2 * POWERNV cpufreq driver for the IBM POWER processors
4 * (C) Copyright IBM 2014
6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <linux/timer.h>
41 #define POWERNV_MAX_PSTATES 256
42 #define PMSR_PSAFE_ENABLE (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE (1UL << 31)
44 #define PMSR_MAX(x) ((x >> 32) & 0xFF)
46 #define MAX_RAMP_DOWN_TIME 5120
48 * On an idle system we want the global pstate to ramp-down from max value to
49 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50 * then ramp-down rapidly later on.
52 * This gives a percentage rampdown for time elapsed in milliseconds.
53 * ramp_down_percentage = ((ms * ms) >> 18)
54 * ~= 3.8 * (sec * sec)
56 * At 0 ms ramp_down_percent = 0
57 * At 5120 ms ramp_down_percent = 100
59 #define ramp_down_percent(time) ((time * time) >> 18)
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL 2000
65 * struct global_pstate_info - Per policy data structure to maintain history of
67 * @highest_lpstate: The local pstate from which we are ramping down
68 * @elapsed_time: Time in ms spent in ramping down from
70 * @last_sampled_time: Time from boot in ms when global pstates were
72 * @last_lpstate,last_gpstate: Last set values for local and global pstates
73 * @timer: Is used for ramping down if cpu goes idle for
74 * a long time with global pstate held high
75 * @gpstate_lock: A spinlock to maintain synchronization between
76 * routines called by the timer handler and
77 * governer's target_index calls
79 struct global_pstate_info
{
81 unsigned int elapsed_time
;
82 unsigned int last_sampled_time
;
85 spinlock_t gpstate_lock
;
86 struct timer_list timer
;
89 static struct cpufreq_frequency_table powernv_freqs
[POWERNV_MAX_PSTATES
+1];
90 static bool rebooting
, throttled
, occ_reset
;
92 static const char * const throttle_reason
[] = {
95 "Processor Over Temperature",
96 "Power Supply Failure",
101 enum throttle_reason_type
{
105 POWER_SUPPLY_FAILURE
,
117 struct work_struct throttle
;
119 int throttle_sub_turbo
;
120 int reason
[OCC_MAX_REASON
];
124 static DEFINE_PER_CPU(struct chip
*, chip_info
);
127 * Note: The set of pstates consists of contiguous integers, the
128 * smallest of which is indicated by powernv_pstate_info.min, the
129 * largest of which is indicated by powernv_pstate_info.max.
131 * The nominal pstate is the highest non-turbo pstate in this
132 * platform. This is indicated by powernv_pstate_info.nominal.
134 static struct powernv_pstate_info
{
139 } powernv_pstate_info
;
141 static inline void reset_gpstates(struct cpufreq_policy
*policy
)
143 struct global_pstate_info
*gpstates
= policy
->driver_data
;
145 gpstates
->highest_lpstate
= 0;
146 gpstates
->elapsed_time
= 0;
147 gpstates
->last_sampled_time
= 0;
148 gpstates
->last_lpstate
= 0;
149 gpstates
->last_gpstate
= 0;
153 * Initialize the freq table based on data obtained
154 * from the firmware passed via device-tree
156 static int init_powernv_pstates(void)
158 struct device_node
*power_mgt
;
159 int i
, pstate_min
, pstate_max
, pstate_nominal
, nr_pstates
= 0;
160 const __be32
*pstate_ids
, *pstate_freqs
;
161 u32 len_ids
, len_freqs
;
163 power_mgt
= of_find_node_by_path("/ibm,opal/power-mgt");
165 pr_warn("power-mgt node not found\n");
169 if (of_property_read_u32(power_mgt
, "ibm,pstate-min", &pstate_min
)) {
170 pr_warn("ibm,pstate-min node not found\n");
174 if (of_property_read_u32(power_mgt
, "ibm,pstate-max", &pstate_max
)) {
175 pr_warn("ibm,pstate-max node not found\n");
179 if (of_property_read_u32(power_mgt
, "ibm,pstate-nominal",
181 pr_warn("ibm,pstate-nominal not found\n");
184 pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min
,
185 pstate_nominal
, pstate_max
