2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
42 #include <asm/pgtable.h>
44 #include <asm/processor.h>
47 #include <asm/machdep.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
53 #include <asm/debug.h>
55 #include <asm/firmware.h>
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
65 #define TM_DEBUG(x...) do { } while(0)
68 extern unsigned long _get_SP(void);
71 struct task_struct
*last_task_used_math
= NULL
;
72 struct task_struct
*last_task_used_altivec
= NULL
;
73 struct task_struct
*last_task_used_vsx
= NULL
;
74 struct task_struct
*last_task_used_spe
= NULL
;
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct
*tsk
)
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
86 if (tsk
== current
&& tsk
->thread
.regs
&&
87 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
88 !test_thread_flag(TIF_RESTORE_TM
)) {
89 tsk
->thread
.tm_orig_msr
= tsk
->thread
.regs
->msr
;
90 set_thread_flag(TIF_RESTORE_TM
);
96 void giveup_altivec_maybe_transactional(struct task_struct
*tsk
)
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
104 if (tsk
== current
&& tsk
->thread
.regs
&&
105 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
106 !test_thread_flag(TIF_RESTORE_TM
)) {
107 tsk
->thread
.tm_orig_msr
= tsk
->thread
.regs
->msr
;
108 set_thread_flag(TIF_RESTORE_TM
);
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
119 #ifdef CONFIG_PPC_FPU
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
124 void flush_fp_to_thread(struct task_struct
*tsk
)
126 if (tsk
->thread
.regs
) {
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
136 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
145 BUG_ON(tsk
!= current
);
147 giveup_fpu_maybe_transactional(tsk
);
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
153 #endif /* CONFIG_PPC_FPU */
155 void enable_kernel_fp(void)
157 WARN_ON(preemptible());
160 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
161 giveup_fpu_maybe_transactional(current
);
163 giveup_fpu(NULL
); /* just enables FP for kernel */
165 giveup_fpu_maybe_transactional(last_task_used_math
);
166 #endif /* CONFIG_SMP */
168 EXPORT_SYMBOL(enable_kernel_fp
);
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
173 WARN_ON(preemptible());
176 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
177 giveup_altivec_maybe_transactional(current
);
179 giveup_altivec_notask();
181 giveup_altivec_maybe_transactional(last_task_used_altivec
);
182 #endif /* CONFIG_SMP */
184 EXPORT_SYMBOL(enable_kernel_altivec
);
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
190 void flush_altivec_to_thread(struct task_struct
*tsk
)
192 if (tsk
->thread
.regs
) {
194 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
196 BUG_ON(tsk
!= current
);
198 giveup_altivec_maybe_transactional(tsk
);
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
204 #endif /* CONFIG_ALTIVEC */
207 void enable_kernel_vsx(void)
209 WARN_ON(preemptible());
212 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
))
215 giveup_vsx(NULL
); /* just enable vsx for kernel - force */
217 giveup_vsx(last_task_used_vsx
);
218 #endif /* CONFIG_SMP */
220 EXPORT_SYMBOL(enable_kernel_vsx
);
222 void giveup_vsx(struct task_struct
*tsk
)
224 giveup_fpu_maybe_transactional(tsk
);
225 giveup_altivec_maybe_transactional(tsk
);
228 EXPORT_SYMBOL(giveup_vsx
);
230 void flush_vsx_to_thread(struct task_struct
*tsk
)
232 if (tsk
->thread
.regs
) {
234 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
236 BUG_ON(tsk
!= current
);
243 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
244 #endif /* CONFIG_VSX */
248 void enable_kernel_spe(void)
250 WARN_ON(preemptible());
253 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
256 giveup_spe(NULL
); /* just enable SPE for kernel - force */
258 giveup_spe(last_task_used_spe
);
259 #endif /* __SMP __ */
261 EXPORT_SYMBOL(enable_kernel_spe
);
263 void flush_spe_to_thread(struct task_struct
*tsk
)
265 if (tsk
->thread
.regs
) {
267 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
269 BUG_ON(tsk
!= current
);
271 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
277 #endif /* CONFIG_SPE */
281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282 * and the current task has some state, discard it.
