2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
64 #define DO_NOT_DRIVE_TX 1
66 #define DO_NOT_QUEUE_DMA 0
73 * Macros to access SSP Registers with their offsets
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_ITCR(r) (r + 0x080)
86 #define SSP_ITIP(r) (r + 0x084)
87 #define SSP_ITOP(r) (r + 0x088)
88 #define SSP_TDR(r) (r + 0x08C)
90 #define SSP_PID0(r) (r + 0xFE0)
91 #define SSP_PID1(r) (r + 0xFE4)
92 #define SSP_PID2(r) (r + 0xFE8)
93 #define SSP_PID3(r) (r + 0xFEC)
95 #define SSP_CID0(r) (r + 0xFF0)
96 #define SSP_CID1(r) (r + 0xFF4)
97 #define SSP_CID2(r) (r + 0xFF8)
98 #define SSP_CID3(r) (r + 0xFFC)
101 * SSP Control Register 0 - SSP_CR0
103 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF (0x3UL << 4)
105 #define SSP_CR0_MASK_SPO (0x1UL << 6)
106 #define SSP_CR0_MASK_SPH (0x1UL << 7)
107 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
119 * SSP Control Register 0 - SSP_CR1
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
127 * The ST version of this block adds some bits
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
139 * SSP Status Register - SSP_SR
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
148 * SSP Clock Prescale Register - SSP_CPSR
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
161 * SSP Raw Interrupt Status Register - SSP_RIS
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
173 * SSP Masked Interrupt Status Register - SSP_MIS
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
185 * SSP Interrupt Clear Register - SSP_ICR
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
193 * SSP DMA Control Register - SSP_DMACR
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
201 * SSP Integration Test control Register - SSP_ITCR
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
207 * SSP Integration Test Input Register - SSP_ITIP
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
217 * SSP Integration Test output Register - SSP_ITOP
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
235 * SSP Test Data Register - SSP_TDR
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
251 * SSP State - Whether Enabled or Disabled
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
257 * SSP DMA State - Whether DMA Enabled or Disabled
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
269 * SSP Clock Parameter ranges
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
277 * SSP Interrupt related Macros
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
283 #define CLEAR_ALL_INTERRUPTS 0x3
285 #define SPI_POLLING_TIMEOUT 1000
288 * The type of reading going on on this chip
298 * The type of writing going on on this chip
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: message pump is busy
341 * @running: message pump is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
366 struct amba_device
*adev
;
367 struct vendor_data
*vendor
;
368 resource_size_t phybase
;
369 void __iomem
*virtbase
;
371 struct spi_master
*master
;
372 struct pl022_ssp_controller
*master_info
;
373 /* Message per-transfer pump */
374 struct tasklet_struct pump_transfers
;
375 struct spi_message
*cur_msg
;
376 struct spi_transfer
*cur_transfer
;
377 struct chip_data
*cur_chip
;
378 bool next_msg_cs_active
;
383 enum ssp_reading read
;
384 enum ssp_writing write
;
386 enum ssp_rx_level_trig rx_lev_trig
;
387 enum ssp_tx_level_trig tx_lev_trig
;
389 #ifdef CONFIG_DMA_ENGINE
390 struct dma_chan
*dma_rx_channel
;
391 struct dma_chan
*dma_tx_channel
;
392 struct sg_table sgt_rx
;
393 struct sg_table sgt_tx
;
402 * struct chip_data - To maintain runtime state of SSP for each client chip
403 * @cr0: Value of control register CR0 of SSP - on later ST variants this
404 * register is 32 bits wide rather than just 16
405 * @cr1: Value of control register CR1 of SSP
406 * @dmacr: Value of DMA control Register of SSP
407 * @cpsr: Value of Clock prescale register
408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
409 * @enable_dma: Whether to enable DMA or not
410 * @read: function ptr to be used to read when doing xfer for this chip
411 * @write: function ptr to be used to write when doing xfer for this chip
412 * @cs_control: chip select callback provided by chip
413 * @xfer_type: polling/interrupt/DMA
415 * Runtime state of the SSP controller, maintained per chip,
416 * This would be set according to the current message that would be served
425 enum ssp_reading read
;
426 enum ssp_writing write
;
427 void (*cs_control
) (u32 command
);
432 * null_cs_control - Dummy chip select function
433 * @command: select/delect the chip
435 * If no chip select function is provided by client this is used as dummy
438 static void null_cs_control(u32 command
)
440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
443 static void pl022_cs_control(struct pl022
*pl022
, u32 command
)
445 if (gpio_is_valid(pl022
->cur_cs
))
446 gpio_set_value(pl022
->cur_cs
, command
);
448 pl022
->cur_chip
->cs_control(command
);
452 * giveback - current spi_message is over, schedule next message and call
453 * callback of this message. Assumes that caller already
454 * set message->status; dma and pio irqs are blocked
455 * @pl022: SSP driver private data structure
457 static void giveback(struct pl022
*pl022
)
459 struct spi_transfer
*last_transfer
;
460 pl022
->next_msg_cs_active
= false;
462 last_transfer
= list_entry(pl022
->cur_msg
->transfers
.prev
,
466 /* Delay if requested before any change in chip select */
467 if (last_transfer
->delay_usecs
)
469 * FIXME: This runs in interrupt context.
470 * Is this really smart?
472 udelay(last_transfer
->delay_usecs
);
474 if (!last_transfer
->cs_change
) {
475 struct spi_message
*next_msg
;
478 * cs_change was not set. We can keep the chip select
479 * enabled if there is message in the queue and it is
480 * for the same spi device.
482 * We cannot postpone this until pump_messages, because
483 * after calling msg->complete (below) the driver that
484 * sent the current message could be unloaded, which
485 * could invalidate the cs_control() callback...
487 /* get a pointer to the next message, if any */
488 next_msg
= spi_get_next_queued_message(pl022
->master
);
491 * see if the next and current messages point
492 * to the same spi device.
