Linux 4.1.18
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
blob1a4acf8bf4f4b7a790c16dc0286c4c8bc9380edf
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu-hash64.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
41 #include "trace_hv.h"
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER 18
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
53 unsigned long hpt = 0;
54 struct revmap_entry *rev;
55 struct page *page = NULL;
56 long order = KVM_DEFAULT_HPT_ORDER;
58 if (htab_orderp) {
59 order = *htab_orderp;
60 if (order < PPC_MIN_HPT_ORDER)
61 order = PPC_MIN_HPT_ORDER;
64 kvm->arch.hpt_cma_alloc = 0;
65 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 if (page) {
67 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68 memset((void *)hpt, 0, (1ul << order));
69 kvm->arch.hpt_cma_alloc = 1;
72 /* Lastly try successively smaller sizes from the page allocator */
73 while (!hpt && order > PPC_MIN_HPT_ORDER) {
74 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
75 __GFP_NOWARN, order - PAGE_SHIFT);
76 if (!hpt)
77 --order;
80 if (!hpt)
81 return -ENOMEM;
83 kvm->arch.hpt_virt = hpt;
84 kvm->arch.hpt_order = order;
85 /* HPTEs are 2**4 bytes long */
86 kvm->arch.hpt_npte = 1ul << (order - 4);
87 /* 128 (2**7) bytes in each HPTEG */
88 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90 /* Allocate reverse map array */
91 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92 if (!rev) {
93 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
94 goto out_freehpt;
96 kvm->arch.revmap = rev;
97 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
99 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
100 hpt, order, kvm->arch.lpid);
102 if (htab_orderp)
103 *htab_orderp = order;
104 return 0;
106 out_freehpt:
107 if (kvm->arch.hpt_cma_alloc)
108 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109 else
110 free_pages(hpt, order - PAGE_SHIFT);
111 return -ENOMEM;
114 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
116 long err = -EBUSY;
117 long order;
119 mutex_lock(&kvm->lock);
120 if (kvm->arch.hpte_setup_done) {
121 kvm->arch.hpte_setup_done = 0;
122 /* order hpte_setup_done vs. vcpus_running */
123 smp_mb();
124 if (atomic_read(&kvm->arch.vcpus_running)) {
125 kvm->arch.hpte_setup_done = 1;
126 goto out;
129 if (kvm->arch.hpt_virt) {
130 order = kvm->arch.hpt_order;
131 /* Set the entire HPT to 0, i.e. invalid HPTEs */
132 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
134 * Reset all the reverse-mapping chains for all memslots
136 kvmppc_rmap_reset(kvm);
137 /* Ensure that each vcpu will flush its TLB on next entry. */
138 cpumask_setall(&kvm->arch.need_tlb_flush);
139 *htab_orderp = order;
140 err = 0;
141 } else {
142 err = kvmppc_alloc_hpt(kvm, htab_orderp);
143 order = *htab_orderp;
145 out:
146 mutex_unlock(&kvm->lock);
147 return err;
150 void kvmppc_free_hpt(struct kvm *kvm)
152 kvmppc_free_lpid(kvm->arch.lpid);
153 vfree(kvm->arch.revmap);
154 if (kvm->arch.hpt_cma_alloc)
155 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
156 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
157 else
158 free_pages(kvm->arch.hpt_virt,
159 kvm->arch.hpt_order - PAGE_SHIFT);
162 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
163 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
165 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
168 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
169 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
171 return (pgsize == 0x10000) ? 0x1000 : 0;
174 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
175 unsigned long porder)
177 unsigned long i;
178 unsigned long npages;
179 unsigned long hp_v, hp_r;
180 unsigned long addr, hash;
181 unsigned long psize;
182 unsigned long hp0, hp1;
183 unsigned long idx_ret;
184 long ret;
185 struct kvm *kvm = vcpu->kvm;
187 psize = 1ul << porder;
188 npages = memslot->npages >> (porder - PAGE_SHIFT);
190 /* VRMA can't be > 1TB */
191 if (npages > 1ul << (40 - porder))
192 npages = 1ul << (40 - porder);
193 /* Can't use more than 1 HPTE per HPTEG */
194 if (npages > kvm->arch.hpt_mask + 1)
195 npages = kvm->arch.hpt_mask + 1;
197 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
198 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
199 hp1 = hpte1_pgsize_encoding(psize) |
200 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
202 for (i = 0; i < npages; ++i) {
203 addr = i << porder;
204 /* can't use hpt_hash since va > 64 bits */
205 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
207 * We assume that the hash table is empty and no
208 * vcpus are using it at this stage. Since we create
209 * at most one HPTE per HPTEG, we just assume entry 7
210 * is available and use it.
