1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
24 #define FSEC_PER_NSEC 1000000L
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 unsigned long hpet_address
;
39 u8 hpet_blockid
; /* OS timer block num */
43 static unsigned long hpet_num_timers
;
45 static void __iomem
*hpet_virt_address
;
48 struct clock_event_device evt
;
56 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
58 return container_of(evtdev
, struct hpet_dev
, evt
);
61 inline unsigned int hpet_readl(unsigned int a
)
63 return readl(hpet_virt_address
+ a
);
66 static inline void hpet_writel(unsigned int d
, unsigned int a
)
68 writel(d
, hpet_virt_address
+ a
);
72 #include <asm/pgtable.h>
75 static inline void hpet_set_mapping(void)
77 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
80 static inline void hpet_clear_mapping(void)
82 iounmap(hpet_virt_address
);
83 hpet_virt_address
= NULL
;
87 * HPET command line enable / disable
89 int boot_hpet_disable
;
91 static int hpet_verbose
;
93 static int __init
hpet_setup(char *str
)
96 char *next
= strchr(str
, ',');
100 if (!strncmp("disable", str
, 7))
101 boot_hpet_disable
= 1;
102 if (!strncmp("force", str
, 5))
104 if (!strncmp("verbose", str
, 7))
110 __setup("hpet=", hpet_setup
);
112 static int __init
disable_hpet(char *str
)
114 boot_hpet_disable
= 1;
117 __setup("nohpet", disable_hpet
);
119 static inline int is_hpet_capable(void)
121 return !boot_hpet_disable
&& hpet_address
;
125 * HPET timer interrupt enable / disable
127 static int hpet_legacy_int_enabled
;
130 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 int is_hpet_enabled(void)
134 return is_hpet_capable() && hpet_legacy_int_enabled
;
136 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
138 static void _hpet_print_config(const char *function
, int line
)
141 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
142 l
= hpet_readl(HPET_ID
);
143 h
= hpet_readl(HPET_PERIOD
);
144 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
145 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
146 l
= hpet_readl(HPET_CFG
);
147 h
= hpet_readl(HPET_STATUS
);
148 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
149 l
= hpet_readl(HPET_COUNTER
);
150 h
= hpet_readl(HPET_COUNTER
+4);
151 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
153 for (i
= 0; i
< timers
; i
++) {
154 l
= hpet_readl(HPET_Tn_CFG(i
));
155 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
156 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 l
= hpet_readl(HPET_Tn_CMP(i
));
159 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
160 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 l
= hpet_readl(HPET_Tn_ROUTE(i
));
163 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
164 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
169 #define hpet_print_config() \
172 _hpet_print_config(__func__, __LINE__); \
176 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177 * timer 0 and timer 1 in case of RTC emulation.
181 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
183 static void hpet_reserve_platform_timers(unsigned int id
)
185 struct hpet __iomem
*hpet
= hpet_virt_address
;
186 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
187 unsigned int nrtimers
, i
;
190 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
192 memset(&hd
, 0, sizeof(hd
));
193 hd
.hd_phys_address
= hpet_address
;
194 hd
.hd_address
= hpet
;
195 hd
.hd_nirqs
= nrtimers
;
196 hpet_reserve_timer(&hd
, 0);
198 #ifdef CONFIG_HPET_EMULATE_RTC
199 hpet_reserve_timer(&hd
, 1);
203 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204 * is wrong for i8259!) not the output IRQ. Many BIOS writers
205 * don't bother configuring *any* comparator interrupts.