);
187 pstate_ids
= of_get_property(power_mgt
, "ibm,pstate-ids", &len_ids
);
189 pr_warn("ibm,pstate-ids not found\n");
193 pstate_freqs
= of_get_property(power_mgt
, "ibm,pstate-frequencies-mhz",
196 pr_warn("ibm,pstate-frequencies-mhz not found\n");
200 if (len_ids
!= len_freqs
) {
201 pr_warn("Entries in ibm,pstate-ids and "
202 "ibm,pstate-frequencies-mhz does not match\n");
205 nr_pstates
= min(len_ids
, len_freqs
) / sizeof(u32
);
207 pr_warn("No PStates found\n");
211 pr_debug("NR PStates %d\n", nr_pstates
);
212 for (i
= 0; i
< nr_pstates
; i
++) {
213 u32 id
= be32_to_cpu(pstate_ids
[i
]);
214 u32 freq
= be32_to_cpu(pstate_freqs
[i
]);
216 pr_debug("PState id %d freq %d MHz\n", id
, freq
);
217 powernv_freqs
[i
].frequency
= freq
* 1000; /* kHz */
218 powernv_freqs
[i
].driver_data
= id
;
220 /* End of list marker entry */
221 powernv_freqs
[i
].frequency
= CPUFREQ_TABLE_END
;
223 powernv_pstate_info
.min
= pstate_min
;
224 powernv_pstate_info
.max
= pstate_max
;
225 powernv_pstate_info
.nominal
= pstate_nominal
;
226 powernv_pstate_info
.nr_pstates
= nr_pstates
;
231 /* Returns the CPU frequency corresponding to the pstate_id. */
232 static unsigned int pstate_id_to_freq(int pstate_id
)
236 i
= powernv_pstate_info
.max
- pstate_id
;
237 if (i
>= powernv_pstate_info
.nr_pstates
|| i
< 0) {
238 pr_warn("PState id %d outside of PState table, "
239 "reporting nominal id %d instead\n",
240 pstate_id
, powernv_pstate_info
.nominal
);
241 i
= powernv_pstate_info
.max
- powernv_pstate_info
.nominal
;
244 return powernv_freqs
[i
].frequency
;
248 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
251 static ssize_t
cpuinfo_nominal_freq_show(struct cpufreq_policy
*policy
,
254 return sprintf(buf
, "%u\n",
255 pstate_id_to_freq(powernv_pstate_info
.nominal
));
258 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq
=
259 __ATTR_RO(cpuinfo_nominal_freq
);
261 static struct freq_attr
*powernv_cpu_freq_attr
[] = {
262 &cpufreq_freq_attr_scaling_available_freqs
,
263 &cpufreq_freq_attr_cpuinfo_nominal_freq
,
267 #define throttle_attr(name, member) \
268 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
270 struct chip *chip = per_cpu(chip_info, policy->cpu); \
272 return sprintf(buf, "%u\n", chip->member); \
275 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
277 throttle_attr(unthrottle, reason[NO_THROTTLE]);
278 throttle_attr(powercap
, reason
[POWERCAP
]);
279 throttle_attr(overtemp
, reason
[CPU_OVERTEMP
]);
280 throttle_attr(supply_fault
, reason
[POWER_SUPPLY_FAILURE
]);
281 throttle_attr(overcurrent
, reason
[OVERCURRENT
]);
282 throttle_attr(occ_reset
, reason
[OCC_RESET_THROTTLE
]);
283 throttle_attr(turbo_stat
, throttle_turbo
);
284 throttle_attr(sub_turbo_stat
, throttle_sub_turbo
);
286 static struct attribute
*throttle_attrs
[] = {
287 &throttle_attr_unthrottle
.attr
,
288 &throttle_attr_powercap
.attr
,
289 &throttle_attr_overtemp
.attr
,
290 &throttle_attr_supply_fault
.attr
,
291 &throttle_attr_overcurrent
.attr
,
292 &throttle_attr_occ_reset
.attr
,
293 &throttle_attr_turbo_stat
.attr
,
294 &throttle_attr_sub_turbo_stat
.attr
,
298 static const struct attribute_group throttle_attr_grp
= {
299 .name
= "throttle_stats",
300 .attrs
= throttle_attrs
,
303 /* Helper routines */
305 /* Access helpers to power mgt SPR */
307 static inline unsigned long get_pmspr(unsigned long sprn
)
311 return mfspr(SPRN_PMCR
);
314 return mfspr(SPRN_PMICR
);
317 return mfspr(SPRN_PMSR
);
322 static inline void set_pmspr(unsigned long sprn
, unsigned long val
)
326 mtspr(SPRN_PMCR
, val
);
330 mtspr(SPRN_PMICR
, val
);
337 * Use objects of this type to query/update
338 * pstates on a remote CPU via smp_call_function.