212 hash = (hash << 3) + 7;
213 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
214 hp_r = hp1 | addr;
215 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
216 &idx_ret);
217 if (ret != H_SUCCESS) {
218 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
219 addr, ret);
220 break;
225 int kvmppc_mmu_hv_init(void)
227 unsigned long host_lpid, rsvd_lpid;
229 if (!cpu_has_feature(CPU_FTR_HVMODE))
230 return -EINVAL;
232 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
233 host_lpid = mfspr(SPRN_LPID);
234 rsvd_lpid = LPID_RSVD;
236 kvmppc_init_lpid(rsvd_lpid + 1);
238 kvmppc_claim_lpid(host_lpid);
239 /* rsvd_lpid is reserved for use in partition switching */
240 kvmppc_claim_lpid(rsvd_lpid);
242 return 0;
245 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
247 unsigned long msr = vcpu->arch.intr_msr;
249 /* If transactional, change to suspend mode on IRQ delivery */
250 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
251 msr |= MSR_TS_S;
252 else
253 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
254 kvmppc_set_msr(vcpu, msr);
257 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
258 long pte_index, unsigned long pteh,
259 unsigned long ptel, unsigned long *pte_idx_ret)
261 long ret;
263 /* Protect linux PTE lookup from page table destruction */
264 rcu_read_lock_sched(); /* this disables preemption too */
265 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
266 current->mm->pgd, false, pte_idx_ret);
267 rcu_read_unlock_sched();
268 if (ret == H_TOO_HARD) {
269 /* this can't happen */
270 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
271 ret = H_RESOURCE; /* or something */
273 return ret;
277 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
278 gva_t eaddr)
280 u64 mask;
281 int i;
283 for (i = 0; i < vcpu->arch.slb_nr; i++) {
284 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
285 continue;
287 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
288 mask = ESID_MASK_1T;
289 else
290 mask = ESID_MASK;
292 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
293 return &vcpu->arch.slb[i];
295 return NULL;
298 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
299 unsigned long ea)
301 unsigned long ra_mask;
303 ra_mask = hpte_page_size(v, r) - 1;
304 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
307 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
308 struct kvmppc_pte *gpte, bool data, bool iswrite)
310 struct kvm *kvm = vcpu->kvm;
311 struct kvmppc_slb *slbe;
312 unsigned long slb_v;
313 unsigned long pp, key;
314 unsigned long v, gr;
315 __be64 *hptep;
316 int index;
317 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
319 /* Get SLB entry */
320 if (virtmode) {
321 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
322 if (!slbe)
323 return -EINVAL;
324 slb_v = slbe->origv;
325 } else {
326 /* real mode access */
327 slb_v = vcpu->kvm->arch.vrma_slb_v;
330 preempt_disable();
331 /* Find the HPTE in the hash table */
332 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
333 HPTE_V_VALID | HPTE_V_ABSENT);
334 if (index < 0) {
335 preempt_enable();
336 return -ENOENT;
338 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
339 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
340 gr = kvm->arch.revmap[index].guest_rpte;
342 unlock_hpte(hptep, v);
343 preempt_enable();
345 gpte->eaddr = eaddr;
346 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348 /* Get PP bits and key for permission check */
349 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
350 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
351 key &= slb_v;
353 /* Calculate permissions */
354 gpte->may_read = hpte_read_permission(pp, key);
355 gpte->may_write = hpte_write_permission(pp, key);
356 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358 /* Storage key permission check for POWER7 */
359 if (data && virtmode) {
360 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
361 if (amrfield & 1)
362 gpte->may_read = 0;
363 if (amrfield & 2)
364 gpte->may_write = 0;
367 /* Get the guest physical address */
368 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
369 return 0;
373 * Quick test for whether an instruction is a load or a store.
374 * If the instruction is a load or a store, then this will indicate
375 * which it is, at least on server processors. (Embedded processors
376 * have some external PID instructions that don't follow the rule
377 * embodied here.) If the instruction isn't a load or store, then
378 * this doesn't return anything useful.
380 static int instruction_is_store(unsigned int instr)
382 unsigned int mask;
384 mask = 0x10000000;
385 if ((instr & 0xfc000000) == 0x7c000000)
386 mask = 0x100; /* major opcode 31 */
387 return (instr & mask) != 0;
390 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
391 unsigned long gpa, gva_t ea, int is_store)
393 u32 last_inst;
396 * If we fail, we just return to the guest and try executing it again.
398 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
399 EMULATE_DONE)
400 return RESUME_GUEST;
403 * WARNING: We do not know for sure whether the instruction we just
404 * read from memory is the same that caused the fault in the first
405 * place. If the instruction we read is neither an load or a store,
406 * then it can't access memory, so we don't need to worry about
407 * enforcing access permissions. So, assuming it is a load or
408 * store, we just check that its direction (load or store) is
409 * consistent with the original fault, since that's what we
410 * checked the access permissions against. If there is a mismatch
411 * we just return and retry the instruction.
414 if (instruction_is_store(last_inst) != !!is_store)
415 return RESUME_GUEST;
418 * Emulated accesses are emulated by looking at the hash for
419 * translation once, then performing the access later. The
420 * translation could be invalidated in the meantime in which
421 * point performing the subsequent memory access on the old
422 * physical address could possibly be a security hole for the
423 * guest (but not the host).
425 * This is less of an issue for MMIO stores since they aren't
426 * globally visible. It could be an issue for MMIO loads to
427 * a certain extent but we'll ignore it for now.
430 vcpu->arch.paddr_accessed = gpa;
431 vcpu->arch.vaddr_accessed = ea;
432 return kvmppc_emulate_mmio(run, vcpu);
435 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
436 unsigned long ea, unsigned long dsisr)
438 struct kvm *kvm = vcpu->kvm;
439 unsigned long hpte[3], r;
440 __be64 *hptep;
441 unsigned long mmu_seq, psize, pte_size;
442 unsigned long gpa_base, gfn_base;
443 unsigned long gpa, gfn, hva, pfn;
444 struct kvm_memory_slot *memslot;
445 unsigned long *rmap;
446 struct revmap_entry *rev;
447 struct page *page, *pages[1];
448 long index, ret, npages;
449 unsigned long is_io;
450 unsigned int writing, write_ok;
451 struct vm_area_struct *vma;
452 unsigned long rcbits;
455 * Real-mode code has already searched the HPT and found the
456 * entry we're interested in. Lock the entry and check that
457 * it hasn't changed. If it has, just return and re-execute the
458 * instruction.
