1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
37 static s32
igb_wait_autoneg(struct e1000_hw
*hw
);
38 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
);
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table
[] = {
42 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 (sizeof(e1000_m88_cable_length_table) / \
45 sizeof(e1000_m88_cable_length_table[0]))
47 static const u16 e1000_igp_2_cable_length_table
[] = {
48 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 (sizeof(e1000_igp_2_cable_length_table) / \
58 sizeof(e1000_igp_2_cable_length_table[0]))
61 * igb_check_reset_block - Check if PHY reset is blocked
62 * @hw: pointer to the HW structure
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
68 s32
igb_check_reset_block(struct e1000_hw
*hw
)
72 manc
= rd32(E1000_MANC
);
74 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
84 s32
igb_get_phy_id(struct e1000_hw
*hw
)
86 struct e1000_phy_info
*phy
= &hw
->phy
;
90 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
94 phy
->id
= (u32
)(phy_id
<< 16);
96 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
100 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
101 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32
igb_phy_reset_dsp(struct e1000_hw
*hw
)
117 if (!(hw
->phy
.ops
.write_reg
))
120 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
124 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32
igb_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
141 struct e1000_phy_info
*phy
= &hw
->phy
;
145 if (offset
> MAX_PHY_REG_ADDRESS
) {
146 hw_dbg("PHY Address %d is out of range\n", offset
);
147 ret_val
= -E1000_ERR_PARAM
;
151 /* Set up Op-code, Phy Address, and register offset in the MDI
152 * Control register. The MAC will take care of interfacing with the
153 * PHY to retrieve the desired data.
155 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
156 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
157 (E1000_MDIC_OP_READ
));
159 wr32(E1000_MDIC
, mdic
);
161 /* Poll the ready bit to see if the MDI read completed
162 * Increasing the time out as testing showed failures with
165 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
167 mdic
= rd32(E1000_MDIC
);
168 if (mdic
& E1000_MDIC_READY
)
171 if (!(mdic
& E1000_MDIC_READY
)) {
172 hw_dbg("MDI Read did not complete\n");
173 ret_val
= -E1000_ERR_PHY
;
176 if (mdic
& E1000_MDIC_ERROR
) {
177 hw_dbg("MDI Error\n");
178 ret_val
= -E1000_ERR_PHY
;
188 * igb_write_phy_reg_mdic - Write MDI control register
189 * @hw: pointer to the HW structure
190 * @offset: register offset to write to
191 * @data: data to write to register at offset
193 * Writes data to MDI control register in the PHY at offset.
195 s32
igb_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
197 struct e1000_phy_info
*phy
= &hw
->phy
;
201 if (offset
> MAX_PHY_REG_ADDRESS
) {
202 hw_dbg("PHY Address %d is out of range\n", offset
);
203 ret_val
= -E1000_ERR_PARAM
;
207 /* Set up Op-code, Phy Address, and register offset in the MDI
208 * Control register. The MAC will take care of interfacing with the
209 * PHY to retrieve the desired data.
211 mdic
= (((u32
)data
) |
212 (offset
<< E1000_MDIC_REG_SHIFT
) |
213 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
214 (E1000_MDIC_OP_WRITE
));
216 wr32(E1000_MDIC
, mdic
);
218 /* Poll the ready bit to see if the MDI read completed
219 * Increasing the time out as testing showed failures with
222 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
224 mdic
= rd32(E1000_MDIC
);
225 if (mdic
& E1000_MDIC_READY
)
228 if (!(mdic
& E1000_MDIC_READY
)) {
229 hw_dbg("MDI Write did not complete\n");
230 ret_val
= -E1000_ERR_PHY
;
233 if (mdic
& E1000_MDIC_ERROR
) {
234 hw_dbg("MDI Error\n");
235 ret_val
= -E1000_ERR_PHY
;
244 * igb_read_phy_reg_i2c - Read PHY register using i2c
245 * @hw: pointer to the HW structure
246 * @offset: register offset to be read
247 * @data: pointer to the read data
249 * Reads the PHY register at offset using the i2c interface and stores the
250 * retrieved information in data.
252 s32
igb_read_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
254 struct e1000_phy_info
*phy
= &hw
->phy
;
257 /* Set up Op-code, Phy Address, and register address in the I2CCMD
258 * register. The MAC will take care of interfacing with the
259 * PHY to retrieve the desired data.
261 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
262 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
263 (E1000_I2CCMD_OPCODE_READ
));
265 wr32(E1000_I2CCMD
, i2ccmd
);
267 /* Poll the ready bit to see if the I2C read completed */
268 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
270 i2ccmd
= rd32(E1000_I2CCMD
);
271 if (i2ccmd
& E1000_I2CCMD_READY
)
274 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
275 hw_dbg("I2CCMD Read did not complete\n");
276 return -E1000_ERR_PHY
;
278 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
279 hw_dbg("I2CCMD Error bit set\n");
280 return -E1000_ERR_PHY
;
283 /* Need to byte-swap the 16-bit value. */
284 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
290 * igb_write_phy_reg_i2c - Write PHY register using i2c
291 * @hw: pointer to the HW structure
292 * @offset: register offset to write to
293 * @data: data to write at register offset
295 * Writes the data to PHY register at the offset using the i2c interface.
297 s32
igb_write_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16 data
)
299 struct e1000_phy_info
*phy
= &hw
->phy
;
301 u16 phy_data_swapped
;
303 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 if ((hw
->phy
.addr
== 0) || (hw
->phy
.addr
> 7)) {
305 hw_dbg("PHY I2C Address %d is out of range.\n",
307 return -E1000_ERR_CONFIG
;
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
313 /* Set up Op-code, Phy Address, and register address in the I2CCMD
314 * register. The MAC will take care of interfacing with the
315 * PHY to retrieve the desired data.
317 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
318 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
319 E1000_I2CCMD_OPCODE_WRITE
|
322 wr32(E1000_I2CCMD
, i2ccmd
);
324 /* Poll the ready bit to see if the I2C read completed */
325 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
327 i2ccmd
= rd32(E1000_I2CCMD
);
328 if (i2ccmd
& E1000_I2CCMD_READY
)
331 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
332 hw_dbg("I2CCMD Write did not complete\n");
333 return -E1000_ERR_PHY
;
335 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
336 hw_dbg("I2CCMD Error bit set\n");
337 return -E1000_ERR_PHY
;
344 * igb_read_sfp_data_byte - Reads SFP module data.
345 * @hw: pointer to the HW structure
346 * @offset: byte location offset to be read
347 * @data: read data buffer pointer
349 * Reads one byte from SFP module data stored
350 * in SFP resided EEPROM memory or SFP diagnostic area.
