1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
15 #include <asm/fixmap.h>
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
23 #define FSEC_PER_NSEC 1000000L
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
37 unsigned long hpet_address
;
38 u8 hpet_blockid
; /* OS timer block num */
42 static unsigned long hpet_num_timers
;
44 static void __iomem
*hpet_virt_address
;
47 struct clock_event_device evt
;
55 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
57 return container_of(evtdev
, struct hpet_dev
, evt
);
60 inline unsigned int hpet_readl(unsigned int a
)
62 return readl(hpet_virt_address
+ a
);
65 static inline void hpet_writel(unsigned int d
, unsigned int a
)
67 writel(d
, hpet_virt_address
+ a
);
71 #include <asm/pgtable.h>
74 static inline void hpet_set_mapping(void)
76 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
79 static inline void hpet_clear_mapping(void)
81 iounmap(hpet_virt_address
);
82 hpet_virt_address
= NULL
;
86 * HPET command line enable / disable
88 int boot_hpet_disable
;
90 static int hpet_verbose
;
92 static int __init
hpet_setup(char *str
)
95 char *next
= strchr(str
, ',');
99 if (!strncmp("disable", str
, 7))
100 boot_hpet_disable
= 1;
101 if (!strncmp("force", str
, 5))
103 if (!strncmp("verbose", str
, 7))
109 __setup("hpet=", hpet_setup
);
111 static int __init
disable_hpet(char *str
)
113 boot_hpet_disable
= 1;
116 __setup("nohpet", disable_hpet
);
118 static inline int is_hpet_capable(void)
120 return !boot_hpet_disable
&& hpet_address
;
124 * HPET timer interrupt enable / disable
126 static int hpet_legacy_int_enabled
;
129 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131 int is_hpet_enabled(void)
133 return is_hpet_capable() && hpet_legacy_int_enabled
;
135 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
137 static void _hpet_print_config(const char *function
, int line
)
140 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
141 l
= hpet_readl(HPET_ID
);
142 h
= hpet_readl(HPET_PERIOD
);
143 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
144 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
145 l
= hpet_readl(HPET_CFG
);
146 h
= hpet_readl(HPET_STATUS
);
147 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
148 l
= hpet_readl(HPET_COUNTER
);
149 h
= hpet_readl(HPET_COUNTER
+4);
150 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
152 for (i
= 0; i
< timers
; i
++) {
153 l
= hpet_readl(HPET_Tn_CFG(i
));
154 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
155 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157 l
= hpet_readl(HPET_Tn_CMP(i
));
158 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
159 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161 l
= hpet_readl(HPET_Tn_ROUTE(i
));
162 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
163 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
168 #define hpet_print_config() \
171 _hpet_print_config(__func__, __LINE__); \
175 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
176 * timer 0 and timer 1 in case of RTC emulation.
180 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
182 static void hpet_reserve_platform_timers(unsigned int id
)
184 struct hpet __iomem
*hpet
= hpet_virt_address
;
185 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
186 unsigned int nrtimers
, i
;
189 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
191 memset(&hd
, 0, sizeof(hd
));
192 hd
.hd_phys_address
= hpet_address
;
193 hd
.hd_address
= hpet
;
194 hd
.hd_nirqs
= nrtimers
;
195 hpet_reserve_timer(&hd
, 0);
197 #ifdef CONFIG_HPET_EMULATE_RTC
198 hpet_reserve_timer(&hd
, 1);
202 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
203 * is wrong for i8259!) not the output IRQ. Many BIOS writers
204 * don't bother configuring *any* comparator interrupts.
