ARM: rockchip: fix broken build
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blob0f5fd9db8194ef5d135f1896f6e2645a5f059cd8
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
79 status = ocfs2_read_inode_block(inode, &bh);
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
84 fe = (struct ocfs2_dinode *) bh->b_data;
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 err = -ENOMEM;
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 err = -ENOMEM;
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
112 kaddr = kmap_atomic(bh_result->b_page);
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
120 kunmap_atomic(kaddr);
121 set_buffer_uptodate(bh_result);
123 brelse(buffer_cache_bh);
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
129 err = 0;
131 bail:
132 brelse(bh);
134 return err;
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
140 int err = 0;
141 unsigned int ext_flags;
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 &ext_flags);
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
165 goto bail;
168 if (max_blocks < count)
169 count = max_blocks;
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 map_bh(bh_result, inode->i_sb, p_blkno);
192 bh_result->b_size = count << inode->i_blkbits;
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
204 goto bail;
208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
215 bail:
216 if (err < 0)
217 err = -EIO;
219 return err;
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
225 void *kaddr;
226 loff_t size;
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
235 size = i_size_read(inode);
237 if (size > PAGE_CACHE_SIZE ||
238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 ocfs2_error(inode->i_sb,
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
243 return -EROFS;
246 kaddr = kmap_atomic(page);
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
252 kunmap_atomic(kaddr);
254 SetPageUptodate(page);
256 return 0;
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261 int ret;
262 struct buffer_head *di_bh = NULL;
264 BUG_ON(!PageLocked(page));
265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
267 ret = ocfs2_read_inode_block(inode, &di_bh);
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 unlock_page(page);
277 brelse(di_bh);
278 return ret;
281 static int ocfs2_readpage(struct file *file, struct page *page)
283 struct inode *inode = page->mapping->host;
284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret = AOP_TRUNCATED_PAGE;
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
309 goto out_inode_unlock;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start >= i_size_read(inode)) {
323 zero_user(page, 0, PAGE_SIZE);
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
333 unlock = 0;
335 out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
339 out:
340 if (unlock)
341 unlock_page(page);
342 return ret;
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
394 out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
398 return err;
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
418 return block_write_full_page(page, ocfs2_get_block, wbc);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
454 return ret;
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
496 bail:
497 status = err ? 0 : p_blkno;
499 return status;
503 * TODO: Make this into a generic get_blocks function.
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
510 * This function is called directly from get_more_blocks in direct-io.c.
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 struct buffer_head *bh_result, int create)
518 int ret;
519 u32 cpos = 0;
520 int alloc_locked = 0;
521 u64 p_blkno, inode_blocks, contig_blocks;
522 unsigned int ext_flags;
523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 &contig_blocks, &ext_flags);
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
558 alloc_locked = 1;
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564 contig_blocks);
565 if (clusters_to_alloc > contig_clusters)
566 clusters_to_alloc = contig_clusters;
568 /* allocate extent and insert them into the extent tree */
569 ret = ocfs2_extend_allocation(inode, cpos,
570 clusters_to_alloc, 0);
571 if (ret < 0) {
572 mlog_errno(ret);
573 goto bail;
576 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 &contig_blocks, &ext_flags);
578 if (ret < 0) {
579 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 (unsigned long long)iblock);
581 ret = -EIO;
582 goto bail;
587 * get_more_blocks() expects us to describe a hole by clearing
588 * the mapped bit on bh_result().
590 * Consider an unwritten extent as a hole.
592 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
593 map_bh(bh_result, inode->i_sb, p_blkno);
594 else
595 clear_buffer_mapped(bh_result);
597 /* make sure we don't map more than max_blocks blocks here as
598 that's all the kernel will handle at this point. */
599 if (max_blocks < contig_blocks)
600 contig_blocks = max_blocks;
601 bh_result->b_size = contig_blocks << blocksize_bits;
602 bail:
603 if (alloc_locked)
604 ocfs2_inode_unlock(inode, 1);
605 return ret;
609 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
610 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
611 * to protect io on one node from truncation on another.
613 static void ocfs2_dio_end_io(struct kiocb *iocb,
614 loff_t offset,
615 ssize_t bytes,
616 void *private)
618 struct inode *inode = file_inode(iocb->ki_filp);
619 int level;
621 /* this io's submitter should not have unlocked this before we could */
622 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
630 ocfs2_iocb_clear_rw_locked(iocb);
632 level = ocfs2_iocb_rw_locked_level(iocb);
633 ocfs2_rw_unlock(inode, level);
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 if (!page_has_buffers(page))
639 return 0;
640 return try_to_free_buffers(page);
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 struct inode *inode, loff_t offset)
646 int ret = 0;
647 u32 v_cpos = 0;
648 u32 p_cpos = 0;
649 unsigned int num_clusters = 0;
650 unsigned int ext_flags = 0;
652 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 &num_clusters, &ext_flags);
655 if (ret < 0) {
656 mlog_errno(ret);
657 return ret;
660 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 return 1;
663 return 0;
666 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
667 struct inode *inode, loff_t offset,
668 u64 zero_len, int cluster_align)
670 u32 p_cpos = 0;
671 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
672 unsigned int num_clusters = 0;
673 unsigned int ext_flags = 0;
674 int ret = 0;
676 if (offset <= i_size_read(inode) || cluster_align)
677 return 0;
679 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
680 &ext_flags);
681 if (ret < 0) {
682 mlog_errno(ret);
683 return ret;
686 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
687 u64 s = i_size_read(inode);
688 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
689 (do_div(s, osb->s_clustersize) >> 9);
691 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
692 zero_len >> 9, GFP_NOFS, false);
693 if (ret < 0)
694 mlog_errno(ret);
697 return ret;
700 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
701 struct inode *inode, loff_t offset)
703 u64 zero_start, zero_len, total_zero_len;
704 u32 p_cpos = 0, clusters_to_add;
705 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
706 unsigned int num_clusters = 0;
707 unsigned int ext_flags = 0;
708 u32 size_div, offset_div;
709 int ret = 0;
712 u64 o = offset;
713 u64 s = i_size_read(inode);
715 offset_div = do_div(o, osb->s_clustersize);
716 size_div = do_div(s, osb->s_clustersize);
719 if (offset <= i_size_read(inode))
720 return 0;
722 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
723 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
724 total_zero_len = offset - i_size_read(inode);
725 if (clusters_to_add)
726 total_zero_len -= offset_div;
728 /* Allocate clusters to fill out holes, and this is only needed
729 * when we add more than one clusters. Otherwise the cluster will
730 * be allocated during direct IO */
731 if (clusters_to_add > 1) {
732 ret = ocfs2_extend_allocation(inode,
733 OCFS2_I(inode)->ip_clusters,
734 clusters_to_add - 1, 0);
735 if (ret) {
736 mlog_errno(ret);
737 goto out;
741 while (total_zero_len) {
742 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
743 &ext_flags);
744 if (ret < 0) {
745 mlog_errno(ret);
746 goto out;
749 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
750 size_div;
751 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
752 size_div;
753 zero_len = min(total_zero_len, zero_len);
755 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
756 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
757 zero_start >> 9, zero_len >> 9,
758 GFP_NOFS, false);
759 if (ret < 0) {
760 mlog_errno(ret);
761 goto out;
765 total_zero_len -= zero_len;
766 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768 /* Only at first iteration can be cluster not aligned.