284 void discard_lazy_cpu_state(void)
287 if (last_task_used_math
== current
)
288 last_task_used_math
= NULL
;
289 #ifdef CONFIG_ALTIVEC
290 if (last_task_used_altivec
== current
)
291 last_task_used_altivec
= NULL
;
292 #endif /* CONFIG_ALTIVEC */
294 if (last_task_used_vsx
== current
)
295 last_task_used_vsx
= NULL
;
296 #endif /* CONFIG_VSX */
298 if (last_task_used_spe
== current
)
299 last_task_used_spe
= NULL
;
303 #endif /* CONFIG_SMP */
305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
306 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
307 unsigned long error_code
, int signal_code
, int breakpt
)
311 current
->thread
.trap_nr
= signal_code
;
312 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
313 11, SIGSEGV
) == NOTIFY_STOP
)
316 /* Deliver the signal to userspace */
317 info
.si_signo
= SIGTRAP
;
318 info
.si_errno
= breakpt
; /* breakpoint or watchpoint id */
319 info
.si_code
= signal_code
;
320 info
.si_addr
= (void __user
*)address
;
321 force_sig_info(SIGTRAP
, &info
, current
);
323 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
324 void do_break (struct pt_regs
*regs
, unsigned long address
,
325 unsigned long error_code
)
329 current
->thread
.trap_nr
= TRAP_HWBKPT
;
330 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
331 11, SIGSEGV
) == NOTIFY_STOP
)
334 if (debugger_break_match(regs
))
337 /* Clear the breakpoint */
338 hw_breakpoint_disable();
340 /* Deliver the signal to userspace */
341 info
.si_signo
= SIGTRAP
;
343 info
.si_code
= TRAP_HWBKPT
;
344 info
.si_addr
= (void __user
*)address
;
345 force_sig_info(SIGTRAP
, &info
, current
);
347 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
349 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
351 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 * Set the debug registers back to their default "safe" values.
355 static void set_debug_reg_defaults(struct thread_struct
*thread
)
357 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
358 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
359 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
361 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
362 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
365 thread
->debug
.dbcr0
= 0;
368 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
371 DBCR1_IAC3US
| DBCR1_IAC4US
;
373 * Force Data Address Compare User/Supervisor bits to be User-only
374 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
378 thread
->debug
.dbcr1
= 0;
382 static void prime_debug_regs(struct debug_reg
*debug
)
385 * We could have inherited MSR_DE from userspace, since
386 * it doesn't get cleared on exception entry. Make sure
387 * MSR_DE is clear before we enable any debug events.
389 mtmsr(mfmsr() & ~MSR_DE
);
391 mtspr(SPRN_IAC1
, debug
->iac1
);
392 mtspr(SPRN_IAC2
, debug
->iac2
);
393 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
394 mtspr(SPRN_IAC3
, debug
->iac3
);
395 mtspr(SPRN_IAC4
, debug
->iac4
);
397 mtspr(SPRN_DAC1
, debug
->dac1
);
398 mtspr(SPRN_DAC2
, debug
->dac2
);
399 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400 mtspr(SPRN_DVC1
, debug
->dvc1
);
401 mtspr(SPRN_DVC2
, debug
->dvc2
);
403 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
404 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
406 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
410 * Unless neither the old or new thread are making use of the
411 * debug registers, set the debug registers from the values
412 * stored in the new thread.
414 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
416 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
417 || (new_debug
->dbcr0
& DBCR0_IDM
))
418 prime_debug_regs(new_debug
);
420 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
421 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
422 #ifndef CONFIG_HAVE_HW_BREAKPOINT
423 static void set_debug_reg_defaults(struct thread_struct
*thread
)
425 thread
->hw_brk
.address
= 0;
426 thread
->hw_brk
.type
= 0;
427 set_breakpoint(&thread
->hw_brk
);
429 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
432 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
435 mtspr(SPRN_DAC1
, dabr
);
436 #ifdef CONFIG_PPC_47x
441 #elif defined(CONFIG_PPC_BOOK3S)
442 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
444 mtspr(SPRN_DABR
, dabr
);
445 if (cpu_has_feature(CPU_FTR_DABRX
))
446 mtspr(SPRN_DABRX
, dabrx
);
450 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
456 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
458 unsigned long dabr
, dabrx
;
460 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
461 dabrx
= ((brk
->type
>> 3) & 0x7);
464 return ppc_md
.set_dabr(dabr
, dabrx
);
466 return __set_dabr(dabr
, dabrx
);
469 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
471 unsigned long dawr
, dawrx
, mrd
;
475 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
476 << (63 - 58); //* read/write bits */
477 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
478 << (63 - 59); //* translate */
479 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
480 >> 3; //* PRIM bits */
481 /* dawr length is stored in field MDR bits 48:53. Matches range in
482 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 brk->len is in bytes.