206 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
207 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
209 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
210 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
211 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
214 hpet_reserve_msi_timers(&hd
);
220 static void hpet_reserve_platform_timers(unsigned int id
) { }
226 static unsigned long hpet_freq
;
228 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
229 struct clock_event_device
*evt
);
230 static int hpet_legacy_next_event(unsigned long delta
,
231 struct clock_event_device
*evt
);
234 * The hpet clock event device
236 static struct clock_event_device hpet_clockevent
= {
238 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
239 .set_mode
= hpet_legacy_set_mode
,
240 .set_next_event
= hpet_legacy_next_event
,
245 static void hpet_stop_counter(void)
247 unsigned long cfg
= hpet_readl(HPET_CFG
);
248 cfg
&= ~HPET_CFG_ENABLE
;
249 hpet_writel(cfg
, HPET_CFG
);
252 static void hpet_reset_counter(void)
254 hpet_writel(0, HPET_COUNTER
);
255 hpet_writel(0, HPET_COUNTER
+ 4);
258 static void hpet_start_counter(void)
260 unsigned int cfg
= hpet_readl(HPET_CFG
);
261 cfg
|= HPET_CFG_ENABLE
;
262 hpet_writel(cfg
, HPET_CFG
);
265 static void hpet_restart_counter(void)
268 hpet_reset_counter();
269 hpet_start_counter();
272 static void hpet_resume_device(void)
277 static void hpet_resume_counter(struct clocksource
*cs
)
279 hpet_resume_device();
280 hpet_restart_counter();
283 static void hpet_enable_legacy_int(void)
285 unsigned int cfg
= hpet_readl(HPET_CFG
);
287 cfg
|= HPET_CFG_LEGACY
;
288 hpet_writel(cfg
, HPET_CFG
);
289 hpet_legacy_int_enabled
= 1;
292 static void hpet_legacy_clockevent_register(void)
294 /* Start HPET legacy interrupts */
295 hpet_enable_legacy_int();
298 * Start hpet with the boot cpu mask and make it
299 * global after the IO_APIC has been initialized.
301 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
302 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
303 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
304 global_clock_event
= &hpet_clockevent
;
305 printk(KERN_DEBUG
"hpet clockevent registered\n");
308 static int hpet_setup_msi_irq(unsigned int irq
);
310 static void hpet_set_mode(enum clock_event_mode mode
,
311 struct clock_event_device
*evt
, int timer
)
313 unsigned int cfg
, cmp
, now
;
317 case CLOCK_EVT_MODE_PERIODIC
:
319 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
320 delta
>>= evt
->shift
;
321 now
= hpet_readl(HPET_COUNTER
);
322 cmp
= now
+ (unsigned int) delta
;
323 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
324 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
325 HPET_TN_SETVAL
| HPET_TN_32BIT
;
326 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
327 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
330 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
331 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
332 * bit is automatically cleared after the first write.
333 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
334 * Publication # 24674)
336 hpet_writel((unsigned int) delta
, HPET_Tn_CMP(timer
));
337 hpet_start_counter();
341 case CLOCK_EVT_MODE_ONESHOT
:
342 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
343 cfg
&= ~HPET_TN_PERIODIC
;
344 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
345 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
348 case CLOCK_EVT_MODE_UNUSED
:
349 case CLOCK_EVT_MODE_SHUTDOWN
:
350 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
351 cfg
&= ~HPET_TN_ENABLE
;
352 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
355 case CLOCK_EVT_MODE_RESUME
:
357 hpet_enable_legacy_int();
359 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
360 hpet_setup_msi_irq(hdev
->irq
);
361 disable_irq(hdev
->irq
);
362 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
363 enable_irq(hdev
->irq
);
370 static int hpet_next_event(unsigned long delta
,
371 struct clock_event_device
*evt
, int timer
)
376 cnt
= hpet_readl(HPET_COUNTER
);
378 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
381 * HPETs are a complete disaster. The compare register is
382 * based on a equal comparison and neither provides a less
383 * than or equal functionality (which would require to take
384 * the wraparound into account) nor a simple count down event
385 * mode. Further the write to the comparator register is
386 * delayed internally up to two HPET clock cycles in certain
387 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
388 * longer delays. We worked around that by reading back the
389 * compare register, but that required another workaround for
390 * ICH9,10 chips where the first readout after write can
391 * return the old stale value. We already had a minimum