494 if (next_msg
&& next_msg
->spi
!= pl022
->cur_msg
->spi
)
496 if (!next_msg
|| pl022
->cur_msg
->state
== STATE_ERROR
)
497 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
499 pl022
->next_msg_cs_active
= true;
503 pl022
->cur_msg
= NULL
;
504 pl022
->cur_transfer
= NULL
;
505 pl022
->cur_chip
= NULL
;
506 spi_finalize_current_message(pl022
->master
);
508 /* disable the SPI/SSP operation */
509 writew((readw(SSP_CR1(pl022
->virtbase
)) &
510 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
515 * flush - flush the FIFO to reach a clean state
516 * @pl022: SSP driver private data structure
518 static int flush(struct pl022
*pl022
)
520 unsigned long limit
= loops_per_jiffy
<< 1;
522 dev_dbg(&pl022
->adev
->dev
, "flush\n");
524 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
525 readw(SSP_DR(pl022
->virtbase
));
526 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
528 pl022
->exp_fifo_level
= 0;
534 * restore_state - Load configuration of current chip
535 * @pl022: SSP driver private data structure
537 static void restore_state(struct pl022
*pl022
)
539 struct chip_data
*chip
= pl022
->cur_chip
;
541 if (pl022
->vendor
->extended_cr
)
542 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
544 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
545 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
546 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
547 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
548 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
549 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
553 * Default SSP Register Values
555 #define DEFAULT_SSP_REG_CR0 ( \
556 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
557 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
558 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
559 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
560 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
563 /* ST versions have slightly different bit layout */
564 #define DEFAULT_SSP_REG_CR0_ST ( \
565 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
566 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
567 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
568 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
569 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
570 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
571 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
574 /* The PL023 version is slightly different again */
575 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
576 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
582 #define DEFAULT_SSP_REG_CR1 ( \
583 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
584 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
585 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
586 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
589 /* ST versions extend this register to use all 16 bits */
590 #define DEFAULT_SSP_REG_CR1_ST ( \
591 DEFAULT_SSP_REG_CR1 | \
592 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
595 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
596 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
600 * The PL023 variant has further differences: no loopback mode, no microwire
601 * support, and a new clock feedback delay setting.
603 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
604 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
605 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
606 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
607 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
610 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
611 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
614 #define DEFAULT_SSP_REG_CPSR ( \
615 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
618 #define DEFAULT_SSP_REG_DMACR (\
619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
620 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
624 * load_ssp_default_config - Load default configuration for SSP
625 * @pl022: SSP driver private data structure
627 static void load_ssp_default_config(struct pl022
*pl022
)
629 if (pl022
->vendor
->pl023
) {
630 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
631 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
632 } else if (pl022
->vendor
->extended_cr
) {
633 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
634 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
636 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
637 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
639 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
640 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
641 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
642 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
646 * This will write to TX and read from RX according to the parameters
649 static void readwriter(struct pl022
*pl022
)
653 * The FIFO depth is different between primecell variants.
654 * I believe filling in too much in the FIFO might cause
655 * errons in 8bit wide transfers on ARM variants (just 8 words
656 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
658 * To prevent this issue, the TX FIFO is only filled to the
659 * unused RX FIFO fill length, regardless of what the TX
660 * FIFO status flag indicates.
662 dev_dbg(&pl022
->adev
->dev
,
663 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
664 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
666 /* Read as much as you can */
667 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
668 && (pl022
->rx
< pl022
->rx_end
)) {
669 switch (pl022
->read
) {
671 readw(SSP_DR(pl022
->virtbase
));
674 *(u8
*) (pl022
->rx
) =
675 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
678 *(u16
*) (pl022
->rx
) =
679 (u16
) readw(SSP_DR(pl022
->virtbase
));
682 *(u32
*) (pl022
->rx
) =
683 readl(SSP_DR(pl022
->virtbase
));
686 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
687 pl022
->exp_fifo_level
--;
690 * Write as much as possible up to the RX FIFO size
692 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
693 && (pl022
->tx
< pl022
->tx_end
)) {
694 switch (pl022
->write
) {
696 writew(0x0, SSP_DR(pl022
->virtbase
));
699 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
702 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
705 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
708 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
709 pl022
->exp_fifo_level
++;
711 * This inner reader takes care of things appearing in the RX
712 * FIFO as we're transmitting. This will happen a lot since the
713 * clock starts running when you put things into the TX FIFO,
714 * and then things are continuously clocked into the RX FIFO.
716 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
717 && (pl022
->rx
< pl022
->rx_end
)) {
718 switch (pl022
->read
) {
720 readw(SSP_DR(pl022
->virtbase
));
723 *(u8
*) (pl022
->rx
) =
724 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
727 *(u16
*) (pl022
->rx
) =
728 (u16
) readw(SSP_DR(pl022
->virtbase
));
731 *(u32
*) (pl022
->rx
) =
732 readl(SSP_DR(pl022
->virtbase
));
735 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
736 pl022
->exp_fifo_level
--;
740 * When we exit here the TX FIFO should be full and the RX FIFO
746 * next_transfer - Move to the Next transfer in the current spi message
747 * @pl022: SSP driver private data structure
749 * This function moves though the linked list of spi transfers in the
750 * current spi message and returns with the state of current spi
751 * message i.e whether its last transfer is done(STATE_DONE) or
752 * Next transfer is ready(STATE_RUNNING)
754 static void *next_transfer(struct pl022
*pl022
)
756 struct spi_message
*msg
= pl022
->cur_msg
;
757 struct spi_transfer
*trans
= pl022
->cur_transfer
;
759 /* Move to next transfer */
760 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
761 pl022
->cur_transfer
=
762 list_entry(trans
->transfer_list
.next
,
763 struct spi_transfer
, transfer_list
);
764 return STATE_RUNNING
;
770 * This DMA functionality is only compiled in if we have
771 * access to the generic DMA devices/DMA engine.
773 #ifdef CONFIG_DMA_ENGINE
774 static void unmap_free_dma_scatter(struct pl022
*pl022
)
776 /* Unmap and free the SG tables */
777 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
778 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
779 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
780 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
781 sg_free_table(&pl022
->sgt_rx
);
782 sg_free_table(&pl022
->sgt_tx
);
785 static void dma_callback(void *data
)
787 struct pl022
*pl022
= data
;
788 struct spi_message
*msg
= pl022
->cur_msg
;
790 BUG_ON(!pl022
->sgt_rx
.sgl
);
794 * Optionally dump out buffers to inspect contents, this is
795 * good if you want to convince yourself that the loopback
796 * read/write contents are the same, when adopting to a new
800 struct scatterlist
*sg
;
803 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
808 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
809 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
810 print_hex_dump(KERN_ERR
, "SPI RX: ",
818 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
819 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
820 print_hex_dump(KERN_ERR
, "SPI TX: ",
831 unmap_free_dma_scatter(pl022
);
833 /* Update total bytes transferred */
834 msg
->actual_length
+= pl022
->cur_transfer
->len
;
835 if (pl022
->cur_transfer
->cs_change
)
836 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
838 /* Move to next transfer */
839 msg
->state
= next_transfer(pl022
);
840 tasklet_schedule(&pl022
->pump_transfers
);
843 static void setup_dma_scatter(struct pl022
*pl022
,
846 struct sg_table
*sgtab
)
848 struct scatterlist
*sg
;
849 int bytesleft
= length
;
855 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
857 * If there are less bytes left than what fits
858 * in the current page (plus page alignment offset)
859 * we just feed in this, else we stuff in as much
862 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
863 mapbytes
= bytesleft
;
865 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
866 sg_set_page(sg
, virt_to_page(bufp
),
867 mapbytes
, offset_in_page(bufp
));
869 bytesleft
-= mapbytes
;
870 dev_dbg(&pl022
->adev
->dev
,
871 "set RX/TX target page @ %p, %d bytes, %d left\n",
872 bufp
, mapbytes
, bytesleft
);
875 /* Map the dummy buffer on every page */
876 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
877 if (bytesleft
< PAGE_SIZE
)
878 mapbytes
= bytesleft
;
880 mapbytes
= PAGE_SIZE
;
881 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
883 bytesleft
-= mapbytes
;
884 dev_dbg(&pl022
->adev
->dev
,
885 "set RX/TX to dummy page %d bytes, %d left\n",
886 mapbytes
, bytesleft
);
894 * configure_dma - configures the channels for the next transfer
895 * @pl022: SSP driver's private data structure
897 static int configure_dma(struct pl022
*pl022
)
899 struct dma_slave_config rx_conf
= {
900 .src_addr
= SSP_DR(pl022
->phybase
),
901 .direction
= DMA_DEV_TO_MEM
,
904 struct dma_slave_config tx_conf
= {
905 .dst_addr
= SSP_DR(pl022
->phybase
),
906 .direction
= DMA_MEM_TO_DEV
,
911 int rx_sglen
, tx_sglen
;
912 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
913 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
914 struct dma_async_tx_descriptor
*rxdesc
;
915 struct dma_async_tx_descriptor
*txdesc
;
917 /* Check that the channels are available */
918 if (!rxchan
|| !txchan
)
922 * If supplied, the DMA burstsize should equal the FIFO trigger level.
