Linux 4.1.18
[linux/fpc-iii.git] / arch / x86 / kernel / traps.c
blob324ab524768756b1987efbee11f06ce3ba24562b
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/ftrace.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/i387.h>
58 #include <asm/fpu-internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/mpx.h>
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
70 /* No need to be aligned, but done to keep all IDTs defined the same way. */
71 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
76 asmlinkage int system_call(void);
77 #endif
79 /* Must be page-aligned because the real IDT is used in a fixmap. */
80 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
85 static inline void conditional_sti(struct pt_regs *regs)
87 if (regs->flags & X86_EFLAGS_IF)
88 local_irq_enable();
91 static inline void preempt_conditional_sti(struct pt_regs *regs)
93 preempt_count_inc();
94 if (regs->flags & X86_EFLAGS_IF)
95 local_irq_enable();
98 static inline void conditional_cli(struct pt_regs *regs)
100 if (regs->flags & X86_EFLAGS_IF)
101 local_irq_disable();
104 static inline void preempt_conditional_cli(struct pt_regs *regs)
106 if (regs->flags & X86_EFLAGS_IF)
107 local_irq_disable();
108 preempt_count_dec();
111 enum ctx_state ist_enter(struct pt_regs *regs)
113 enum ctx_state prev_state;
115 if (user_mode(regs)) {
116 /* Other than that, we're just an exception. */
117 prev_state = exception_enter();
118 } else {
120 * We might have interrupted pretty much anything. In
121 * fact, if we're a machine check, we can even interrupt
122 * NMI processing. We don't want in_nmi() to return true,
123 * but we need to notify RCU.
125 rcu_nmi_enter();
126 prev_state = CONTEXT_KERNEL; /* the value is irrelevant. */
130 * We are atomic because we're on the IST stack (or we're on x86_32,
131 * in which case we still shouldn't schedule).
133 * This must be after exception_enter(), because exception_enter()
134 * won't do anything if in_interrupt() returns true.
136 preempt_count_add(HARDIRQ_OFFSET);
138 /* This code is a bit fragile. Test it. */
139 rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
141 return prev_state;
144 void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
146 /* Must be before exception_exit. */
147 preempt_count_sub(HARDIRQ_OFFSET);
149 if (user_mode(regs))
150 return exception_exit(prev_state);
151 else
152 rcu_nmi_exit();
156 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
157 * @regs: regs passed to the IST exception handler
159 * IST exception handlers normally cannot schedule. As a special
160 * exception, if the exception interrupted userspace code (i.e.
161 * user_mode(regs) would return true) and the exception was not
162 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
163 * begins a non-atomic section within an ist_enter()/ist_exit() region.
164 * Callers are responsible for enabling interrupts themselves inside
165 * the non-atomic section, and callers must call is_end_non_atomic()
166 * before ist_exit().
168 void ist_begin_non_atomic(struct pt_regs *regs)
170 BUG_ON(!user_mode(regs));
173 * Sanity check: we need to be on the normal thread stack. This
174 * will catch asm bugs and any attempt to use ist_preempt_enable
175 * from double_fault.
177 BUG_ON((unsigned long)(current_top_of_stack() -
178 current_stack_pointer()) >= THREAD_SIZE);
180 preempt_count_sub(HARDIRQ_OFFSET);
184 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
186 * Ends a non-atomic section started with ist_begin_non_atomic().
188 void ist_end_non_atomic(void)
190 preempt_count_add(HARDIRQ_OFFSET);
193 static nokprobe_inline int
194 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
195 struct pt_regs *regs, long error_code)
197 if (v8086_mode(regs)) {
199 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
200 * On nmi (interrupt 2), do_trap should not be called.