351 * Function should be called with
352 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
356 s32
igb_read_sfp_data_byte(struct e1000_hw
*hw
, u16 offset
, u8
*data
)
362 if (offset
> E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 hw_dbg("I2CCMD command address exceeds upper limit\n");
364 return -E1000_ERR_PHY
;
367 /* Set up Op-code, EEPROM Address,in the I2CCMD
368 * register. The MAC will take care of interfacing with the
369 * EEPROM to retrieve the desired data.
371 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
372 E1000_I2CCMD_OPCODE_READ
);
374 wr32(E1000_I2CCMD
, i2ccmd
);
376 /* Poll the ready bit to see if the I2C read completed */
377 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
379 data_local
= rd32(E1000_I2CCMD
);
380 if (data_local
& E1000_I2CCMD_READY
)
383 if (!(data_local
& E1000_I2CCMD_READY
)) {
384 hw_dbg("I2CCMD Read did not complete\n");
385 return -E1000_ERR_PHY
;
387 if (data_local
& E1000_I2CCMD_ERROR
) {
388 hw_dbg("I2CCMD Error bit set\n");
389 return -E1000_ERR_PHY
;
391 *data
= (u8
) data_local
& 0xFF;
397 * e1000_write_sfp_data_byte - Writes SFP module data.
398 * @hw: pointer to the HW structure
399 * @offset: byte location offset to write to
400 * @data: data to write
402 * Writes one byte to SFP module data stored
403 * in SFP resided EEPROM memory or SFP diagnostic area.
404 * Function should be called with
405 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
406 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
409 s32
e1000_write_sfp_data_byte(struct e1000_hw
*hw
, u16 offset
, u8 data
)
415 if (offset
> E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
416 hw_dbg("I2CCMD command address exceeds upper limit\n");
417 return -E1000_ERR_PHY
;
419 /* The programming interface is 16 bits wide
420 * so we need to read the whole word first
421 * then update appropriate byte lane and write
422 * the updated word back.
424 /* Set up Op-code, EEPROM Address,in the I2CCMD
425 * register. The MAC will take care of interfacing
426 * with an EEPROM to write the data given.
428 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
429 E1000_I2CCMD_OPCODE_READ
);
430 /* Set a command to read single word */
431 wr32(E1000_I2CCMD
, i2ccmd
);
432 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
434 /* Poll the ready bit to see if lastly
435 * launched I2C operation completed
437 i2ccmd
= rd32(E1000_I2CCMD
);
438 if (i2ccmd
& E1000_I2CCMD_READY
) {
439 /* Check if this is READ or WRITE phase */
440 if ((i2ccmd
& E1000_I2CCMD_OPCODE_READ
) ==
441 E1000_I2CCMD_OPCODE_READ
) {
442 /* Write the selected byte
443 * lane and update whole word
445 data_local
= i2ccmd
& 0xFF00;
448 E1000_I2CCMD_REG_ADDR_SHIFT
) |
449 E1000_I2CCMD_OPCODE_WRITE
| data_local
);
450 wr32(E1000_I2CCMD
, i2ccmd
);
456 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
457 hw_dbg("I2CCMD Write did not complete\n");
458 return -E1000_ERR_PHY
;
460 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
461 hw_dbg("I2CCMD Error bit set\n");
462 return -E1000_ERR_PHY
;
468 * igb_read_phy_reg_igp - Read igp PHY register
469 * @hw: pointer to the HW structure
470 * @offset: register offset to be read
471 * @data: pointer to the read data
473 * Acquires semaphore, if necessary, then reads the PHY register at offset
474 * and storing the retrieved information in data. Release any acquired
475 * semaphores before exiting.
477 s32
igb_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
481 if (!(hw
->phy
.ops
.acquire
))
484 ret_val
= hw
->phy
.ops
.acquire(hw
);
488 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
489 ret_val
= igb_write_phy_reg_mdic(hw
,
490 IGP01E1000_PHY_PAGE_SELECT
,
493 hw
->phy
.ops
.release(hw
);
498 ret_val
= igb_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
501 hw
->phy
.ops
.release(hw
);
508 * igb_write_phy_reg_igp - Write igp PHY register
509 * @hw: pointer to the HW structure
510 * @offset: register offset to write to
511 * @data: data to write at register offset
513 * Acquires semaphore, if necessary, then writes the data to PHY register
514 * at the offset. Release any acquired semaphores before exiting.
516 s32
igb_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
520 if (!(hw
->phy
.ops
.acquire
))
523 ret_val
= hw
->phy
.ops
.acquire(hw
);
527 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
528 ret_val
= igb_write_phy_reg_mdic(hw
,
529 IGP01E1000_PHY_PAGE_SELECT
,
532 hw
->phy
.ops
.release(hw
);
537 ret_val
= igb_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
540 hw
->phy
.ops
.release(hw
);
547 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
548 * @hw: pointer to the HW structure
550 * Sets up Carrier-sense on Transmit and downshift values.
552 s32
igb_copper_link_setup_82580(struct e1000_hw
*hw
)
554 struct e1000_phy_info
*phy
= &hw
->phy
;
558 if (phy
->reset_disable
) {
563 if (phy
->type
== e1000_phy_82580
) {
564 ret_val
= hw
->phy
.ops
.reset(hw
);
566 hw_dbg("Error resetting the PHY.\n");
571 /* Enable CRS on TX. This must be set for half-duplex operation. */
572 ret_val
= phy
->ops
.read_reg(hw
, I82580_CFG_REG
, &phy_data
);
576 phy_data
|= I82580_CFG_ASSERT_CRS_ON_TX
;
578 /* Enable downshift */
579 phy_data
|= I82580_CFG_ENABLE_DOWNSHIFT
;
581 ret_val
= phy
->ops
.write_reg(hw
, I82580_CFG_REG
, phy_data
);
585 /* Set MDI/MDIX mode */
586 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
589 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
595 switch (hw
->phy
.mdix
) {
599 phy_data
|= I82580_PHY_CTRL2_MANUAL_MDIX
;
603 phy_data
|= I82580_PHY_CTRL2_AUTO_MDI_MDIX
;
606 ret_val
= hw
->phy
.ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
613 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
614 * @hw: pointer to the HW structure
616 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
617 * and downshift values are set also.