340 struct powernv_smp_call_data
{
347 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
349 * Called via smp_call_function.
351 * Note: The caller of the smp_call_function should pass an argument of
352 * the type 'struct powernv_smp_call_data *' along with this function.
354 * The current frequency on this CPU will be returned via
355 * ((struct powernv_smp_call_data *)arg)->freq;
357 static void powernv_read_cpu_freq(void *arg
)
359 unsigned long pmspr_val
;
361 struct powernv_smp_call_data
*freq_data
= arg
;
363 pmspr_val
= get_pmspr(SPRN_PMSR
);
366 * The local pstate id corresponds bits 48..55 in the PMSR.
367 * Note: Watch out for the sign!
369 local_pstate_id
= (pmspr_val
>> 48) & 0xFF;
370 freq_data
->pstate_id
= local_pstate_id
;
371 freq_data
->freq
= pstate_id_to_freq(freq_data
->pstate_id
);
373 pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
374 raw_smp_processor_id(), pmspr_val
, freq_data
->pstate_id
,
379 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
380 * firmware for CPU 'cpu'. This value is reported through the sysfs
381 * file cpuinfo_cur_freq.
383 static unsigned int powernv_cpufreq_get(unsigned int cpu
)
385 struct powernv_smp_call_data freq_data
;
387 smp_call_function_any(cpu_sibling_mask(cpu
), powernv_read_cpu_freq
,
390 return freq_data
.freq
;
394 * set_pstate: Sets the pstate on this CPU.
396 * This is called via an smp_call_function.
398 * The caller must ensure that freq_data is of the type
399 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
400 * on this CPU should be present in freq_data->pstate_id.
402 static void set_pstate(void *data
)
405 struct powernv_smp_call_data
*freq_data
= data
;
406 unsigned long pstate_ul
= freq_data
->pstate_id
;
407 unsigned long gpstate_ul
= freq_data
->gpstate_id
;
409 val
= get_pmspr(SPRN_PMCR
);
410 val
= val
& 0x0000FFFFFFFFFFFFULL
;
412 pstate_ul
= pstate_ul
& 0xFF;
413 gpstate_ul
= gpstate_ul
& 0xFF;
415 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
416 val
= val
| (gpstate_ul
<< 56) | (pstate_ul
<< 48);
418 pr_debug("Setting cpu %d pmcr to %016lX\n",
419 raw_smp_processor_id(), val
);
420 set_pmspr(SPRN_PMCR
, val
);
424 * get_nominal_index: Returns the index corresponding to the nominal
425 * pstate in the cpufreq table
427 static inline unsigned int get_nominal_index(void)
429 return powernv_pstate_info
.max
- powernv_pstate_info
.nominal
;
432 static void powernv_cpufreq_throttle_check(void *data
)
435 unsigned int cpu
= smp_processor_id();
439 pmsr
= get_pmspr(SPRN_PMSR
);
440 chip
= this_cpu_read(chip_info
);
442 /* Check for Pmax Capping */
443 pmsr_pmax
= (s8
)PMSR_MAX(pmsr
);
444 if (pmsr_pmax
!= powernv_pstate_info
.max
) {
447 chip
->throttled
= true;
448 if (pmsr_pmax
< powernv_pstate_info
.nominal
) {
449 pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n",
450 cpu
, chip
->id
, pmsr_pmax
,
451 powernv_pstate_info
.nominal
);
452 chip
->throttle_sub_turbo
++;
454 chip
->throttle_turbo
++;
456 trace_powernv_throttle(chip
->id
,
457 throttle_reason
[chip
->throttle_reason
],
459 } else if (chip
->throttled
) {
460 chip
->throttled
= false;
461 trace_powernv_throttle(chip
->id
,
462 throttle_reason
[chip
->throttle_reason
],
466 /* Check if Psafe_mode_active is set in PMSR. */
468 if (pmsr
& PMSR_PSAFE_ENABLE
) {