460 if (ea != vcpu->arch.pgfault_addr)
461 return RESUME_GUEST;
462 index = vcpu->arch.pgfault_index;
463 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
464 rev = &kvm->arch.revmap[index];
465 preempt_disable();
466 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
467 cpu_relax();
468 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
469 hpte[1] = be64_to_cpu(hptep[1]);
470 hpte[2] = r = rev->guest_rpte;
471 unlock_hpte(hptep, hpte[0]);
472 preempt_enable();
474 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
475 hpte[1] != vcpu->arch.pgfault_hpte[1])
476 return RESUME_GUEST;
478 /* Translate the logical address and get the page */
479 psize = hpte_page_size(hpte[0], r);
480 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
481 gfn_base = gpa_base >> PAGE_SHIFT;
482 gpa = gpa_base | (ea & (psize - 1));
483 gfn = gpa >> PAGE_SHIFT;
484 memslot = gfn_to_memslot(kvm, gfn);
486 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
488 /* No memslot means it's an emulated MMIO region */
489 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
490 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
491 dsisr & DSISR_ISSTORE);
494 * This should never happen, because of the slot_is_aligned()
495 * check in kvmppc_do_h_enter().
497 if (gfn_base < memslot->base_gfn)
498 return -EFAULT;
500 /* used to check for invalidations in progress */
501 mmu_seq = kvm->mmu_notifier_seq;
502 smp_rmb();
504 ret = -EFAULT;
505 is_io = 0;
506 pfn = 0;
507 page = NULL;
508 pte_size = PAGE_SIZE;
509 writing = (dsisr & DSISR_ISSTORE) != 0;
510 /* If writing != 0, then the HPTE must allow writing, if we get here */
511 write_ok = writing;
512 hva = gfn_to_hva_memslot(memslot, gfn);
513 npages = get_user_pages_fast(hva, 1, writing, pages);
514 if (npages < 1) {
515 /* Check if it's an I/O mapping */
516 down_read(&current->mm->mmap_sem);
517 vma = find_vma(current->mm, hva);
518 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
519 (vma->vm_flags & VM_PFNMAP)) {
520 pfn = vma->vm_pgoff +
521 ((hva - vma->vm_start) >> PAGE_SHIFT);
522 pte_size = psize;
523 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
524 write_ok = vma->vm_flags & VM_WRITE;
526 up_read(&current->mm->mmap_sem);
527 if (!pfn)
528 goto out_put;
529 } else {
530 page = pages[0];
531 pfn = page_to_pfn(page);
532 if (PageHuge(page)) {
533 page = compound_head(page);
534 pte_size <<= compound_order(page);
536 /* if the guest wants write access, see if that is OK */
537 if (!writing && hpte_is_writable(r)) {
538 pte_t *ptep, pte;
539 unsigned long flags;
541 * We need to protect against page table destruction
542 * hugepage split and collapse.
544 local_irq_save(flags);
545 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
546 hva, NULL);
547 if (ptep) {
548 pte = kvmppc_read_update_linux_pte(ptep, 1);
549 if (pte_write(pte))
550 write_ok = 1;
552 local_irq_restore(flags);
556 if (psize > pte_size)
557 goto out_put;
559 /* Check WIMG vs. the actual page we're accessing */
560 if (!hpte_cache_flags_ok(r, is_io)) {
561 if (is_io)
562 goto out_put;
565 * Allow guest to map emulated device memory as
566 * uncacheable, but actually make it cacheable.
568 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
572 * Set the HPTE to point to pfn.
573 * Since the pfn is at PAGE_SIZE granularity, make sure we
574 * don't mask out lower-order bits if psize < PAGE_SIZE.
576 if (psize < PAGE_SIZE)
577 psize = PAGE_SIZE;
578 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
579 if (hpte_is_writable(r) && !write_ok)
580 r = hpte_make_readonly(r);
581 ret = RESUME_GUEST;
582 preempt_disable();
583 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
584 cpu_relax();
585 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
586 be64_to_cpu(hptep[1]) != hpte[1] ||
587 rev->guest_rpte != hpte[2])
588 /* HPTE has been changed under us; let the guest retry */
589 goto out_unlock;
590 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
592 /* Always put the HPTE in the rmap chain for the page base address */
593 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
594 lock_rmap(rmap);
596 /* Check if we might have been invalidated; let the guest retry if so */
597 ret = RESUME_GUEST;
598 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
599 unlock_rmap(rmap);
600 goto out_unlock;
603 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
604 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
605 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
607 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
608 /* HPTE was previously valid, so we need to invalidate it */
609 unlock_rmap(rmap);
610 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
611 kvmppc_invalidate_hpte(kvm, hptep, index);
612 /* don't lose previous R and C bits */
613 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
614 } else {
615 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
618 hptep[1] = cpu_to_be64(r);
619 eieio();
620 __unlock_hpte(hptep, hpte[0]);
621 asm volatile("ptesync" : : : "memory");
622 preempt_enable();
623 if (page && hpte_is_writable(r))
624 SetPageDirty(page);
626 out_put:
627 trace_kvm_page_fault_exit(vcpu, hpte, ret);
629 if (page) {
631 * We drop pages[0] here, not page because page might
632 * have been set to the head page of a compound, but
633 * we have to drop the reference on the correct tail
634 * page to match the get inside gup()
636 put_page(pages[0]);
638 return ret;
640 out_unlock:
641 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
642 preempt_enable();
643 goto out_put;
646 static void kvmppc_rmap_reset(struct kvm *kvm)
648 struct kvm_memslots *slots;
649 struct kvm_memory_slot *memslot;
650 int srcu_idx;
652 srcu_idx = srcu_read_lock(&kvm->srcu);
653 slots = kvm->memslots;
654 kvm_for_each_memslot(memslot, slots) {
656 * This assumes it is acceptable to lose reference and
657 * change bits across a reset.