619 s32
igb_copper_link_setup_m88(struct e1000_hw
*hw
)
621 struct e1000_phy_info
*phy
= &hw
->phy
;
625 if (phy
->reset_disable
) {
630 /* Enable CRS on TX. This must be set for half-duplex operation. */
631 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
635 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
638 * MDI/MDI-X = 0 (default)
639 * 0 - Auto for all speeds
642 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
644 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
648 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
651 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
654 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
658 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
663 * disable_polarity_correction = 0 (default)
664 * Automatic Correction for Reversed Cable Polarity
668 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
669 if (phy
->disable_polarity_correction
== 1)
670 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
672 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
676 if (phy
->revision
< E1000_REVISION_4
) {
677 /* Force TX_CLK in the Extended PHY Specific Control Register
680 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
685 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
687 if ((phy
->revision
== E1000_REVISION_2
) &&
688 (phy
->id
== M88E1111_I_PHY_ID
)) {
689 /* 82573L PHY - set the downshift counter to 5x. */
690 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
691 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
693 /* Configure Master and Slave downshift values */
694 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
695 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
696 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
697 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
699 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
705 /* Commit the changes. */
706 ret_val
= igb_phy_sw_reset(hw
);
708 hw_dbg("Error committing the PHY changes\n");
717 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
718 * @hw: pointer to the HW structure
720 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
721 * Also enables and sets the downshift parameters.
723 s32
igb_copper_link_setup_m88_gen2(struct e1000_hw
*hw
)
725 struct e1000_phy_info
*phy
= &hw
->phy
;
729 if (phy
->reset_disable
)
732 /* Enable CRS on Tx. This must be set for half-duplex operation. */
733 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
738 * MDI/MDI-X = 0 (default)
739 * 0 - Auto for all speeds
742 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
744 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
748 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
751 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
754 /* M88E1112 does not support this mode) */
755 if (phy
->id
!= M88E1112_E_PHY_ID
) {
756 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
761 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
766 * disable_polarity_correction = 0 (default)
767 * Automatic Correction for Reversed Cable Polarity
771 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
772 if (phy
->disable_polarity_correction
== 1)
773 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
775 /* Enable downshift and setting it to X6 */
776 if (phy
->id
== M88E1543_E_PHY_ID
) {
777 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_ENABLE
;
779 phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
783 ret_val
= igb_phy_sw_reset(hw
);
785 hw_dbg("Error committing the PHY changes\n");
790 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_MASK
;
791 phy_data
|= I347AT4_PSCR_DOWNSHIFT_6X
;
792 phy_data
|= I347AT4_PSCR_DOWNSHIFT_ENABLE
;
794 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
798 /* Commit the changes. */
799 ret_val
= igb_phy_sw_reset(hw
);
801 hw_dbg("Error committing the PHY changes\n");
804 ret_val
= igb_set_master_slave_mode(hw
);
812 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
818 s32
igb_copper_link_setup_igp(struct e1000_hw
*hw
)
820 struct e1000_phy_info
*phy
= &hw
->phy
;
824 if (phy
->reset_disable
) {
829 ret_val
= phy
->ops
.reset(hw
);
831 hw_dbg("Error resetting the PHY.\n");
835 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
836 * timeout issues when LFS is enabled.
840 /* The NVM settings will configure LPLU in D3 for
843 if (phy
->type
== e1000_phy_igp
) {
844 /* disable lplu d3 during driver init */
845 if (phy
->ops
.set_d3_lplu_state
)
846 ret_val
= phy
->ops
.set_d3_lplu_state(hw
, false);
848 hw_dbg("Error Disabling LPLU D3\n");
853 /* disable lplu d0 during driver init */
854 ret_val
= phy
->ops
.set_d0_lplu_state(hw
, false);
856 hw_dbg("Error Disabling LPLU D0\n");
859 /* Configure mdi-mdix settings */
860 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
864 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
868 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
871 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
875 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
878 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
882 /* set auto-master slave resolution settings */
883 if (hw
->mac
.autoneg
) {
884 /* when autonegotiation advertisement is only 1000Mbps then we
885 * should disable SmartSpeed and enable Auto MasterSlave
886 * resolution as hardware default.
888 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
889 /* Disable SmartSpeed */
890 ret_val
= phy
->ops
.read_reg(hw
,
891 IGP01E1000_PHY_PORT_CONFIG
,
896 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
897 ret_val
= phy
->ops
.write_reg(hw
,
898 IGP01E1000_PHY_PORT_CONFIG
,
903 /* Set auto Master/Slave resolution process */
904 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
908 data
&= ~CR_1000T_MS_ENABLE
;
909 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
914 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
918 /* load defaults for future use */
919 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
920 ((data
& CR_1000T_MS_VALUE
) ?
921 e1000_ms_force_master
:
922 e1000_ms_force_slave
) :
925 switch (phy
->ms_type
) {
926 case e1000_ms_force_master
:
927 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
929 case e1000_ms_force_slave
:
930 data
|= CR_1000T_MS_ENABLE
;
931 data
&= ~(CR_1000T_MS_VALUE
);
934 data
&= ~CR_1000T_MS_ENABLE
;
938 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
948 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
949 * @hw: pointer to the HW structure
951 * Performs initial bounds checking on autoneg advertisement parameter, then
952 * configure to advertise the full capability. Setup the PHY to autoneg
953 * and restart the negotiation process between the link partner. If
954 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
956 static s32
igb_copper_link_autoneg(struct e1000_hw
*hw
)
958 struct e1000_phy_info
*phy
= &hw
->phy
;
962 /* Perform some bounds checking on the autoneg advertisement
965 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
967 /* If autoneg_advertised is zero, we assume it was not defaulted
968 * by the calling code so we set to advertise full capability.
970 if (phy
->autoneg_advertised
== 0)
971 phy
->autoneg_advertised
= phy
->autoneg_mask
;
973 hw_dbg("Reconfiguring auto-neg advertisement params\n");
974 ret_val
= igb_phy_setup_autoneg(hw
);
976 hw_dbg("Error Setting up Auto-Negotiation\n");
979 hw_dbg("Restarting Auto-Neg\n");
981 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
982 * the Auto Neg Restart bit in the PHY control register.
984 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
988 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
989 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
993 /* Does the user want to wait for Auto-Neg to complete here, or
994 * check at a later time (for example, callback routine).
996 if (phy
->autoneg_wait_to_complete
) {
997 ret_val
= igb_wait_autoneg(hw
);
999 hw_dbg("Error while waiting for "
1000 "autoneg to complete\n");
1005 hw
->mac
.get_link_status
= true;
1012 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1013 * @hw: pointer to the HW structure
1015 * Reads the MII auto-neg advertisement register and/or the 1000T control
1016 * register and if the PHY is already setup for auto-negotiation, then
1017 * return successful. Otherwise, setup advertisement and flow control to
1018 * the appropriate values for the wanted auto-negotiation.
1020 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
)
1022 struct e1000_phy_info
*phy
= &hw
->phy
;
1024 u16 mii_autoneg_adv_reg
;
1025 u16 mii_1000t_ctrl_reg
= 0;
1027 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1029 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1030 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
1034 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1035 /* Read the MII 1000Base-T Control Register (Address 9). */
1036 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
1037 &mii_1000t_ctrl_reg
);
1042 /* Need to parse both autoneg_advertised and fc and set up
1043 * the appropriate PHY registers. First we will parse for
1044 * autoneg_advertised software override. Since we can advertise
1045 * a plethora of combinations, we need to check each bit
1049 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1050 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1051 * the 1000Base-T Control Register (Address 9).