485 This aligns up to double word size, shifts and does the bias.
487 mrd
= ((brk
->len
+ 7) >> 3) - 1;
488 dawrx
|= (mrd
& 0x3f) << (63 - 53);
491 return ppc_md
.set_dawr(dawr
, dawrx
);
492 mtspr(SPRN_DAWR
, dawr
);
493 mtspr(SPRN_DAWRX
, dawrx
);
497 void __set_breakpoint(struct arch_hw_breakpoint
*brk
)
499 memcpy(this_cpu_ptr(¤t_brk
), brk
, sizeof(*brk
));
501 if (cpu_has_feature(CPU_FTR_DAWR
))
507 void set_breakpoint(struct arch_hw_breakpoint
*brk
)
510 __set_breakpoint(brk
);
515 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
518 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
519 struct arch_hw_breakpoint
*b
)
521 if (a
->address
!= b
->address
)
523 if (a
->type
!= b
->type
)
525 if (a
->len
!= b
->len
)
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 static void tm_reclaim_thread(struct thread_struct
*thr
,
532 struct thread_info
*ti
, uint8_t cause
)
534 unsigned long msr_diff
= 0;
537 * If FP/VSX registers have been already saved to the
538 * thread_struct, move them to the transact_fp array.
539 * We clear the TIF_RESTORE_TM bit since after the reclaim
540 * the thread will no longer be transactional.
542 if (test_ti_thread_flag(ti
, TIF_RESTORE_TM
)) {
543 msr_diff
= thr
->tm_orig_msr
& ~thr
->regs
->msr
;
544 if (msr_diff
& MSR_FP
)
545 memcpy(&thr
->transact_fp
, &thr
->fp_state
,
546 sizeof(struct thread_fp_state
));
547 if (msr_diff
& MSR_VEC
)
548 memcpy(&thr
->transact_vr
, &thr
->vr_state
,
549 sizeof(struct thread_vr_state
));
550 clear_ti_thread_flag(ti
, TIF_RESTORE_TM
);
551 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
| MSR_FE0
| MSR_FE1
;
555 * Use the current MSR TM suspended bit to track if we have
556 * checkpointed state outstanding.
557 * On signal delivery, we'd normally reclaim the checkpointed
558 * state to obtain stack pointer (see:get_tm_stackpointer()).
559 * This will then directly return to userspace without going
560 * through __switch_to(). However, if the stack frame is bad,
561 * we need to exit this thread which calls __switch_to() which
562 * will again attempt to reclaim the already saved tm state.
563 * Hence we need to check that we've not already reclaimed
565 * We do this using the current MSR, rather tracking it in
566 * some specific thread_struct bit, as it has the additional
567 * benifit of checking for a potential TM bad thing exception.
569 if (!MSR_TM_SUSPENDED(mfmsr()))
572 tm_reclaim(thr
, thr
->regs
->msr
, cause
);
574 /* Having done the reclaim, we now have the checkpointed
575 * FP/VSX values in the registers. These might be valid
576 * even if we have previously called enable_kernel_fp() or
577 * flush_fp_to_thread(), so update thr->regs->msr to
578 * indicate their current validity.
580 thr
->regs
->msr
|= msr_diff
;
583 void tm_reclaim_current(uint8_t cause
)
586 tm_reclaim_thread(¤t
->thread
, current_thread_info(), cause
);
589 static inline void tm_reclaim_task(struct task_struct
*tsk
)
591 /* We have to work out if we're switching from/to a task that's in the
592 * middle of a transaction.
594 * In switching we need to maintain a 2nd register state as
595 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
596 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
597 * (current) FPRs into oldtask->thread.transact_fpr[].
599 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
601 struct thread_struct
*thr
= &tsk
->thread
;
606 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
607 goto out_and_saveregs
;
609 /* Stash the original thread MSR, as giveup_fpu et al will
610 * modify it. We hold onto it to see whether the task used
611 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
612 * tm_orig_msr is already set.
614 if (!test_ti_thread_flag(task_thread_info(tsk
), TIF_RESTORE_TM
))
615 thr
->tm_orig_msr
= thr
->regs
->msr
;
617 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
618 "ccr=%lx, msr=%lx, trap=%lx)\n",
619 tsk
->pid
, thr
->regs
->nip
,
620 thr
->regs
->ccr
, thr
->regs
->msr
,
623 tm_reclaim_thread(thr
, task_thread_info(tsk
), TM_CAUSE_RESCHED
);
625 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
629 /* Always save the regs here, even if a transaction's not active.
630 * This context-switches a thread's TM info SPRs. We do it here to
631 * be consistent with the restore path (in recheckpoint) which
632 * cannot happen later in _switch().
637 extern void __tm_recheckpoint(struct thread_struct
*thread
,
638 unsigned long orig_msr
);
640 void tm_recheckpoint(struct thread_struct
*thread
,
641 unsigned long orig_msr
)
645 /* We really can't be interrupted here as the TEXASR registers can't
646 * change and later in the trecheckpoint code, we have a userspace R1.
647 * So let's hard disable over this region.
649 local_irq_save(flags
);
652 /* The TM SPRs are restored here, so that TEXASR.FS can be set
653 * before the trecheckpoint and no explosion occurs.
