3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 #include <asm/dma-mapping.h>
47 * Used to do a quick range check in swiotlb_tbl_unmap_single and
48 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 static unsigned long dma_alloc_coherent_mask(struct device
*dev
,
56 unsigned long dma_mask
= 0;
58 dma_mask
= dev
->coherent_dma_mask
;
60 dma_mask
= (gfp
& GFP_DMA
) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
66 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
67 static unsigned long xen_io_tlb_nslabs
;
69 * Quick lookup value of the bus address of the IOTLB.
72 static u64 start_dma_addr
;
74 static dma_addr_t
xen_phys_to_bus(phys_addr_t paddr
)
76 return phys_to_machine(XPADDR(paddr
)).maddr
;
79 static phys_addr_t
xen_bus_to_phys(dma_addr_t baddr
)
81 return machine_to_phys(XMADDR(baddr
)).paddr
;
84 static dma_addr_t
xen_virt_to_bus(void *address
)
86 return xen_phys_to_bus(virt_to_phys(address
));
89 static int check_pages_physically_contiguous(unsigned long pfn
,
93 unsigned long next_mfn
;
97 next_mfn
= pfn_to_mfn(pfn
);
98 nr_pages
= (offset
+ length
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
100 for (i
= 1; i
< nr_pages
; i
++) {
101 if (pfn_to_mfn(++pfn
) != ++next_mfn
)
107 static int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
109 unsigned long pfn
= PFN_DOWN(p
);
110 unsigned int offset
= p
& ~PAGE_MASK
;
112 if (offset
+ size
<= PAGE_SIZE
)
114 if (check_pages_physically_contiguous(pfn
, offset
, size
))
119 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr
)
121 unsigned long mfn
= PFN_DOWN(dma_addr
);
122 unsigned long pfn
= mfn_to_local_pfn(mfn
);
125 /* If the address is outside our domain, it CAN
126 * have the same virtual address as another address
127 * in our domain. Therefore _only_ check address within our domain.
129 if (pfn_valid(pfn
)) {
130 paddr
= PFN_PHYS(pfn
);
131 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
132 paddr
< virt_to_phys(xen_io_tlb_end
);
137 static int max_dma_bits
= 32;
140 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
144 dma_addr_t dma_handle
;
146 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
150 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
153 rc
= xen_create_contiguous_region(
154 (unsigned long)buf
+ (i
<< IO_TLB_SHIFT
),
155 get_order(slabs
<< IO_TLB_SHIFT
),
156 dma_bits
, &dma_handle
);
157 } while (rc
&& dma_bits
++ < max_dma_bits
);
162 } while (i
< nslabs
);
165 static unsigned long xen_set_nslabs(unsigned long nr_tbl
)
168 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
169 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
171 xen_io_tlb_nslabs
= nr_tbl
;
173 return xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
176 enum xen_swiotlb_err
{
177 XEN_SWIOTLB_UNKNOWN
= 0,
182 static const char *xen_swiotlb_error(enum xen_swiotlb_err err
)
185 case XEN_SWIOTLB_ENOMEM
:
186 return "Cannot allocate Xen-SWIOTLB buffer\n";
187 case XEN_SWIOTLB_EFIXUP
:
188 return "Failed to get contiguous memory for DMA from Xen!\n"\
189 "You either: don't have the permissions, do not have"\
190 " enough free memory under 4GB, or the hypervisor memory"\
191 " is too fragmented!";
197 int __ref
xen_swiotlb_init(int verbose
, bool early
)
199 unsigned long bytes
, order
;
201 enum xen_swiotlb_err m_ret
= XEN_SWIOTLB_UNKNOWN
;
202 unsigned int repeat
= 3;
204 xen_io_tlb_nslabs
= swiotlb_nr_tbl();
206 bytes
= xen_set_nslabs(xen_io_tlb_nslabs
);
207 order
= get_order(xen_io_tlb_nslabs
<< IO_TLB_SHIFT
);
209 * Get IO TLB memory from any location.
212 xen_io_tlb_start
= alloc_bootmem_pages(PAGE_ALIGN(bytes
));
214 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
215 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
216 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
217 xen_io_tlb_start
= (void *)__get_free_pages(__GFP_NOWARN
, order
);
218 if (xen_io_tlb_start
)
222 if (order
!= get_order(bytes
)) {
223 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
224 (PAGE_SIZE
<< order
) >> 20);
225 xen_io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
226 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
229 if (!xen_io_tlb_start
) {
230 m_ret
= XEN_SWIOTLB_ENOMEM
;
233 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
235 * And replace that memory with pages under 4GB.