470 pr_info("Pstate set to safe frequency\n");
473 /* Check if SPR_EM_DISABLE is set in PMSR */
474 if (pmsr
& PMSR_SPR_EM_DISABLE
) {
476 pr_info("Frequency Control disabled from OS\n");
480 pr_info("PMSR = %16lx\n", pmsr
);
481 pr_warn("CPU Frequency could be throttled\n");
486 * calc_global_pstate - Calculate global pstate
487 * @elapsed_time: Elapsed time in milliseconds
488 * @local_pstate: New local pstate
489 * @highest_lpstate: pstate from which its ramping down
491 * Finds the appropriate global pstate based on the pstate from which its
492 * ramping down and the time elapsed in ramping down. It follows a quadratic
493 * equation which ensures that it reaches ramping down to pmin in 5sec.
495 static inline int calc_global_pstate(unsigned int elapsed_time
,
496 int highest_lpstate
, int local_pstate
)
501 * Using ramp_down_percent we get the percentage of rampdown
502 * that we are expecting to be dropping. Difference between
503 * highest_lpstate and powernv_pstate_info.min will give a absolute
504 * number of how many pstates we will drop eventually by the end of
505 * 5 seconds, then just scale it get the number pstates to be dropped.
507 pstate_diff
= ((int)ramp_down_percent(elapsed_time
) *
508 (highest_lpstate
- powernv_pstate_info
.min
)) / 100;
510 /* Ensure that global pstate is >= to local pstate */
511 if (highest_lpstate
- pstate_diff
< local_pstate
)
514 return highest_lpstate
- pstate_diff
;
517 static inline void queue_gpstate_timer(struct global_pstate_info
*gpstates
)
519 unsigned int timer_interval
;
522 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
523 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
524 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
525 * seconds of ramp down time.
527 if ((gpstates
->elapsed_time
+ GPSTATE_TIMER_INTERVAL
)
528 > MAX_RAMP_DOWN_TIME
)
529 timer_interval
= MAX_RAMP_DOWN_TIME
- gpstates
->elapsed_time
;
531 timer_interval
= GPSTATE_TIMER_INTERVAL
;
533 mod_timer_pinned(&gpstates
->timer
, jiffies
+
534 msecs_to_jiffies(timer_interval
));
538 * gpstate_timer_handler
540 * @data: pointer to cpufreq_policy on which timer was queued
542 * This handler brings down the global pstate closer to the local pstate
543 * according quadratic equation. Queues a new timer if it is still not equal
546 void gpstate_timer_handler(unsigned long data
)
548 struct cpufreq_policy
*policy
= (struct cpufreq_policy
*)data
;
549 struct global_pstate_info
*gpstates
= policy
->driver_data
;
551 unsigned int time_diff
= jiffies_to_msecs(jiffies
)
552 - gpstates
->last_sampled_time
;
553 struct powernv_smp_call_data freq_data
;
555 if (!spin_trylock(&gpstates
->gpstate_lock
))
558 gpstates
->last_sampled_time
+= time_diff
;
559 gpstates
->elapsed_time
+= time_diff
;
560 freq_data
.pstate_id
= gpstates
->last_lpstate
;
562 if ((gpstates
->last_gpstate
== freq_data
.pstate_id
) ||
563 (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
)) {
564 gpstate_id
= freq_data
.pstate_id
;
565 reset_gpstates(policy
);
566 gpstates
->highest_lpstate
= freq_data
.pstate_id
;
568 gpstate_id
= calc_global_pstate(gpstates
->elapsed_time
,
569 gpstates
->highest_lpstate
,
570 freq_data
.pstate_id
);
574 * If local pstate is equal to global pstate, rampdown is over
575 * So timer is not required to be queued.
