF(x) \
2574 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2576 fl_small_pg
= READ_FL_BUF(RX_SMALL_PG_BUF
);
2577 fl_large_pg
= READ_FL_BUF(RX_LARGE_PG_BUF
);
2578 fl_small_mtu
= READ_FL_BUF(RX_SMALL_MTU_BUF
);
2579 fl_large_mtu
= READ_FL_BUF(RX_LARGE_MTU_BUF
);
2583 if (fl_small_pg
!= PAGE_SIZE
||
2584 (fl_large_pg
!= 0 && (fl_large_pg
<= fl_small_pg
||
2585 (fl_large_pg
& (fl_large_pg
-1)) != 0))) {
2586 dev_err(adap
->pdev_dev
, "bad SGE FL page buffer sizes [%d, %d]\n",
2587 fl_small_pg
, fl_large_pg
);
2591 s
->fl_pg_order
= ilog2(fl_large_pg
) - PAGE_SHIFT
;
2593 if (fl_small_mtu
< FL_MTU_SMALL_BUFSIZE(adap
) ||
2594 fl_large_mtu
< FL_MTU_LARGE_BUFSIZE(adap
)) {
2595 dev_err(adap
->pdev_dev
, "bad SGE FL MTU sizes [%d, %d]\n",
2596 fl_small_mtu
, fl_large_mtu
);
2601 * Retrieve our RX interrupt holdoff timer values and counter
2602 * threshold values from the SGE parameters.
2604 timer_value_0_and_1
= t4_read_reg(adap
, SGE_TIMER_VALUE_0_AND_1
);
2605 timer_value_2_and_3
= t4_read_reg(adap
, SGE_TIMER_VALUE_2_AND_3
);
2606 timer_value_4_and_5
= t4_read_reg(adap
, SGE_TIMER_VALUE_4_AND_5
);
2607 s
->timer_val
[0] = core_ticks_to_us(adap
,
2608 TIMERVALUE0_GET(timer_value_0_and_1
));
2609 s
->timer_val
[1] = core_ticks_to_us(adap
,
2610 TIMERVALUE1_GET(timer_value_0_and_1
));
2611 s
->timer_val
[2] = core_ticks_to_us(adap
,
2612 TIMERVALUE2_GET(timer_value_2_and_3
));
2613 s
->timer_val
[3] = core_ticks_to_us(adap
,
2614 TIMERVALUE3_GET(timer_value_2_and_3
));
2615 s
->timer_val
[4] = core_ticks_to_us(adap
,
2616 TIMERVALUE4_GET(timer_value_4_and_5
));
2617 s
->timer_val
[5] = core_ticks_to_us(adap
,
2618 TIMERVALUE5_GET(timer_value_4_and_5
));
2620 ingress_rx_threshold
= t4_read_reg(adap
, SGE_INGRESS_RX_THRESHOLD
);
2621 s
->counter_val
[0] = THRESHOLD_0_GET(ingress_rx_threshold
);
2622 s
->counter_val
[1] = THRESHOLD_1_GET(ingress_rx_threshold
);
2623 s
->counter_val
[2] = THRESHOLD_2_GET(ingress_rx_threshold
);
2624 s
->counter_val
[3] = THRESHOLD_3_GET(ingress_rx_threshold
);
2629 static int t4_sge_init_hard(struct adapter
*adap
)
2631 struct sge
*s
= &adap
->sge
;
2634 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2635 * Queue and Packet Date to the Free List.
2637 t4_set_reg_field(adap
, SGE_CONTROL
, RXPKTCPLMODE_MASK
,
2641 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2642 * and generate an interrupt when this occurs so we can recover.