655 tm_restore_sprs(thread
);
657 __tm_recheckpoint(thread
, orig_msr
);
659 local_irq_restore(flags
);
662 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
666 if (!cpu_has_feature(CPU_FTR_TM
))
669 /* Recheckpoint the registers of the thread we're about to switch to.
671 * If the task was using FP, we non-lazily reload both the original and
672 * the speculative FP register states. This is because the kernel
673 * doesn't see if/when a TM rollback occurs, so if we take an FP
674 * unavoidable later, we are unable to determine which set of FP regs
675 * need to be restored.
677 if (!new->thread
.regs
)
680 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
681 tm_restore_sprs(&new->thread
);
684 msr
= new->thread
.tm_orig_msr
;
685 /* Recheckpoint to restore original checkpointed register state. */
686 TM_DEBUG("*** tm_recheckpoint of pid %d "
687 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
688 new->pid
, new->thread
.regs
->msr
, msr
);
690 /* This loads the checkpointed FP/VEC state, if used */
691 tm_recheckpoint(&new->thread
, msr
);
693 /* This loads the speculative FP/VEC state, if used */
695 do_load_up_transact_fpu(&new->thread
);
696 new->thread
.regs
->msr
|=
697 (MSR_FP
| new->thread
.fpexc_mode
);
699 #ifdef CONFIG_ALTIVEC
701 do_load_up_transact_altivec(&new->thread
);
702 new->thread
.regs
->msr
|= MSR_VEC
;
705 /* We may as well turn on VSX too since all the state is restored now */
707 new->thread
.regs
->msr
|= MSR_VSX
;
709 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
710 "(kernel msr 0x%lx)\n",
714 static inline void __switch_to_tm(struct task_struct
*prev
)
716 if (cpu_has_feature(CPU_FTR_TM
)) {
718 tm_reclaim_task(prev
);
723 * This is called if we are on the way out to userspace and the
724 * TIF_RESTORE_TM flag is set. It checks if we need to reload
725 * FP and/or vector state and does so if necessary.
726 * If userspace is inside a transaction (whether active or
727 * suspended) and FP/VMX/VSX instructions have ever been enabled
728 * inside that transaction, then we have to keep them enabled
729 * and keep the FP/VMX/VSX state loaded while ever the transaction
730 * continues. The reason is that if we didn't, and subsequently
731 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
732 * we don't know whether it's the same transaction, and thus we
733 * don't know which of the checkpointed state and the transactional
736 void restore_tm_state(struct pt_regs
*regs
)
738 unsigned long msr_diff
;
740 clear_thread_flag(TIF_RESTORE_TM
);
741 if (!MSR_TM_ACTIVE(regs
->msr
))
744 msr_diff
= current
->thread
.tm_orig_msr
& ~regs
->msr
;
745 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
746 if (msr_diff
& MSR_FP
) {
748 load_fp_state(¤t
->thread
.fp_state
);
749 regs
->msr
|= current
->thread
.fpexc_mode
;
751 if (msr_diff
& MSR_VEC
) {
753 load_vr_state(¤t
->thread
.vr_state
);
755 regs
->msr
|= msr_diff
;
759 #define tm_recheckpoint_new_task(new)
760 #define __switch_to_tm(prev)
761 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
763 struct task_struct
*__switch_to(struct task_struct
*prev
,
764 struct task_struct
*new)
766 struct thread_struct
*new_thread
, *old_thread
;
767 struct task_struct
*last
;
768 #ifdef CONFIG_PPC_BOOK3S_64
769 struct ppc64_tlb_batch
*batch
;
772 WARN_ON(!irqs_disabled());
774 /* Back up the TAR and DSCR across context switches.
775 * Note that the TAR is not available for use in the kernel. (To
776 * provide this, the TAR should be backed up/restored on exception
777 * entry/exit instead, and be in pt_regs. FIXME, this should be in
778 * pt_regs anyway (for debug).)
779 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
780 * these will change them.
782 save_early_sprs(&prev
->thread
);
784 __switch_to_tm(prev
);
787 /* avoid complexity of lazy save/restore of fpu
788 * by just saving it every time we switch out if
789 * this task used the fpu during the last quantum.
791 * If it tries to use the fpu again, it'll trap and
792 * reload its fp regs. So we don't have to do a restore
793 * every switch, just a save.
796 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
798 #ifdef CONFIG_ALTIVEC
800 * If the previous thread used altivec in the last quantum
801 * (thus changing altivec regs) then save them.
802 * We used to check the VRSAVE register but not all apps
803 * set it, so we don't rely on it now (and in fact we need
804 * to save & restore VSCR even if VRSAVE == 0). -- paulus
806 * On SMP we always save/restore altivec regs just to avoid the
807 * complexity of changing processors.