577 if (gpstate_id
!= freq_data
.pstate_id
)
578 queue_gpstate_timer(gpstates
);
580 freq_data
.gpstate_id
= gpstate_id
;
581 gpstates
->last_gpstate
= freq_data
.gpstate_id
;
582 gpstates
->last_lpstate
= freq_data
.pstate_id
;
584 spin_unlock(&gpstates
->gpstate_lock
);
586 /* Timer may get migrated to a different cpu on cpu hot unplug */
587 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
591 * powernv_cpufreq_target_index: Sets the frequency corresponding to
592 * the cpufreq table entry indexed by new_index on the cpus in the
595 static int powernv_cpufreq_target_index(struct cpufreq_policy
*policy
,
596 unsigned int new_index
)
598 struct powernv_smp_call_data freq_data
;
599 unsigned int cur_msec
, gpstate_id
;
600 struct global_pstate_info
*gpstates
= policy
->driver_data
;
602 if (unlikely(rebooting
) && new_index
!= get_nominal_index())
606 powernv_cpufreq_throttle_check(NULL
);
608 cur_msec
= jiffies_to_msecs(get_jiffies_64());
610 spin_lock(&gpstates
->gpstate_lock
);
611 freq_data
.pstate_id
= powernv_freqs
[new_index
].driver_data
;
613 if (!gpstates
->last_sampled_time
) {
614 gpstate_id
= freq_data
.pstate_id
;
615 gpstates
->highest_lpstate
= freq_data
.pstate_id
;
619 if (gpstates
->last_gpstate
> freq_data
.pstate_id
) {
620 gpstates
->elapsed_time
+= cur_msec
-
621 gpstates
->last_sampled_time
;
624 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
625 * we should be resetting all global pstate related data. Set it
626 * equal to local pstate to start fresh.
628 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
629 reset_gpstates(policy
);
630 gpstates
->highest_lpstate
= freq_data
.pstate_id
;
631 gpstate_id
= freq_data
.pstate_id
;
633 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
634 gpstate_id
= calc_global_pstate(gpstates
->elapsed_time
,
635 gpstates
->highest_lpstate
,
636 freq_data
.pstate_id
);
639 reset_gpstates(policy
);
640 gpstates
->highest_lpstate
= freq_data
.pstate_id
;
641 gpstate_id
= freq_data
.pstate_id
;
645 * If local pstate is equal to global pstate, rampdown is over
646 * So timer is not required to be queued.