1053 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
1054 NWAY_AR_100TX_HD_CAPS
|
1055 NWAY_AR_10T_FD_CAPS
|
1056 NWAY_AR_10T_HD_CAPS
);
1057 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
1059 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
1061 /* Do we want to advertise 10 Mb Half Duplex? */
1062 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
1063 hw_dbg("Advertise 10mb Half duplex\n");
1064 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
1067 /* Do we want to advertise 10 Mb Full Duplex? */
1068 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
1069 hw_dbg("Advertise 10mb Full duplex\n");
1070 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
1073 /* Do we want to advertise 100 Mb Half Duplex? */
1074 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
1075 hw_dbg("Advertise 100mb Half duplex\n");
1076 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
1079 /* Do we want to advertise 100 Mb Full Duplex? */
1080 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
1081 hw_dbg("Advertise 100mb Full duplex\n");
1082 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
1085 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1086 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1087 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1089 /* Do we want to advertise 1000 Mb Full Duplex? */
1090 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1091 hw_dbg("Advertise 1000mb Full duplex\n");
1092 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
1095 /* Check for a software override of the flow control settings, and
1096 * setup the PHY advertisement registers accordingly. If
1097 * auto-negotiation is enabled, then software will have to set the
1098 * "PAUSE" bits to the correct value in the Auto-Negotiation
1099 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1102 * The possible values of the "fc" parameter are:
1103 * 0: Flow control is completely disabled
1104 * 1: Rx flow control is enabled (we can receive pause frames
1105 * but not send pause frames).
1106 * 2: Tx flow control is enabled (we can send pause frames
1107 * but we do not support receiving pause frames).
1108 * 3: Both Rx and TX flow control (symmetric) are enabled.
1109 * other: No software override. The flow control configuration
1110 * in the EEPROM is used.
1112 switch (hw
->fc
.current_mode
) {
1114 /* Flow control (RX & TX) is completely disabled by a
1115 * software over-ride.
1117 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1119 case e1000_fc_rx_pause
:
1120 /* RX Flow control is enabled, and TX Flow control is
1121 * disabled, by a software over-ride.
1123 * Since there really isn't a way to advertise that we are
1124 * capable of RX Pause ONLY, we will advertise that we
1125 * support both symmetric and asymmetric RX PAUSE. Later
1126 * (in e1000_config_fc_after_link_up) we will disable the
1127 * hw's ability to send PAUSE frames.
1129 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1131 case e1000_fc_tx_pause
:
1132 /* TX Flow control is enabled, and RX Flow control is
1133 * disabled, by a software over-ride.
1135 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1136 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1139 /* Flow control (both RX and TX) is enabled by a software
1142 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1145 hw_dbg("Flow control param set incorrectly\n");
1146 ret_val
= -E1000_ERR_CONFIG
;
1150 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1154 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1156 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1157 ret_val
= phy
->ops
.write_reg(hw
,
1159 mii_1000t_ctrl_reg
);
1169 * igb_setup_copper_link - Configure copper link settings
1170 * @hw: pointer to the HW structure
1172 * Calls the appropriate function to configure the link for auto-neg or forced
1173 * speed and duplex. Then we check for link, once link is established calls
1174 * to configure collision distance and flow control are called. If link is
1175 * not established, we return -E1000_ERR_PHY (-2).
1177 s32
igb_setup_copper_link(struct e1000_hw
*hw
)
1182 if (hw
->mac
.autoneg
) {
1183 /* Setup autoneg and flow control advertisement and perform
1186 ret_val
= igb_copper_link_autoneg(hw
);
1190 /* PHY will be set to 10H, 10F, 100H or 100F
1191 * depending on user settings.
1193 hw_dbg("Forcing Speed and Duplex\n");
1194 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1196 hw_dbg("Error Forcing Speed and Duplex\n");
1201 /* Check link status. Wait up to 100 microseconds for link to become
1204 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
1209 hw_dbg("Valid link established!!!\n");
1210 igb_config_collision_dist(hw
);
1211 ret_val
= igb_config_fc_after_link_up(hw
);
1213 hw_dbg("Unable to establish link!!!\n");
1221 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1222 * @hw: pointer to the HW structure
1224 * Calls the PHY setup function to force speed and duplex. Clears the
1225 * auto-crossover to force MDI manually. Waits for link and returns
1226 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1228 s32
igb_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1230 struct e1000_phy_info
*phy
= &hw
->phy
;
1235 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1239 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1241 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1245 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1246 * forced whenever speed and duplex are forced.
1248 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1252 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1253 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1255 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1259 hw_dbg("IGP PSCR: %X\n", phy_data
);
1263 if (phy
->autoneg_wait_to_complete
) {
1264 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1266 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1271 hw_dbg("Link taking longer than expected.\n");
1274 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 10000, &link
);
1284 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1285 * @hw: pointer to the HW structure
1287 * Calls the PHY setup function to force speed and duplex. Clears the
1288 * auto-crossover to force MDI manually. Resets the PHY to commit the
1289 * changes. If time expires while waiting for link up, we reset the DSP.
1290 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1291 * successful completion, else return corresponding error code.
1293 s32
igb_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1295 struct e1000_phy_info
*phy
= &hw
->phy
;
1300 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1301 if (phy
->type
!= e1000_phy_i210
) {
1302 /* Clear Auto-Crossover to force MDI manually. M88E1000
1303 * requires MDI forced whenever speed and duplex are forced.
1305 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1310 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1311 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
,
1316 hw_dbg("M88E1000 PSCR: %X\n", phy_data
);
1319 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1323 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1325 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1329 /* Reset the phy to commit changes. */
1330 ret_val
= igb_phy_sw_reset(hw
);
1334 if (phy
->autoneg_wait_to_complete
) {
1335 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1337 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
1342 bool reset_dsp
= true;
1344 switch (hw
->phy
.id
) {
1345 case I347AT4_E_PHY_ID
:
1346 case M88E1112_E_PHY_ID
:
1351 if (hw
->phy
.type
!= e1000_phy_m88
)
1356 hw_dbg("Link taking longer than expected.\n");
1358 /* We didn't get link.
1359 * Reset the DSP and cross our fingers.