769 * So set size_div to 0 for the rest */
770 size_div = 0;
773 out:
774 return ret;
777 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
778 struct iov_iter *iter,
779 loff_t offset)
781 ssize_t ret = 0;
782 ssize_t written = 0;
783 bool orphaned = false;
784 int is_overwrite = 0;
785 struct file *file = iocb->ki_filp;
786 struct inode *inode = file_inode(file)->i_mapping->host;
787 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
788 struct buffer_head *di_bh = NULL;
789 size_t count = iter->count;
790 journal_t *journal = osb->journal->j_journal;
791 u64 zero_len_head, zero_len_tail;
792 int cluster_align_head, cluster_align_tail;
793 loff_t final_size = offset + count;
794 int append_write = offset >= i_size_read(inode) ? 1 : 0;
795 unsigned int num_clusters = 0;
796 unsigned int ext_flags = 0;
799 u64 o = offset;
800 u64 s = i_size_read(inode);
802 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
803 cluster_align_head = !zero_len_head;
805 zero_len_tail = osb->s_clustersize -
806 do_div(s, osb->s_clustersize);
807 if ((offset - i_size_read(inode)) < zero_len_tail)
808 zero_len_tail = offset - i_size_read(inode);
809 cluster_align_tail = !zero_len_tail;
813 * when final_size > inode->i_size, inode->i_size will be
814 * updated after direct write, so add the inode to orphan
815 * dir first.
817 if (final_size > i_size_read(inode)) {
818 ret = ocfs2_add_inode_to_orphan(osb, inode);
819 if (ret < 0) {
820 mlog_errno(ret);
821 goto out;
823 orphaned = true;
826 if (append_write) {
827 ret = ocfs2_inode_lock(inode, NULL, 1);
828 if (ret < 0) {
829 mlog_errno(ret);
830 goto clean_orphan;
833 /* zeroing out the previously allocated cluster tail
834 * that but not zeroed */
835 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
836 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
837 zero_len_tail, cluster_align_tail);
838 else
839 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
840 offset);
841 if (ret < 0) {
842 mlog_errno(ret);
843 ocfs2_inode_unlock(inode, 1);
844 goto clean_orphan;
847 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
848 if (is_overwrite < 0) {
849 mlog_errno(is_overwrite);
850 ocfs2_inode_unlock(inode, 1);
851 goto clean_orphan;
854 ocfs2_inode_unlock(inode, 1);
857 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
858 offset, ocfs2_direct_IO_get_blocks,
859 ocfs2_dio_end_io, NULL, 0);
860 if (unlikely(written < 0)) {
861 loff_t i_size = i_size_read(inode);
863 if (offset + count > i_size) {
864 ret = ocfs2_inode_lock(inode, &di_bh, 1);
865 if (ret < 0) {
866 mlog_errno(ret);
867 goto clean_orphan;
870 if (i_size == i_size_read(inode)) {
871 ret = ocfs2_truncate_file(inode, di_bh,
872 i_size);
873 if (ret < 0) {
874 if (ret != -ENOSPC)
875 mlog_errno(ret);
877 ocfs2_inode_unlock(inode, 1);
878 brelse(di_bh);
879 goto clean_orphan;
883 ocfs2_inode_unlock(inode, 1);
884 brelse(di_bh);
886 ret = jbd2_journal_force_commit(journal);
887 if (ret < 0)
888 mlog_errno(ret);
890 } else if (written > 0 && append_write && !is_overwrite &&
891 !cluster_align_head) {
892 /* zeroing out the allocated cluster head */
893 u32 p_cpos = 0;
894 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896 ret = ocfs2_inode_lock(inode, NULL, 0);
897 if (ret < 0) {
898 mlog_errno(ret);
899 goto clean_orphan;
902 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
903 &num_clusters, &ext_flags);
904 if (ret < 0) {
905 mlog_errno(ret);
906 ocfs2_inode_unlock(inode, 0);
907 goto clean_orphan;
910 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
913 (u64)p_cpos << (osb->s_clustersize_bits - 9),
914 zero_len_head >> 9, GFP_NOFS, false);
915 if (ret < 0)
916 mlog_errno(ret);
918 ocfs2_inode_unlock(inode, 0);
921 clean_orphan:
922 if (orphaned) {
923 int tmp_ret;
924 int update_isize = written > 0 ? 1 : 0;
925 loff_t end = update_isize ? offset + written : 0;
927 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
928 if (tmp_ret < 0) {
929 ret = tmp_ret;
930 mlog_errno(ret);
931 goto out;
934 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
935 update_isize, end);
936 if (tmp_ret < 0) {
937 ret = tmp_ret;
938 mlog_errno(ret);
939 goto out;
942 ocfs2_inode_unlock(inode, 1);
944 tmp_ret = jbd2_journal_force_commit(journal);
945 if (tmp_ret < 0) {
946 ret = tmp_ret;
947 mlog_errno(tmp_ret);
951 out:
952 if (ret >= 0)
953 ret = written;
954 return ret;
957 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
958 loff_t offset)
960 struct file *file = iocb->ki_filp;
961 struct inode *inode = file_inode(file)->i_mapping->host;
962 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
963 int full_coherency = !(osb->s_mount_opt &
964 OCFS2_MOUNT_COHERENCY_BUFFERED);
967 * Fallback to buffered I/O if we see an inode without
968 * extents.