392 * programming delta of 5us enforced, but a NMI or SMI hitting
393 * between the counter readout and the comparator write can
394 * move us behind that point easily. Now instead of reading
395 * the compare register back several times, we make the ETIME
396 * decision based on the following: Return ETIME if the
397 * counter value after the write is less than HPET_MIN_CYCLES
398 * away from the event or if the counter is already ahead of
399 * the event. The minimum programming delta for the generic
400 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
402 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
404 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
407 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
408 struct clock_event_device
*evt
)
410 hpet_set_mode(mode
, evt
, 0);
413 static int hpet_legacy_next_event(unsigned long delta
,
414 struct clock_event_device
*evt
)
416 return hpet_next_event(delta
, evt
, 0);
422 #ifdef CONFIG_PCI_MSI
424 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
425 static struct hpet_dev
*hpet_devs
;
427 void hpet_msi_unmask(struct irq_data
*data
)
429 struct hpet_dev
*hdev
= data
->handler_data
;
433 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
434 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
435 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
438 void hpet_msi_mask(struct irq_data
*data
)
440 struct hpet_dev
*hdev
= data
->handler_data
;
444 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
445 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
446 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
449 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
451 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
452 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
455 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
457 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
458 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
462 static void hpet_msi_set_mode(enum clock_event_mode mode
,
463 struct clock_event_device
*evt
)
465 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
466 hpet_set_mode(mode
, evt
, hdev
->num
);
469 static int hpet_msi_next_event(unsigned long delta
,
470 struct clock_event_device
*evt
)
472 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
473 return hpet_next_event(delta
, evt
, hdev
->num
);
476 static int hpet_setup_msi_irq(unsigned int irq
)
478 if (x86_msi
.setup_hpet_msi(irq
, hpet_blockid
)) {
485 static int hpet_assign_irq(struct hpet_dev
*dev
)
487 unsigned int irq
= irq_alloc_hwirq(-1);
492 irq_set_handler_data(irq
, dev
);
494 if (hpet_setup_msi_irq(irq
))
501 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
503 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
504 struct clock_event_device
*hevt
= &dev
->evt
;
506 if (!hevt
->event_handler
) {
507 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
512 hevt
->event_handler(hevt
);
516 static int hpet_setup_irq(struct hpet_dev
*dev
)
519 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
520 IRQF_TIMER
| IRQF_NOBALANCING
,
524 disable_irq(dev
->irq
);
525 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
526 enable_irq(dev
->irq
);
528 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
529 dev
->name
, dev
->irq
);
534 /* This should be called in specific @cpu */
535 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
537 struct clock_event_device
*evt
= &hdev
->evt
;
539 WARN_ON(cpu
!= smp_processor_id());
540 if (!(hdev
->flags
& HPET_DEV_VALID
))
543 if (hpet_setup_msi_irq(hdev
->irq
))
547 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
548 evt
->name
= hdev
->name
;
549 hpet_setup_irq(hdev
);
550 evt
->irq
= hdev
->irq
;
553 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
554 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
555 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
557 evt
->set_mode
= hpet_msi_set_mode
;
558 evt
->set_next_event
= hpet_msi_next_event
;
559 evt
->cpumask
= cpumask_of(hdev
->cpu
);
561 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
566 /* Reserve at least one timer for userspace (/dev/hpet) */
567 #define RESERVE_TIMERS 1
569 #define RESERVE_TIMERS 0
572 static void hpet_msi_capability_lookup(unsigned int start_timer
)
575 unsigned int num_timers
;
576 unsigned int num_timers_used
= 0;
579 if (hpet_msi_disable
)
582 if (boot_cpu_has(X86_FEATURE_ARAT
))
584 id
= hpet_readl(HPET_ID
);
586 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
587 num_timers
++; /* Value read out starts from 0 */
590 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
594 hpet_num_timers
= num_timers
;
596 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
597 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