923 * Notice that the DMA engine uses one-to-one mapping. Since we can
924 * not trigger on 2 elements this needs explicit mapping rather than
927 switch (pl022
->rx_lev_trig
) {
928 case SSP_RX_1_OR_MORE_ELEM
:
929 rx_conf
.src_maxburst
= 1;
931 case SSP_RX_4_OR_MORE_ELEM
:
932 rx_conf
.src_maxburst
= 4;
934 case SSP_RX_8_OR_MORE_ELEM
:
935 rx_conf
.src_maxburst
= 8;
937 case SSP_RX_16_OR_MORE_ELEM
:
938 rx_conf
.src_maxburst
= 16;
940 case SSP_RX_32_OR_MORE_ELEM
:
941 rx_conf
.src_maxburst
= 32;
944 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
948 switch (pl022
->tx_lev_trig
) {
949 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
950 tx_conf
.dst_maxburst
= 1;
952 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
953 tx_conf
.dst_maxburst
= 4;
955 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
956 tx_conf
.dst_maxburst
= 8;
958 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
959 tx_conf
.dst_maxburst
= 16;
961 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
962 tx_conf
.dst_maxburst
= 32;
965 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
969 switch (pl022
->read
) {
971 /* Use the same as for writing */
972 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
975 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
978 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
981 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
985 switch (pl022
->write
) {
987 /* Use the same as for reading */
988 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
991 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
994 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
997 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1001 /* SPI pecularity: we need to read and write the same width */
1002 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1003 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1004 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1005 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1006 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1008 dmaengine_slave_config(rxchan
, &rx_conf
);
1009 dmaengine_slave_config(txchan
, &tx_conf
);
1011 /* Create sglists for the transfers */
1012 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
1013 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1015 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
1017 goto err_alloc_rx_sg
;
1019 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1021 goto err_alloc_tx_sg
;
1023 /* Fill in the scatterlists for the RX+TX buffers */
1024 setup_dma_scatter(pl022
, pl022
->rx
,
1025 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1026 setup_dma_scatter(pl022
, pl022
->tx
,
1027 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1029 /* Map DMA buffers */
1030 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1031 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1035 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1036 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1040 /* Send both scatterlists */
1041 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
1045 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1049 txdesc
= dmaengine_prep_slave_sg(txchan
,
1053 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1057 /* Put the callback on the RX transfer only, that should finish last */
1058 rxdesc
->callback
= dma_callback
;
1059 rxdesc
->callback_param
= pl022
;
1061 /* Submit and fire RX and TX with TX last so we're ready to read! */
1062 dmaengine_submit(rxdesc
);
1063 dmaengine_submit(txdesc
);
1064 dma_async_issue_pending(rxchan
);
1065 dma_async_issue_pending(txchan
);
1066 pl022
->dma_running
= true;
1071 dmaengine_terminate_all(txchan
);
1073 dmaengine_terminate_all(rxchan
);
1074 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1075 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1077 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1078 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1080 sg_free_table(&pl022
->sgt_tx
);
1082 sg_free_table(&pl022
->sgt_rx
);
1087 static int pl022_dma_probe(struct pl022
*pl022
)
1089 dma_cap_mask_t mask
;
1091 /* Try to acquire a generic DMA engine slave channel */
1093 dma_cap_set(DMA_SLAVE
, mask
);
1095 * We need both RX and TX channels to do DMA, else do none
1098 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1099 pl022
->master_info
->dma_filter
,
1100 pl022
->master_info
->dma_rx_param
);
1101 if (!pl022
->dma_rx_channel
) {
1102 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1106 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1107 pl022
->master_info
->dma_filter
,
1108 pl022
->master_info
->dma_tx_param
);
1109 if (!pl022
->dma_tx_channel
) {
1110 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1114 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1115 if (!pl022
->dummypage
) {
1116 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1117 goto err_no_dummypage
;
1120 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1121 dma_chan_name(pl022
->dma_rx_channel
),
1122 dma_chan_name(pl022
->dma_tx_channel
));
1127 dma_release_channel(pl022
->dma_tx_channel
);
1129 dma_release_channel(pl022
->dma_rx_channel
);
1130 pl022
->dma_rx_channel
= NULL
;
1132 dev_err(&pl022
->adev
->dev
,
1133 "Failed to work in dma mode, work without dma!\n");
1137 static int pl022_dma_autoprobe(struct pl022
*pl022
)
1139 struct device
*dev
= &pl022
->adev
->dev
;
1141 /* automatically configure DMA channels from platform, normally using DT */
1142 pl022
->dma_rx_channel
= dma_request_slave_channel(dev
, "rx");
1143 if (!pl022
->dma_rx_channel
)
1146 pl022
->dma_tx_channel
= dma_request_slave_channel(dev
, "tx");
1147 if (!pl022
->dma_tx_channel
)
1150 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1151 if (!pl022
->dummypage
)
1152 goto err_no_dummypage
;
1157 dma_release_channel(pl022
->dma_tx_channel
);
1158 pl022
->dma_tx_channel
= NULL
;
1160 dma_release_channel(pl022
->dma_rx_channel
);
1161 pl022
->dma_rx_channel
= NULL
;
1166 static void terminate_dma(struct pl022
*pl022
)
1168 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1169 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1171 dmaengine_terminate_all(rxchan
);
1172 dmaengine_terminate_all(txchan
);
1173 unmap_free_dma_scatter(pl022
);
1174 pl022
->dma_running
= false;
1177 static void pl022_dma_remove(struct pl022
*pl022
)
1179 if (pl022
->dma_running
)
1180 terminate_dma(pl022
);
1181 if (pl022
->dma_tx_channel
)
1182 dma_release_channel(pl022
->dma_tx_channel
);
1183 if (pl022
->dma_rx_channel
)
1184 dma_release_channel(pl022
->dma_rx_channel
);
1185 kfree(pl022
->dummypage
);
1189 static inline int configure_dma(struct pl022
*pl022
)
1194 static inline int pl022_dma_autoprobe(struct pl022
*pl022
)
1199 static inline int pl022_dma_probe(struct pl022
*pl022
)
1204 static inline void pl022_dma_remove(struct pl022
*pl022
)
1210 * pl022_interrupt_handler - Interrupt handler for SSP controller
1212 * This function handles interrupts generated for an interrupt based transfer.