2644 if (is_t4(adap
->chip
)) {
2645 t4_set_reg_field(adap
, A_SGE_DBFIFO_STATUS
,
2646 V_HP_INT_THRESH(M_HP_INT_THRESH
) |
2647 V_LP_INT_THRESH(M_LP_INT_THRESH
),
2648 V_HP_INT_THRESH(dbfifo_int_thresh
) |
2649 V_LP_INT_THRESH(dbfifo_int_thresh
));
2651 t4_set_reg_field(adap
, A_SGE_DBFIFO_STATUS
,
2652 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5
),
2653 V_LP_INT_THRESH_T5(dbfifo_int_thresh
));
2654 t4_set_reg_field(adap
, SGE_DBFIFO_STATUS2
,
2655 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5
),
2656 V_HP_INT_THRESH_T5(dbfifo_int_thresh
));
2658 t4_set_reg_field(adap
, A_SGE_DOORBELL_CONTROL
, F_ENABLE_DROP
,
2662 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2663 * t4_fixup_host_params().
2665 s
->fl_pg_order
= FL_PG_ORDER
;
2668 SGE_FL_BUFFER_SIZE0
+RX_LARGE_PG_BUF
*sizeof(u32
),
2669 PAGE_SIZE
<< FL_PG_ORDER
);
2670 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0
+RX_SMALL_MTU_BUF
*sizeof(u32
),
2671 FL_MTU_SMALL_BUFSIZE(adap
));
2672 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0
+RX_LARGE_MTU_BUF
*sizeof(u32
),
2673 FL_MTU_LARGE_BUFSIZE(adap
));
2676 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2677 * Timer Holdoff values must be supplied by our caller.
2679 t4_write_reg(adap
, SGE_INGRESS_RX_THRESHOLD
,
2680 THRESHOLD_0(s
->counter_val
[0]) |
2681 THRESHOLD_1(s
->counter_val
[1]) |
2682 THRESHOLD_2(s
->counter_val
[2]) |
2683 THRESHOLD_3(s
->counter_val
[3]));
2684 t4_write_reg(adap
, SGE_TIMER_VALUE_0_AND_1
,
2685 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[0])) |
2686 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[1])));
2687 t4_write_reg(adap
, SGE_TIMER_VALUE_2_AND_3
,
2688 TIMERVALUE2(us_to_core_ticks(adap
, s
->timer_val
[2])) |
2689 TIMERVALUE3(us_to_core_ticks(adap
, s
->timer_val
[3])));
2690 t4_write_reg(adap
, SGE_TIMER_VALUE_4_AND_5
,
2691 TIMERVALUE4(us_to_core_ticks(adap
, s
->timer_val
[4])) |
2692 TIMERVALUE5(us_to_core_ticks(adap
, s
->timer_val
[5])));
2697 int t4_sge_init(struct adapter
*adap
)
2699 struct sge
*s
= &adap
->sge
;
2704 * Ingress Padding Boundary and Egress Status Page Size are set up by
2705 * t4_fixup_host_params().
2707 sge_control
= t4_read_reg(adap
, SGE_CONTROL
);
2708 s
->pktshift
= PKTSHIFT_GET(sge_control
);
2709 s
->stat_len
= (sge_control
& EGRSTATUSPAGESIZE_MASK
) ? 128 : 64;
2710 s
->fl_align
= 1 << (INGPADBOUNDARY_GET(sge_control
) +
2711 X_INGPADBOUNDARY_SHIFT
);
2713 if (adap
->flags
& USING_SOFT_PARAMS
)
2714 ret
= t4_sge_init_soft(adap
);
2716 ret
= t4_sge_init_hard(adap
);
2721 * A FL with <= fl_starve_thres buffers is starving and a periodic
2722 * timer will attempt to refill it. This needs to be larger than the
2723 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2724 * stuck waiting for new packets while the SGE is waiting for us to
2725 * give it more Free List entries. (Note that the SGE's Egress
2726 * Congestion Threshold is in units of 2 Free List pointers.)
2729 = EGRTHRESHOLD_GET(t4_read_reg(adap
, SGE_CONM_CTRL
))*2 + 1;
2731 setup_timer(&s
->rx_timer
, sge_rx_timer_cb
, (unsigned long)adap
);
2732 setup_timer(&s
->tx_timer
, sge_tx_timer_cb
, (unsigned long)adap
);
2733 s
->starve_thres
= core_ticks_per_usec(adap
) * 1000000; /* 1 s */
2734 s
->idma_state
[0] = s
->idma_state
[1] = 0;
2735 spin_lock_init(&s
->intrq_lock
);