xen/arm,arm64: enable SWIOTLB_XEN
[linux/fpc-iii.git] / drivers / xen / swiotlb-xen.c
blobf0fc1a4f565af0ea9c01eb69d0dc74444d9fc7b1
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 #include <asm/dma-mapping.h>
47 * Used to do a quick range check in swiotlb_tbl_unmap_single and
48 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
49 * API.
52 #ifndef CONFIG_X86
53 static unsigned long dma_alloc_coherent_mask(struct device *dev,
54 gfp_t gfp)
56 unsigned long dma_mask = 0;
58 dma_mask = dev->coherent_dma_mask;
59 if (!dma_mask)
60 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
62 return dma_mask;
64 #endif
66 static char *xen_io_tlb_start, *xen_io_tlb_end;
67 static unsigned long xen_io_tlb_nslabs;
69 * Quick lookup value of the bus address of the IOTLB.
72 static u64 start_dma_addr;
74 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
76 return phys_to_machine(XPADDR(paddr)).maddr;
79 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
81 return machine_to_phys(XMADDR(baddr)).paddr;
84 static dma_addr_t xen_virt_to_bus(void *address)
86 return xen_phys_to_bus(virt_to_phys(address));
89 static int check_pages_physically_contiguous(unsigned long pfn,
90 unsigned int offset,
91 size_t length)
93 unsigned long next_mfn;
94 int i;
95 int nr_pages;
97 next_mfn = pfn_to_mfn(pfn);
98 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
100 for (i = 1; i < nr_pages; i++) {
101 if (pfn_to_mfn(++pfn) != ++next_mfn)
102 return 0;
104 return 1;
107 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
109 unsigned long pfn = PFN_DOWN(p);
110 unsigned int offset = p & ~PAGE_MASK;
112 if (offset + size <= PAGE_SIZE)
113 return 0;
114 if (check_pages_physically_contiguous(pfn, offset, size))
115 return 0;
116 return 1;
119 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
121 unsigned long mfn = PFN_DOWN(dma_addr);
122 unsigned long pfn = mfn_to_local_pfn(mfn);
123 phys_addr_t paddr;
125 /* If the address is outside our domain, it CAN
126 * have the same virtual address as another address
127 * in our domain. Therefore _only_ check address within our domain.
129 if (pfn_valid(pfn)) {
130 paddr = PFN_PHYS(pfn);
131 return paddr >= virt_to_phys(xen_io_tlb_start) &&
132 paddr < virt_to_phys(xen_io_tlb_end);
134 return 0;
137 static int max_dma_bits = 32;
139 static int
140 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
142 int i, rc;
143 int dma_bits;
144 dma_addr_t dma_handle;
146 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
148 i = 0;
149 do {
150 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
152 do {
153 rc = xen_create_contiguous_region(
154 (unsigned long)buf + (i << IO_TLB_SHIFT),
155 get_order(slabs << IO_TLB_SHIFT),
156 dma_bits, &dma_handle);
157 } while (rc && dma_bits++ < max_dma_bits);
158 if (rc)
159 return rc;
161 i += slabs;
162 } while (i < nslabs);
163 return 0;
165 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
167 if (!nr_tbl) {
168 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
169 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
170 } else
171 xen_io_tlb_nslabs = nr_tbl;
173 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
176 enum xen_swiotlb_err {
177 XEN_SWIOTLB_UNKNOWN = 0,
178 XEN_SWIOTLB_ENOMEM,
179 XEN_SWIOTLB_EFIXUP
182 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
184 switch (err) {
185 case XEN_SWIOTLB_ENOMEM:
186 return "Cannot allocate Xen-SWIOTLB buffer\n";
187 case XEN_SWIOTLB_EFIXUP:
188 return "Failed to get contiguous memory for DMA from Xen!\n"\
189 "You either: don't have the permissions, do not have"\
190 " enough free memory under 4GB, or the hypervisor memory"\
191 " is too fragmented!";
192 default:
193 break;
195 return "";
197 int __ref xen_swiotlb_init(int verbose, bool early)
199 unsigned long bytes, order;
200 int rc = -ENOMEM;
201 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
202 unsigned int repeat = 3;
204 xen_io_tlb_nslabs = swiotlb_nr_tbl();
205 retry:
206 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
207 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
209 * Get IO TLB memory from any location.
211 if (early)
212 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
213 else {
214 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
215 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
216 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
217 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
218 if (xen_io_tlb_start)
219 break;
220 order--;
222 if (order != get_order(bytes)) {
223 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
224 (PAGE_SIZE << order) >> 20);
225 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
226 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
229 if (!xen_io_tlb_start) {
230 m_ret = XEN_SWIOTLB_ENOMEM;
231 goto error;
233 xen_io_tlb_end = xen_io_tlb_start + bytes;
235 * And replace that memory with pages under 4GB.