237 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
242 free_bootmem(__pa(xen_io_tlb_start
), PAGE_ALIGN(bytes
));
244 free_pages((unsigned long)xen_io_tlb_start
, order
);
245 xen_io_tlb_start
= NULL
;
247 m_ret
= XEN_SWIOTLB_EFIXUP
;
250 start_dma_addr
= xen_virt_to_bus(xen_io_tlb_start
);
252 if (swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
,
254 panic("Cannot allocate SWIOTLB buffer");
257 rc
= swiotlb_late_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
);
261 xen_io_tlb_nslabs
= max(1024UL, /* Min is 2MB */
262 (xen_io_tlb_nslabs
>> 1));
263 pr_info("Lowering to %luMB\n",
264 (xen_io_tlb_nslabs
<< IO_TLB_SHIFT
) >> 20);
267 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret
), rc
);
269 panic("%s (rc:%d)", xen_swiotlb_error(m_ret
), rc
);
271 free_pages((unsigned long)xen_io_tlb_start
, order
);
275 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
276 dma_addr_t
*dma_handle
, gfp_t flags
,
277 struct dma_attrs
*attrs
)
280 int order
= get_order(size
);
281 u64 dma_mask
= DMA_BIT_MASK(32);
282 unsigned long vstart
;
287 * Ignore region specifiers - the kernel's ideas of
288 * pseudo-phys memory layout has nothing to do with the
289 * machine physical layout. We can't allocate highmem
290 * because we can't return a pointer to it.
292 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
294 if (dma_alloc_from_coherent(hwdev
, size
, dma_handle
, &ret
))
297 vstart
= __get_free_pages(flags
, order
);
298 ret
= (void *)vstart
;
303 if (hwdev
&& hwdev
->coherent_dma_mask
)
304 dma_mask
= dma_alloc_coherent_mask(hwdev
, flags
);
306 phys
= virt_to_phys(ret
);
307 dev_addr
= xen_phys_to_bus(phys
);
308 if (((dev_addr
+ size
- 1 <= dma_mask
)) &&
309 !range_straddles_page_boundary(phys
, size
))
310 *dma_handle
= dev_addr
;
312 if (xen_create_contiguous_region(vstart
, order
,
313 fls64(dma_mask
), dma_handle
) != 0) {
314 free_pages(vstart
, order
);
318 memset(ret
, 0, size
);
321 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent
);
324 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
325 dma_addr_t dev_addr
, struct dma_attrs
*attrs
)
327 int order
= get_order(size
);
329 u64 dma_mask
= DMA_BIT_MASK(32);
331 if (dma_release_from_coherent(hwdev
, order
, vaddr
))
334 if (hwdev
&& hwdev
->coherent_dma_mask
)
335 dma_mask
= hwdev
->coherent_dma_mask
;
337 phys
= virt_to_phys(vaddr
);
339 if (((dev_addr
+ size
- 1 > dma_mask
)) ||
340 range_straddles_page_boundary(phys
, size
))
341 xen_destroy_contiguous_region((unsigned long)vaddr
, order
);
343 free_pages((unsigned long)vaddr
, order
);
345 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent
);
349 * Map a single buffer of the indicated size for DMA in streaming mode. The
350 * physical address to use is returned.
352 * Once the device is given the dma address, the device owns this memory until
353 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
355 dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
356 unsigned long offset
, size_t size
,
357 enum dma_data_direction dir
,
358 struct dma_attrs
*attrs
)
360 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
361 dma_addr_t dev_addr
= xen_phys_to_bus(phys
);
363 BUG_ON(dir
== DMA_NONE
);
365 * If the address happens to be in the device's DMA window,
366 * we can safely return the device addr and not worry about bounce
369 if (dma_capable(dev
, dev_addr
, size
) &&
370 !range_straddles_page_boundary(phys
, size
) && !swiotlb_force
)
374 * Oh well, have to allocate and map a bounce buffer.
376 map
= swiotlb_tbl_map_single(dev
, start_dma_addr
, phys
, size
, dir
);
377 if (map
== SWIOTLB_MAP_ERROR
)
378 return DMA_ERROR_CODE
;
380 dev_addr
= xen_phys_to_bus(map
);
383 * Ensure that the address returned is DMA'ble
385 if (!dma_capable(dev
, dev_addr
, size
)) {
386 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
391 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page
);
394 * Unmap a single streaming mode DMA translation. The dma_addr and size must
395 * match what was provided for in a previous xen_swiotlb_map_page call. All
396 * other usages are undefined.
398 * After this call, reads by the cpu to the buffer are guaranteed to see
399 * whatever the device wrote there.