1361 ret_val
= phy
->ops
.write_reg(hw
,
1362 M88E1000_PHY_PAGE_SELECT
,
1366 ret_val
= igb_phy_reset_dsp(hw
);
1373 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
,
1379 if (hw
->phy
.type
!= e1000_phy_m88
||
1380 hw
->phy
.id
== I347AT4_E_PHY_ID
||
1381 hw
->phy
.id
== M88E1112_E_PHY_ID
||
1382 hw
->phy
.id
== I210_I_PHY_ID
)
1385 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1389 /* Resetting the phy means we need to re-force TX_CLK in the
1390 * Extended PHY Specific Control Register to 25MHz clock from
1391 * the reset value of 2.5MHz.
1393 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1394 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1398 /* In addition, we must re-enable CRS on Tx for both half and full
1401 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1405 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1406 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1413 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1414 * @hw: pointer to the HW structure
1415 * @phy_ctrl: pointer to current value of PHY_CONTROL
1417 * Forces speed and duplex on the PHY by doing the following: disable flow
1418 * control, force speed/duplex on the MAC, disable auto speed detection,
1419 * disable auto-negotiation, configure duplex, configure speed, configure
1420 * the collision distance, write configuration to CTRL register. The
1421 * caller must write to the PHY_CONTROL register for these settings to
1424 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
1427 struct e1000_mac_info
*mac
= &hw
->mac
;
1430 /* Turn off flow control when forcing speed/duplex */
1431 hw
->fc
.current_mode
= e1000_fc_none
;
1433 /* Force speed/duplex on the mac */
1434 ctrl
= rd32(E1000_CTRL
);
1435 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1436 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1438 /* Disable Auto Speed Detection */
1439 ctrl
&= ~E1000_CTRL_ASDE
;
1441 /* Disable autoneg on the phy */
1442 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1444 /* Forcing Full or Half Duplex? */
1445 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1446 ctrl
&= ~E1000_CTRL_FD
;
1447 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1448 hw_dbg("Half Duplex\n");
1450 ctrl
|= E1000_CTRL_FD
;
1451 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1452 hw_dbg("Full Duplex\n");
1455 /* Forcing 10mb or 100mb? */
1456 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1457 ctrl
|= E1000_CTRL_SPD_100
;
1458 *phy_ctrl
|= MII_CR_SPEED_100
;
1459 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1460 hw_dbg("Forcing 100mb\n");
1462 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1463 *phy_ctrl
|= MII_CR_SPEED_10
;
1464 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1465 hw_dbg("Forcing 10mb\n");
1468 igb_config_collision_dist(hw
);
1470 wr32(E1000_CTRL
, ctrl
);
1474 * igb_set_d3_lplu_state - Sets low power link up state for D3
1475 * @hw: pointer to the HW structure
1476 * @active: boolean used to enable/disable lplu
1478 * Success returns 0, Failure returns 1
1480 * The low power link up (lplu) state is set to the power management level D3
1481 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1482 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1483 * is used during Dx states where the power conservation is most important.
1484 * During driver activity, SmartSpeed should be enabled so performance is
1487 s32
igb_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1489 struct e1000_phy_info
*phy
= &hw
->phy
;
1493 if (!(hw
->phy
.ops
.read_reg
))
1496 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1501 data
&= ~IGP02E1000_PM_D3_LPLU
;
1502 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1506 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1507 * during Dx states where the power conservation is most
1508 * important. During driver activity we should enable
1509 * SmartSpeed, so performance is maintained.
1511 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1512 ret_val
= phy
->ops
.read_reg(hw
,
1513 IGP01E1000_PHY_PORT_CONFIG
,
1518 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1519 ret_val
= phy
->ops
.write_reg(hw
,
1520 IGP01E1000_PHY_PORT_CONFIG
,
1524 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1525 ret_val
= phy
->ops
.read_reg(hw
,
1526 IGP01E1000_PHY_PORT_CONFIG
,
1531 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1532 ret_val
= phy
->ops
.write_reg(hw
,
1533 IGP01E1000_PHY_PORT_CONFIG
,
1538 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1539 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1540 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1541 data
|= IGP02E1000_PM_D3_LPLU
;
1542 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1547 /* When LPLU is enabled, we should disable SmartSpeed */
1548 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1553 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1554 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1563 * igb_check_downshift - Checks whether a downshift in speed occurred
1564 * @hw: pointer to the HW structure
1566 * Success returns 0, Failure returns 1
1568 * A downshift is detected by querying the PHY link health.
1570 s32
igb_check_downshift(struct e1000_hw
*hw
)
1572 struct e1000_phy_info
*phy
= &hw
->phy
;
1574 u16 phy_data
, offset
, mask
;
1576 switch (phy
->type
) {
1577 case e1000_phy_i210
:
1579 case e1000_phy_gg82563
:
1580 offset
= M88E1000_PHY_SPEC_STATUS
;
1581 mask
= M88E1000_PSSR_DOWNSHIFT
;
1583 case e1000_phy_igp_2
:
1585 case e1000_phy_igp_3
:
1586 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1587 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1590 /* speed downshift not supported */
1591 phy
->speed_downgraded
= false;
1596 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1599 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1606 * igb_check_polarity_m88 - Checks the polarity.
1607 * @hw: pointer to the HW structure
1609 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1611 * Polarity is determined based on the PHY specific status register.
1613 s32
igb_check_polarity_m88(struct e1000_hw
*hw
)
1615 struct e1000_phy_info
*phy
= &hw
->phy
;
1619 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1622 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1623 ? e1000_rev_polarity_reversed
1624 : e1000_rev_polarity_normal
;
1630 * igb_check_polarity_igp - Checks the polarity.
1631 * @hw: pointer to the HW structure
1633 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1635 * Polarity is determined based on the PHY port status register, and the
1636 * current speed (since there is no polarity at 100Mbps).
1638 static s32
igb_check_polarity_igp(struct e1000_hw
*hw
)
1640 struct e1000_phy_info
*phy
= &hw
->phy
;
1642 u16 data
, offset
, mask
;
1644 /* Polarity is determined based on the speed of
1647 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1651 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1652 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1653 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1654 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1656 /* This really only applies to 10Mbps since
1657 * there is no polarity for 100Mbps (always 0).
1659 offset
= IGP01E1000_PHY_PORT_STATUS
;
1660 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1663 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1666 phy
->cable_polarity
= (data
& mask
)
1667 ? e1000_rev_polarity_reversed
1668 : e1000_rev_polarity_normal
;
1675 * igb_wait_autoneg - Wait for auto-neg completion
1676 * @hw: pointer to the HW structure
1678 * Waits for auto-negotiation to complete or for the auto-negotiation time
1679 * limit to expire, which ever happens first.
1681 static s32
igb_wait_autoneg(struct e1000_hw
*hw
)
1686 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1687 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1688 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1691 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1694 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1699 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1706 * igb_phy_has_link - Polls PHY for link
1707 * @hw: pointer to the HW structure
1708 * @iterations: number of times to poll for link
1709 * @usec_interval: delay between polling attempts
1710 * @success: pointer to whether polling was successful or not
1712 * Polls the PHY status register for link, 'iterations' number of times.