810 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
811 giveup_altivec(prev
);
812 #endif /* CONFIG_ALTIVEC */
814 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VSX
))
815 /* VMX and FPU registers are already save here */
817 #endif /* CONFIG_VSX */
820 * If the previous thread used spe in the last quantum
821 * (thus changing spe regs) then save them.
823 * On SMP we always save/restore spe regs just to avoid the
824 * complexity of changing processors.
826 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
828 #endif /* CONFIG_SPE */
830 #else /* CONFIG_SMP */
831 #ifdef CONFIG_ALTIVEC
832 /* Avoid the trap. On smp this this never happens since
833 * we don't set last_task_used_altivec -- Cort
835 if (new->thread
.regs
&& last_task_used_altivec
== new)
836 new->thread
.regs
->msr
|= MSR_VEC
;
837 #endif /* CONFIG_ALTIVEC */
839 if (new->thread
.regs
&& last_task_used_vsx
== new)
840 new->thread
.regs
->msr
|= MSR_VSX
;
841 #endif /* CONFIG_VSX */
843 /* Avoid the trap. On smp this this never happens since
844 * we don't set last_task_used_spe
846 if (new->thread
.regs
&& last_task_used_spe
== new)
847 new->thread
.regs
->msr
|= MSR_SPE
;
848 #endif /* CONFIG_SPE */
850 #endif /* CONFIG_SMP */
852 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
853 switch_booke_debug_regs(&new->thread
.debug
);
856 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
859 #ifndef CONFIG_HAVE_HW_BREAKPOINT
860 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk
), &new->thread
.hw_brk
)))
861 __set_breakpoint(&new->thread
.hw_brk
);
862 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
866 new_thread
= &new->thread
;
867 old_thread
= ¤t
->thread
;
871 * Collect processor utilization data per process
873 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
874 struct cpu_usage
*cu
= this_cpu_ptr(&cpu_usage_array
);
875 long unsigned start_tb
, current_tb
;
876 start_tb
= old_thread
->start_tb
;
877 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
878 old_thread
->accum_tb
+= (current_tb
- start_tb
);
879 new_thread
->start_tb
= current_tb
;
881 #endif /* CONFIG_PPC64 */
883 #ifdef CONFIG_PPC_BOOK3S_64
884 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
886 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
888 __flush_tlb_pending(batch
);
891 #endif /* CONFIG_PPC_BOOK3S_64 */
894 * We can't take a PMU exception inside _switch() since there is a
895 * window where the kernel stack SLB and the kernel stack are out
896 * of sync. Hard disable here.
900 tm_recheckpoint_new_task(new);
902 last
= _switch(old_thread
, new_thread
);
904 #ifdef CONFIG_PPC_BOOK3S_64
905 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
906 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
907 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
910 #endif /* CONFIG_PPC_BOOK3S_64 */
915 static int instructions_to_print
= 16;
917 static void show_instructions(struct pt_regs
*regs
)
920 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
923 printk("Instruction dump:");
925 for (i
= 0; i
< instructions_to_print
; i
++) {
931 #if !defined(CONFIG_BOOKE)
932 /* If executing with the IMMU off, adjust pc rather
933 * than print XXXXXXXX.
935 if (!(regs
->msr
& MSR_IR
))
936 pc
= (unsigned long)phys_to_virt(pc
);
939 if (!__kernel_text_address(pc
) ||
940 probe_kernel_address((unsigned int __user
*)pc
, instr
)) {
941 printk(KERN_CONT
"XXXXXXXX ");
944 printk(KERN_CONT
"<%08x> ", instr
);
946 printk(KERN_CONT
"%08x ", instr
);
955 static struct regbit
{
959 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
988 static void printbits(unsigned long val
, struct regbit
*bits
)
990 const char *sep
= "";
993 for (; bits
->bit
; ++bits
)
994 if (val
& bits
->bit
) {
995 printk("%s%s", sep
, bits
->name
);
1002 #define REG "%016lx"
1003 #define REGS_PER_LINE 4
1004 #define LAST_VOLATILE 13
1007 #define REGS_PER_LINE 8
1008 #define LAST_VOLATILE 12
1011 void show_regs(struct pt_regs
* regs
)
1015 show_regs_print_info(KERN_DEFAULT
);
1017 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1018 regs
->nip
, regs
->link
, regs
->ctr
);
1019 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1020 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1021 printk("MSR: "REG
" ", regs
->msr
);
1022 printbits(regs
->msr
, msr_bits
);
1023 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1025 if ((regs
->trap
!= 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1026 printk("CFAR: "REG
" ", regs
->orig_gpr3
);
1027 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1028 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1029 printk("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1031 printk("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1034 printk("SOFTE: %ld ", regs
->softe
);
1036 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1037 if (MSR_TM_ACTIVE(regs
->msr
))
1038 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1041 for (i
= 0; i
< 32; i
++) {
1042 if ((i
% REGS_PER_LINE
) == 0)
1043 printk("\nGPR%02d: ", i
);
1044 printk(REG
" ", regs
->gpr
[i
]);
1045 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1049 #ifdef CONFIG_KALLSYMS
1051 * Lookup NIP late so we have the best change of getting the
1052 * above info out without failing
1054 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1055 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1057 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1058 if (!user_mode(regs
))
1059 show_instructions(regs
);
1062 void exit_thread(void)
1064 discard_lazy_cpu_state();
1067 void flush_thread(void)
1069 discard_lazy_cpu_state();
1071 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1072 flush_ptrace_hw_breakpoint(current
);
1073 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1074 set_debug_reg_defaults(¤t
->thread
);
1075 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1079 release_thread(struct task_struct
*t
)
1084 * this gets called so that we can store coprocessor state into memory and
1085 * copy the current task into the new thread.