970 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
971 return 0;
973 /* Fallback to buffered I/O if we are appending and
974 * concurrent O_DIRECT writes are allowed.
976 if (i_size_read(inode) <= offset && !full_coherency)
977 return 0;
979 if (iov_iter_rw(iter) == READ)
980 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
981 iter, offset,
982 ocfs2_direct_IO_get_blocks,
983 ocfs2_dio_end_io, NULL, 0);
984 else
985 return ocfs2_direct_IO_write(iocb, iter, offset);
988 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
989 u32 cpos,
990 unsigned int *start,
991 unsigned int *end)
993 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
995 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
996 unsigned int cpp;
998 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1000 cluster_start = cpos % cpp;
1001 cluster_start = cluster_start << osb->s_clustersize_bits;
1003 cluster_end = cluster_start + osb->s_clustersize;
1006 BUG_ON(cluster_start > PAGE_SIZE);
1007 BUG_ON(cluster_end > PAGE_SIZE);
1009 if (start)
1010 *start = cluster_start;
1011 if (end)
1012 *end = cluster_end;
1016 * 'from' and 'to' are the region in the page to avoid zeroing.
1018 * If pagesize > clustersize, this function will avoid zeroing outside
1019 * of the cluster boundary.
1021 * from == to == 0 is code for "zero the entire cluster region"
1023 static void ocfs2_clear_page_regions(struct page *page,
1024 struct ocfs2_super *osb, u32 cpos,
1025 unsigned from, unsigned to)
1027 void *kaddr;
1028 unsigned int cluster_start, cluster_end;
1030 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1032 kaddr = kmap_atomic(page);
1034 if (from || to) {
1035 if (from > cluster_start)
1036 memset(kaddr + cluster_start, 0, from - cluster_start);
1037 if (to < cluster_end)
1038 memset(kaddr + to, 0, cluster_end - to);
1039 } else {
1040 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1043 kunmap_atomic(kaddr);
1047 * Nonsparse file systems fully allocate before we get to the write
1048 * code. This prevents ocfs2_write() from tagging the write as an
1049 * allocating one, which means ocfs2_map_page_blocks() might try to
1050 * read-in the blocks at the tail of our file. Avoid reading them by
1051 * testing i_size against each block offset.
1053 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1054 unsigned int block_start)
1056 u64 offset = page_offset(page) + block_start;
1058 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1059 return 1;
1061 if (i_size_read(inode) > offset)
1062 return 1;
1064 return 0;
1068 * Some of this taken from __block_write_begin(). We already have our
1069 * mapping by now though, and the entire write will be allocating or
1070 * it won't, so not much need to use BH_New.
1072 * This will also skip zeroing, which is handled externally.
1074 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1075 struct inode *inode, unsigned int from,
1076 unsigned int to, int new)
1078 int ret = 0;
1079 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1080 unsigned int block_end, block_start;
1081 unsigned int bsize = 1 << inode->i_blkbits;
1083 if (!page_has_buffers(page))
1084 create_empty_buffers(page, bsize, 0);
1086 head = page_buffers(page);
1087 for (bh = head, block_start = 0; bh != head || !block_start;
1088 bh = bh->b_this_page, block_start += bsize) {
1089 block_end = block_start + bsize;
1091 clear_buffer_new(bh);
1094 * Ignore blocks outside of our i/o range -
1095 * they may belong to unallocated clusters.
1097 if (block_start >= to || block_end <= from) {
1098 if (PageUptodate(page))
1099 set_buffer_uptodate(bh);
1100 continue;
1104 * For an allocating write with cluster size >= page
1105 * size, we always write the entire page.
1107 if (new)
1108 set_buffer_new(bh);
1110 if (!buffer_mapped(bh)) {
1111 map_bh(bh, inode->i_sb, *p_blkno);
1112 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1115 if (PageUptodate(page)) {
1116 if (!buffer_uptodate(bh))
1117 set_buffer_uptodate(bh);
1118 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119 !buffer_new(bh) &&
1120 ocfs2_should_read_blk(inode, page, block_start) &&
1121 (block_start < from || block_end > to)) {
1122 ll_rw_block(READ, 1, &bh);
1123 *wait_bh++=bh;
1126 *p_blkno = *p_blkno + 1;
1130 * If we issued read requests - let them complete.
1132 while(wait_bh > wait) {
1133 wait_on_buffer(*--wait_bh);
1134 if (!buffer_uptodate(*wait_bh))
1135 ret = -EIO;
1138 if (ret == 0 || !new)
1139 return ret;
1142 * If we get -EIO above, zero out any newly allocated blocks
1143 * to avoid exposing stale data.