1714 s32
igb_phy_has_link(struct e1000_hw
*hw
, u32 iterations
,
1715 u32 usec_interval
, bool *success
)
1720 for (i
= 0; i
< iterations
; i
++) {
1721 /* Some PHYs require the PHY_STATUS register to be read
1722 * twice due to the link bit being sticky. No harm doing
1723 * it across the board.
1725 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1726 if (ret_val
&& usec_interval
> 0) {
1727 /* If the first read fails, another entity may have
1728 * ownership of the resources, wait and try again to
1729 * see if they have relinquished the resources yet.
1731 if (usec_interval
>= 1000)
1732 mdelay(usec_interval
/1000);
1734 udelay(usec_interval
);
1736 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1739 if (phy_status
& MII_SR_LINK_STATUS
)
1741 if (usec_interval
>= 1000)
1742 mdelay(usec_interval
/1000);
1744 udelay(usec_interval
);
1747 *success
= (i
< iterations
) ? true : false;
1753 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1754 * @hw: pointer to the HW structure
1756 * Reads the PHY specific status register to retrieve the cable length
1757 * information. The cable length is determined by averaging the minimum and
1758 * maximum values to get the "average" cable length. The m88 PHY has four
1759 * possible cable length values, which are:
1760 * Register Value Cable Length
1764 * 3 110 - 140 meters
1767 s32
igb_get_cable_length_m88(struct e1000_hw
*hw
)
1769 struct e1000_phy_info
*phy
= &hw
->phy
;
1771 u16 phy_data
, index
;
1773 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1777 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1778 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1779 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1780 ret_val
= -E1000_ERR_PHY
;
1784 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1785 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1787 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1793 s32
igb_get_cable_length_m88_gen2(struct e1000_hw
*hw
)
1795 struct e1000_phy_info
*phy
= &hw
->phy
;
1797 u16 phy_data
, phy_data2
, index
, default_page
, is_cm
;
1799 switch (hw
->phy
.id
) {
1801 /* Get cable length from PHY Cable Diagnostics Control Reg */
1802 ret_val
= phy
->ops
.read_reg(hw
, (0x7 << GS40G_PAGE_SHIFT
) +
1803 (I347AT4_PCDL
+ phy
->addr
),
1808 /* Check if the unit of cable length is meters or cm */
1809 ret_val
= phy
->ops
.read_reg(hw
, (0x7 << GS40G_PAGE_SHIFT
) +
1810 I347AT4_PCDC
, &phy_data2
);
1814 is_cm
= !(phy_data2
& I347AT4_PCDC_CABLE_LENGTH_UNIT
);
1816 /* Populate the phy structure with cable length in meters */
1817 phy
->min_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1818 phy
->max_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1819 phy
->cable_length
= phy_data
/ (is_cm
? 100 : 1);
1821 case M88E1543_E_PHY_ID
:
1822 case I347AT4_E_PHY_ID
:
1823 /* Remember the original page select and set it to 7 */
1824 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1829 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x07);
1833 /* Get cable length from PHY Cable Diagnostics Control Reg */
1834 ret_val
= phy
->ops
.read_reg(hw
, (I347AT4_PCDL
+ phy
->addr
),
1839 /* Check if the unit of cable length is meters or cm */
1840 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDC
, &phy_data2
);
1844 is_cm
= !(phy_data2
& I347AT4_PCDC_CABLE_LENGTH_UNIT
);
1846 /* Populate the phy structure with cable length in meters */
1847 phy
->min_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1848 phy
->max_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1849 phy
->cable_length
= phy_data
/ (is_cm
? 100 : 1);
1851 /* Reset the page selec to its original value */
1852 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1857 case M88E1112_E_PHY_ID
:
1858 /* Remember the original page select and set it to 5 */
1859 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1864 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x05);
1868 ret_val
= phy
->ops
.read_reg(hw
, M88E1112_VCT_DSP_DISTANCE
,
1873 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1874 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1875 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1876 ret_val
= -E1000_ERR_PHY
;
1880 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1881 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1883 phy
->cable_length
= (phy
->min_cable_length
+
1884 phy
->max_cable_length
) / 2;
1886 /* Reset the page select to its original value */
1887 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1894 ret_val
= -E1000_ERR_PHY
;
1903 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1904 * @hw: pointer to the HW structure
1906 * The automatic gain control (agc) normalizes the amplitude of the
1907 * received signal, adjusting for the attenuation produced by the
1908 * cable. By reading the AGC registers, which represent the
1909 * combination of coarse and fine gain value, the value can be put
1910 * into a lookup table to obtain the approximate cable length
1913 s32
igb_get_cable_length_igp_2(struct e1000_hw
*hw
)
1915 struct e1000_phy_info
*phy
= &hw
->phy
;
1917 u16 phy_data
, i
, agc_value
= 0;
1918 u16 cur_agc_index
, max_agc_index
= 0;
1919 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1920 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1921 IGP02E1000_PHY_AGC_A
,
1922 IGP02E1000_PHY_AGC_B
,
1923 IGP02E1000_PHY_AGC_C
,
1924 IGP02E1000_PHY_AGC_D
1927 /* Read the AGC registers for all channels */
1928 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1929 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1933 /* Getting bits 15:9, which represent the combination of
1934 * coarse and fine gain values. The result is a number
1935 * that can be put into the lookup table to obtain the
1936 * approximate cable length.
1938 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1939 IGP02E1000_AGC_LENGTH_MASK
;
1941 /* Array index bound check. */
1942 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1943 (cur_agc_index
== 0)) {
1944 ret_val
= -E1000_ERR_PHY
;
1948 /* Remove min & max AGC values from calculation. */
1949 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1950 e1000_igp_2_cable_length_table
[cur_agc_index
])
1951 min_agc_index
= cur_agc_index
;
1952 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1953 e1000_igp_2_cable_length_table
[cur_agc_index
])
1954 max_agc_index
= cur_agc_index
;
1956 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1959 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1960 e1000_igp_2_cable_length_table
[max_agc_index
]);
1961 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1963 /* Calculate cable length with the error range of +/- 10 meters. */
1964 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1965 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1966 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1968 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1975 * igb_get_phy_info_m88 - Retrieve PHY information
1976 * @hw: pointer to the HW structure
1978 * Valid for only copper links. Read the PHY status register (sticky read)
1979 * to verify that link is up. Read the PHY special control register to
1980 * determine the polarity and 10base-T extended distance. Read the PHY
1981 * special status register to determine MDI/MDIx and current speed. If
1982 * speed is 1000, then determine cable length, local and remote receiver.