659 memset(memslot->arch.rmap, 0,
660 memslot->npages * sizeof(*memslot->arch.rmap));
662 srcu_read_unlock(&kvm->srcu, srcu_idx);
665 static int kvm_handle_hva_range(struct kvm *kvm,
666 unsigned long start,
667 unsigned long end,
668 int (*handler)(struct kvm *kvm,
669 unsigned long *rmapp,
670 unsigned long gfn))
672 int ret;
673 int retval = 0;
674 struct kvm_memslots *slots;
675 struct kvm_memory_slot *memslot;
677 slots = kvm_memslots(kvm);
678 kvm_for_each_memslot(memslot, slots) {
679 unsigned long hva_start, hva_end;
680 gfn_t gfn, gfn_end;
682 hva_start = max(start, memslot->userspace_addr);
683 hva_end = min(end, memslot->userspace_addr +
684 (memslot->npages << PAGE_SHIFT));
685 if (hva_start >= hva_end)
686 continue;
688 * {gfn(page) | page intersects with [hva_start, hva_end)} =
689 * {gfn, gfn+1, ..., gfn_end-1}.
691 gfn = hva_to_gfn_memslot(hva_start, memslot);
692 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
694 for (; gfn < gfn_end; ++gfn) {
695 gfn_t gfn_offset = gfn - memslot->base_gfn;
697 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
698 retval |= ret;
702 return retval;
705 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
706 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
707 unsigned long gfn))
709 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
712 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
713 unsigned long gfn)
715 struct revmap_entry *rev = kvm->arch.revmap;
716 unsigned long h, i, j;
717 __be64 *hptep;
718 unsigned long ptel, psize, rcbits;
720 for (;;) {
721 lock_rmap(rmapp);
722 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
723 unlock_rmap(rmapp);
724 break;
728 * To avoid an ABBA deadlock with the HPTE lock bit,
729 * we can't spin on the HPTE lock while holding the
730 * rmap chain lock.
732 i = *rmapp & KVMPPC_RMAP_INDEX;
733 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
734 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
735 /* unlock rmap before spinning on the HPTE lock */
736 unlock_rmap(rmapp);
737 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
738 cpu_relax();
739 continue;
741 j = rev[i].forw;
742 if (j == i) {
743 /* chain is now empty */
744 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
745 } else {
746 /* remove i from chain */
747 h = rev[i].back;
748 rev[h].forw = j;
749 rev[j].back = h;
750 rev[i].forw = rev[i].back = i;
751 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
754 /* Now check and modify the HPTE */
755 ptel = rev[i].guest_rpte;
756 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
757 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
758 hpte_rpn(ptel, psize) == gfn) {
759 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
760 kvmppc_invalidate_hpte(kvm, hptep, i);
761 /* Harvest R and C */
762 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
763 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
764 if (rcbits & ~rev[i].guest_rpte) {
765 rev[i].guest_rpte = ptel | rcbits;
766 note_hpte_modification(kvm, &rev[i]);
769 unlock_rmap(rmapp);
770 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
772 return 0;
775 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
777 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
778 return 0;
781 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
783 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
784 return 0;
787 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
788 struct kvm_memory_slot *memslot)
790 unsigned long *rmapp;
791 unsigned long gfn;
792 unsigned long n;
794 rmapp = memslot->arch.rmap;
795 gfn = memslot->base_gfn;
796 for (n = memslot->npages; n; --n) {
798 * Testing the present bit without locking is OK because
799 * the memslot has been marked invalid already, and hence
800 * no new HPTEs referencing this page can be created,
801 * thus the present bit can't go from 0 to 1.