1087 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1089 flush_fp_to_thread(src
);
1090 flush_altivec_to_thread(src
);
1091 flush_vsx_to_thread(src
);
1092 flush_spe_to_thread(src
);
1094 * Flush TM state out so we can copy it. __switch_to_tm() does this
1095 * flush but it removes the checkpointed state from the current CPU and
1096 * transitions the CPU out of TM mode. Hence we need to call
1097 * tm_recheckpoint_new_task() (on the same task) to restore the
1098 * checkpointed state back and the TM mode.
1100 __switch_to_tm(src
);
1101 tm_recheckpoint_new_task(src
);
1105 clear_task_ebb(dst
);
1110 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1112 #ifdef CONFIG_PPC_STD_MMU_64
1113 unsigned long sp_vsid
;
1114 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1116 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1117 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1118 << SLB_VSID_SHIFT_1T
;
1120 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1122 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1123 p
->thread
.ksp_vsid
= sp_vsid
;
1130 extern unsigned long dscr_default
; /* defined in arch/powerpc/kernel/sysfs.c */
1133 * Copy architecture-specific thread state
1135 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1136 unsigned long kthread_arg
, struct task_struct
*p
)
1138 struct pt_regs
*childregs
, *kregs
;
1139 extern void ret_from_fork(void);
1140 extern void ret_from_kernel_thread(void);
1142 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1144 /* Copy registers */
1145 sp
-= sizeof(struct pt_regs
);
1146 childregs
= (struct pt_regs
*) sp
;
1147 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1149 struct thread_info
*ti
= (void *)task_stack_page(p
);
1150 memset(childregs
, 0, sizeof(struct pt_regs
));
1151 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1154 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1156 clear_tsk_thread_flag(p
, TIF_32BIT
);
1157 childregs
->softe
= 1;
1159 childregs
->gpr
[15] = kthread_arg
;
1160 p
->thread
.regs
= NULL
; /* no user register state */
1161 ti
->flags
|= _TIF_RESTOREALL
;
1162 f
= ret_from_kernel_thread
;
1165 struct pt_regs
*regs
= current_pt_regs();
1166 CHECK_FULL_REGS(regs
);
1169 childregs
->gpr
[1] = usp
;
1170 p
->thread
.regs
= childregs
;
1171 childregs
->gpr
[3] = 0; /* Result from fork() */
1172 if (clone_flags
& CLONE_SETTLS
) {
1174 if (!is_32bit_task())
1175 childregs
->gpr
[13] = childregs
->gpr
[6];
1178 childregs
->gpr
[2] = childregs
->gpr
[6];
1183 sp
-= STACK_FRAME_OVERHEAD
;
1186 * The way this works is that at some point in the future
1187 * some task will call _switch to switch to the new task.
1188 * That will pop off the stack frame created below and start
1189 * the new task running at ret_from_fork. The new task will
1190 * do some house keeping and then return from the fork or clone
1191 * system call, using the stack frame created above.
1193 ((unsigned long *)sp
)[0] = 0;
1194 sp
-= sizeof(struct pt_regs
);
1195 kregs
= (struct pt_regs
*) sp
;
1196 sp
-= STACK_FRAME_OVERHEAD
;
1199 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
1200 _ALIGN_UP(sizeof(struct thread_info
), 16);
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203 p
->thread
.ptrace_bps
[0] = NULL
;
1206 p
->thread
.fp_save_area
= NULL
;
1207 #ifdef CONFIG_ALTIVEC
1208 p
->thread
.vr_save_area
= NULL
;
1211 setup_ksp_vsid(p
, sp
);
1214 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1215 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1216 p
->thread
.dscr
= current
->thread
.dscr
;
1218 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1219 p
->thread
.ppr
= INIT_PPR
;
1221 kregs
->nip
= ppc_function_entry(f
);
1226 * Set up a thread for executing a new program
1228 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1231 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1235 * If we exec out of a kernel thread then thread.regs will not be
1238 if (!current
->thread
.regs
) {
1239 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1240 current
->thread
.regs
= regs
- 1;
1243 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1251 * We have just cleared all the nonvolatile GPRs, so make
1252 * FULL_REGS(regs) return true. This is necessary to allow
1253 * ptrace to examine the thread immediately after exec.