1145 bh = head;
1146 block_start = 0;
1147 do {
1148 block_end = block_start + bsize;
1149 if (block_end <= from)
1150 goto next_bh;
1151 if (block_start >= to)
1152 break;
1154 zero_user(page, block_start, bh->b_size);
1155 set_buffer_uptodate(bh);
1156 mark_buffer_dirty(bh);
1158 next_bh:
1159 block_start = block_end;
1160 bh = bh->b_this_page;
1161 } while (bh != head);
1163 return ret;
1166 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1167 #define OCFS2_MAX_CTXT_PAGES 1
1168 #else
1169 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1170 #endif
1172 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1175 * Describe the state of a single cluster to be written to.
1177 struct ocfs2_write_cluster_desc {
1178 u32 c_cpos;
1179 u32 c_phys;
1181 * Give this a unique field because c_phys eventually gets
1182 * filled.
1184 unsigned c_new;
1185 unsigned c_unwritten;
1186 unsigned c_needs_zero;
1189 struct ocfs2_write_ctxt {
1190 /* Logical cluster position / len of write */
1191 u32 w_cpos;
1192 u32 w_clen;
1194 /* First cluster allocated in a nonsparse extend */
1195 u32 w_first_new_cpos;
1197 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1200 * This is true if page_size > cluster_size.
1202 * It triggers a set of special cases during write which might
1203 * have to deal with allocating writes to partial pages.
1205 unsigned int w_large_pages;
1208 * Pages involved in this write.
1210 * w_target_page is the page being written to by the user.
1212 * w_pages is an array of pages which always contains
1213 * w_target_page, and in the case of an allocating write with
1214 * page_size < cluster size, it will contain zero'd and mapped
1215 * pages adjacent to w_target_page which need to be written
1216 * out in so that future reads from that region will get
1217 * zero's.
1219 unsigned int w_num_pages;
1220 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
1221 struct page *w_target_page;
1224 * w_target_locked is used for page_mkwrite path indicating no unlocking
1225 * against w_target_page in ocfs2_write_end_nolock.
1227 unsigned int w_target_locked:1;
1230 * ocfs2_write_end() uses this to know what the real range to
1231 * write in the target should be.
1233 unsigned int w_target_from;
1234 unsigned int w_target_to;
1237 * We could use journal_current_handle() but this is cleaner,
1238 * IMHO -Mark
1240 handle_t *w_handle;
1242 struct buffer_head *w_di_bh;
1244 struct ocfs2_cached_dealloc_ctxt w_dealloc;
1247 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1249 int i;
1251 for(i = 0; i < num_pages; i++) {
1252 if (pages[i]) {
1253 unlock_page(pages[i]);
1254 mark_page_accessed(pages[i]);
1255 page_cache_release(pages[i]);
1260 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1262 int i;
1265 * w_target_locked is only set to true in the page_mkwrite() case.
1266 * The intent is to allow us to lock the target page from write_begin()
1267 * to write_end(). The caller must hold a ref on w_target_page.
1269 if (wc->w_target_locked) {
1270 BUG_ON(!wc->w_target_page);
1271 for (i = 0; i < wc->w_num_pages; i++) {
1272 if (wc->w_target_page == wc->w_pages[i]) {
1273 wc->w_pages[i] = NULL;
1274 break;
1277 mark_page_accessed(wc->w_target_page);
1278 page_cache_release(wc->w_target_page);
1280 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1283 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1285 ocfs2_unlock_pages(wc);
1286 brelse(wc->w_di_bh);
1287 kfree(wc);
1290 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1291 struct ocfs2_super *osb, loff_t pos,
1292 unsigned len, struct buffer_head *di_bh)
1294 u32 cend;
1295 struct ocfs2_write_ctxt *wc;
1297 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1298 if (!wc)
1299 return -ENOMEM;
1301 wc->w_cpos = pos >> osb->s_clustersize_bits;
1302 wc->w_first_new_cpos = UINT_MAX;
1303 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1304 wc->w_clen = cend - wc->w_cpos + 1;
1305 get_bh(di_bh);
1306 wc->w_di_bh = di_bh;
1308 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1309 wc->w_large_pages = 1;
1310 else
1311 wc->w_large_pages = 0;
1313 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1315 *wcp = wc;
1317 return 0;
1321 * If a page has any new buffers, zero them out here, and mark them uptodate
1322 * and dirty so they'll be written out (in order to prevent uninitialised
1323 * block data from leaking). And clear the new bit.
1325 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1327 unsigned int block_start, block_end;
1328 struct buffer_head *head, *bh;
1330 BUG_ON(!PageLocked(page));
1331 if (!page_has_buffers(page))
1332 return;
1334 bh = head = page_buffers(page);
1335 block_start = 0;
1336 do {
1337 block_end = block_start + bh->b_size;
1339 if (buffer_new(bh)) {
1340 if (block_end > from && block_start < to) {
1341 if (!PageUptodate(page)) {
1342 unsigned start, end;
1344 start = max(from, block_start);
1345 end = min(to, block_end);
1347 zero_user_segment(page, start, end);
1348 set_buffer_uptodate(bh);
1351 clear_buffer_new(bh);
1352 mark_buffer_dirty(bh);
1356 block_start = block_end;
1357 bh = bh->b_this_page;
1358 } while (bh != head);
1362 * Only called when we have a failure during allocating write to write
1363 * zero's to the newly allocated region.
1365 static void ocfs2_write_failure(struct inode *inode,
1366 struct ocfs2_write_ctxt *wc,
1367 loff_t user_pos, unsigned user_len)
1369 int i;
1370 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1371 to = user_pos + user_len;
1372 struct page *tmppage;
1374 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1376 for(i = 0; i < wc->w_num_pages; i++) {
1377 tmppage = wc->w_pages[i];
1379 if (page_has_buffers(tmppage)) {
1380 if (ocfs2_should_order_data(inode))
1381 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1383 block_commit_write(tmppage, from, to);
1388 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1389 struct ocfs2_write_ctxt *wc,
1390 struct page *page, u32 cpos,
1391 loff_t user_pos, unsigned user_len,
1392 int new)
1394 int ret;
1395 unsigned int map_from = 0, map_to = 0;
1396 unsigned int cluster_start, cluster_end;
1397 unsigned int user_data_from = 0, user_data_to = 0;
1399 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1400 &cluster_start, &cluster_end);
1402 /* treat the write as new if the a hole/lseek spanned across
1403 * the page boundary.