803 if (*rmapp & KVMPPC_RMAP_PRESENT)
804 kvm_unmap_rmapp(kvm, rmapp, gfn);
805 ++rmapp;
806 ++gfn;
810 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
811 unsigned long gfn)
813 struct revmap_entry *rev = kvm->arch.revmap;
814 unsigned long head, i, j;
815 __be64 *hptep;
816 int ret = 0;
818 retry:
819 lock_rmap(rmapp);
820 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
821 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
822 ret = 1;
824 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
825 unlock_rmap(rmapp);
826 return ret;
829 i = head = *rmapp & KVMPPC_RMAP_INDEX;
830 do {
831 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
832 j = rev[i].forw;
834 /* If this HPTE isn't referenced, ignore it */
835 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
836 continue;
838 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
839 /* unlock rmap before spinning on the HPTE lock */
840 unlock_rmap(rmapp);
841 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842 cpu_relax();
843 goto retry;
846 /* Now check and modify the HPTE */
847 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
848 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
849 kvmppc_clear_ref_hpte(kvm, hptep, i);
850 if (!(rev[i].guest_rpte & HPTE_R_R)) {
851 rev[i].guest_rpte |= HPTE_R_R;
852 note_hpte_modification(kvm, &rev[i]);
854 ret = 1;
856 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
857 } while ((i = j) != head);
859 unlock_rmap(rmapp);
860 return ret;
863 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
865 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
868 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
869 unsigned long gfn)
871 struct revmap_entry *rev = kvm->arch.revmap;
872 unsigned long head, i, j;
873 unsigned long *hp;
874 int ret = 1;
876 if (*rmapp & KVMPPC_RMAP_REFERENCED)
877 return 1;
879 lock_rmap(rmapp);
880 if (*rmapp & KVMPPC_RMAP_REFERENCED)
881 goto out;
883 if (*rmapp & KVMPPC_RMAP_PRESENT) {
884 i = head = *rmapp & KVMPPC_RMAP_INDEX;
885 do {
886 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
887 j = rev[i].forw;
888 if (be64_to_cpu(hp[1]) & HPTE_R_R)
889 goto out;
890 } while ((i = j) != head);
892 ret = 0;
894 out:
895 unlock_rmap(rmapp);
896 return ret;
899 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
901 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
904 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
906 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
909 static int vcpus_running(struct kvm *kvm)
911 return atomic_read(&kvm->arch.vcpus_running) != 0;
915 * Returns the number of system pages that are dirty.
916 * This can be more than 1 if we find a huge-page HPTE.
918 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
920 struct revmap_entry *rev = kvm->arch.revmap;
921 unsigned long head, i, j;
922 unsigned long n;
923 unsigned long v, r;
924 __be64 *hptep;
925 int npages_dirty = 0;
927 retry:
928 lock_rmap(rmapp);
929 if (*rmapp & KVMPPC_RMAP_CHANGED) {
930 *rmapp &= ~KVMPPC_RMAP_CHANGED;
931 npages_dirty = 1;
933 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
934 unlock_rmap(rmapp);
935 return npages_dirty;
938 i = head = *rmapp & KVMPPC_RMAP_INDEX;
939 do {
940 unsigned long hptep1;
941 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
942 j = rev[i].forw;
945 * Checking the C (changed) bit here is racy since there
946 * is no guarantee about when the hardware writes it back.
947 * If the HPTE is not writable then it is stable since the
948 * page can't be written to, and we would have done a tlbie
949 * (which forces the hardware to complete any writeback)
950 * when making the HPTE read-only.
951 * If vcpus are running then this call is racy anyway
952 * since the page could get dirtied subsequently, so we
953 * expect there to be a further call which would pick up
954 * any delayed C bit writeback.
955 * Otherwise we need to do the tlbie even if C==0 in
956 * order to pick up any delayed writeback of C.
958 hptep1 = be64_to_cpu(hptep[1]);
959 if (!(hptep1 & HPTE_R_C) &&
960 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
961 continue;
963 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
964 /* unlock rmap before spinning on the HPTE lock */
965 unlock_rmap(rmapp);
966 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
967 cpu_relax();
968 goto retry;
971 /* Now check and modify the HPTE */
972 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
973 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
974 continue;
977 /* need to make it temporarily absent so C is stable */
978 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
979 kvmppc_invalidate_hpte(kvm, hptep, i);
980 v = be64_to_cpu(hptep[0]);
981 r = be64_to_cpu(hptep[1]);
982 if (r & HPTE_R_C) {
983 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
984 if (!(rev[i].guest_rpte & HPTE_R_C)) {
985 rev[i].guest_rpte |= HPTE_R_C;
986 note_hpte_modification(kvm, &rev[i]);
988 n = hpte_page_size(v, r);
989 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
990 if (n > npages_dirty)
991 npages_dirty = n;
992 eieio();
994 v &= ~HPTE_V_ABSENT;
995 v |= HPTE_V_VALID;
996 __unlock_hpte(hptep, v);
997 } while ((i = j) != head);
999 unlock_rmap(rmapp);
1000 return npages_dirty;
1003 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1004 struct kvm_memory_slot *memslot,
1005 unsigned long *map)
1007 unsigned long gfn;
1009 if (!vpa->dirty || !vpa->pinned_addr)
1010 return;
1011 gfn = vpa->gpa >> PAGE_SHIFT;
1012 if (gfn < memslot->base_gfn ||
1013 gfn >= memslot->base_gfn + memslot->npages)
1014 return;
1016 vpa->dirty = false;
1017 if (map)
1018 __set_bit_le(gfn - memslot->base_gfn, map);
1021 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1022 unsigned long *map)
1024 unsigned long i, j;
1025 unsigned long *rmapp;
1026 struct kvm_vcpu *vcpu;
1028 preempt_disable();
1029 rmapp = memslot->arch.rmap;
1030 for (i = 0; i < memslot->npages; ++i) {
1031 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1033 * Note that if npages > 0 then i must be a multiple of npages,
1034 * since we always put huge-page HPTEs in the rmap chain
1035 * corresponding to their page base address.