202 if (trapnr < X86_TRAP_UD) {
203 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
204 error_code, trapnr))
205 return 0;
207 return -1;
210 if (!user_mode(regs)) {
211 if (!fixup_exception(regs)) {
212 tsk->thread.error_code = error_code;
213 tsk->thread.trap_nr = trapnr;
214 die(str, regs, error_code);
216 return 0;
219 return -1;
222 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
223 siginfo_t *info)
225 unsigned long siaddr;
226 int sicode;
228 switch (trapnr) {
229 default:
230 return SEND_SIG_PRIV;
232 case X86_TRAP_DE:
233 sicode = FPE_INTDIV;
234 siaddr = uprobe_get_trap_addr(regs);
235 break;
236 case X86_TRAP_UD:
237 sicode = ILL_ILLOPN;
238 siaddr = uprobe_get_trap_addr(regs);
239 break;
240 case X86_TRAP_AC:
241 sicode = BUS_ADRALN;
242 siaddr = 0;
243 break;
246 info->si_signo = signr;
247 info->si_errno = 0;
248 info->si_code = sicode;
249 info->si_addr = (void __user *)siaddr;
250 return info;
253 static void
254 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
255 long error_code, siginfo_t *info)
257 struct task_struct *tsk = current;
260 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
261 return;
263 * We want error_code and trap_nr set for userspace faults and
264 * kernelspace faults which result in die(), but not
265 * kernelspace faults which are fixed up. die() gives the
266 * process no chance to handle the signal and notice the
267 * kernel fault information, so that won't result in polluting
268 * the information about previously queued, but not yet
269 * delivered, faults. See also do_general_protection below.
271 tsk->thread.error_code = error_code;
272 tsk->thread.trap_nr = trapnr;
274 #ifdef CONFIG_X86_64
275 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
276 printk_ratelimit()) {
277 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
278 tsk->comm, tsk->pid, str,
279 regs->ip, regs->sp, error_code);
280 print_vma_addr(" in ", regs->ip);
281 pr_cont("\n");
283 #endif
285 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
287 NOKPROBE_SYMBOL(do_trap);
289 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
290 unsigned long trapnr, int signr)
292 enum ctx_state prev_state = exception_enter();
293 siginfo_t info;
295 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
296 NOTIFY_STOP) {
297 conditional_sti(regs);
298 do_trap(trapnr, signr, str, regs, error_code,
299 fill_trap_info(regs, signr, trapnr, &info));
302 exception_exit(prev_state);
305 #define DO_ERROR(trapnr, signr, str, name) \
306 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
308 do_error_trap(regs, error_code, str, trapnr, signr); \
311 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
312 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
313 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
314 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
315 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
316 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
317 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
318 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
320 #ifdef CONFIG_X86_64
321 /* Runs on IST stack */
322 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
324 static const char str[] = "double fault";
325 struct task_struct *tsk = current;
327 #ifdef CONFIG_X86_ESPFIX64
328 extern unsigned char native_irq_return_iret[];
331 * If IRET takes a non-IST fault on the espfix64 stack, then we
332 * end up promoting it to a doublefault. In that case, modify
333 * the stack to make it look like we just entered the #GP
334 * handler from user space, similar to bad_iret.
336 * No need for ist_enter here because we don't use RCU.
338 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
339 regs->cs == __KERNEL_CS &&
340 regs->ip == (unsigned long)native_irq_return_iret)
342 struct pt_regs *normal_regs = task_pt_regs(current);
344 /* Fake a #GP(0) from userspace. */
345 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
346 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
347 regs->ip = (unsigned long)general_protection;
348 regs->sp = (unsigned long)&normal_regs->orig_ax;
350 return;
352 #endif
354 ist_enter(regs); /* Discard prev_state because we won't return. */
355 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
357 tsk->thread.error_code = error_code;
358 tsk->thread.trap_nr = X86_TRAP_DF;
360 #ifdef CONFIG_DOUBLEFAULT
361 df_debug(regs, error_code);
362 #endif
364 * This is always a kernel trap and never fixable (and thus must
365 * never return).
367 for (;;)
368 die(str, regs, error_code);
370 #endif
372 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
374 struct task_struct *tsk = current;
375 struct xsave_struct *xsave_buf;
376 enum ctx_state prev_state;
377 struct bndcsr *bndcsr;
378 siginfo_t *info;
380 prev_state = exception_enter();
381 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
382 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
383 goto exit;
384 conditional_sti(regs);
386 if (!user_mode(regs))
387 die("bounds", regs, error_code);
389 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
390 /* The exception is not from Intel MPX */
391 goto exit_trap;
395 * We need to look at BNDSTATUS to resolve this exception.
396 * It is not directly accessible, though, so we need to
397 * do an xsave and then pull it out of the xsave buffer.
399 fpu_save_init(&tsk->thread.fpu);
400 xsave_buf = &(tsk->thread.fpu.state->xsave);
401 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
402 if (!bndcsr)
403 goto exit_trap;
406 * The error code field of the BNDSTATUS register communicates status
407 * information of a bound range exception #BR or operation involving
408 * bound directory.