648 if (gpstate_id
!= freq_data
.pstate_id
)
649 queue_gpstate_timer(gpstates
);
651 del_timer_sync(&gpstates
->timer
);
654 freq_data
.gpstate_id
= gpstate_id
;
655 gpstates
->last_sampled_time
= cur_msec
;
656 gpstates
->last_gpstate
= freq_data
.gpstate_id
;
657 gpstates
->last_lpstate
= freq_data
.pstate_id
;
659 spin_unlock(&gpstates
->gpstate_lock
);
662 * Use smp_call_function to send IPI and execute the
663 * mtspr on target CPU. We could do that without IPI
664 * if current CPU is within policy->cpus (core)
666 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
670 static int powernv_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
673 struct kernfs_node
*kn
;
674 struct global_pstate_info
*gpstates
;
676 base
= cpu_first_thread_sibling(policy
->cpu
);
678 for (i
= 0; i
< threads_per_core
; i
++)
679 cpumask_set_cpu(base
+ i
, policy
->cpus
);
681 kn
= kernfs_find_and_get(policy
->kobj
.sd
, throttle_attr_grp
.name
);
685 ret
= sysfs_create_group(&policy
->kobj
, &throttle_attr_grp
);
687 pr_info("Failed to create throttle stats directory for cpu %d\n",
695 gpstates
= kzalloc(sizeof(*gpstates
), GFP_KERNEL
);
699 policy
->driver_data
= gpstates
;
701 /* initialize timer */
702 init_timer_deferrable(&gpstates
->timer
);
703 gpstates
->timer
.data
= (unsigned long)policy
;
704 gpstates
->timer
.function
= gpstate_timer_handler
;
705 gpstates
->timer
.expires
= jiffies
+
706 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL
);
707 spin_lock_init(&gpstates
->gpstate_lock
);
708 ret
= cpufreq_table_validate_and_show(policy
, powernv_freqs
);
711 kfree(policy
->driver_data
);
716 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
718 /* timer is deleted in cpufreq_cpu_stop() */
719 kfree(policy
->driver_data
);
724 static int powernv_cpufreq_reboot_notifier(struct notifier_block
*nb
,
725 unsigned long action
, void *unused
)
728 struct cpufreq_policy cpu_policy
;
731 for_each_online_cpu(cpu
) {
732 cpufreq_get_policy(&cpu_policy
, cpu
);
733 powernv_cpufreq_target_index(&cpu_policy
, get_nominal_index());
739 static struct notifier_block powernv_cpufreq_reboot_nb
= {
740 .notifier_call
= powernv_cpufreq_reboot_notifier
,
743 void powernv_cpufreq_work_fn(struct work_struct
*work
)
745 struct chip
*chip
= container_of(work
, struct chip
, throttle
);
750 cpumask_and(&mask
, &chip
->mask
, cpu_online_mask
);
751 smp_call_function_any(&mask
,
752 powernv_cpufreq_throttle_check
, NULL
, 0);
757 chip
->restore
= false;
758 for_each_cpu(cpu
, &mask
) {
760 struct cpufreq_policy policy
;
762 cpufreq_get_policy(&policy
, cpu
);
763 cpufreq_frequency_table_target(&policy
, policy
.freq_table
,
765 CPUFREQ_RELATION_C
, &index
);
766 powernv_cpufreq_target_index(&policy
, index
);
767 cpumask_andnot(&mask
, &mask
, policy
.cpus
);
773 static int powernv_cpufreq_occ_msg(struct notifier_block
*nb
,
774 unsigned long msg_type
, void *_msg
)
776 struct opal_msg
*msg
= _msg
;
777 struct opal_occ_msg omsg
;
780 if (msg_type
!= OPAL_MSG_OCC
)
783 omsg
.type
= be64_to_cpu(msg
->params
[0]);
788 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
790 * powernv_cpufreq_throttle_check() is called in
791 * target() callback which can detect the throttle state
792 * for governors like ondemand.
793 * But static governors will not call target() often thus
794 * report throttling here.