401 static void xen_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
402 size_t size
, enum dma_data_direction dir
)
404 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
406 BUG_ON(dir
== DMA_NONE
);
408 /* NOTE: We use dev_addr here, not paddr! */
409 if (is_xen_swiotlb_buffer(dev_addr
)) {
410 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
);
414 if (dir
!= DMA_FROM_DEVICE
)
418 * phys_to_virt doesn't work with hihgmem page but we could
419 * call dma_mark_clean() with hihgmem page here. However, we
420 * are fine since dma_mark_clean() is null on POWERPC. We can
421 * make dma_mark_clean() take a physical address if necessary.
423 dma_mark_clean(phys_to_virt(paddr
), size
);
426 void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
427 size_t size
, enum dma_data_direction dir
,
428 struct dma_attrs
*attrs
)
430 xen_unmap_single(hwdev
, dev_addr
, size
, dir
);
432 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page
);
435 * Make physical memory consistent for a single streaming mode DMA translation
438 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
439 * using the cpu, yet do not wish to teardown the dma mapping, you must
440 * call this function before doing so. At the next point you give the dma
441 * address back to the card, you must first perform a
442 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
445 xen_swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
446 size_t size
, enum dma_data_direction dir
,
447 enum dma_sync_target target
)
449 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
451 BUG_ON(dir
== DMA_NONE
);
453 /* NOTE: We use dev_addr here, not paddr! */
454 if (is_xen_swiotlb_buffer(dev_addr
)) {
455 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
459 if (dir
!= DMA_FROM_DEVICE
)
462 dma_mark_clean(phys_to_virt(paddr
), size
);
466 xen_swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
467 size_t size
, enum dma_data_direction dir
)
469 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
471 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu
);
474 xen_swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
475 size_t size
, enum dma_data_direction dir
)
477 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
479 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device
);
482 * Map a set of buffers described by scatterlist in streaming mode for DMA.
483 * This is the scatter-gather version of the above xen_swiotlb_map_page
484 * interface. Here the scatter gather list elements are each tagged with the
485 * appropriate dma address and length. They are obtained via
486 * sg_dma_{address,length}(SG).
488 * NOTE: An implementation may be able to use a smaller number of
489 * DMA address/length pairs than there are SG table elements.
490 * (for example via virtual mapping capabilities)
491 * The routine returns the number of addr/length pairs actually
492 * used, at most nents.
494 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
498 xen_swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
499 int nelems
, enum dma_data_direction dir
,
500 struct dma_attrs
*attrs
)
502 struct scatterlist
*sg
;
505 BUG_ON(dir
== DMA_NONE
);
507 for_each_sg(sgl
, sg
, nelems
, i
) {
508 phys_addr_t paddr
= sg_phys(sg
);
509 dma_addr_t dev_addr
= xen_phys_to_bus(paddr
);
512 !dma_capable(hwdev
, dev_addr
, sg
->length
) ||
513 range_straddles_page_boundary(paddr
, sg
->length
)) {
514 phys_addr_t map
= swiotlb_tbl_map_single(hwdev
,
519 if (map
== SWIOTLB_MAP_ERROR
) {
520 /* Don't panic here, we expect map_sg users
521 to do proper error handling. */
522 xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
525 return DMA_ERROR_CODE
;
527 sg
->dma_address
= xen_phys_to_bus(map
);
529 sg
->dma_address
= dev_addr
;
530 sg_dma_len(sg
) = sg
->length
;
534 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs
);
537 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
538 * concerning calls here are the same as for swiotlb_unmap_page() above.
541 xen_swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
542 int nelems
, enum dma_data_direction dir
,
543 struct dma_attrs
*attrs
)
545 struct scatterlist
*sg
;
548 BUG_ON(dir
== DMA_NONE
);
550 for_each_sg(sgl
, sg
, nelems
, i
)
551 xen_unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
);
554 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs
);
557 * Make physical memory consistent for a set of streaming mode DMA translations
560 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
564 xen_swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
565 int nelems
, enum dma_data_direction dir
,
566 enum dma_sync_target target
)
568 struct scatterlist
*sg
;
571 for_each_sg(sgl
, sg
, nelems
, i
)
572 xen_swiotlb_sync_single(hwdev
, sg
->dma_address
,
573 sg_dma_len(sg
), dir
, target
);
577 xen_swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
578 int nelems
, enum dma_data_direction dir
)
580 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
582 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu
);
585 xen_swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
586 int nelems
, enum dma_data_direction dir
)
588 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
590 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device
);
593 xen_swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
597 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error
);
600 * Return whether the given device DMA address mask can be supported
601 * properly. For example, if your device can only drive the low 24-bits
602 * during bus mastering, then you would pass 0x00ffffff as the mask to
606 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
608 return xen_virt_to_bus(xen_io_tlb_end
- 1) <= mask
;
610 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported
);