410 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
411 case 2: /* Bound directory has invalid entry. */
412 if (mpx_handle_bd_fault(xsave_buf))
413 goto exit_trap;
414 break; /* Success, it was handled */
415 case 1: /* Bound violation. */
416 info = mpx_generate_siginfo(regs, xsave_buf);
417 if (IS_ERR(info)) {
419 * We failed to decode the MPX instruction. Act as if
420 * the exception was not caused by MPX.
422 goto exit_trap;
425 * Success, we decoded the instruction and retrieved
426 * an 'info' containing the address being accessed
427 * which caused the exception. This information
428 * allows and application to possibly handle the
429 * #BR exception itself.
431 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
432 kfree(info);
433 break;
434 case 0: /* No exception caused by Intel MPX operations. */
435 goto exit_trap;
436 default:
437 die("bounds", regs, error_code);
440 exit:
441 exception_exit(prev_state);
442 return;
443 exit_trap:
445 * This path out is for all the cases where we could not
446 * handle the exception in some way (like allocating a
447 * table or telling userspace about it. We will also end
448 * up here if the kernel has MPX turned off at compile
449 * time..
451 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
452 exception_exit(prev_state);
455 dotraplinkage void
456 do_general_protection(struct pt_regs *regs, long error_code)
458 struct task_struct *tsk;
459 enum ctx_state prev_state;
461 prev_state = exception_enter();
462 conditional_sti(regs);
464 if (v8086_mode(regs)) {
465 local_irq_enable();
466 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
467 goto exit;
470 tsk = current;
471 if (!user_mode(regs)) {
472 if (fixup_exception(regs))
473 goto exit;
475 tsk->thread.error_code = error_code;
476 tsk->thread.trap_nr = X86_TRAP_GP;
477 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
478 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
479 die("general protection fault", regs, error_code);
480 goto exit;
483 tsk->thread.error_code = error_code;
484 tsk->thread.trap_nr = X86_TRAP_GP;
486 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
487 printk_ratelimit()) {
488 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
489 tsk->comm, task_pid_nr(tsk),
490 regs->ip, regs->sp, error_code);
491 print_vma_addr(" in ", regs->ip);
492 pr_cont("\n");
495 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
496 exit:
497 exception_exit(prev_state);
499 NOKPROBE_SYMBOL(do_general_protection);
501 /* May run on IST stack. */
502 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
504 enum ctx_state prev_state;
506 #ifdef CONFIG_DYNAMIC_FTRACE
508 * ftrace must be first, everything else may cause a recursive crash.
509 * See note by declaration of modifying_ftrace_code in ftrace.c
511 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
512 ftrace_int3_handler(regs))
513 return;
514 #endif
515 if (poke_int3_handler(regs))
516 return;
518 prev_state = ist_enter(regs);
519 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
520 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
521 SIGTRAP) == NOTIFY_STOP)
522 goto exit;
523 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
525 #ifdef CONFIG_KPROBES
526 if (kprobe_int3_handler(regs))
527 goto exit;
528 #endif
530 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
531 SIGTRAP) == NOTIFY_STOP)
532 goto exit;
535 * Let others (NMI) know that the debug stack is in use
536 * as we may switch to the interrupt stack.
538 debug_stack_usage_inc();
539 preempt_conditional_sti(regs);
540 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
541 preempt_conditional_cli(regs);
542 debug_stack_usage_dec();
543 exit:
544 ist_exit(regs, prev_state);
546 NOKPROBE_SYMBOL(do_int3);
548 #ifdef CONFIG_X86_64
550 * Help handler running on IST stack to switch off the IST stack if the
551 * interrupted code was in user mode. The actual stack switch is done in
552 * entry_64.S
554 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
556 struct pt_regs *regs = task_pt_regs(current);
557 *regs = *eregs;
558 return regs;
560 NOKPROBE_SYMBOL(sync_regs);
562 struct bad_iret_stack {
563 void *error_entry_ret;
564 struct pt_regs regs;
567 asmlinkage __visible notrace
568 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
571 * This is called from entry_64.S early in handling a fault
572 * caused by a bad iret to user mode. To handle the fault
573 * correctly, we want move our stack frame to task_pt_regs
574 * and we want to pretend that the exception came from the
575 * iret target.