1213 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1214 * current message's state as STATE_ERROR and schedule the tasklet
1215 * pump_transfers which will do the postprocessing of the current message by
1216 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1217 * more data, and writes data in TX FIFO till it is not full. If we complete
1218 * the transfer we move to the next transfer and schedule the tasklet.
1220 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1222 struct pl022
*pl022
= dev_id
;
1223 struct spi_message
*msg
= pl022
->cur_msg
;
1227 if (unlikely(!msg
)) {
1228 dev_err(&pl022
->adev
->dev
,
1229 "bad message state in interrupt handler");
1234 /* Read the Interrupt Status Register */
1235 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1237 if (unlikely(!irq_status
))
1241 * This handles the FIFO interrupts, the timeout
1242 * interrupts are flatly ignored, they cannot be
1245 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1247 * Overrun interrupt - bail out since our Data has been
1250 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1251 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1252 dev_err(&pl022
->adev
->dev
,
1253 "RXFIFO is full\n");
1254 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1255 dev_err(&pl022
->adev
->dev
,
1256 "TXFIFO is full\n");
1259 * Disable and clear interrupts, disable SSP,
1260 * mark message with bad status so it can be
1263 writew(DISABLE_ALL_INTERRUPTS
,
1264 SSP_IMSC(pl022
->virtbase
));
1265 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1266 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1267 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1268 msg
->state
= STATE_ERROR
;
1270 /* Schedule message queue handler */
1271 tasklet_schedule(&pl022
->pump_transfers
);
1277 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1279 /* Disable Transmit interrupt, enable receive interrupt */
1280 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1281 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1282 SSP_IMSC(pl022
->virtbase
));
1286 * Since all transactions must write as much as shall be read,
1287 * we can conclude the entire transaction once RX is complete.
1288 * At this point, all TX will always be finished.
1290 if (pl022
->rx
>= pl022
->rx_end
) {
1291 writew(DISABLE_ALL_INTERRUPTS
,
1292 SSP_IMSC(pl022
->virtbase
));
1293 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1294 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1295 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1296 "bytes (did you request an odd "
1297 "number of bytes on a 16bit bus?)\n",
1298 (u32
) (pl022
->rx
- pl022
->rx_end
));
1300 /* Update total bytes transferred */
1301 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1302 if (pl022
->cur_transfer
->cs_change
)
1303 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1304 /* Move to next transfer */
1305 msg
->state
= next_transfer(pl022
);
1306 tasklet_schedule(&pl022
->pump_transfers
);
1314 * This sets up the pointers to memory for the next message to
1315 * send out on the SPI bus.
1317 static int set_up_next_transfer(struct pl022
*pl022
,
1318 struct spi_transfer
*transfer
)
1322 /* Sanity check the message for this bus width */
1323 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1324 if (unlikely(residue
!= 0)) {
1325 dev_err(&pl022
->adev
->dev
,
1326 "message of %u bytes to transmit but the current "
1327 "chip bus has a data width of %u bytes!\n",
1328 pl022
->cur_transfer
->len
,
1329 pl022
->cur_chip
->n_bytes
);
1330 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1333 pl022
->tx
= (void *)transfer
->tx_buf
;
1334 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1335 pl022
->rx
= (void *)transfer
->rx_buf
;
1336 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1338 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1339 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1344 * pump_transfers - Tasklet function which schedules next transfer
1345 * when running in interrupt or DMA transfer mode.
1346 * @data: SSP driver private data structure
1349 static void pump_transfers(unsigned long data
)
1351 struct pl022
*pl022
= (struct pl022
*) data
;
1352 struct spi_message
*message
= NULL
;
1353 struct spi_transfer
*transfer
= NULL
;
1354 struct spi_transfer
*previous
= NULL
;
1356 /* Get current state information */
1357 message
= pl022
->cur_msg
;
1358 transfer
= pl022
->cur_transfer
;
1360 /* Handle for abort */
1361 if (message
->state
== STATE_ERROR
) {
1362 message
->status
= -EIO
;
1367 /* Handle end of message */
1368 if (message
->state
== STATE_DONE
) {
1369 message
->status
= 0;
1374 /* Delay if requested at end of transfer before CS change */
1375 if (message
->state
== STATE_RUNNING
) {
1376 previous
= list_entry(transfer
->transfer_list
.prev
,
1377 struct spi_transfer
,
1379 if (previous
->delay_usecs
)
1381 * FIXME: This runs in interrupt context.
1382 * Is this really smart?