237 rc = xen_swiotlb_fixup(xen_io_tlb_start,
238 bytes,
239 xen_io_tlb_nslabs);
240 if (rc) {
241 if (early)
242 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
243 else {
244 free_pages((unsigned long)xen_io_tlb_start, order);
245 xen_io_tlb_start = NULL;
247 m_ret = XEN_SWIOTLB_EFIXUP;
248 goto error;
250 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
251 if (early) {
252 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
253 verbose))
254 panic("Cannot allocate SWIOTLB buffer");
255 rc = 0;
256 } else
257 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
258 return rc;
259 error:
260 if (repeat--) {
261 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
262 (xen_io_tlb_nslabs >> 1));
263 pr_info("Lowering to %luMB\n",
264 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
265 goto retry;
267 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
268 if (early)
269 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
270 else
271 free_pages((unsigned long)xen_io_tlb_start, order);
272 return rc;
274 void *
275 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
276 dma_addr_t *dma_handle, gfp_t flags,
277 struct dma_attrs *attrs)
279 void *ret;
280 int order = get_order(size);
281 u64 dma_mask = DMA_BIT_MASK(32);
282 unsigned long vstart;
283 phys_addr_t phys;
284 dma_addr_t dev_addr;
287 * Ignore region specifiers - the kernel's ideas of
288 * pseudo-phys memory layout has nothing to do with the
289 * machine physical layout. We can't allocate highmem
290 * because we can't return a pointer to it.
292 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
295 return ret;
297 vstart = __get_free_pages(flags, order);
298 ret = (void *)vstart;
300 if (!ret)
301 return ret;
303 if (hwdev && hwdev->coherent_dma_mask)
304 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
306 phys = virt_to_phys(ret);
307 dev_addr = xen_phys_to_bus(phys);
308 if (((dev_addr + size - 1 <= dma_mask)) &&
309 !range_straddles_page_boundary(phys, size))
310 *dma_handle = dev_addr;
311 else {
312 if (xen_create_contiguous_region(vstart, order,
313 fls64(dma_mask), dma_handle) != 0) {
314 free_pages(vstart, order);
315 return NULL;
318 memset(ret, 0, size);
319 return ret;
321 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
323 void
324 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
325 dma_addr_t dev_addr, struct dma_attrs *attrs)
327 int order = get_order(size);
328 phys_addr_t phys;
329 u64 dma_mask = DMA_BIT_MASK(32);
331 if (dma_release_from_coherent(hwdev, order, vaddr))
332 return;
334 if (hwdev && hwdev->coherent_dma_mask)
335 dma_mask = hwdev->coherent_dma_mask;
337 phys = virt_to_phys(vaddr);
339 if (((dev_addr + size - 1 > dma_mask)) ||
340 range_straddles_page_boundary(phys, size))
341 xen_destroy_contiguous_region((unsigned long)vaddr, order);
343 free_pages((unsigned long)vaddr, order);
345 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
349 * Map a single buffer of the indicated size for DMA in streaming mode. The
350 * physical address to use is returned.
352 * Once the device is given the dma address, the device owns this memory until
353 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
355 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
356 unsigned long offset, size_t size,
357 enum dma_data_direction dir,
358 struct dma_attrs *attrs)
360 phys_addr_t map, phys = page_to_phys(page) + offset;
361 dma_addr_t dev_addr = xen_phys_to_bus(phys);
363 BUG_ON(dir == DMA_NONE);
365 * If the address happens to be in the device's DMA window,
366 * we can safely return the device addr and not worry about bounce
367 * buffering it.
369 if (dma_capable(dev, dev_addr, size) &&
370 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
371 return dev_addr;
374 * Oh well, have to allocate and map a bounce buffer.
376 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
377 if (map == SWIOTLB_MAP_ERROR)
378 return DMA_ERROR_CODE;
380 dev_addr = xen_phys_to_bus(map);
383 * Ensure that the address returned is DMA'ble
385 if (!dma_capable(dev, dev_addr, size)) {
386 swiotlb_tbl_unmap_single(dev, map, size, dir);
387 dev_addr = 0;
389 return dev_addr;
391 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
394 * Unmap a single streaming mode DMA translation. The dma_addr and size must
395 * match what was provided for in a previous xen_swiotlb_map_page call. All
396 * other usages are undefined.
398 * After this call, reads by the cpu to the buffer are guaranteed to see
399 * whatever the device wrote there.