577 struct bad_iret_stack *new_stack =
578 container_of(task_pt_regs(current),
579 struct bad_iret_stack, regs);
581 /* Copy the IRET target to the new stack. */
582 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
584 /* Copy the remainder of the stack from the current stack. */
585 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
587 BUG_ON(!user_mode(&new_stack->regs));
588 return new_stack;
590 NOKPROBE_SYMBOL(fixup_bad_iret);
591 #endif
594 * Our handling of the processor debug registers is non-trivial.
595 * We do not clear them on entry and exit from the kernel. Therefore
596 * it is possible to get a watchpoint trap here from inside the kernel.
597 * However, the code in ./ptrace.c has ensured that the user can
598 * only set watchpoints on userspace addresses. Therefore the in-kernel
599 * watchpoint trap can only occur in code which is reading/writing
600 * from user space. Such code must not hold kernel locks (since it
601 * can equally take a page fault), therefore it is safe to call
602 * force_sig_info even though that claims and releases locks.
604 * Code in ./signal.c ensures that the debug control register
605 * is restored before we deliver any signal, and therefore that
606 * user code runs with the correct debug control register even though
607 * we clear it here.
609 * Being careful here means that we don't have to be as careful in a
610 * lot of more complicated places (task switching can be a bit lazy
611 * about restoring all the debug state, and ptrace doesn't have to
612 * find every occurrence of the TF bit that could be saved away even
613 * by user code)
615 * May run on IST stack.
617 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
619 struct task_struct *tsk = current;
620 enum ctx_state prev_state;
621 int user_icebp = 0;
622 unsigned long dr6;
623 int si_code;
625 prev_state = ist_enter(regs);
627 get_debugreg(dr6, 6);
629 /* Filter out all the reserved bits which are preset to 1 */
630 dr6 &= ~DR6_RESERVED;
633 * If dr6 has no reason to give us about the origin of this trap,
634 * then it's very likely the result of an icebp/int01 trap.
635 * User wants a sigtrap for that.
637 if (!dr6 && user_mode(regs))
638 user_icebp = 1;
640 /* Catch kmemcheck conditions first of all! */
641 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
642 goto exit;
644 /* DR6 may or may not be cleared by the CPU */
645 set_debugreg(0, 6);
648 * The processor cleared BTF, so don't mark that we need it set.
650 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
652 /* Store the virtualized DR6 value */
653 tsk->thread.debugreg6 = dr6;
655 #ifdef CONFIG_KPROBES
656 if (kprobe_debug_handler(regs))
657 goto exit;
658 #endif
660 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
661 SIGTRAP) == NOTIFY_STOP)
662 goto exit;
665 * Let others (NMI) know that the debug stack is in use
666 * as we may switch to the interrupt stack.
668 debug_stack_usage_inc();
670 /* It's safe to allow irq's after DR6 has been saved */
671 preempt_conditional_sti(regs);
673 if (v8086_mode(regs)) {
674 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
675 X86_TRAP_DB);
676 preempt_conditional_cli(regs);
677 debug_stack_usage_dec();
678 goto exit;
682 * Single-stepping through system calls: ignore any exceptions in
683 * kernel space, but re-enable TF when returning to user mode.
685 * We already checked v86 mode above, so we can check for kernel mode
686 * by just checking the CPL of CS.
688 if ((dr6 & DR_STEP) && !user_mode(regs)) {
689 tsk->thread.debugreg6 &= ~DR_STEP;
690 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
691 regs->flags &= ~X86_EFLAGS_TF;
693 si_code = get_si_code(tsk->thread.debugreg6);
694 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
695 send_sigtrap(tsk, regs, error_code, si_code);
696 preempt_conditional_cli(regs);
697 debug_stack_usage_dec();
699 exit:
700 ist_exit(regs, prev_state);
702 NOKPROBE_SYMBOL(do_debug);
705 * Note that we play around with the 'TS' bit in an attempt to get
706 * the correct behaviour even in the presence of the asynchronous
707 * IRQ13 behaviour
709 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
711 struct task_struct *task = current;
712 siginfo_t info;
713 unsigned short err;
714 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
715 "simd exception";
717 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
718 return;
719 conditional_sti(regs);
721 if (!user_mode(regs))
723 if (!fixup_exception(regs)) {
724 task->thread.error_code = error_code;
725 task->thread.trap_nr = trapnr;
726 die(str, regs, error_code);
728 return;
732 * Save the info for the exception handler and clear the error.