1384 udelay(previous
->delay_usecs
);
1386 /* Reselect chip select only if cs_change was requested */
1387 if (previous
->cs_change
)
1388 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1391 message
->state
= STATE_RUNNING
;
1394 if (set_up_next_transfer(pl022
, transfer
)) {
1395 message
->state
= STATE_ERROR
;
1396 message
->status
= -EIO
;
1400 /* Flush the FIFOs and let's go! */
1403 if (pl022
->cur_chip
->enable_dma
) {
1404 if (configure_dma(pl022
)) {
1405 dev_dbg(&pl022
->adev
->dev
,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma
;
1413 /* enable all interrupts except RX */
1414 writew(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
, SSP_IMSC(pl022
->virtbase
));
1417 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1420 * Default is to enable all interrupts except RX -
1421 * this will be enabled once TX is complete
1423 u32 irqflags
= ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
;
1425 /* Enable target chip, if not already active */
1426 if (!pl022
->next_msg_cs_active
)
1427 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1429 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1431 pl022
->cur_msg
->state
= STATE_ERROR
;
1432 pl022
->cur_msg
->status
= -EIO
;
1436 /* If we're using DMA, set up DMA here */
1437 if (pl022
->cur_chip
->enable_dma
) {
1438 /* Configure DMA transfer */
1439 if (configure_dma(pl022
)) {
1440 dev_dbg(&pl022
->adev
->dev
,
1441 "configuration of DMA failed, fall back to interrupt mode\n");
1442 goto err_config_dma
;
1444 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1445 irqflags
= DISABLE_ALL_INTERRUPTS
;
1448 /* Enable SSP, turn on interrupts */
1449 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1450 SSP_CR1(pl022
->virtbase
));
1451 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1454 static void do_polling_transfer(struct pl022
*pl022
)
1456 struct spi_message
*message
= NULL
;
1457 struct spi_transfer
*transfer
= NULL
;
1458 struct spi_transfer
*previous
= NULL
;
1459 struct chip_data
*chip
;
1460 unsigned long time
, timeout
;
1462 chip
= pl022
->cur_chip
;
1463 message
= pl022
->cur_msg
;
1465 while (message
->state
!= STATE_DONE
) {
1466 /* Handle for abort */
1467 if (message
->state
== STATE_ERROR
)
1469 transfer
= pl022
->cur_transfer
;
1471 /* Delay if requested at end of transfer */
1472 if (message
->state
== STATE_RUNNING
) {
1474 list_entry(transfer
->transfer_list
.prev
,
1475 struct spi_transfer
, transfer_list
);
1476 if (previous
->delay_usecs
)
1477 udelay(previous
->delay_usecs
);
1478 if (previous
->cs_change
)
1479 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1482 message
->state
= STATE_RUNNING
;
1483 if (!pl022
->next_msg_cs_active
)
1484 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1487 /* Configuration Changing Per Transfer */
1488 if (set_up_next_transfer(pl022
, transfer
)) {
1490 message
->state
= STATE_ERROR
;
1493 /* Flush FIFOs and enable SSP */
1495 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1496 SSP_CR1(pl022
->virtbase
));
1498 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1500 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1501 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1504 if (time_after(time
, timeout
)) {
1505 dev_warn(&pl022
->adev
->dev
,
1506 "%s: timeout!\n", __func__
);
1507 message
->state
= STATE_ERROR
;
1513 /* Update total byte transferred */
1514 message
->actual_length
+= pl022
->cur_transfer
->len
;
1515 if (pl022
->cur_transfer
->cs_change
)
1516 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1517 /* Move to next transfer */
1518 message
->state
= next_transfer(pl022
);
1521 /* Handle end of message */
1522 if (message
->state
== STATE_DONE
)
1523 message
->status
= 0;
1525 message
->status
= -EIO
;
1531 static int pl022_transfer_one_message(struct spi_master
*master
,
1532 struct spi_message
*msg
)
1534 struct pl022
*pl022
= spi_master_get_devdata(master
);
1536 /* Initial message state */
1537 pl022
->cur_msg
= msg
;
1538 msg
->state
= STATE_START
;
1540 pl022
->cur_transfer
= list_entry(msg
->transfers
.next
,
1541 struct spi_transfer
, transfer_list
);
1543 /* Setup the SPI using the per chip configuration */
1544 pl022
->cur_chip
= spi_get_ctldata(msg
->spi
);
1545 pl022
->cur_cs
= pl022
->chipselects
[msg
->spi
->chip_select
];
1547 restore_state(pl022
);
1550 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1551 do_polling_transfer(pl022
);
1553 do_interrupt_dma_transfer(pl022
);
1558 static int pl022_unprepare_transfer_hardware(struct spi_master
*master
)
1560 struct pl022
*pl022
= spi_master_get_devdata(master
);
1562 /* nothing more to do - disable spi/ssp and power off */
1563 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1564 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1569 static int verify_controller_parameters(struct pl022
*pl022
,
1570 struct pl022_config_chip
const *chip_info
)
1572 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1573 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1574 dev_err(&pl022
->adev
->dev
,
1575 "interface is configured incorrectly\n");
1578 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1579 (!pl022
->vendor
->unidir
)) {
1580 dev_err(&pl022
->adev
->dev
,
1581 "unidirectional mode not supported in this "
1582 "hardware version\n");
1585 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1586 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1587 dev_err(&pl022
->adev
->dev
,
1588 "hierarchy is configured incorrectly\n");
1591 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1592 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1593 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1594 dev_err(&pl022
->adev
->dev
,
1595 "Communication mode is configured incorrectly\n");
1598 switch (chip_info
->rx_lev_trig
) {
1599 case SSP_RX_1_OR_MORE_ELEM
:
1600 case SSP_RX_4_OR_MORE_ELEM
:
1601 case SSP_RX_8_OR_MORE_ELEM
:
1602 /* These are always OK, all variants can handle this */
1604 case SSP_RX_16_OR_MORE_ELEM
:
1605 if (pl022
->vendor
->fifodepth
< 16) {
1606 dev_err(&pl022
->adev
->dev
,
1607 "RX FIFO Trigger Level is configured incorrectly\n");
1611 case SSP_RX_32_OR_MORE_ELEM
:
1612 if (pl022
->vendor
->fifodepth
< 32) {
1613 dev_err(&pl022
->adev
->dev
,
1614 "RX FIFO Trigger Level is configured incorrectly\n");
1619 dev_err(&pl022
->adev
->dev
,
1620 "RX FIFO Trigger Level is configured incorrectly\n");
1624 switch (chip_info
->tx_lev_trig
) {
1625 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1626 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1627 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1628 /* These are always OK, all variants can handle this */
1630 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1631 if (pl022
->vendor
->fifodepth
< 16) {
1632 dev_err(&pl022
->adev
->dev
,
1633 "TX FIFO Trigger Level is configured incorrectly\n");
1637 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1638 if (pl022
->vendor
->fifodepth
< 32) {
1639 dev_err(&pl022
->adev
->dev
,
1640 "TX FIFO Trigger Level is configured incorrectly\n");
1645 dev_err(&pl022
->adev
->dev
,
1646 "TX FIFO Trigger Level is configured incorrectly\n");
1650 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1651 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1652 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1653 dev_err(&pl022
->adev
->dev
,
1654 "CTRL LEN is configured incorrectly\n");
1657 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1658 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1659 dev_err(&pl022
->adev
->dev
,
1660 "Wait State is configured incorrectly\n");
1663 /* Half duplex is only available in the ST Micro version */
1664 if (pl022
->vendor
->extended_cr
) {
1665 if ((chip_info
->duplex
!=
1666 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1667 && (chip_info
->duplex
!=
1668 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1669 dev_err(&pl022
->adev
->dev
,
1670 "Microwire duplex mode is configured incorrectly\n");
1674 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1675 dev_err(&pl022
->adev
->dev
,
1676 "Microwire half duplex mode requested,"
1677 " but this is only available in the"
1678 " ST version of PL022\n");
1685 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1687 return rate
/ (cpsdvsr
* (1 + scr
));
1690 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1691 ssp_clock_params
* clk_freq
)
1693 /* Lets calculate the frequency parameters */
1694 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1695 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1696 best_scr
= 0, tmp
, found
= 0;
1698 rate
= clk_get_rate(pl022
->clk
);
1699 /* cpsdvscr = 2 & scr 0 */
1700 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1701 /* cpsdvsr = 254 & scr = 255 */
1702 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1704 if (freq
> max_tclk
)
1705 dev_warn(&pl022
->adev
->dev
,
1706 "Max speed that can be programmed is %d Hz, you requested %d\n",
1709 if (freq
< min_tclk
) {
1710 dev_err(&pl022
->adev
->dev
,
1711 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1717 * best_freq will give closest possible available rate (<= requested
1718 * freq) for all values of scr & cpsdvsr.