598 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
600 /* Only consider HPET timer with MSI support */
601 if (!(cfg
& HPET_TN_FSB_CAP
))
605 if (cfg
& HPET_TN_PERIODIC_CAP
)
606 hdev
->flags
|= HPET_DEV_PERI_CAP
;
609 sprintf(hdev
->name
, "hpet%d", i
);
610 if (hpet_assign_irq(hdev
))
613 hdev
->flags
|= HPET_DEV_FSB_CAP
;
614 hdev
->flags
|= HPET_DEV_VALID
;
616 if (num_timers_used
== num_possible_cpus())
620 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
621 num_timers
, num_timers_used
);
625 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
632 for (i
= 0; i
< hpet_num_timers
; i
++) {
633 struct hpet_dev
*hdev
= &hpet_devs
[i
];
635 if (!(hdev
->flags
& HPET_DEV_VALID
))
638 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
639 hpet_reserve_timer(hd
, hdev
->num
);
644 static struct hpet_dev
*hpet_get_unused_timer(void)
651 for (i
= 0; i
< hpet_num_timers
; i
++) {
652 struct hpet_dev
*hdev
= &hpet_devs
[i
];
654 if (!(hdev
->flags
& HPET_DEV_VALID
))
656 if (test_and_set_bit(HPET_DEV_USED_BIT
,
657 (unsigned long *)&hdev
->flags
))
664 struct hpet_work_struct
{
665 struct delayed_work work
;
666 struct completion complete
;
669 static void hpet_work(struct work_struct
*w
)
671 struct hpet_dev
*hdev
;
672 int cpu
= smp_processor_id();
673 struct hpet_work_struct
*hpet_work
;
675 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
677 hdev
= hpet_get_unused_timer();
679 init_one_hpet_msi_clockevent(hdev
, cpu
);
681 complete(&hpet_work
->complete
);
684 static int hpet_cpuhp_notify(struct notifier_block
*n
,
685 unsigned long action
, void *hcpu
)
687 unsigned long cpu
= (unsigned long)hcpu
;
688 struct hpet_work_struct work
;
689 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
691 switch (action
& 0xf) {
693 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
694 init_completion(&work
.complete
);
695 /* FIXME: add schedule_work_on() */
696 schedule_delayed_work_on(cpu
, &work
.work
, 0);
697 wait_for_completion(&work
.complete
);
698 destroy_delayed_work_on_stack(&work
.work
);
702 free_irq(hdev
->irq
, hdev
);
703 hdev
->flags
&= ~HPET_DEV_USED
;
704 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
712 static int hpet_setup_msi_irq(unsigned int irq
)
716 static void hpet_msi_capability_lookup(unsigned int start_timer
)
722 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
728 static int hpet_cpuhp_notify(struct notifier_block
*n
,
729 unsigned long action
, void *hcpu
)
737 * Clock source related code
739 static cycle_t
read_hpet(struct clocksource
*cs
)
741 return (cycle_t
)hpet_readl(HPET_COUNTER
);
744 static struct clocksource clocksource_hpet
= {
749 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
750 .resume
= hpet_resume_counter
,
751 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
754 static int hpet_clocksource_register(void)
759 /* Start the counter */
760 hpet_restart_counter();
762 /* Verify whether hpet counter works */
763 t1
= hpet_readl(HPET_COUNTER
);
767 * We don't know the TSC frequency yet, but waiting for
768 * 200000 TSC cycles is safe:
775 } while ((now
- start
) < 200000UL);
777 if (t1
== hpet_readl(HPET_COUNTER
)) {
779 "HPET counter not counting. HPET disabled\n");
783 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
787 static u32
*hpet_boot_cfg
;
790 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
792 int __init
hpet_enable(void)
794 u32 hpet_period
, cfg
, id
;
796 unsigned int i
, last
;
798 if (!is_hpet_capable())
804 * Read the period and check for a sane value:
806 hpet_period
= hpet_readl(HPET_PERIOD
);
809 * AMD SB700 based systems with spread spectrum enabled use a
810 * SMM based HPET emulation to provide proper frequency
811 * setting. The SMM code is initialized with the first HPET
812 * register access and takes some time to complete. During
813 * this time the config register reads 0xffffffff. We check
814 * for max. 1000 loops whether the config register reads a non
815 * 0xffffffff value to make sure that HPET is up and running
816 * before we go further. A counting loop is safe, as the HPET
817 * access takes thousands of CPU cycles. On non SB700 based
818 * machines this check is only done once and has no side
821 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
824 "HPET config register value = 0xFFFFFFFF. "
830 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
834 * The period is a femto seconds value. Convert it to a
838 do_div(freq
, hpet_period
);
842 * Read the HPET ID register to retrieve the IRQ routing
843 * information and the number of channels
845 id
= hpet_readl(HPET_ID
);
848 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
850 #ifdef CONFIG_HPET_EMULATE_RTC
852 * The legacy routing mode needs at least two channels, tick timer
853 * and the rtc emulation channel.