207 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
208 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
210 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
211 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
212 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
215 hpet_reserve_msi_timers(&hd
);
221 static void hpet_reserve_platform_timers(unsigned int id
) { }
227 static unsigned long hpet_freq
;
229 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
230 struct clock_event_device
*evt
);
231 static int hpet_legacy_next_event(unsigned long delta
,
232 struct clock_event_device
*evt
);
235 * The hpet clock event device
237 static struct clock_event_device hpet_clockevent
= {
239 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
240 .set_mode
= hpet_legacy_set_mode
,
241 .set_next_event
= hpet_legacy_next_event
,
246 static void hpet_stop_counter(void)
248 unsigned long cfg
= hpet_readl(HPET_CFG
);
249 cfg
&= ~HPET_CFG_ENABLE
;
250 hpet_writel(cfg
, HPET_CFG
);
253 static void hpet_reset_counter(void)
255 hpet_writel(0, HPET_COUNTER
);
256 hpet_writel(0, HPET_COUNTER
+ 4);
259 static void hpet_start_counter(void)
261 unsigned int cfg
= hpet_readl(HPET_CFG
);
262 cfg
|= HPET_CFG_ENABLE
;
263 hpet_writel(cfg
, HPET_CFG
);
266 static void hpet_restart_counter(void)
269 hpet_reset_counter();
270 hpet_start_counter();
273 static void hpet_resume_device(void)
278 static void hpet_resume_counter(struct clocksource
*cs
)
280 hpet_resume_device();
281 hpet_restart_counter();
284 static void hpet_enable_legacy_int(void)
286 unsigned int cfg
= hpet_readl(HPET_CFG
);
288 cfg
|= HPET_CFG_LEGACY
;
289 hpet_writel(cfg
, HPET_CFG
);
290 hpet_legacy_int_enabled
= 1;
293 static void hpet_legacy_clockevent_register(void)
295 /* Start HPET legacy interrupts */
296 hpet_enable_legacy_int();
299 * Start hpet with the boot cpu mask and make it
300 * global after the IO_APIC has been initialized.
302 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
303 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
304 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
305 global_clock_event
= &hpet_clockevent
;
306 printk(KERN_DEBUG
"hpet clockevent registered\n");
309 static void hpet_set_mode(enum clock_event_mode mode
,
310 struct clock_event_device
*evt
, int timer
)
312 unsigned int cfg
, cmp
, now
;
316 case CLOCK_EVT_MODE_PERIODIC
:
318 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
319 delta
>>= evt
->shift
;
320 now
= hpet_readl(HPET_COUNTER
);
321 cmp
= now
+ (unsigned int) delta
;
322 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
323 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
324 HPET_TN_SETVAL
| HPET_TN_32BIT
;
325 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
326 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
329 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
330 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
331 * bit is automatically cleared after the first write.
332 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
333 * Publication # 24674)
335 hpet_writel((unsigned int) delta
, HPET_Tn_CMP(timer
));
336 hpet_start_counter();
340 case CLOCK_EVT_MODE_ONESHOT
:
341 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
342 cfg
&= ~HPET_TN_PERIODIC
;
343 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
344 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
347 case CLOCK_EVT_MODE_UNUSED
:
348 case CLOCK_EVT_MODE_SHUTDOWN
:
349 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
350 cfg
&= ~HPET_TN_ENABLE
;
351 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
354 case CLOCK_EVT_MODE_RESUME
:
356 hpet_enable_legacy_int();
358 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
359 irq_domain_activate_irq(irq_get_irq_data(hdev
->irq
));
360 disable_irq(hdev
->irq
);
361 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
362 enable_irq(hdev
->irq
);
369 static int hpet_next_event(unsigned long delta
,
370 struct clock_event_device
*evt
, int timer
)
375 cnt
= hpet_readl(HPET_COUNTER
);
377 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
380 * HPETs are a complete disaster. The compare register is
381 * based on a equal comparison and neither provides a less
382 * than or equal functionality (which would require to take
383 * the wraparound into account) nor a simple count down event
384 * mode. Further the write to the comparator register is
385 * delayed internally up to two HPET clock cycles in certain
386 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
387 * longer delays. We worked around that by reading back the
388 * compare register, but that required another workaround for