1720 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1721 while (scr
<= SCR_MAX
) {
1722 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1725 /* we need lower freq */
1731 * If found exact value, mark found and break.
1732 * If found more closer value, update and break.
1734 if (tmp
> best_freq
) {
1736 best_cpsdvsr
= cpsdvsr
;
1743 * increased scr will give lower rates, which are not
1752 WARN(!best_freq
, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1755 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1756 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1757 dev_dbg(&pl022
->adev
->dev
,
1758 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1760 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1761 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1767 * A piece of default chip info unless the platform
1770 static const struct pl022_config_chip pl022_default_chip_info
= {
1771 .com_mode
= POLLING_TRANSFER
,
1772 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1773 .hierarchy
= SSP_SLAVE
,
1774 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1775 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1776 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1777 .ctrl_len
= SSP_BITS_8
,
1778 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1779 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1780 .cs_control
= null_cs_control
,
1784 * pl022_setup - setup function registered to SPI master framework
1785 * @spi: spi device which is requesting setup
1787 * This function is registered to the SPI framework for this SPI master
1788 * controller. If it is the first time when setup is called by this device,
1789 * this function will initialize the runtime state for this chip and save
1790 * the same in the device structure. Else it will update the runtime info
1791 * with the updated chip info. Nothing is really being written to the
1792 * controller hardware here, that is not done until the actual transfer
1795 static int pl022_setup(struct spi_device
*spi
)
1797 struct pl022_config_chip
const *chip_info
;
1798 struct pl022_config_chip chip_info_dt
;
1799 struct chip_data
*chip
;
1800 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1802 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1803 unsigned int bits
= spi
->bits_per_word
;
1805 struct device_node
*np
= spi
->dev
.of_node
;
1807 if (!spi
->max_speed_hz
)
1810 /* Get controller_state if one is supplied */
1811 chip
= spi_get_ctldata(spi
);
1814 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1817 "cannot allocate controller state\n");
1821 "allocated memory for controller's runtime state\n");
1824 /* Get controller data if one is supplied */
1825 chip_info
= spi
->controller_data
;
1827 if (chip_info
== NULL
) {
1829 chip_info_dt
= pl022_default_chip_info
;
1831 chip_info_dt
.hierarchy
= SSP_MASTER
;
1832 of_property_read_u32(np
, "pl022,interface",
1833 &chip_info_dt
.iface
);
1834 of_property_read_u32(np
, "pl022,com-mode",
1835 &chip_info_dt
.com_mode
);
1836 of_property_read_u32(np
, "pl022,rx-level-trig",
1837 &chip_info_dt
.rx_lev_trig
);
1838 of_property_read_u32(np
, "pl022,tx-level-trig",
1839 &chip_info_dt
.tx_lev_trig
);
1840 of_property_read_u32(np
, "pl022,ctrl-len",
1841 &chip_info_dt
.ctrl_len
);
1842 of_property_read_u32(np
, "pl022,wait-state",
1843 &chip_info_dt
.wait_state
);
1844 of_property_read_u32(np
, "pl022,duplex",
1845 &chip_info_dt
.duplex
);
1847 chip_info
= &chip_info_dt
;
1849 chip_info
= &pl022_default_chip_info
;
1850 /* spi_board_info.controller_data not is supplied */
1852 "using default controller_data settings\n");
1856 "using user supplied controller_data settings\n");
1859 * We can override with custom divisors, else we use the board
1862 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1863 && (0 == chip_info
->clk_freq
.scr
)) {
1864 status
= calculate_effective_freq(pl022
,
1868 goto err_config_params
;
1870 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1871 if ((clk_freq
.cpsdvsr
% 2) != 0)
1873 clk_freq
.cpsdvsr
- 1;
1875 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1876 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1879 "cpsdvsr is configured incorrectly\n");
1880 goto err_config_params
;
1883 status
= verify_controller_parameters(pl022
, chip_info
);
1885 dev_err(&spi
->dev
, "controller data is incorrect");
1886 goto err_config_params
;
1889 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1890 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1892 /* Now set controller state based on controller data */
1893 chip
->xfer_type
= chip_info
->com_mode
;
1894 if (!chip_info
->cs_control
) {
1895 chip
->cs_control
= null_cs_control
;
1896 if (!gpio_is_valid(pl022
->chipselects
[spi
->chip_select
]))
1898 "invalid chip select\n");
1900 chip
->cs_control
= chip_info
->cs_control
;
1902 /* Check bits per word with vendor specific range */
1903 if ((bits
<= 3) || (bits
> pl022
->vendor
->max_bpw
)) {
1905 dev_err(&spi
->dev
, "illegal data size for this controller!\n");
1906 dev_err(&spi
->dev
, "This controller can only handle 4 <= n <= %d bit words\n",
1907 pl022
->vendor
->max_bpw
);
1908 goto err_config_params
;
1909 } else if (bits
<= 8) {
1910 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1912 chip
->read
= READING_U8
;
1913 chip
->write
= WRITING_U8
;
1914 } else if (bits
<= 16) {
1915 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1917 chip
->read
= READING_U16
;
1918 chip
->write
= WRITING_U16
;
1920 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1922 chip
->read
= READING_U32
;
1923 chip
->write
= WRITING_U32
;
1926 /* Now Initialize all register settings required for this chip */
1931 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1932 && ((pl022
->master_info
)->enable_dma
)) {
1933 chip
->enable_dma
= true;
1934 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1935 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1936 SSP_DMACR_MASK_RXDMAE
, 0);
1937 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1938 SSP_DMACR_MASK_TXDMAE
, 1);
1940 chip
->enable_dma
= false;
1941 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1942 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1943 SSP_DMACR_MASK_RXDMAE
, 0);
1944 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1945 SSP_DMACR_MASK_TXDMAE
, 1);
1948 chip
->cpsr
= clk_freq
.cpsdvsr
;
1950 /* Special setup for the ST micro extended control registers */
1951 if (pl022
->vendor
->extended_cr
) {
1954 if (pl022
->vendor
->pl023
) {
1955 /* These bits are only in the PL023 */
1956 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
1957 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
1959 /* These bits are in the PL022 but not PL023 */
1960 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
1961 SSP_CR0_MASK_HALFDUP_ST
, 5);
1962 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
1963 SSP_CR0_MASK_CSS_ST
, 16);
1964 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1965 SSP_CR0_MASK_FRF_ST
, 21);
1966 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
1967 SSP_CR1_MASK_MWAIT_ST
, 6);
1969 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1970 SSP_CR0_MASK_DSS_ST
, 0);
1972 if (spi
->mode
& SPI_LSB_FIRST
) {
1979 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
1980 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
1981 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
1982 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
1983 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
1984 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
1986 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1987 SSP_CR0_MASK_DSS
, 0);
1988 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1989 SSP_CR0_MASK_FRF
, 4);
1992 /* Stuff that is common for all versions */
1993 if (spi
->mode
& SPI_CPOL
)
1994 tmp
= SSP_CLK_POL_IDLE_HIGH
;
1996 tmp
= SSP_CLK_POL_IDLE_LOW
;
1997 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
1999 if (spi
->mode
& SPI_CPHA
)
2000 tmp
= SSP_CLK_SECOND_EDGE
;
2002 tmp
= SSP_CLK_FIRST_EDGE
;
2003 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2005 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2006 /* Loopback is available on all versions except PL023 */
2007 if (pl022
->vendor
->loopback
) {
2008 if (spi
->mode
& SPI_LOOP
)
2009 tmp
= LOOPBACK_ENABLED
;
2011 tmp
= LOOPBACK_DISABLED
;
2012 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2014 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2015 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2016 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
2019 /* Save controller_state */
2020 spi_set_ctldata(spi
, chip
);
2023 spi_set_ctldata(spi
, NULL
);
2029 * pl022_cleanup - cleanup function registered to SPI master framework
2030 * @spi: spi device which is requesting cleanup
2032 * This function is registered to the SPI framework for this SPI master
2033 * controller. It will free the runtime state of chip.