1984 s32
igb_get_phy_info_m88(struct e1000_hw
*hw
)
1986 struct e1000_phy_info
*phy
= &hw
->phy
;
1991 if (phy
->media_type
!= e1000_media_type_copper
) {
1992 hw_dbg("Phy info is only valid for copper media\n");
1993 ret_val
= -E1000_ERR_CONFIG
;
1997 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2002 hw_dbg("Phy info is only valid if link is up\n");
2003 ret_val
= -E1000_ERR_CONFIG
;
2007 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
2011 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
2014 ret_val
= igb_check_polarity_m88(hw
);
2018 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
2022 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
2024 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
2025 ret_val
= phy
->ops
.get_cable_length(hw
);
2029 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
2033 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
2034 ? e1000_1000t_rx_status_ok
2035 : e1000_1000t_rx_status_not_ok
;
2037 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
2038 ? e1000_1000t_rx_status_ok
2039 : e1000_1000t_rx_status_not_ok
;
2041 /* Set values to "undefined" */
2042 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2043 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2044 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2052 * igb_get_phy_info_igp - Retrieve igp PHY information
2053 * @hw: pointer to the HW structure
2055 * Read PHY status to determine if link is up. If link is up, then
2056 * set/determine 10base-T extended distance and polarity correction. Read
2057 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2058 * determine on the cable length, local and remote receiver.
2060 s32
igb_get_phy_info_igp(struct e1000_hw
*hw
)
2062 struct e1000_phy_info
*phy
= &hw
->phy
;
2067 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2072 hw_dbg("Phy info is only valid if link is up\n");
2073 ret_val
= -E1000_ERR_CONFIG
;
2077 phy
->polarity_correction
= true;
2079 ret_val
= igb_check_polarity_igp(hw
);
2083 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2087 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
2089 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2090 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2091 ret_val
= phy
->ops
.get_cable_length(hw
);
2095 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2099 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2100 ? e1000_1000t_rx_status_ok
2101 : e1000_1000t_rx_status_not_ok
;
2103 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2104 ? e1000_1000t_rx_status_ok
2105 : e1000_1000t_rx_status_not_ok
;
2107 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2108 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2109 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2117 * igb_phy_sw_reset - PHY software reset
2118 * @hw: pointer to the HW structure
2120 * Does a software reset of the PHY by reading the PHY control register and
2121 * setting/write the control register reset bit to the PHY.
2123 s32
igb_phy_sw_reset(struct e1000_hw
*hw
)
2128 if (!(hw
->phy
.ops
.read_reg
))
2131 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
2135 phy_ctrl
|= MII_CR_RESET
;
2136 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
2147 * igb_phy_hw_reset - PHY hardware reset
2148 * @hw: pointer to the HW structure
2150 * Verify the reset block is not blocking us from resetting. Acquire
2151 * semaphore (if necessary) and read/set/write the device control reset
2152 * bit in the PHY. Wait the appropriate delay time for the device to
2153 * reset and release the semaphore (if necessary).
2155 s32
igb_phy_hw_reset(struct e1000_hw
*hw
)
2157 struct e1000_phy_info
*phy
= &hw
->phy
;
2161 ret_val
= igb_check_reset_block(hw
);
2167 ret_val
= phy
->ops
.acquire(hw
);
2171 ctrl
= rd32(E1000_CTRL
);
2172 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2175 udelay(phy
->reset_delay_us
);
2177 wr32(E1000_CTRL
, ctrl
);
2182 phy
->ops
.release(hw
);
2184 ret_val
= phy
->ops
.get_cfg_done(hw
);
2191 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2192 * @hw: pointer to the HW structure
2194 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2196 s32
igb_phy_init_script_igp3(struct e1000_hw
*hw
)
2198 hw_dbg("Running IGP 3 PHY init script\n");
2200 /* PHY init IGP 3 */
2201 /* Enable rise/fall, 10-mode work in class-A */
2202 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2203 /* Remove all caps from Replica path filter */
2204 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2205 /* Bias trimming for ADC, AFE and Driver (Default) */
2206 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2207 /* Increase Hybrid poly bias */
2208 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2209 /* Add 4% to TX amplitude in Giga mode */
2210 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2211 /* Disable trimming (TTT) */
2212 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2213 /* Poly DC correction to 94.6% + 2% for all channels */
2214 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2215 /* ABS DC correction to 95.9% */
2216 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2217 /* BG temp curve trim */
2218 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2219 /* Increasing ADC OPAMP stage 1 currents to max */
2220 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2221 /* Force 1000 ( required for enabling PHY regs configuration) */
2222 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2223 /* Set upd_freq to 6 */
2224 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2226 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2227 /* Disable adaptive fixed FFE (Default) */
2228 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2229 /* Enable FFE hysteresis */
2230 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2231 /* Fixed FFE for short cable lengths */
2232 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2233 /* Fixed FFE for medium cable lengths */
2234 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2235 /* Fixed FFE for long cable lengths */
2236 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2237 /* Enable Adaptive Clip Threshold */
2238 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2239 /* AHT reset limit to 1 */
2240 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2241 /* Set AHT master delay to 127 msec */
2242 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2243 /* Set scan bits for AHT */
2244 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2245 /* Set AHT Preset bits */
2246 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2247 /* Change integ_factor of channel A to 3 */
2248 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2249 /* Change prop_factor of channels BCD to 8 */
2250 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2251 /* Change cg_icount + enable integbp for channels BCD */
2252 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2253 /* Change cg_icount + enable integbp + change prop_factor_master
2254 * to 8 for channel A
2256 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2257 /* Disable AHT in Slave mode on channel A */
2258 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2259 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2262 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2263 /* Enable restart AN on an1000_dis change */
2264 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2265 /* Enable wh_fifo read clock in 10/100 modes */
2266 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2267 /* Restart AN, Speed selection is 1000 */
2268 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2274 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2275 * @hw: pointer to the HW structure
2277 * In the case of a PHY power down to save power, or to turn off link during a
2278 * driver unload, restore the link to previous settings.