401 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
402 size_t size, enum dma_data_direction dir)
404 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
406 BUG_ON(dir == DMA_NONE);
408 /* NOTE: We use dev_addr here, not paddr! */
409 if (is_xen_swiotlb_buffer(dev_addr)) {
410 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
411 return;
414 if (dir != DMA_FROM_DEVICE)
415 return;
418 * phys_to_virt doesn't work with hihgmem page but we could
419 * call dma_mark_clean() with hihgmem page here. However, we
420 * are fine since dma_mark_clean() is null on POWERPC. We can
421 * make dma_mark_clean() take a physical address if necessary.
423 dma_mark_clean(phys_to_virt(paddr), size);
426 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
427 size_t size, enum dma_data_direction dir,
428 struct dma_attrs *attrs)
430 xen_unmap_single(hwdev, dev_addr, size, dir);
432 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
435 * Make physical memory consistent for a single streaming mode DMA translation
436 * after a transfer.
438 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
439 * using the cpu, yet do not wish to teardown the dma mapping, you must
440 * call this function before doing so. At the next point you give the dma
441 * address back to the card, you must first perform a
442 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
444 static void
445 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
446 size_t size, enum dma_data_direction dir,
447 enum dma_sync_target target)
449 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
451 BUG_ON(dir == DMA_NONE);
453 /* NOTE: We use dev_addr here, not paddr! */
454 if (is_xen_swiotlb_buffer(dev_addr)) {
455 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
456 return;
459 if (dir != DMA_FROM_DEVICE)
460 return;
462 dma_mark_clean(phys_to_virt(paddr), size);
465 void
466 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
467 size_t size, enum dma_data_direction dir)
469 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
471 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
473 void
474 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
475 size_t size, enum dma_data_direction dir)
477 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
479 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
482 * Map a set of buffers described by scatterlist in streaming mode for DMA.
483 * This is the scatter-gather version of the above xen_swiotlb_map_page
484 * interface. Here the scatter gather list elements are each tagged with the
485 * appropriate dma address and length. They are obtained via
486 * sg_dma_{address,length}(SG).
488 * NOTE: An implementation may be able to use a smaller number of
489 * DMA address/length pairs than there are SG table elements.
490 * (for example via virtual mapping capabilities)
491 * The routine returns the number of addr/length pairs actually
492 * used, at most nents.
494 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
495 * same here.
498 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
499 int nelems, enum dma_data_direction dir,
500 struct dma_attrs *attrs)
502 struct scatterlist *sg;
503 int i;
505 BUG_ON(dir == DMA_NONE);
507 for_each_sg(sgl, sg, nelems, i) {
508 phys_addr_t paddr = sg_phys(sg);
509 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
511 if (swiotlb_force ||
512 !dma_capable(hwdev, dev_addr, sg->length) ||
513 range_straddles_page_boundary(paddr, sg->length)) {
514 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
515 start_dma_addr,
516 sg_phys(sg),
517 sg->length,
518 dir);
519 if (map == SWIOTLB_MAP_ERROR) {
520 /* Don't panic here, we expect map_sg users
521 to do proper error handling. */
522 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
523 attrs);
524 sg_dma_len(sgl) = 0;
525 return DMA_ERROR_CODE;
527 sg->dma_address = xen_phys_to_bus(map);
528 } else
529 sg->dma_address = dev_addr;
530 sg_dma_len(sg) = sg->length;
532 return nelems;
534 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
537 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
538 * concerning calls here are the same as for swiotlb_unmap_page() above.
540 void
541 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
542 int nelems, enum dma_data_direction dir,
543 struct dma_attrs *attrs)
545 struct scatterlist *sg;
546 int i;
548 BUG_ON(dir == DMA_NONE);
550 for_each_sg(sgl, sg, nelems, i)
551 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
554 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
557 * Make physical memory consistent for a set of streaming mode DMA translations
558 * after a transfer.
560 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
561 * and usage.
563 static void
564 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
565 int nelems, enum dma_data_direction dir,
566 enum dma_sync_target target)
568 struct scatterlist *sg;
569 int i;
571 for_each_sg(sgl, sg, nelems, i)
572 xen_swiotlb_sync_single(hwdev, sg->dma_address,
573 sg_dma_len(sg), dir, target);
576 void
577 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
578 int nelems, enum dma_data_direction dir)
580 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
582 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
584 void
585 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
586 int nelems, enum dma_data_direction dir)
588 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
590 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
593 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
595 return !dma_addr;
597 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
600 * Return whether the given device DMA address mask can be supported
601 * properly. For example, if your device can only drive the low 24-bits
602 * during bus mastering, then you would pass 0x00ffffff as the mask to
603 * this function.
606 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
608 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
610 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);