2035 static void pl022_cleanup(struct spi_device
*spi
)
2037 struct chip_data
*chip
= spi_get_ctldata(spi
);
2039 spi_set_ctldata(spi
, NULL
);
2043 static struct pl022_ssp_controller
*
2044 pl022_platform_data_dt_get(struct device
*dev
)
2046 struct device_node
*np
= dev
->of_node
;
2047 struct pl022_ssp_controller
*pd
;
2051 dev_err(dev
, "no dt node defined\n");
2055 pd
= devm_kzalloc(dev
, sizeof(struct pl022_ssp_controller
), GFP_KERNEL
);
2057 dev_err(dev
, "cannot allocate platform data memory\n");
2063 of_property_read_u32(np
, "num-cs", &tmp
);
2064 pd
->num_chipselect
= tmp
;
2065 of_property_read_u32(np
, "pl022,autosuspend-delay",
2066 &pd
->autosuspend_delay
);
2067 pd
->rt
= of_property_read_bool(np
, "pl022,rt");
2072 static int pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2074 struct device
*dev
= &adev
->dev
;
2075 struct pl022_ssp_controller
*platform_info
=
2076 dev_get_platdata(&adev
->dev
);
2077 struct spi_master
*master
;
2078 struct pl022
*pl022
= NULL
; /*Data for this driver */
2079 struct device_node
*np
= adev
->dev
.of_node
;
2080 int status
= 0, i
, num_cs
;
2082 dev_info(&adev
->dev
,
2083 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2084 if (!platform_info
&& IS_ENABLED(CONFIG_OF
))
2085 platform_info
= pl022_platform_data_dt_get(dev
);
2087 if (!platform_info
) {
2088 dev_err(dev
, "probe: no platform data defined\n");
2092 if (platform_info
->num_chipselect
) {
2093 num_cs
= platform_info
->num_chipselect
;
2095 dev_err(dev
, "probe: no chip select defined\n");
2099 /* Allocate master with space for data */
2100 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2101 if (master
== NULL
) {
2102 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2106 pl022
= spi_master_get_devdata(master
);
2107 pl022
->master
= master
;
2108 pl022
->master_info
= platform_info
;
2110 pl022
->vendor
= id
->data
;
2111 pl022
->chipselects
= devm_kzalloc(dev
, num_cs
* sizeof(int),
2114 pinctrl_pm_select_default_state(dev
);
2117 * Bus Number Which has been Assigned to this SSP controller
2120 master
->bus_num
= platform_info
->bus_id
;
2121 master
->num_chipselect
= num_cs
;
2122 master
->cleanup
= pl022_cleanup
;
2123 master
->setup
= pl022_setup
;
2124 master
->auto_runtime_pm
= true;
2125 master
->transfer_one_message
= pl022_transfer_one_message
;
2126 master
->unprepare_transfer_hardware
= pl022_unprepare_transfer_hardware
;
2127 master
->rt
= platform_info
->rt
;
2128 master
->dev
.of_node
= dev
->of_node
;
2130 if (platform_info
->num_chipselect
&& platform_info
->chipselects
) {
2131 for (i
= 0; i
< num_cs
; i
++)
2132 pl022
->chipselects
[i
] = platform_info
->chipselects
[i
];
2133 } else if (IS_ENABLED(CONFIG_OF
)) {
2134 for (i
= 0; i
< num_cs
; i
++) {
2135 int cs_gpio
= of_get_named_gpio(np
, "cs-gpios", i
);
2137 if (cs_gpio
== -EPROBE_DEFER
) {
2138 status
= -EPROBE_DEFER
;
2142 pl022
->chipselects
[i
] = cs_gpio
;
2144 if (gpio_is_valid(cs_gpio
)) {
2145 if (devm_gpio_request(dev
, cs_gpio
, "ssp-pl022"))
2147 "could not request %d gpio\n",
2149 else if (gpio_direction_output(cs_gpio
, 1))
2151 "could set gpio %d as output\n",
2158 * Supports mode 0-3, loopback, and active low CS. Transfers are
2159 * always MS bit first on the original pl022.