734 unlazy_fpu(task);
735 task->thread.trap_nr = trapnr;
736 task->thread.error_code = error_code;
737 info.si_signo = SIGFPE;
738 info.si_errno = 0;
739 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
740 if (trapnr == X86_TRAP_MF) {
741 unsigned short cwd, swd;
743 * (~cwd & swd) will mask out exceptions that are not set to unmasked
744 * status. 0x3f is the exception bits in these regs, 0x200 is the
745 * C1 reg you need in case of a stack fault, 0x040 is the stack
746 * fault bit. We should only be taking one exception at a time,
747 * so if this combination doesn't produce any single exception,
748 * then we have a bad program that isn't synchronizing its FPU usage
749 * and it will suffer the consequences since we won't be able to
750 * fully reproduce the context of the exception
752 cwd = get_fpu_cwd(task);
753 swd = get_fpu_swd(task);
755 err = swd & ~cwd;
756 } else {
758 * The SIMD FPU exceptions are handled a little differently, as there
759 * is only a single status/control register. Thus, to determine which
760 * unmasked exception was caught we must mask the exception mask bits
761 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
763 unsigned short mxcsr = get_fpu_mxcsr(task);
764 err = ~(mxcsr >> 7) & mxcsr;
767 if (err & 0x001) { /* Invalid op */
769 * swd & 0x240 == 0x040: Stack Underflow
770 * swd & 0x240 == 0x240: Stack Overflow
771 * User must clear the SF bit (0x40) if set
773 info.si_code = FPE_FLTINV;
774 } else if (err & 0x004) { /* Divide by Zero */
775 info.si_code = FPE_FLTDIV;
776 } else if (err & 0x008) { /* Overflow */
777 info.si_code = FPE_FLTOVF;
778 } else if (err & 0x012) { /* Denormal, Underflow */
779 info.si_code = FPE_FLTUND;
780 } else if (err & 0x020) { /* Precision */
781 info.si_code = FPE_FLTRES;
782 } else {
784 * If we're using IRQ 13, or supposedly even some trap
785 * X86_TRAP_MF implementations, it's possible
786 * we get a spurious trap, which is not an error.
788 return;
790 force_sig_info(SIGFPE, &info, task);
793 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
795 enum ctx_state prev_state;
797 prev_state = exception_enter();
798 math_error(regs, error_code, X86_TRAP_MF);
799 exception_exit(prev_state);
802 dotraplinkage void
803 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
805 enum ctx_state prev_state;
807 prev_state = exception_enter();
808 math_error(regs, error_code, X86_TRAP_XF);
809 exception_exit(prev_state);
812 dotraplinkage void
813 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
815 conditional_sti(regs);
816 #if 0
817 /* No need to warn about this any longer. */
818 pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
819 #endif
822 asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
826 asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
831 * 'math_state_restore()' saves the current math information in the
832 * old math state array, and gets the new ones from the current task
834 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
835 * Don't touch unless you *really* know how it works.
837 * Must be called with kernel preemption disabled (eg with local
838 * local interrupts as in the case of do_device_not_available).
840 void math_state_restore(void)
842 struct task_struct *tsk = current;
844 if (!tsk_used_math(tsk)) {
845 local_irq_enable();
847 * does a slab alloc which can sleep
849 if (init_fpu(tsk)) {
851 * ran out of memory!