1405 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1406 (page_offset(page) <= user_pos));
1408 if (page == wc->w_target_page) {
1409 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1410 map_to = map_from + user_len;
1412 if (new)
1413 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1414 cluster_start, cluster_end,
1415 new);
1416 else
1417 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1418 map_from, map_to, new);
1419 if (ret) {
1420 mlog_errno(ret);
1421 goto out;
1424 user_data_from = map_from;
1425 user_data_to = map_to;
1426 if (new) {
1427 map_from = cluster_start;
1428 map_to = cluster_end;
1430 } else {
1432 * If we haven't allocated the new page yet, we
1433 * shouldn't be writing it out without copying user
1434 * data. This is likely a math error from the caller.
1436 BUG_ON(!new);
1438 map_from = cluster_start;
1439 map_to = cluster_end;
1441 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442 cluster_start, cluster_end, new);
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out;
1450 * Parts of newly allocated pages need to be zero'd.
1452 * Above, we have also rewritten 'to' and 'from' - as far as
1453 * the rest of the function is concerned, the entire cluster
1454 * range inside of a page needs to be written.
1456 * We can skip this if the page is up to date - it's already
1457 * been zero'd from being read in as a hole.
1459 if (new && !PageUptodate(page))
1460 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1461 cpos, user_data_from, user_data_to);
1463 flush_dcache_page(page);
1465 out:
1466 return ret;
1470 * This function will only grab one clusters worth of pages.
1472 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1473 struct ocfs2_write_ctxt *wc,
1474 u32 cpos, loff_t user_pos,
1475 unsigned user_len, int new,
1476 struct page *mmap_page)
1478 int ret = 0, i;
1479 unsigned long start, target_index, end_index, index;
1480 struct inode *inode = mapping->host;
1481 loff_t last_byte;
1483 target_index = user_pos >> PAGE_CACHE_SHIFT;
1486 * Figure out how many pages we'll be manipulating here. For
1487 * non allocating write, we just change the one
1488 * page. Otherwise, we'll need a whole clusters worth. If we're
1489 * writing past i_size, we only need enough pages to cover the
1490 * last page of the write.
1492 if (new) {
1493 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1494 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1496 * We need the index *past* the last page we could possibly
1497 * touch. This is the page past the end of the write or
1498 * i_size, whichever is greater.
1500 last_byte = max(user_pos + user_len, i_size_read(inode));
1501 BUG_ON(last_byte < 1);
1502 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1503 if ((start + wc->w_num_pages) > end_index)
1504 wc->w_num_pages = end_index - start;
1505 } else {
1506 wc->w_num_pages = 1;
1507 start = target_index;
1510 for(i = 0; i < wc->w_num_pages; i++) {
1511 index = start + i;
1513 if (index == target_index && mmap_page) {
1515 * ocfs2_pagemkwrite() is a little different
1516 * and wants us to directly use the page
1517 * passed in.
1519 lock_page(mmap_page);
1521 /* Exit and let the caller retry */
1522 if (mmap_page->mapping != mapping) {
1523 WARN_ON(mmap_page->mapping);
1524 unlock_page(mmap_page);
1525 ret = -EAGAIN;
1526 goto out;
1529 page_cache_get(mmap_page);
1530 wc->w_pages[i] = mmap_page;
1531 wc->w_target_locked = true;
1532 } else {
1533 wc->w_pages[i] = find_or_create_page(mapping, index,
1534 GFP_NOFS);
1535 if (!wc->w_pages[i]) {
1536 ret = -ENOMEM;
1537 mlog_errno(ret);
1538 goto out;
1541 wait_for_stable_page(wc->w_pages[i]);
1543 if (index == target_index)
1544 wc->w_target_page = wc->w_pages[i];
1546 out:
1547 if (ret)
1548 wc->w_target_locked = false;
1549 return ret;
1553 * Prepare a single cluster for write one cluster into the file.
1555 static int ocfs2_write_cluster(struct address_space *mapping,
1556 u32 phys, unsigned int unwritten,
1557 unsigned int should_zero,
1558 struct ocfs2_alloc_context *data_ac,
1559 struct ocfs2_alloc_context *meta_ac,
1560 struct ocfs2_write_ctxt *wc, u32 cpos,
1561 loff_t user_pos, unsigned user_len)
1563 int ret, i, new;
1564 u64 v_blkno, p_blkno;
1565 struct inode *inode = mapping->host;
1566 struct ocfs2_extent_tree et;
1568 new = phys == 0 ? 1 : 0;
1569 if (new) {
1570 u32 tmp_pos;
1573 * This is safe to call with the page locks - it won't take
1574 * any additional semaphores or cluster locks.
1576 tmp_pos = cpos;
1577 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1578 &tmp_pos, 1, 0, wc->w_di_bh,
1579 wc->w_handle, data_ac,
1580 meta_ac, NULL);
1582 * This shouldn't happen because we must have already
1583 * calculated the correct meta data allocation required. The
1584 * internal tree allocation code should know how to increase
1585 * transaction credits itself.
1587 * If need be, we could handle -EAGAIN for a
1588 * RESTART_TRANS here.
1590 mlog_bug_on_msg(ret == -EAGAIN,
1591 "Inode %llu: EAGAIN return during allocation.\n",
1592 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1593 if (ret < 0) {
1594 mlog_errno(ret);
1595 goto out;
1597 } else if (unwritten) {
1598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1599 wc->w_di_bh);
1600 ret = ocfs2_mark_extent_written(inode, &et,
1601 wc->w_handle, cpos, 1, phys,
1602 meta_ac, &wc->w_dealloc);
1603 if (ret < 0) {
1604 mlog_errno(ret);
1605 goto out;
1609 if (should_zero)
1610 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1611 else
1612 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1615 * The only reason this should fail is due to an inability to
1616 * find the extent added.