389 * ICH9,10 chips where the first readout after write can
390 * return the old stale value. We already had a minimum
391 * programming delta of 5us enforced, but a NMI or SMI hitting
392 * between the counter readout and the comparator write can
393 * move us behind that point easily. Now instead of reading
394 * the compare register back several times, we make the ETIME
395 * decision based on the following: Return ETIME if the
396 * counter value after the write is less than HPET_MIN_CYCLES
397 * away from the event or if the counter is already ahead of
398 * the event. The minimum programming delta for the generic
399 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
403 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
406 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
407 struct clock_event_device
*evt
)
409 hpet_set_mode(mode
, evt
, 0);
412 static int hpet_legacy_next_event(unsigned long delta
,
413 struct clock_event_device
*evt
)
415 return hpet_next_event(delta
, evt
, 0);
421 #ifdef CONFIG_PCI_MSI
423 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
424 static struct hpet_dev
*hpet_devs
;
425 static struct irq_domain
*hpet_domain
;
427 void hpet_msi_unmask(struct irq_data
*data
)
429 struct hpet_dev
*hdev
= data
->handler_data
;
433 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
434 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
435 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
438 void hpet_msi_mask(struct irq_data
*data
)
440 struct hpet_dev
*hdev
= data
->handler_data
;
444 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
445 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
446 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
449 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
451 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
452 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
455 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
457 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
458 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
462 static void hpet_msi_set_mode(enum clock_event_mode mode
,
463 struct clock_event_device
*evt
)
465 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
466 hpet_set_mode(mode
, evt
, hdev
->num
);
469 static int hpet_msi_next_event(unsigned long delta
,
470 struct clock_event_device
*evt
)
472 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
473 return hpet_next_event(delta
, evt
, hdev
->num
);
476 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
478 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
479 struct clock_event_device
*hevt
= &dev
->evt
;
481 if (!hevt
->event_handler
) {
482 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
487 hevt
->event_handler(hevt
);
491 static int hpet_setup_irq(struct hpet_dev
*dev
)
494 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
495 IRQF_TIMER
| IRQF_NOBALANCING
,
499 disable_irq(dev
->irq
);
500 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
501 enable_irq(dev
->irq
);
503 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
504 dev
->name
, dev
->irq
);
509 /* This should be called in specific @cpu */
510 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
512 struct clock_event_device
*evt
= &hdev
->evt
;
514 WARN_ON(cpu
!= smp_processor_id());
515 if (!(hdev
->flags
& HPET_DEV_VALID
))
519 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
520 evt
->name
= hdev
->name
;
521 hpet_setup_irq(hdev
);
522 evt
->irq
= hdev
->irq
;
525 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
526 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
527 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
529 evt
->set_mode
= hpet_msi_set_mode
;
530 evt
->set_next_event
= hpet_msi_next_event
;
531 evt
->cpumask
= cpumask_of(hdev
->cpu
);
533 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
538 /* Reserve at least one timer for userspace (/dev/hpet) */
539 #define RESERVE_TIMERS 1
541 #define RESERVE_TIMERS 0
544 static void hpet_msi_capability_lookup(unsigned int start_timer
)
547 unsigned int num_timers
;
548 unsigned int num_timers_used
= 0;
551 if (hpet_msi_disable
)
554 if (boot_cpu_has(X86_FEATURE_ARAT
))
556 id
= hpet_readl(HPET_ID
);
558 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
559 num_timers
++; /* Value read out starts from 0 */
562 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
566 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
570 hpet_num_timers
= num_timers
;
572 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
573 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
574 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