2280 void igb_power_up_phy_copper(struct e1000_hw
*hw
)
2285 /* The PHY will retain its settings across a power down/up cycle */
2286 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2287 mii_reg
&= ~MII_CR_POWER_DOWN
;
2288 if (hw
->phy
.type
== e1000_phy_i210
) {
2289 hw
->phy
.ops
.read_reg(hw
, GS40G_COPPER_SPEC
, &power_reg
);
2290 power_reg
&= ~GS40G_CS_POWER_DOWN
;
2291 hw
->phy
.ops
.write_reg(hw
, GS40G_COPPER_SPEC
, power_reg
);
2293 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2297 * igb_power_down_phy_copper - Power down copper PHY
2298 * @hw: pointer to the HW structure
2300 * Power down PHY to save power when interface is down and wake on lan
2303 void igb_power_down_phy_copper(struct e1000_hw
*hw
)
2308 /* The PHY will retain its settings across a power down/up cycle */
2309 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2310 mii_reg
|= MII_CR_POWER_DOWN
;
2312 /* i210 Phy requires an additional bit for power up/down */
2313 if (hw
->phy
.type
== e1000_phy_i210
) {
2314 hw
->phy
.ops
.read_reg(hw
, GS40G_COPPER_SPEC
, &power_reg
);
2315 power_reg
|= GS40G_CS_POWER_DOWN
;
2316 hw
->phy
.ops
.write_reg(hw
, GS40G_COPPER_SPEC
, power_reg
);
2318 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2323 * igb_check_polarity_82580 - Checks the polarity.
2324 * @hw: pointer to the HW structure
2326 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2328 * Polarity is determined based on the PHY specific status register.
2330 static s32
igb_check_polarity_82580(struct e1000_hw
*hw
)
2332 struct e1000_phy_info
*phy
= &hw
->phy
;
2337 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2340 phy
->cable_polarity
= (data
& I82580_PHY_STATUS2_REV_POLARITY
)
2341 ? e1000_rev_polarity_reversed
2342 : e1000_rev_polarity_normal
;
2348 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2349 * @hw: pointer to the HW structure
2351 * Calls the PHY setup function to force speed and duplex. Clears the
2352 * auto-crossover to force MDI manually. Waits for link and returns
2353 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2355 s32
igb_phy_force_speed_duplex_82580(struct e1000_hw
*hw
)
2357 struct e1000_phy_info
*phy
= &hw
->phy
;
2362 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
2366 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
2368 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
2372 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2373 * forced whenever speed and duplex are forced.
2375 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
2379 phy_data
&= ~I82580_PHY_CTRL2_MDIX_CFG_MASK
;
2381 ret_val
= phy
->ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
2385 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data
);
2389 if (phy
->autoneg_wait_to_complete
) {
2390 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2392 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2397 hw_dbg("Link taking longer than expected.\n");
2400 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
2410 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2411 * @hw: pointer to the HW structure
2413 * Read PHY status to determine if link is up. If link is up, then
2414 * set/determine 10base-T extended distance and polarity correction. Read
2415 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2416 * determine on the cable length, local and remote receiver.
2418 s32
igb_get_phy_info_82580(struct e1000_hw
*hw
)
2420 struct e1000_phy_info
*phy
= &hw
->phy
;
2425 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2430 hw_dbg("Phy info is only valid if link is up\n");
2431 ret_val
= -E1000_ERR_CONFIG
;
2435 phy
->polarity_correction
= true;
2437 ret_val
= igb_check_polarity_82580(hw
);
2441 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2445 phy
->is_mdix
= (data
& I82580_PHY_STATUS2_MDIX
) ? true : false;
2447 if ((data
& I82580_PHY_STATUS2_SPEED_MASK
) ==
2448 I82580_PHY_STATUS2_SPEED_1000MBPS
) {
2449 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
2453 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2457 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2458 ? e1000_1000t_rx_status_ok
2459 : e1000_1000t_rx_status_not_ok
;
2461 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2462 ? e1000_1000t_rx_status_ok
2463 : e1000_1000t_rx_status_not_ok
;
2465 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2466 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2467 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2475 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2476 * @hw: pointer to the HW structure
2478 * Reads the diagnostic status register and verifies result is valid before
2479 * placing it in the phy_cable_length field.
2481 s32
igb_get_cable_length_82580(struct e1000_hw
*hw
)
2483 struct e1000_phy_info
*phy
= &hw
->phy
;
2485 u16 phy_data
, length
;
2487 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_DIAG_STATUS
, &phy_data
);
2491 length
= (phy_data
& I82580_DSTATUS_CABLE_LENGTH
) >>
2492 I82580_DSTATUS_CABLE_LENGTH_SHIFT
;
2494 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
2495 ret_val
= -E1000_ERR_PHY
;
2497 phy
->cable_length
= length
;
2504 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2505 * @hw: pointer to the HW structure
2506 * @offset: lower half is register offset to write to
2507 * upper half is page to use.
2508 * @data: data to write at register offset
2510 * Acquires semaphore, if necessary, then writes the data to PHY register
2511 * at the offset. Release any acquired semaphores before exiting.
2513 s32
igb_write_phy_reg_gs40g(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2516 u16 page
= offset
>> GS40G_PAGE_SHIFT
;
2518 offset
= offset
& GS40G_OFFSET_MASK
;
2519 ret_val
= hw
->phy
.ops
.acquire(hw
);
2523 ret_val
= igb_write_phy_reg_mdic(hw
, GS40G_PAGE_SELECT
, page
);
2526 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
2529 hw
->phy
.ops
.release(hw
);
2534 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2535 * @hw: pointer to the HW structure
2536 * @offset: lower half is register offset to read to
2537 * upper half is page to use.
2538 * @data: data to read at register offset
2540 * Acquires semaphore, if necessary, then reads the data in the PHY register
2541 * at the offset. Release any acquired semaphores before exiting.
2543 s32
igb_read_phy_reg_gs40g(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2546 u16 page
= offset
>> GS40G_PAGE_SHIFT
;
2548 offset
= offset
& GS40G_OFFSET_MASK
;
2549 ret_val
= hw
->phy
.ops
.acquire(hw
);
2553 ret_val
= igb_write_phy_reg_mdic(hw
, GS40G_PAGE_SELECT
, page
);
2556 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
2559 hw
->phy
.ops
.release(hw
);
2564 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2565 * @hw: pointer to the HW structure
2567 * Sets up Master/slave mode
2569 static s32
igb_set_master_slave_mode(struct e1000_hw
*hw
)
2574 /* Resolve Master/Slave mode */
2575 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_1000T_CTRL
, &phy_data
);
2579 /* load defaults for future use */
2580 hw
->phy
.original_ms_type
= (phy_data
& CR_1000T_MS_ENABLE
) ?
2581 ((phy_data
& CR_1000T_MS_VALUE
) ?
2582 e1000_ms_force_master
:
2583 e1000_ms_force_slave
) : e1000_ms_auto
;
2585 switch (hw
->phy
.ms_type
) {
2586 case e1000_ms_force_master
:
2587 phy_data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
2589 case e1000_ms_force_slave
:
2590 phy_data
|= CR_1000T_MS_ENABLE
;
2591 phy_data
&= ~(CR_1000T_MS_VALUE
);
2594 phy_data
&= ~CR_1000T_MS_ENABLE
;
2600 return hw
->phy
.ops
.write_reg(hw
, PHY_1000T_CTRL
, phy_data
);