1618 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1619 NULL);
1620 if (ret < 0) {
1621 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1622 "at logical block %llu",
1623 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1624 (unsigned long long)v_blkno);
1625 goto out;
1628 BUG_ON(p_blkno == 0);
1630 for(i = 0; i < wc->w_num_pages; i++) {
1631 int tmpret;
1633 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1634 wc->w_pages[i], cpos,
1635 user_pos, user_len,
1636 should_zero);
1637 if (tmpret) {
1638 mlog_errno(tmpret);
1639 if (ret == 0)
1640 ret = tmpret;
1645 * We only have cleanup to do in case of allocating write.
1647 if (ret && new)
1648 ocfs2_write_failure(inode, wc, user_pos, user_len);
1650 out:
1652 return ret;
1655 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1656 struct ocfs2_alloc_context *data_ac,
1657 struct ocfs2_alloc_context *meta_ac,
1658 struct ocfs2_write_ctxt *wc,
1659 loff_t pos, unsigned len)
1661 int ret, i;
1662 loff_t cluster_off;
1663 unsigned int local_len = len;
1664 struct ocfs2_write_cluster_desc *desc;
1665 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1667 for (i = 0; i < wc->w_clen; i++) {
1668 desc = &wc->w_desc[i];
1671 * We have to make sure that the total write passed in
1672 * doesn't extend past a single cluster.
1674 local_len = len;
1675 cluster_off = pos & (osb->s_clustersize - 1);
1676 if ((cluster_off + local_len) > osb->s_clustersize)
1677 local_len = osb->s_clustersize - cluster_off;
1679 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1680 desc->c_unwritten,
1681 desc->c_needs_zero,
1682 data_ac, meta_ac,
1683 wc, desc->c_cpos, pos, local_len);
1684 if (ret) {
1685 mlog_errno(ret);
1686 goto out;
1689 len -= local_len;
1690 pos += local_len;
1693 ret = 0;
1694 out:
1695 return ret;
1699 * ocfs2_write_end() wants to know which parts of the target page it
1700 * should complete the write on. It's easiest to compute them ahead of
1701 * time when a more complete view of the write is available.
1703 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1704 struct ocfs2_write_ctxt *wc,
1705 loff_t pos, unsigned len, int alloc)
1707 struct ocfs2_write_cluster_desc *desc;
1709 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1710 wc->w_target_to = wc->w_target_from + len;
1712 if (alloc == 0)
1713 return;
1716 * Allocating write - we may have different boundaries based
1717 * on page size and cluster size.
1719 * NOTE: We can no longer compute one value from the other as
1720 * the actual write length and user provided length may be
1721 * different.
1724 if (wc->w_large_pages) {
1726 * We only care about the 1st and last cluster within
1727 * our range and whether they should be zero'd or not. Either
1728 * value may be extended out to the start/end of a
1729 * newly allocated cluster.
1731 desc = &wc->w_desc[0];
1732 if (desc->c_needs_zero)
1733 ocfs2_figure_cluster_boundaries(osb,
1734 desc->c_cpos,
1735 &wc->w_target_from,
1736 NULL);
1738 desc = &wc->w_desc[wc->w_clen - 1];
1739 if (desc->c_needs_zero)
1740 ocfs2_figure_cluster_boundaries(osb,
1741 desc->c_cpos,
1742 NULL,
1743 &wc->w_target_to);
1744 } else {
1745 wc->w_target_from = 0;
1746 wc->w_target_to = PAGE_CACHE_SIZE;
1751 * Populate each single-cluster write descriptor in the write context
1752 * with information about the i/o to be done.
1754 * Returns the number of clusters that will have to be allocated, as
1755 * well as a worst case estimate of the number of extent records that
1756 * would have to be created during a write to an unwritten region.
1758 static int ocfs2_populate_write_desc(struct inode *inode,
1759 struct ocfs2_write_ctxt *wc,
1760 unsigned int *clusters_to_alloc,
1761 unsigned int *extents_to_split)
1763 int ret;
1764 struct ocfs2_write_cluster_desc *desc;
1765 unsigned int num_clusters = 0;
1766 unsigned int ext_flags = 0;
1767 u32 phys = 0;
1768 int i;
1770 *clusters_to_alloc = 0;
1771 *extents_to_split = 0;
1773 for (i = 0; i < wc->w_clen; i++) {
1774 desc = &wc->w_desc[i];
1775 desc->c_cpos = wc->w_cpos + i;
1777 if (num_clusters == 0) {
1779 * Need to look up the next extent record.
1781 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1782 &num_clusters, &ext_flags);
1783 if (ret) {
1784 mlog_errno(ret);
1785 goto out;
1788 /* We should already CoW the refcountd extent. */
1789 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1792 * Assume worst case - that we're writing in
1793 * the middle of the extent.
1795 * We can assume that the write proceeds from
1796 * left to right, in which case the extent
1797 * insert code is smart enough to coalesce the
1798 * next splits into the previous records created.
1800 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1801 *extents_to_split = *extents_to_split + 2;
1802 } else if (phys) {
1804 * Only increment phys if it doesn't describe
1805 * a hole.
1807 phys++;
1811 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1812 * file that got extended. w_first_new_cpos tells us
1813 * where the newly allocated clusters are so we can
1814 * zero them.