1037 if (npages && map)
1038 for (j = i; npages; ++j, --npages)
1039 __set_bit_le(j, map);
1040 ++rmapp;
1043 /* Harvest dirty bits from VPA and DTL updates */
1044 /* Note: we never modify the SLB shadow buffer areas */
1045 kvm_for_each_vcpu(i, vcpu, kvm) {
1046 spin_lock(&vcpu->arch.vpa_update_lock);
1047 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1048 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1049 spin_unlock(&vcpu->arch.vpa_update_lock);
1051 preempt_enable();
1052 return 0;
1055 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1056 unsigned long *nb_ret)
1058 struct kvm_memory_slot *memslot;
1059 unsigned long gfn = gpa >> PAGE_SHIFT;
1060 struct page *page, *pages[1];
1061 int npages;
1062 unsigned long hva, offset;
1063 int srcu_idx;
1065 srcu_idx = srcu_read_lock(&kvm->srcu);
1066 memslot = gfn_to_memslot(kvm, gfn);
1067 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1068 goto err;
1069 hva = gfn_to_hva_memslot(memslot, gfn);
1070 npages = get_user_pages_fast(hva, 1, 1, pages);
1071 if (npages < 1)
1072 goto err;
1073 page = pages[0];
1074 srcu_read_unlock(&kvm->srcu, srcu_idx);
1076 offset = gpa & (PAGE_SIZE - 1);
1077 if (nb_ret)
1078 *nb_ret = PAGE_SIZE - offset;
1079 return page_address(page) + offset;
1081 err:
1082 srcu_read_unlock(&kvm->srcu, srcu_idx);
1083 return NULL;
1086 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1087 bool dirty)
1089 struct page *page = virt_to_page(va);
1090 struct kvm_memory_slot *memslot;
1091 unsigned long gfn;
1092 unsigned long *rmap;
1093 int srcu_idx;
1095 put_page(page);
1097 if (!dirty)
1098 return;
1100 /* We need to mark this page dirty in the rmap chain */
1101 gfn = gpa >> PAGE_SHIFT;
1102 srcu_idx = srcu_read_lock(&kvm->srcu);
1103 memslot = gfn_to_memslot(kvm, gfn);
1104 if (memslot) {
1105 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1106 lock_rmap(rmap);
1107 *rmap |= KVMPPC_RMAP_CHANGED;
1108 unlock_rmap(rmap);
1110 srcu_read_unlock(&kvm->srcu, srcu_idx);
1114 * Functions for reading and writing the hash table via reads and
1115 * writes on a file descriptor.
1117 * Reads return the guest view of the hash table, which has to be
1118 * pieced together from the real hash table and the guest_rpte
1119 * values in the revmap array.
1121 * On writes, each HPTE written is considered in turn, and if it
1122 * is valid, it is written to the HPT as if an H_ENTER with the
1123 * exact flag set was done. When the invalid count is non-zero
1124 * in the header written to the stream, the kernel will make
1125 * sure that that many HPTEs are invalid, and invalidate them
1126 * if not.
1129 struct kvm_htab_ctx {
1130 unsigned long index;
1131 unsigned long flags;
1132 struct kvm *kvm;
1133 int first_pass;
1136 #define HPTE_SIZE (2 * sizeof(unsigned long))
1139 * Returns 1 if this HPT entry has been modified or has pending
1140 * R/C bit changes.
1142 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1144 unsigned long rcbits_unset;
1146 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1147 return 1;
1149 /* Also need to consider changes in reference and changed bits */
1150 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1151 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1152 (be64_to_cpu(hptp[1]) & rcbits_unset))
1153 return 1;
1155 return 0;
1158 static long record_hpte(unsigned long flags, __be64 *hptp,
1159 unsigned long *hpte, struct revmap_entry *revp,
1160 int want_valid, int first_pass)
1162 unsigned long v, r;
1163 unsigned long rcbits_unset;
1164 int ok = 1;
1165 int valid, dirty;
1167 /* Unmodified entries are uninteresting except on the first pass */
1168 dirty = hpte_dirty(revp, hptp);
1169 if (!first_pass && !dirty)
1170 return 0;
1172 valid = 0;
1173 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1174 valid = 1;
1175 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1176 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1177 valid = 0;
1179 if (valid != want_valid)
1180 return 0;
1182 v = r = 0;
1183 if (valid || dirty) {
1184 /* lock the HPTE so it's stable and read it */
1185 preempt_disable();
1186 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1187 cpu_relax();
1188 v = be64_to_cpu(hptp[0]);
1190 /* re-evaluate valid and dirty from synchronized HPTE value */
1191 valid = !!(v & HPTE_V_VALID);
1192 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1194 /* Harvest R and C into guest view if necessary */
1195 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1196 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1197 revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1198 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1199 dirty = 1;
1202 if (v & HPTE_V_ABSENT) {
1203 v &= ~HPTE_V_ABSENT;
1204 v |= HPTE_V_VALID;
1205 valid = 1;
1207 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1208 valid = 0;
1210 r = revp->guest_rpte;
1211 /* only clear modified if this is the right sort of entry */
1212 if (valid == want_valid && dirty) {
1213 r &= ~HPTE_GR_MODIFIED;
1214 revp->guest_rpte = r;
1216 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1217 preempt_enable();