798 pr_warn("CPU frequency is throttled for duration\n");
803 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
806 omsg
.chip
= be64_to_cpu(msg
->params
[1]);
807 omsg
.throttle_status
= be64_to_cpu(msg
->params
[2]);
812 pr_info("OCC Active, CPU frequency is no longer throttled\n");
814 for (i
= 0; i
< nr_chips
; i
++) {
815 chips
[i
].restore
= true;
816 schedule_work(&chips
[i
].throttle
);
822 for (i
= 0; i
< nr_chips
; i
++)
823 if (chips
[i
].id
== omsg
.chip
)
826 if (omsg
.throttle_status
>= 0 &&
827 omsg
.throttle_status
<= OCC_MAX_THROTTLE_STATUS
) {
828 chips
[i
].throttle_reason
= omsg
.throttle_status
;
829 chips
[i
].reason
[omsg
.throttle_status
]++;
832 if (!omsg
.throttle_status
)
833 chips
[i
].restore
= true;
835 schedule_work(&chips
[i
].throttle
);
840 static struct notifier_block powernv_cpufreq_opal_nb
= {
841 .notifier_call
= powernv_cpufreq_occ_msg
,
846 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
848 struct powernv_smp_call_data freq_data
;
849 struct global_pstate_info
*gpstates
= policy
->driver_data
;
851 freq_data
.pstate_id
= powernv_pstate_info
.min
;
852 freq_data
.gpstate_id
= powernv_pstate_info
.min
;
853 smp_call_function_single(policy
->cpu
, set_pstate
, &freq_data
, 1);
854 del_timer_sync(&gpstates
->timer
);
857 static struct cpufreq_driver powernv_cpufreq_driver
= {
858 .name
= "powernv-cpufreq",
859 .flags
= CPUFREQ_CONST_LOOPS
,
860 .init
= powernv_cpufreq_cpu_init
,
861 .exit
= powernv_cpufreq_cpu_exit
,
862 .verify
= cpufreq_generic_frequency_table_verify
,
863 .target_index
= powernv_cpufreq_target_index
,
864 .get
= powernv_cpufreq_get
,
865 .stop_cpu
= powernv_cpufreq_stop_cpu
,
866 .attr
= powernv_cpu_freq_attr
,
869 static int init_chip_info(void)
871 unsigned int chip
[256];
873 unsigned int prev_chip_id
= UINT_MAX
;
875 for_each_possible_cpu(cpu
) {
876 unsigned int id
= cpu_to_chip_id(cpu
);
878 if (prev_chip_id
!= id
) {
880 chip
[nr_chips
++] = id
;
884 chips
= kcalloc(nr_chips
, sizeof(struct chip
), GFP_KERNEL
);
888 for (i
= 0; i
< nr_chips
; i
++) {
889 chips
[i
].id
= chip
[i
];
890 cpumask_copy(&chips
[i
].mask
, cpumask_of_node(chip
[i
]));
891 INIT_WORK(&chips
[i
].throttle
, powernv_cpufreq_work_fn
);
892 for_each_cpu(cpu
, &chips
[i
].mask
)
893 per_cpu(chip_info
, cpu
) = &chips
[i
];
899 static inline void clean_chip_info(void)
904 static inline void unregister_all_notifiers(void)
906 opal_message_notifier_unregister(OPAL_MSG_OCC
,
907 &powernv_cpufreq_opal_nb
);
908 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb
);
911 static int __init
powernv_cpufreq_init(void)
915 /* Don't probe on pseries (guest) platforms */
916 if (!firmware_has_feature(FW_FEATURE_OPAL
))
919 /* Discover pstates from device tree and init */
920 rc
= init_powernv_pstates();
924 /* Populate chip info */
925 rc
= init_chip_info();
929 register_reboot_notifier(&powernv_cpufreq_reboot_nb
);
930 opal_message_notifier_register(OPAL_MSG_OCC
, &powernv_cpufreq_opal_nb
);
932 rc
= cpufreq_register_driver(&powernv_cpufreq_driver
);
936 pr_info("Failed to register the cpufreq driver (%d)\n", rc
);
937 unregister_all_notifiers();
940 pr_info("Platform driver disabled. System does not support PState control\n");
943 module_init(powernv_cpufreq_init
);
945 static void __exit
powernv_cpufreq_exit(void)
947 cpufreq_unregister_driver(&powernv_cpufreq_driver
);
948 unregister_all_notifiers();
951 module_exit(powernv_cpufreq_exit
);
953 MODULE_LICENSE("GPL");
954 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");