1816 if (desc->c_cpos >= wc->w_first_new_cpos) {
1817 BUG_ON(phys == 0);
1818 desc->c_needs_zero = 1;
1821 desc->c_phys = phys;
1822 if (phys == 0) {
1823 desc->c_new = 1;
1824 desc->c_needs_zero = 1;
1825 *clusters_to_alloc = *clusters_to_alloc + 1;
1828 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1829 desc->c_unwritten = 1;
1830 desc->c_needs_zero = 1;
1833 num_clusters--;
1836 ret = 0;
1837 out:
1838 return ret;
1841 static int ocfs2_write_begin_inline(struct address_space *mapping,
1842 struct inode *inode,
1843 struct ocfs2_write_ctxt *wc)
1845 int ret;
1846 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1847 struct page *page;
1848 handle_t *handle;
1849 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1851 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1852 if (IS_ERR(handle)) {
1853 ret = PTR_ERR(handle);
1854 mlog_errno(ret);
1855 goto out;
1858 page = find_or_create_page(mapping, 0, GFP_NOFS);
1859 if (!page) {
1860 ocfs2_commit_trans(osb, handle);
1861 ret = -ENOMEM;
1862 mlog_errno(ret);
1863 goto out;
1866 * If we don't set w_num_pages then this page won't get unlocked
1867 * and freed on cleanup of the write context.
1869 wc->w_pages[0] = wc->w_target_page = page;
1870 wc->w_num_pages = 1;
1872 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1873 OCFS2_JOURNAL_ACCESS_WRITE);
1874 if (ret) {
1875 ocfs2_commit_trans(osb, handle);
1877 mlog_errno(ret);
1878 goto out;
1881 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1882 ocfs2_set_inode_data_inline(inode, di);
1884 if (!PageUptodate(page)) {
1885 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1886 if (ret) {
1887 ocfs2_commit_trans(osb, handle);
1889 goto out;
1893 wc->w_handle = handle;
1894 out:
1895 return ret;
1898 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1900 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1902 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1903 return 1;
1904 return 0;
1907 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1908 struct inode *inode, loff_t pos,
1909 unsigned len, struct page *mmap_page,
1910 struct ocfs2_write_ctxt *wc)
1912 int ret, written = 0;
1913 loff_t end = pos + len;
1914 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1915 struct ocfs2_dinode *di = NULL;
1917 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1918 len, (unsigned long long)pos,
1919 oi->ip_dyn_features);
1922 * Handle inodes which already have inline data 1st.
1924 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1925 if (mmap_page == NULL &&
1926 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1927 goto do_inline_write;
1930 * The write won't fit - we have to give this inode an
1931 * inline extent list now.
1933 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1934 if (ret)
1935 mlog_errno(ret);
1936 goto out;
1940 * Check whether the inode can accept inline data.
1942 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1943 return 0;
1946 * Check whether the write can fit.
1948 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949 if (mmap_page ||
1950 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1951 return 0;
1953 do_inline_write:
1954 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1955 if (ret) {
1956 mlog_errno(ret);
1957 goto out;
1961 * This signals to the caller that the data can be written
1962 * inline.
1964 written = 1;
1965 out:
1966 return written ? written : ret;
1970 * This function only does anything for file systems which can't
1971 * handle sparse files.
1973 * What we want to do here is fill in any hole between the current end
1974 * of allocation and the end of our write. That way the rest of the
1975 * write path can treat it as an non-allocating write, which has no
1976 * special case code for sparse/nonsparse files.
1978 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1979 struct buffer_head *di_bh,
1980 loff_t pos, unsigned len,
1981 struct ocfs2_write_ctxt *wc)
1983 int ret;
1984 loff_t newsize = pos + len;
1986 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1988 if (newsize <= i_size_read(inode))
1989 return 0;
1991 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1992 if (ret)
1993 mlog_errno(ret);
1995 wc->w_first_new_cpos =
1996 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1998 return ret;
2001 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2002 loff_t pos)
2004 int ret = 0;
2006 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2007 if (pos > i_size_read(inode))
2008 ret = ocfs2_zero_extend(inode, di_bh, pos);
2010 return ret;
2014 * Try to flush truncate logs if we can free enough clusters from it.
2015 * As for return value, "< 0" means error, "0" no space and "1" means
2016 * we have freed enough spaces and let the caller try to allocate again.
2018 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2019 unsigned int needed)
2021 tid_t target;
2022 int ret = 0;
2023 unsigned int truncated_clusters;
2025 mutex_lock(&osb->osb_tl_inode->i_mutex);
2026 truncated_clusters = osb->truncated_clusters;
2027 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2030 * Check whether we can succeed in allocating if we free
2031 * the truncate log.
2033 if (truncated_clusters < needed)
2034 goto out;
2036 ret = ocfs2_flush_truncate_log(osb);
2037 if (ret) {
2038 mlog_errno(ret);
2039 goto out;
2042 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2043 jbd2_log_wait_commit(osb->journal->j_journal, target);
2044 ret = 1;
2046 out:
2047 return ret;
2050 int ocfs2_write_begin_nolock(struct file *filp,
2051 struct address_space *mapping,
2052 loff_t pos, unsigned len, unsigned flags,
2053 struct page **pagep, void **fsdata,
2054 struct buffer_head *di_bh, struct page *mmap_page)
2056 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2057 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2058 struct ocfs2_write_ctxt *wc;
2059 struct inode *inode = mapping->host;
2060 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2061 struct ocfs2_dinode *di;
2062 struct ocfs2_alloc_context *data_ac = NULL;
2063 struct ocfs2_alloc_context *meta_ac = NULL;
2064 handle_t *handle;
2065 struct ocfs2_extent_tree et;
2066 int try_free = 1, ret1;
2068 try_again:
2069 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2070 if (ret) {
2071 mlog_errno(ret);
2072 return ret;
2075 if (ocfs2_supports_inline_data(osb)) {
2076 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2077 mmap_page, wc);
2078 if (ret == 1) {
2079 ret = 0;
2080 goto success;
2082 if (ret < 0) {
2083 mlog_errno(ret);
2084 goto out;
2088 if (ocfs2_sparse_alloc(osb))
2089 ret = ocfs2_zero_tail(inode, di_bh, pos);
2090 else
2091 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2092 wc);
2093 if (ret) {
2094 mlog_errno(ret);
2095 goto out;
2098 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2099 if (ret < 0) {
2100 mlog_errno(ret);
2101 goto out;
2102 } else if (ret == 1) {
2103 clusters_need = wc->w_clen;
2104 ret = ocfs2_refcount_cow(inode, di_bh,
2105 wc->w_cpos, wc->w_clen, UINT_MAX);
2106 if (ret) {
2107 mlog_errno(ret);
2108 goto out;
2112 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2113 &extents_to_split);
2114 if (ret) {
2115 mlog_errno(ret);
2116 goto out;
2118 clusters_need += clusters_to_alloc;
2120 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2122 trace_ocfs2_write_begin_nolock(
2123 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2124 (long long)i_size_read(inode),
2125 le32_to_cpu(di->i_clusters),
2126 pos, len, flags, mmap_page,
2127 clusters_to_alloc, extents_to_split);
2130 * We set w_target_from, w_target_to here so that
2131 * ocfs2_write_end() knows which range in the target page to
2132 * write out. An allocation requires that we write the entire
2133 * cluster range.