859 cfg
= hpet_readl(HPET_CFG
);
860 hpet_boot_cfg
= kmalloc((last
+ 2) * sizeof(*hpet_boot_cfg
),
863 *hpet_boot_cfg
= cfg
;
865 pr_warn("HPET initial state will not be saved\n");
866 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
867 hpet_writel(cfg
, HPET_CFG
);
869 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
872 for (i
= 0; i
<= last
; ++i
) {
873 cfg
= hpet_readl(HPET_Tn_CFG(i
));
875 hpet_boot_cfg
[i
+ 1] = cfg
;
876 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
877 hpet_writel(cfg
, HPET_Tn_CFG(i
));
878 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
879 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
880 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
882 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
887 if (hpet_clocksource_register())
890 if (id
& HPET_ID_LEGSUP
) {
891 hpet_legacy_clockevent_register();
897 hpet_clear_mapping();
903 * Needs to be late, as the reserve_timer code calls kalloc !
905 * Not a problem on i386 as hpet_enable is called from late_time_init,
906 * but on x86_64 it is necessary !
908 static __init
int hpet_late_init(void)
912 if (boot_hpet_disable
)
916 if (!force_hpet_address
)
919 hpet_address
= force_hpet_address
;
923 if (!hpet_virt_address
)
926 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
927 hpet_msi_capability_lookup(2);
929 hpet_msi_capability_lookup(0);
931 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
934 if (hpet_msi_disable
)
937 if (boot_cpu_has(X86_FEATURE_ARAT
))
940 cpu_notifier_register_begin();
941 for_each_online_cpu(cpu
) {
942 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
945 /* This notifier should be called after workqueue is ready */
946 __hotcpu_notifier(hpet_cpuhp_notify
, -20);
947 cpu_notifier_register_done();
951 fs_initcall(hpet_late_init
);
953 void hpet_disable(void)
955 if (is_hpet_capable() && hpet_virt_address
) {
956 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
959 cfg
= *hpet_boot_cfg
;
960 else if (hpet_legacy_int_enabled
) {
961 cfg
&= ~HPET_CFG_LEGACY
;
962 hpet_legacy_int_enabled
= 0;
964 cfg
&= ~HPET_CFG_ENABLE
;
965 hpet_writel(cfg
, HPET_CFG
);
970 id
= hpet_readl(HPET_ID
);
971 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
973 for (id
= 0; id
<= last
; ++id
)
974 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
976 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
977 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
981 #ifdef CONFIG_HPET_EMULATE_RTC
983 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
984 * is enabled, we support RTC interrupt functionality in software.
985 * RTC has 3 kinds of interrupts:
986 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
988 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
989 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
990 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
991 * (1) and (2) above are implemented using polling at a frequency of
992 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
993 * overhead. (DEFAULT_RTC_INT_FREQ)
994 * For (3), we use interrupts at 64Hz or user specified periodic
995 * frequency, whichever is higher.
997 #include <linux/mc146818rtc.h>
998 #include <linux/rtc.h>
1001 #define DEFAULT_RTC_INT_FREQ 64
1002 #define DEFAULT_RTC_SHIFT 6
1003 #define RTC_NUM_INTS 1
1005 static unsigned long hpet_rtc_flags
;
1006 static int hpet_prev_update_sec
;
1007 static struct rtc_time hpet_alarm_time
;
1008 static unsigned long hpet_pie_count
;
1009 static u32 hpet_t1_cmp
;
1010 static u32 hpet_default_delta
;
1011 static u32 hpet_pie_delta
;
1012 static unsigned long hpet_pie_limit
;
1014 static rtc_irq_handler irq_handler
;
1017 * Check that the hpet counter c1 is ahead of the c2
1019 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1021 return (s32
)(c2
- c1
) < 0;
1025 * Registers a IRQ handler.