576 /* Only consider HPET timer with MSI support */
577 if (!(cfg
& HPET_TN_FSB_CAP
))
581 if (cfg
& HPET_TN_PERIODIC_CAP
)
582 hdev
->flags
|= HPET_DEV_PERI_CAP
;
583 sprintf(hdev
->name
, "hpet%d", i
);
586 irq
= hpet_assign_irq(hpet_domain
, hdev
, hdev
->num
);
591 hdev
->flags
|= HPET_DEV_FSB_CAP
;
592 hdev
->flags
|= HPET_DEV_VALID
;
594 if (num_timers_used
== num_possible_cpus())
598 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
599 num_timers
, num_timers_used
);
603 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
610 for (i
= 0; i
< hpet_num_timers
; i
++) {
611 struct hpet_dev
*hdev
= &hpet_devs
[i
];
613 if (!(hdev
->flags
& HPET_DEV_VALID
))
616 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
617 hpet_reserve_timer(hd
, hdev
->num
);
622 static struct hpet_dev
*hpet_get_unused_timer(void)
629 for (i
= 0; i
< hpet_num_timers
; i
++) {
630 struct hpet_dev
*hdev
= &hpet_devs
[i
];
632 if (!(hdev
->flags
& HPET_DEV_VALID
))
634 if (test_and_set_bit(HPET_DEV_USED_BIT
,
635 (unsigned long *)&hdev
->flags
))
642 struct hpet_work_struct
{
643 struct delayed_work work
;
644 struct completion complete
;
647 static void hpet_work(struct work_struct
*w
)
649 struct hpet_dev
*hdev
;
650 int cpu
= smp_processor_id();
651 struct hpet_work_struct
*hpet_work
;
653 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
655 hdev
= hpet_get_unused_timer();
657 init_one_hpet_msi_clockevent(hdev
, cpu
);
659 complete(&hpet_work
->complete
);
662 static int hpet_cpuhp_notify(struct notifier_block
*n
,
663 unsigned long action
, void *hcpu
)
665 unsigned long cpu
= (unsigned long)hcpu
;
666 struct hpet_work_struct work
;
667 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
669 switch (action
& 0xf) {
671 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
672 init_completion(&work
.complete
);
673 /* FIXME: add schedule_work_on() */
674 schedule_delayed_work_on(cpu
, &work
.work
, 0);
675 wait_for_completion(&work
.complete
);
676 destroy_delayed_work_on_stack(&work
.work
);
680 free_irq(hdev
->irq
, hdev
);
681 hdev
->flags
&= ~HPET_DEV_USED
;
682 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
690 static void hpet_msi_capability_lookup(unsigned int start_timer
)
696 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
702 static int hpet_cpuhp_notify(struct notifier_block
*n
,
703 unsigned long action
, void *hcpu
)
711 * Clock source related code
713 static cycle_t
read_hpet(struct clocksource
*cs
)
715 return (cycle_t
)hpet_readl(HPET_COUNTER
);
718 static struct clocksource clocksource_hpet
= {
723 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
724 .resume
= hpet_resume_counter
,
725 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
728 static int hpet_clocksource_register(void)
733 /* Start the counter */
734 hpet_restart_counter();
736 /* Verify whether hpet counter works */
737 t1
= hpet_readl(HPET_COUNTER
);
741 * We don't know the TSC frequency yet, but waiting for
742 * 200000 TSC cycles is safe:
749 } while ((now
- start
) < 200000UL);
751 if (t1
== hpet_readl(HPET_COUNTER
)) {
753 "HPET counter not counting. HPET disabled\n");
757 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
761 static u32
*hpet_boot_cfg
;
764 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
766 int __init
hpet_enable(void)
768 u32 hpet_period
, cfg
, id
;
770 unsigned int i
, last
;
772 if (!is_hpet_capable())
778 * Read the period and check for a sane value:
780 hpet_period
= hpet_readl(HPET_PERIOD
);
783 * AMD SB700 based systems with spread spectrum enabled use a
784 * SMM based HPET emulation to provide proper frequency
785 * setting. The SMM code is initialized with the first HPET
786 * register access and takes some time to complete. During
787 * this time the config register reads 0xffffffff. We check
788 * for max. 1000 loops whether the config register reads a non
789 * 0xffffffff value to make sure that HPET is up and running
790 * before we go further. A counting loop is safe, as the HPET
791 * access takes thousands of CPU cycles. On non SB700 based
792 * machines this check is only done once and has no side
795 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
798 "HPET config register value = 0xFFFFFFFF. "
804 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
808 * The period is a femto seconds value. Convert it to a
812 do_div(freq
, hpet_period
);
816 * Read the HPET ID register to retrieve the IRQ routing
817 * information and the number of channels
819 id
= hpet_readl(HPET_ID
);
822 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
824 #ifdef CONFIG_HPET_EMULATE_RTC
826 * The legacy routing mode needs at least two channels, tick timer
827 * and the rtc emulation channel.