2161 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2162 if (pl022
->vendor
->extended_cr
)
2163 master
->mode_bits
|= SPI_LSB_FIRST
;
2165 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2167 status
= amba_request_regions(adev
, NULL
);
2169 goto err_no_ioregion
;
2171 pl022
->phybase
= adev
->res
.start
;
2172 pl022
->virtbase
= devm_ioremap(dev
, adev
->res
.start
,
2173 resource_size(&adev
->res
));
2174 if (pl022
->virtbase
== NULL
) {
2176 goto err_no_ioremap
;
2178 printk(KERN_INFO
"pl022: mapped registers from %pa to %p\n",
2179 &adev
->res
.start
, pl022
->virtbase
);
2181 pl022
->clk
= devm_clk_get(&adev
->dev
, NULL
);
2182 if (IS_ERR(pl022
->clk
)) {
2183 status
= PTR_ERR(pl022
->clk
);
2184 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2188 status
= clk_prepare(pl022
->clk
);
2190 dev_err(&adev
->dev
, "could not prepare SSP/SPI bus clock\n");
2194 status
= clk_enable(pl022
->clk
);
2196 dev_err(&adev
->dev
, "could not enable SSP/SPI bus clock\n");
2200 /* Initialize transfer pump */
2201 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
2202 (unsigned long)pl022
);
2205 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2206 SSP_CR1(pl022
->virtbase
));
2207 load_ssp_default_config(pl022
);
2209 status
= devm_request_irq(dev
, adev
->irq
[0], pl022_interrupt_handler
,
2212 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2216 /* Get DMA channels, try autoconfiguration first */
2217 status
= pl022_dma_autoprobe(pl022
);
2219 /* If that failed, use channels from platform_info */
2221 platform_info
->enable_dma
= 1;
2222 else if (platform_info
->enable_dma
) {
2223 status
= pl022_dma_probe(pl022
);
2225 platform_info
->enable_dma
= 0;
2228 /* Register with the SPI framework */
2229 amba_set_drvdata(adev
, pl022
);
2230 status
= spi_register_master(master
);
2233 "probe - problem registering spi master\n");
2234 goto err_spi_register
;
2236 dev_dbg(dev
, "probe succeeded\n");
2238 /* let runtime pm put suspend */
2239 if (platform_info
->autosuspend_delay
> 0) {
2240 dev_info(&adev
->dev
,
2241 "will use autosuspend for runtime pm, delay %dms\n",
2242 platform_info
->autosuspend_delay
);
2243 pm_runtime_set_autosuspend_delay(dev
,
2244 platform_info
->autosuspend_delay
);
2245 pm_runtime_use_autosuspend(dev
);
2247 pm_runtime_put(dev
);
2252 if (platform_info
->enable_dma
)
2253 pl022_dma_remove(pl022
);
2255 clk_disable(pl022
->clk
);
2257 clk_unprepare(pl022
->clk
);
2261 amba_release_regions(adev
);
2264 spi_master_put(master
);
2269 pl022_remove(struct amba_device
*adev
)
2271 struct pl022
*pl022
= amba_get_drvdata(adev
);
2277 * undo pm_runtime_put() in probe. I assume that we're not
2278 * accessing the primecell here.
2280 pm_runtime_get_noresume(&adev
->dev
);
2282 load_ssp_default_config(pl022
);
2283 if (pl022
->master_info
->enable_dma
)
2284 pl022_dma_remove(pl022
);
2286 clk_disable(pl022
->clk
);
2287 clk_unprepare(pl022
->clk
);
2288 amba_release_regions(adev
);
2289 tasklet_disable(&pl022
->pump_transfers
);
2290 spi_unregister_master(pl022
->master
);
2291 amba_set_drvdata(adev
, NULL
);
2295 #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2297 * These two functions are used from both suspend/resume and
2298 * the runtime counterparts to handle external resources like
2299 * clocks, pins and regulators when going to sleep.
2301 static void pl022_suspend_resources(struct pl022
*pl022
, bool runtime
)
2303 clk_disable(pl022
->clk
);
2306 pinctrl_pm_select_idle_state(&pl022
->adev
->dev
);
2308 pinctrl_pm_select_sleep_state(&pl022
->adev
->dev
);
2311 static void pl022_resume_resources(struct pl022
*pl022
, bool runtime
)
2313 /* First go to the default state */
2314 pinctrl_pm_select_default_state(&pl022
->adev
->dev
);
2316 /* Then let's idle the pins until the next transfer happens */
2317 pinctrl_pm_select_idle_state(&pl022
->adev
->dev
);
2319 clk_enable(pl022
->clk
);
2323 #ifdef CONFIG_SUSPEND
2324 static int pl022_suspend(struct device
*dev
)
2326 struct pl022
*pl022
= dev_get_drvdata(dev
);
2329 ret
= spi_master_suspend(pl022
->master
);
2331 dev_warn(dev
, "cannot suspend master\n");
2335 pm_runtime_get_sync(dev
);
2336 pl022_suspend_resources(pl022
, false);
2338 dev_dbg(dev
, "suspended\n");
2342 static int pl022_resume(struct device
*dev
)
2344 struct pl022
*pl022
= dev_get_drvdata(dev
);
2347 pl022_resume_resources(pl022
, false);
2348 pm_runtime_put(dev
);
2350 /* Start the queue running */
2351 ret
= spi_master_resume(pl022
->master
);
2353 dev_err(dev
, "problem starting queue (%d)\n", ret
);
2355 dev_dbg(dev
, "resumed\n");
2359 #endif /* CONFIG_PM */
2361 #ifdef CONFIG_PM_RUNTIME
2362 static int pl022_runtime_suspend(struct device
*dev
)
2364 struct pl022
*pl022
= dev_get_drvdata(dev
);
2366 pl022_suspend_resources(pl022
, true);
2370 static int pl022_runtime_resume(struct device
*dev
)
2372 struct pl022
*pl022
= dev_get_drvdata(dev
);
2374 pl022_resume_resources(pl022
, true);
2379 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2380 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2381 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2384 static struct vendor_data vendor_arm
= {
2388 .extended_cr
= false,
2393 static struct vendor_data vendor_st
= {
2397 .extended_cr
= true,
2402 static struct vendor_data vendor_st_pl023
= {
2406 .extended_cr
= true,
2411 static struct amba_id pl022_ids
[] = {
2414 * ARM PL022 variant, this has a 16bit wide
2415 * and 8 locations deep TX/RX FIFO
2419 .data
= &vendor_arm
,
2423 * ST Micro derivative, this has 32bit wide
2424 * and 32 locations deep TX/RX FIFO
2432 * ST-Ericsson derivative "PL023" (this is not
2433 * an official ARM number), this is a PL022 SSP block
2434 * stripped to SPI mode only, it has 32bit wide
2435 * and 32 locations deep TX/RX FIFO but no extended
2440 .data
= &vendor_st_pl023
,
2445 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2447 static struct amba_driver pl022_driver
= {
2449 .name
= "ssp-pl022",
2450 .pm
= &pl022_dev_pm_ops
,
2452 .id_table
= pl022_ids
,
2453 .probe
= pl022_probe
,
2454 .remove
= pl022_remove
,
2457 static int __init
pl022_init(void)
2459 return amba_driver_register(&pl022_driver
);
2461 subsys_initcall(pl022_init
);
2463 static void __exit
pl022_exit(void)
2465 amba_driver_unregister(&pl022_driver
);
2467 module_exit(pl022_exit
);
2469 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2470 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2471 MODULE_LICENSE("GPL");