1027 int hpet_register_irq_handler(rtc_irq_handler handler
)
1029 if (!is_hpet_enabled())
1034 irq_handler
= handler
;
1038 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1041 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1044 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1046 if (!is_hpet_enabled())
1052 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1055 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1056 * is not supported by all HPET implementations for timer 1.
1058 * hpet_rtc_timer_init() is called when the rtc is initialized.
1060 int hpet_rtc_timer_init(void)
1062 unsigned int cfg
, cnt
, delta
;
1063 unsigned long flags
;
1065 if (!is_hpet_enabled())
1068 if (!hpet_default_delta
) {
1071 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1072 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1073 hpet_default_delta
= clc
;
1076 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1077 delta
= hpet_default_delta
;
1079 delta
= hpet_pie_delta
;
1081 local_irq_save(flags
);
1083 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1084 hpet_writel(cnt
, HPET_T1_CMP
);
1087 cfg
= hpet_readl(HPET_T1_CFG
);
1088 cfg
&= ~HPET_TN_PERIODIC
;
1089 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1090 hpet_writel(cfg
, HPET_T1_CFG
);
1092 local_irq_restore(flags
);
1096 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1098 static void hpet_disable_rtc_channel(void)
1101 cfg
= hpet_readl(HPET_T1_CFG
);
1102 cfg
&= ~HPET_TN_ENABLE
;
1103 hpet_writel(cfg
, HPET_T1_CFG
);
1107 * The functions below are called from rtc driver.
1108 * Return 0 if HPET is not being used.
1109 * Otherwise do the necessary changes and return 1.
1111 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1113 if (!is_hpet_enabled())
1116 hpet_rtc_flags
&= ~bit_mask
;
1117 if (unlikely(!hpet_rtc_flags
))
1118 hpet_disable_rtc_channel();
1122 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1124 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1126 unsigned long oldbits
= hpet_rtc_flags
;
1128 if (!is_hpet_enabled())
1131 hpet_rtc_flags
|= bit_mask
;
1133 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1134 hpet_prev_update_sec
= -1;
1137 hpet_rtc_timer_init();
1141 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1143 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1146 if (!is_hpet_enabled())
1149 hpet_alarm_time
.tm_hour
= hrs
;
1150 hpet_alarm_time
.tm_min
= min
;
1151 hpet_alarm_time
.tm_sec
= sec
;
1155 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1157 int hpet_set_periodic_freq(unsigned long freq
)
1161 if (!is_hpet_enabled())
1164 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1165 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1167 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1169 clc
>>= hpet_clockevent
.shift
;
1170 hpet_pie_delta
= clc
;
1175 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1177 int hpet_rtc_dropped_irq(void)
1179 return is_hpet_enabled();
1181 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1183 static void hpet_rtc_timer_reinit(void)
1188 if (unlikely(!hpet_rtc_flags
))
1189 hpet_disable_rtc_channel();
1191 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1192 delta
= hpet_default_delta
;
1194 delta
= hpet_pie_delta
;
1197 * Increment the comparator value until we are ahead of the
1201 hpet_t1_cmp
+= delta
;
1202 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1204 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1207 if (hpet_rtc_flags
& RTC_PIE
)
1208 hpet_pie_count
+= lost_ints
;
1209 if (printk_ratelimit())
1210 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1215 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1217 struct rtc_time curr_time
;
1218 unsigned long rtc_int_flag
= 0;
1220 hpet_rtc_timer_reinit();
1221 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1223 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1224 get_rtc_time(&curr_time
);
1226 if (hpet_rtc_flags
& RTC_UIE
&&
1227 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1228 if (hpet_prev_update_sec
>= 0)
1229 rtc_int_flag
= RTC_UF
;
1230 hpet_prev_update_sec
= curr_time
.tm_sec
;
1233 if (hpet_rtc_flags
& RTC_PIE
&&
1234 ++hpet_pie_count
>= hpet_pie_limit
) {
1235 rtc_int_flag
|= RTC_PF
;
1239 if (hpet_rtc_flags
& RTC_AIE
&&
1240 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1241 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1242 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1243 rtc_int_flag
|= RTC_AF
;
1246 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1248 irq_handler(rtc_int_flag
, dev_id
);
1252 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);