1260 regs
->msr
= MSR_USER
;
1262 if (!is_32bit_task()) {
1263 unsigned long entry
;
1265 if (is_elf2_task()) {
1266 /* Look ma, no function descriptors! */
1271 * The latest iteration of the ABI requires that when
1272 * calling a function (at its global entry point),
1273 * the caller must ensure r12 holds the entry point
1274 * address (so that the function can quickly
1275 * establish addressability).
1277 regs
->gpr
[12] = start
;
1278 /* Make sure that's restored on entry to userspace. */
1279 set_thread_flag(TIF_RESTOREALL
);
1283 /* start is a relocated pointer to the function
1284 * descriptor for the elf _start routine. The first
1285 * entry in the function descriptor is the entry
1286 * address of _start and the second entry is the TOC
1287 * value we need to use.
1289 __get_user(entry
, (unsigned long __user
*)start
);
1290 __get_user(toc
, (unsigned long __user
*)start
+1);
1292 /* Check whether the e_entry function descriptor entries
1293 * need to be relocated before we can use them.
1295 if (load_addr
!= 0) {
1302 regs
->msr
= MSR_USER64
;
1306 regs
->msr
= MSR_USER32
;
1309 discard_lazy_cpu_state();
1311 current
->thread
.used_vsr
= 0;
1313 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1314 current
->thread
.fp_save_area
= NULL
;
1315 #ifdef CONFIG_ALTIVEC
1316 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1317 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1318 current
->thread
.vr_save_area
= NULL
;
1319 current
->thread
.vrsave
= 0;
1320 current
->thread
.used_vr
= 0;
1321 #endif /* CONFIG_ALTIVEC */
1323 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1324 current
->thread
.acc
= 0;
1325 current
->thread
.spefscr
= 0;
1326 current
->thread
.used_spe
= 0;
1327 #endif /* CONFIG_SPE */
1328 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1329 if (cpu_has_feature(CPU_FTR_TM
))
1330 regs
->msr
|= MSR_TM
;
1331 current
->thread
.tm_tfhar
= 0;
1332 current
->thread
.tm_texasr
= 0;
1333 current
->thread
.tm_tfiar
= 0;
1334 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1336 EXPORT_SYMBOL(start_thread
);
1338 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1339 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1341 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1343 struct pt_regs
*regs
= tsk
->thread
.regs
;
1345 /* This is a bit hairy. If we are an SPE enabled processor
1346 * (have embedded fp) we store the IEEE exception enable flags in
1347 * fpexc_mode. fpexc_mode is also used for setting FP exception
1348 * mode (asyn, precise, disabled) for 'Classic' FP. */
1349 if (val
& PR_FP_EXC_SW_ENABLE
) {
1351 if (cpu_has_feature(CPU_FTR_SPE
)) {
1353 * When the sticky exception bits are set
1354 * directly by userspace, it must call prctl
1355 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1356 * in the existing prctl settings) or
1357 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1358 * the bits being set). <fenv.h> functions
1359 * saving and restoring the whole
1360 * floating-point environment need to do so
1361 * anyway to restore the prctl settings from
1362 * the saved environment.
1364 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1365 tsk
->thread
.fpexc_mode
= val
&
1366 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1376 /* on a CONFIG_SPE this does not hurt us. The bits that
1377 * __pack_fe01 use do not overlap with bits used for
1378 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1379 * on CONFIG_SPE implementations are reserved so writing to
1380 * them does not change anything */
1381 if (val
> PR_FP_EXC_PRECISE
)
1383 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1384 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1385 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1386 | tsk
->thread
.fpexc_mode
;
1390 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1394 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1396 if (cpu_has_feature(CPU_FTR_SPE
)) {
1398 * When the sticky exception bits are set
1399 * directly by userspace, it must call prctl
1400 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1401 * in the existing prctl settings) or
1402 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1403 * the bits being set). <fenv.h> functions
1404 * saving and restoring the whole
1405 * floating-point environment need to do so
1406 * anyway to restore the prctl settings from
1407 * the saved environment.