1218 if (!(valid == want_valid && (first_pass || dirty)))
1219 ok = 0;
1221 hpte[0] = cpu_to_be64(v);
1222 hpte[1] = cpu_to_be64(r);
1223 return ok;
1226 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1227 size_t count, loff_t *ppos)
1229 struct kvm_htab_ctx *ctx = file->private_data;
1230 struct kvm *kvm = ctx->kvm;
1231 struct kvm_get_htab_header hdr;
1232 __be64 *hptp;
1233 struct revmap_entry *revp;
1234 unsigned long i, nb, nw;
1235 unsigned long __user *lbuf;
1236 struct kvm_get_htab_header __user *hptr;
1237 unsigned long flags;
1238 int first_pass;
1239 unsigned long hpte[2];
1241 if (!access_ok(VERIFY_WRITE, buf, count))
1242 return -EFAULT;
1244 first_pass = ctx->first_pass;
1245 flags = ctx->flags;
1247 i = ctx->index;
1248 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1249 revp = kvm->arch.revmap + i;
1250 lbuf = (unsigned long __user *)buf;
1252 nb = 0;
1253 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1254 /* Initialize header */
1255 hptr = (struct kvm_get_htab_header __user *)buf;
1256 hdr.n_valid = 0;
1257 hdr.n_invalid = 0;
1258 nw = nb;
1259 nb += sizeof(hdr);
1260 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1262 /* Skip uninteresting entries, i.e. clean on not-first pass */
1263 if (!first_pass) {
1264 while (i < kvm->arch.hpt_npte &&
1265 !hpte_dirty(revp, hptp)) {
1266 ++i;
1267 hptp += 2;
1268 ++revp;
1271 hdr.index = i;
1273 /* Grab a series of valid entries */
1274 while (i < kvm->arch.hpt_npte &&
1275 hdr.n_valid < 0xffff &&
1276 nb + HPTE_SIZE < count &&
1277 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1278 /* valid entry, write it out */
1279 ++hdr.n_valid;
1280 if (__put_user(hpte[0], lbuf) ||
1281 __put_user(hpte[1], lbuf + 1))
1282 return -EFAULT;
1283 nb += HPTE_SIZE;
1284 lbuf += 2;
1285 ++i;
1286 hptp += 2;
1287 ++revp;
1289 /* Now skip invalid entries while we can */
1290 while (i < kvm->arch.hpt_npte &&
1291 hdr.n_invalid < 0xffff &&
1292 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1293 /* found an invalid entry */
1294 ++hdr.n_invalid;
1295 ++i;
1296 hptp += 2;
1297 ++revp;
1300 if (hdr.n_valid || hdr.n_invalid) {
1301 /* write back the header */
1302 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1303 return -EFAULT;
1304 nw = nb;
1305 buf = (char __user *)lbuf;
1306 } else {
1307 nb = nw;
1310 /* Check if we've wrapped around the hash table */
1311 if (i >= kvm->arch.hpt_npte) {
1312 i = 0;
1313 ctx->first_pass = 0;
1314 break;
1318 ctx->index = i;
1320 return nb;
1323 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1324 size_t count, loff_t *ppos)
1326 struct kvm_htab_ctx *ctx = file->private_data;
1327 struct kvm *kvm = ctx->kvm;
1328 struct kvm_get_htab_header hdr;
1329 unsigned long i, j;
1330 unsigned long v, r;
1331 unsigned long __user *lbuf;
1332 __be64 *hptp;
1333 unsigned long tmp[2];
1334 ssize_t nb;
1335 long int err, ret;
1336 int hpte_setup;
1338 if (!access_ok(VERIFY_READ, buf, count))
1339 return -EFAULT;
1341 /* lock out vcpus from running while we're doing this */
1342 mutex_lock(&kvm->lock);
1343 hpte_setup = kvm->arch.hpte_setup_done;
1344 if (hpte_setup) {
1345 kvm->arch.hpte_setup_done = 0; /* temporarily */
1346 /* order hpte_setup_done vs. vcpus_running */
1347 smp_mb();
1348 if (atomic_read(&kvm->arch.vcpus_running)) {
1349 kvm->arch.hpte_setup_done = 1;
1350 mutex_unlock(&kvm->lock);
1351 return -EBUSY;
1355 err = 0;
1356 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1357 err = -EFAULT;
1358 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1359 break;
1361 err = 0;
1362 if (nb + hdr.n_valid * HPTE_SIZE > count)
1363 break;
1365 nb += sizeof(hdr);
1366 buf += sizeof(hdr);
1368 err = -EINVAL;
1369 i = hdr.index;
1370 if (i >= kvm->arch.hpt_npte ||
1371 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1372 break;
1374 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1375 lbuf = (unsigned long __user *)buf;
1376 for (j = 0; j < hdr.n_valid; ++j) {
1377 __be64 hpte_v;
1378 __be64 hpte_r;
1380 err = -EFAULT;
1381 if (__get_user(hpte_v, lbuf) ||
1382 __get_user(hpte_r, lbuf + 1))
1383 goto out;
1384 v = be64_to_cpu(hpte_v);
1385 r = be64_to_cpu(hpte_r);
1386 err = -EINVAL;
1387 if (!(v & HPTE_V_VALID))
1388 goto out;
1389 lbuf += 2;
1390 nb += HPTE_SIZE;
1392 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1393 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1394 err = -EIO;
1395 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1396 tmp);
1397 if (ret != H_SUCCESS) {
1398 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1399 "r=%lx\n", ret, i, v, r);
1400 goto out;
1402 if (!hpte_setup && is_vrma_hpte(v)) {
1403 unsigned long psize = hpte_base_page_size(v, r);
1404 unsigned long senc = slb_pgsize_encoding(psize);
1405 unsigned long lpcr;
1407 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1408 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1409 lpcr = senc << (LPCR_VRMASD_SH - 4);
1410 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1411 hpte_setup = 1;
1413 ++i;
1414 hptp += 2;
1417 for (j = 0; j < hdr.n_invalid; ++j) {