833 cfg
= hpet_readl(HPET_CFG
);
834 hpet_boot_cfg
= kmalloc((last
+ 2) * sizeof(*hpet_boot_cfg
),
837 *hpet_boot_cfg
= cfg
;
839 pr_warn("HPET initial state will not be saved\n");
840 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
841 hpet_writel(cfg
, HPET_CFG
);
843 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
846 for (i
= 0; i
<= last
; ++i
) {
847 cfg
= hpet_readl(HPET_Tn_CFG(i
));
849 hpet_boot_cfg
[i
+ 1] = cfg
;
850 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
851 hpet_writel(cfg
, HPET_Tn_CFG(i
));
852 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
853 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
854 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
856 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
861 if (hpet_clocksource_register())
864 if (id
& HPET_ID_LEGSUP
) {
865 hpet_legacy_clockevent_register();
871 hpet_clear_mapping();
877 * Needs to be late, as the reserve_timer code calls kalloc !
879 * Not a problem on i386 as hpet_enable is called from late_time_init,
880 * but on x86_64 it is necessary !
882 static __init
int hpet_late_init(void)
886 if (boot_hpet_disable
)
890 if (!force_hpet_address
)
893 hpet_address
= force_hpet_address
;
897 if (!hpet_virt_address
)
900 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
901 hpet_msi_capability_lookup(2);
903 hpet_msi_capability_lookup(0);
905 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
908 if (hpet_msi_disable
)
911 if (boot_cpu_has(X86_FEATURE_ARAT
))
914 cpu_notifier_register_begin();
915 for_each_online_cpu(cpu
) {
916 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
919 /* This notifier should be called after workqueue is ready */
920 __hotcpu_notifier(hpet_cpuhp_notify
, -20);
921 cpu_notifier_register_done();
925 fs_initcall(hpet_late_init
);
927 void hpet_disable(void)
929 if (is_hpet_capable() && hpet_virt_address
) {
930 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
933 cfg
= *hpet_boot_cfg
;
934 else if (hpet_legacy_int_enabled
) {
935 cfg
&= ~HPET_CFG_LEGACY
;
936 hpet_legacy_int_enabled
= 0;
938 cfg
&= ~HPET_CFG_ENABLE
;
939 hpet_writel(cfg
, HPET_CFG
);
944 id
= hpet_readl(HPET_ID
);
945 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
947 for (id
= 0; id
<= last
; ++id
)
948 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
950 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
951 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
955 #ifdef CONFIG_HPET_EMULATE_RTC
957 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
958 * is enabled, we support RTC interrupt functionality in software.
959 * RTC has 3 kinds of interrupts:
960 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
962 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
963 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
964 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
965 * (1) and (2) above are implemented using polling at a frequency of
966 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
967 * overhead. (DEFAULT_RTC_INT_FREQ)
968 * For (3), we use interrupts at 64Hz or user specified periodic
969 * frequency, whichever is higher.
971 #include <linux/mc146818rtc.h>
972 #include <linux/rtc.h>
975 #define DEFAULT_RTC_INT_FREQ 64
976 #define DEFAULT_RTC_SHIFT 6
977 #define RTC_NUM_INTS 1
979 static unsigned long hpet_rtc_flags
;
980 static int hpet_prev_update_sec
;
981 static struct rtc_time hpet_alarm_time
;
982 static unsigned long hpet_pie_count
;
983 static u32 hpet_t1_cmp
;
984 static u32 hpet_default_delta
;
985 static u32 hpet_pie_delta
;
986 static unsigned long hpet_pie_limit
;
988 static rtc_irq_handler irq_handler
;
991 * Check that the hpet counter c1 is ahead of the c2
993 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
995 return (s32
)(c2
- c1
) < 0;
999 * Registers a IRQ handler.
1001 int hpet_register_irq_handler(rtc_irq_handler handler
)
1003 if (!is_hpet_enabled())
1008 irq_handler
= handler
;
1012 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1015 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1018 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1020 if (!is_hpet_enabled())
1026 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1029 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1030 * is not supported by all HPET implementations for timer 1.