853 do_group_exit(SIGKILL);
854 return;
856 local_irq_disable();
859 /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
860 kernel_fpu_disable();
861 __thread_fpu_begin(tsk);
862 if (unlikely(restore_fpu_checking(tsk))) {
863 fpu_reset_state(tsk);
864 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
865 } else {
866 tsk->thread.fpu_counter++;
868 kernel_fpu_enable();
870 EXPORT_SYMBOL_GPL(math_state_restore);
872 dotraplinkage void
873 do_device_not_available(struct pt_regs *regs, long error_code)
875 enum ctx_state prev_state;
877 prev_state = exception_enter();
878 BUG_ON(use_eager_fpu());
880 #ifdef CONFIG_MATH_EMULATION
881 if (read_cr0() & X86_CR0_EM) {
882 struct math_emu_info info = { };
884 conditional_sti(regs);
886 info.regs = regs;
887 math_emulate(&info);
888 exception_exit(prev_state);
889 return;
891 #endif
892 math_state_restore(); /* interrupts still off */
893 #ifdef CONFIG_X86_32
894 conditional_sti(regs);
895 #endif
896 exception_exit(prev_state);
898 NOKPROBE_SYMBOL(do_device_not_available);
900 #ifdef CONFIG_X86_32
901 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
903 siginfo_t info;
904 enum ctx_state prev_state;
906 prev_state = exception_enter();
907 local_irq_enable();
909 info.si_signo = SIGILL;
910 info.si_errno = 0;
911 info.si_code = ILL_BADSTK;
912 info.si_addr = NULL;
913 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
914 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
915 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
916 &info);
918 exception_exit(prev_state);
920 #endif
922 /* Set of traps needed for early debugging. */
923 void __init early_trap_init(void)
926 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
927 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
928 * CPU runs at ring 0 so it is impossible to hit an invalid
929 * stack. Using the original stack works well enough at this
930 * early stage. DEBUG_STACK will be equipped after cpu_init() in
931 * trap_init().
933 * We don't need to set trace_idt_table like set_intr_gate(),
934 * since we don't have trace_debug and it will be reset to
935 * 'debug' in trap_init() by set_intr_gate_ist().
937 set_intr_gate_notrace(X86_TRAP_DB, debug);
938 /* int3 can be called from all */
939 set_system_intr_gate(X86_TRAP_BP, &int3);
940 #ifdef CONFIG_X86_32
941 set_intr_gate(X86_TRAP_PF, page_fault);
942 #endif
943 load_idt(&idt_descr);
946 void __init early_trap_pf_init(void)
948 #ifdef CONFIG_X86_64
949 set_intr_gate(X86_TRAP_PF, page_fault);
950 #endif
953 void __init trap_init(void)
955 int i;
957 #ifdef CONFIG_EISA
958 void __iomem *p = early_ioremap(0x0FFFD9, 4);
960 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
961 EISA_bus = 1;
962 early_iounmap(p, 4);
963 #endif
965 set_intr_gate(X86_TRAP_DE, divide_error);
966 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
967 /* int4 can be called from all */
968 set_system_intr_gate(X86_TRAP_OF, &overflow);
969 set_intr_gate(X86_TRAP_BR, bounds);
970 set_intr_gate(X86_TRAP_UD, invalid_op);
971 set_intr_gate(X86_TRAP_NM, device_not_available);
972 #ifdef CONFIG_X86_32
973 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
974 #else
975 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
976 #endif
977 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
978 set_intr_gate(X86_TRAP_TS, invalid_TSS);
979 set_intr_gate(X86_TRAP_NP, segment_not_present);
980 set_intr_gate(X86_TRAP_SS, stack_segment);
981 set_intr_gate(X86_TRAP_GP, general_protection);
982 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
983 set_intr_gate(X86_TRAP_MF, coprocessor_error);
984 set_intr_gate(X86_TRAP_AC, alignment_check);
985 #ifdef CONFIG_X86_MCE
986 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
987 #endif
988 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
990 /* Reserve all the builtin and the syscall vector: */
991 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
992 set_bit(i, used_vectors);
994 #ifdef CONFIG_IA32_EMULATION
995 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
996 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
997 #endif
999 #ifdef CONFIG_X86_32
1000 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
1001 set_bit(SYSCALL_VECTOR, used_vectors);
1002 #endif
1005 * Set the IDT descriptor to a fixed read-only location, so that the
1006 * "sidt" instruction will not leak the location of the kernel, and
1007 * to defend the IDT against arbitrary memory write vulnerabilities.
1008 * It will be reloaded in cpu_init() */
1009 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
1010 idt_descr.address = fix_to_virt(FIX_RO_IDT);
1013 * Should be a barrier for any external CPU state:
1015 cpu_init();
1018 * X86_TRAP_DB and X86_TRAP_BP have been set
1019 * in early_trap_init(). However, ITS works only after
1020 * cpu_init() loads TSS. See comments in early_trap_init().
1022 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1023 /* int3 can be called from all */
1024 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1026 x86_init.irqs.trap_init();
1028 #ifdef CONFIG_X86_64
1029 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1030 set_nmi_gate(X86_TRAP_DB, &debug);
1031 set_nmi_gate(X86_TRAP_BP, &int3);
1032 #endif