1418 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1419 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1420 ++i;
1421 hptp += 2;
1423 err = 0;
1426 out:
1427 /* Order HPTE updates vs. hpte_setup_done */
1428 smp_wmb();
1429 kvm->arch.hpte_setup_done = hpte_setup;
1430 mutex_unlock(&kvm->lock);
1432 if (err)
1433 return err;
1434 return nb;
1437 static int kvm_htab_release(struct inode *inode, struct file *filp)
1439 struct kvm_htab_ctx *ctx = filp->private_data;
1441 filp->private_data = NULL;
1442 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1443 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1444 kvm_put_kvm(ctx->kvm);
1445 kfree(ctx);
1446 return 0;
1449 static const struct file_operations kvm_htab_fops = {
1450 .read = kvm_htab_read,
1451 .write = kvm_htab_write,
1452 .llseek = default_llseek,
1453 .release = kvm_htab_release,
1456 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1458 int ret;
1459 struct kvm_htab_ctx *ctx;
1460 int rwflag;
1462 /* reject flags we don't recognize */
1463 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1464 return -EINVAL;
1465 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1466 if (!ctx)
1467 return -ENOMEM;
1468 kvm_get_kvm(kvm);
1469 ctx->kvm = kvm;
1470 ctx->index = ghf->start_index;
1471 ctx->flags = ghf->flags;
1472 ctx->first_pass = 1;
1474 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1475 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1476 if (ret < 0) {
1477 kvm_put_kvm(kvm);
1478 return ret;
1481 if (rwflag == O_RDONLY) {
1482 mutex_lock(&kvm->slots_lock);
1483 atomic_inc(&kvm->arch.hpte_mod_interest);
1484 /* make sure kvmppc_do_h_enter etc. see the increment */
1485 synchronize_srcu_expedited(&kvm->srcu);
1486 mutex_unlock(&kvm->slots_lock);
1489 return ret;
1492 struct debugfs_htab_state {
1493 struct kvm *kvm;
1494 struct mutex mutex;
1495 unsigned long hpt_index;
1496 int chars_left;
1497 int buf_index;
1498 char buf[64];
1501 static int debugfs_htab_open(struct inode *inode, struct file *file)
1503 struct kvm *kvm = inode->i_private;
1504 struct debugfs_htab_state *p;
1506 p = kzalloc(sizeof(*p), GFP_KERNEL);
1507 if (!p)
1508 return -ENOMEM;
1510 kvm_get_kvm(kvm);
1511 p->kvm = kvm;
1512 mutex_init(&p->mutex);
1513 file->private_data = p;
1515 return nonseekable_open(inode, file);
1518 static int debugfs_htab_release(struct inode *inode, struct file *file)
1520 struct debugfs_htab_state *p = file->private_data;
1522 kvm_put_kvm(p->kvm);
1523 kfree(p);
1524 return 0;
1527 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1528 size_t len, loff_t *ppos)
1530 struct debugfs_htab_state *p = file->private_data;
1531 ssize_t ret, r;
1532 unsigned long i, n;
1533 unsigned long v, hr, gr;
1534 struct kvm *kvm;
1535 __be64 *hptp;
1537 ret = mutex_lock_interruptible(&p->mutex);
1538 if (ret)
1539 return ret;
1541 if (p->chars_left) {
1542 n = p->chars_left;
1543 if (n > len)
1544 n = len;
1545 r = copy_to_user(buf, p->buf + p->buf_index, n);
1546 n -= r;
1547 p->chars_left -= n;
1548 p->buf_index += n;
1549 buf += n;
1550 len -= n;
1551 ret = n;
1552 if (r) {
1553 if (!n)
1554 ret = -EFAULT;
1555 goto out;
1559 kvm = p->kvm;
1560 i = p->hpt_index;
1561 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1562 for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1563 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1564 continue;
1566 /* lock the HPTE so it's stable and read it */
1567 preempt_disable();
1568 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1569 cpu_relax();
1570 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1571 hr = be64_to_cpu(hptp[1]);
1572 gr = kvm->arch.revmap[i].guest_rpte;
1573 unlock_hpte(hptp, v);
1574 preempt_enable();
1576 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1577 continue;
1579 n = scnprintf(p->buf, sizeof(p->buf),
1580 "%6lx %.16lx %.16lx %.16lx\n",
1581 i, v, hr, gr);
1582 p->chars_left = n;
1583 if (n > len)
1584 n = len;
1585 r = copy_to_user(buf, p->buf, n);
1586 n -= r;
1587 p->chars_left -= n;
1588 p->buf_index = n;
1589 buf += n;
1590 len -= n;
1591 ret += n;
1592 if (r) {
1593 if (!ret)
1594 ret = -EFAULT;
1595 goto out;
1598 p->hpt_index = i;
1600 out:
1601 mutex_unlock(&p->mutex);
1602 return ret;
1605 ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1606 size_t len, loff_t *ppos)
1608 return -EACCES;
1611 static const struct file_operations debugfs_htab_fops = {
1612 .owner = THIS_MODULE,
1613 .open = debugfs_htab_open,
1614 .release = debugfs_htab_release,
1615 .read = debugfs_htab_read,
1616 .write = debugfs_htab_write,
1617 .llseek = generic_file_llseek,
1620 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1622 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1623 kvm->arch.debugfs_dir, kvm,
1624 &debugfs_htab_fops);
1627 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1629 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1631 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
1633 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1634 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1636 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;