1032 * hpet_rtc_timer_init() is called when the rtc is initialized.
1034 int hpet_rtc_timer_init(void)
1036 unsigned int cfg
, cnt
, delta
;
1037 unsigned long flags
;
1039 if (!is_hpet_enabled())
1042 if (!hpet_default_delta
) {
1045 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1046 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1047 hpet_default_delta
= clc
;
1050 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1051 delta
= hpet_default_delta
;
1053 delta
= hpet_pie_delta
;
1055 local_irq_save(flags
);
1057 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1058 hpet_writel(cnt
, HPET_T1_CMP
);
1061 cfg
= hpet_readl(HPET_T1_CFG
);
1062 cfg
&= ~HPET_TN_PERIODIC
;
1063 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1064 hpet_writel(cfg
, HPET_T1_CFG
);
1066 local_irq_restore(flags
);
1070 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1072 static void hpet_disable_rtc_channel(void)
1075 cfg
= hpet_readl(HPET_T1_CFG
);
1076 cfg
&= ~HPET_TN_ENABLE
;
1077 hpet_writel(cfg
, HPET_T1_CFG
);
1081 * The functions below are called from rtc driver.
1082 * Return 0 if HPET is not being used.
1083 * Otherwise do the necessary changes and return 1.
1085 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1087 if (!is_hpet_enabled())
1090 hpet_rtc_flags
&= ~bit_mask
;
1091 if (unlikely(!hpet_rtc_flags
))
1092 hpet_disable_rtc_channel();
1096 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1098 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1100 unsigned long oldbits
= hpet_rtc_flags
;
1102 if (!is_hpet_enabled())
1105 hpet_rtc_flags
|= bit_mask
;
1107 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1108 hpet_prev_update_sec
= -1;
1111 hpet_rtc_timer_init();
1115 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1117 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1120 if (!is_hpet_enabled())
1123 hpet_alarm_time
.tm_hour
= hrs
;
1124 hpet_alarm_time
.tm_min
= min
;
1125 hpet_alarm_time
.tm_sec
= sec
;
1129 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1131 int hpet_set_periodic_freq(unsigned long freq
)
1135 if (!is_hpet_enabled())
1138 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1139 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1141 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1143 clc
>>= hpet_clockevent
.shift
;
1144 hpet_pie_delta
= clc
;
1149 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1151 int hpet_rtc_dropped_irq(void)
1153 return is_hpet_enabled();
1155 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1157 static void hpet_rtc_timer_reinit(void)
1162 if (unlikely(!hpet_rtc_flags
))
1163 hpet_disable_rtc_channel();
1165 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1166 delta
= hpet_default_delta
;
1168 delta
= hpet_pie_delta
;
1171 * Increment the comparator value until we are ahead of the
1175 hpet_t1_cmp
+= delta
;
1176 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1178 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1181 if (hpet_rtc_flags
& RTC_PIE
)
1182 hpet_pie_count
+= lost_ints
;
1183 if (printk_ratelimit())
1184 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1189 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1191 struct rtc_time curr_time
;
1192 unsigned long rtc_int_flag
= 0;
1194 hpet_rtc_timer_reinit();
1195 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1197 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1198 get_rtc_time(&curr_time
);
1200 if (hpet_rtc_flags
& RTC_UIE
&&
1201 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1202 if (hpet_prev_update_sec
>= 0)
1203 rtc_int_flag
= RTC_UF
;
1204 hpet_prev_update_sec
= curr_time
.tm_sec
;
1207 if (hpet_rtc_flags
& RTC_PIE
&&
1208 ++hpet_pie_count
>= hpet_pie_limit
) {
1209 rtc_int_flag
|= RTC_PF
;
1213 if (hpet_rtc_flags
& RTC_AIE
&&
1214 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1215 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1216 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1217 rtc_int_flag
|= RTC_AF
;
1220 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1222 irq_handler(rtc_int_flag
, dev_id
);
1226 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);