1409 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1410 val
= tsk
->thread
.fpexc_mode
;
1417 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1418 return put_user(val
, (unsigned int __user
*) adr
);
1421 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1423 struct pt_regs
*regs
= tsk
->thread
.regs
;
1425 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1426 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1432 if (val
== PR_ENDIAN_BIG
)
1433 regs
->msr
&= ~MSR_LE
;
1434 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1435 regs
->msr
|= MSR_LE
;
1442 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1444 struct pt_regs
*regs
= tsk
->thread
.regs
;
1447 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1448 !cpu_has_feature(CPU_FTR_REAL_LE
))
1454 if (regs
->msr
& MSR_LE
) {
1455 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1456 val
= PR_ENDIAN_LITTLE
;
1458 val
= PR_ENDIAN_PPC_LITTLE
;
1460 val
= PR_ENDIAN_BIG
;
1462 return put_user(val
, (unsigned int __user
*)adr
);
1465 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1467 tsk
->thread
.align_ctl
= val
;
1471 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1473 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1476 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1477 unsigned long nbytes
)
1479 unsigned long stack_page
;
1480 unsigned long cpu
= task_cpu(p
);
1483 * Avoid crashing if the stack has overflowed and corrupted
1484 * task_cpu(p), which is in the thread_info struct.
1486 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
1487 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
1488 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1489 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1492 stack_page
= (unsigned long) softirq_ctx
[cpu
];
1493 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1494 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1500 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1501 unsigned long nbytes
)
1503 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1505 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
1506 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1509 return valid_irq_stack(sp
, p
, nbytes
);
1512 EXPORT_SYMBOL(validate_sp
);
1514 unsigned long get_wchan(struct task_struct
*p
)
1516 unsigned long ip
, sp
;
1519 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
1523 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1527 sp
= *(unsigned long *)sp
;
1528 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1531 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1532 if (!in_sched_functions(ip
))
1535 } while (count
++ < 16);
1539 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1541 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1543 unsigned long sp
, ip
, lr
, newsp
;
1546 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1547 int curr_frame
= current
->curr_ret_stack
;
1548 extern void return_to_handler(void);
1549 unsigned long rth
= (unsigned long)return_to_handler
;
1552 sp
= (unsigned long) stack
;
1557 sp
= current_stack_pointer();
1559 sp
= tsk
->thread
.ksp
;
1563 printk("Call Trace:\n");
1565 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1568 stack
= (unsigned long *) sp
;
1570 ip
= stack
[STACK_FRAME_LR_SAVE
];
1571 if (!firstframe
|| ip
!= lr
) {
1572 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1573 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1574 if ((ip
== rth
) && curr_frame
>= 0) {
1576 (void *)current
->ret_stack
[curr_frame
].ret
);
1581 printk(" (unreliable)");
1587 * See if this is an exception frame.
1588 * We look for the "regshere" marker in the current frame.
1590 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1591 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1592 struct pt_regs
*regs
= (struct pt_regs
*)
1593 (sp
+ STACK_FRAME_OVERHEAD
);
1595 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1596 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1601 } while (count
++ < kstack_depth_to_print
);
1605 /* Called with hard IRQs off */
1606 void notrace
__ppc64_runlatch_on(void)
1608 struct thread_info
*ti
= current_thread_info();
1611 ctrl
= mfspr(SPRN_CTRLF
);
1612 ctrl
|= CTRL_RUNLATCH
;
1613 mtspr(SPRN_CTRLT
, ctrl
);
1615 ti
->local_flags
|= _TLF_RUNLATCH
;
1618 /* Called with hard IRQs off */
1619 void notrace
__ppc64_runlatch_off(void)
1621 struct thread_info
*ti
= current_thread_info();
1624 ti
->local_flags
&= ~_TLF_RUNLATCH
;
1626 ctrl
= mfspr(SPRN_CTRLF
);
1627 ctrl
&= ~CTRL_RUNLATCH
;
1628 mtspr(SPRN_CTRLT
, ctrl
);
1630 #endif /* CONFIG_PPC64 */
1632 unsigned long arch_align_stack(unsigned long sp
)
1634 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1635 sp
-= get_random_int() & ~PAGE_MASK
;
1639 static inline unsigned long brk_rnd(void)
1641 unsigned long rnd
= 0;
1643 /* 8MB for 32bit, 1GB for 64bit */
1644 if (is_32bit_task())
1645 rnd
= (long)(get_random_int() % (1<<(23-PAGE_SHIFT
)));
1647 rnd
= (long)(get_random_int() % (1<<(30-PAGE_SHIFT
)));
1649 return rnd
<< PAGE_SHIFT
;
1652 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1654 unsigned long base
= mm
->brk
;
1657 #ifdef CONFIG_PPC_STD_MMU_64
1659 * If we are using 1TB segments and we are allowed to randomise
1660 * the heap, we can put it above 1TB so it is backed by a 1TB
1661 * segment. Otherwise the heap will be in the bottom 1TB
1662 * which always uses 256MB segments and this may result in a
1663 * performance penalty.
1665 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1666 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1669 ret
= PAGE_ALIGN(base
+ brk_rnd());