2135 if (clusters_to_alloc || extents_to_split) {
2137 * XXX: We are stretching the limits of
2138 * ocfs2_lock_allocators(). It greatly over-estimates
2139 * the work to be done.
2141 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2142 wc->w_di_bh);
2143 ret = ocfs2_lock_allocators(inode, &et,
2144 clusters_to_alloc, extents_to_split,
2145 &data_ac, &meta_ac);
2146 if (ret) {
2147 mlog_errno(ret);
2148 goto out;
2151 if (data_ac)
2152 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2154 credits = ocfs2_calc_extend_credits(inode->i_sb,
2155 &di->id2.i_list);
2160 * We have to zero sparse allocated clusters, unwritten extent clusters,
2161 * and non-sparse clusters we just extended. For non-sparse writes,
2162 * we know zeros will only be needed in the first and/or last cluster.
2164 if (clusters_to_alloc || extents_to_split ||
2165 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2166 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2167 cluster_of_pages = 1;
2168 else
2169 cluster_of_pages = 0;
2171 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2173 handle = ocfs2_start_trans(osb, credits);
2174 if (IS_ERR(handle)) {
2175 ret = PTR_ERR(handle);
2176 mlog_errno(ret);
2177 goto out;
2180 wc->w_handle = handle;
2182 if (clusters_to_alloc) {
2183 ret = dquot_alloc_space_nodirty(inode,
2184 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2185 if (ret)
2186 goto out_commit;
2189 * We don't want this to fail in ocfs2_write_end(), so do it
2190 * here.
2192 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2193 OCFS2_JOURNAL_ACCESS_WRITE);
2194 if (ret) {
2195 mlog_errno(ret);
2196 goto out_quota;
2200 * Fill our page array first. That way we've grabbed enough so
2201 * that we can zero and flush if we error after adding the
2202 * extent.
2204 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2205 cluster_of_pages, mmap_page);
2206 if (ret && ret != -EAGAIN) {
2207 mlog_errno(ret);
2208 goto out_quota;
2212 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2213 * the target page. In this case, we exit with no error and no target
2214 * page. This will trigger the caller, page_mkwrite(), to re-try
2215 * the operation.
2217 if (ret == -EAGAIN) {
2218 BUG_ON(wc->w_target_page);
2219 ret = 0;
2220 goto out_quota;
2223 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2224 len);
2225 if (ret) {
2226 mlog_errno(ret);
2227 goto out_quota;
2230 if (data_ac)
2231 ocfs2_free_alloc_context(data_ac);
2232 if (meta_ac)
2233 ocfs2_free_alloc_context(meta_ac);
2235 success:
2236 *pagep = wc->w_target_page;
2237 *fsdata = wc;
2238 return 0;
2239 out_quota:
2240 if (clusters_to_alloc)
2241 dquot_free_space(inode,
2242 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2243 out_commit:
2244 ocfs2_commit_trans(osb, handle);
2246 out:
2247 ocfs2_free_write_ctxt(wc);
2249 if (data_ac) {
2250 ocfs2_free_alloc_context(data_ac);
2251 data_ac = NULL;
2253 if (meta_ac) {
2254 ocfs2_free_alloc_context(meta_ac);
2255 meta_ac = NULL;
2258 if (ret == -ENOSPC && try_free) {
2260 * Try to free some truncate log so that we can have enough
2261 * clusters to allocate.
2263 try_free = 0;
2265 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2266 if (ret1 == 1)
2267 goto try_again;
2269 if (ret1 < 0)
2270 mlog_errno(ret1);
2273 return ret;
2276 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2277 loff_t pos, unsigned len, unsigned flags,
2278 struct page **pagep, void **fsdata)
2280 int ret;
2281 struct buffer_head *di_bh = NULL;
2282 struct inode *inode = mapping->host;
2284 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2285 if (ret) {
2286 mlog_errno(ret);
2287 return ret;
2291 * Take alloc sem here to prevent concurrent lookups. That way
2292 * the mapping, zeroing and tree manipulation within
2293 * ocfs2_write() will be safe against ->readpage(). This
2294 * should also serve to lock out allocation from a shared
2295 * writeable region.
2297 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2299 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2300 fsdata, di_bh, NULL);
2301 if (ret) {
2302 mlog_errno(ret);
2303 goto out_fail;
2306 brelse(di_bh);
2308 return 0;
2310 out_fail:
2311 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2313 brelse(di_bh);
2314 ocfs2_inode_unlock(inode, 1);
2316 return ret;
2319 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2320 unsigned len, unsigned *copied,
2321 struct ocfs2_dinode *di,
2322 struct ocfs2_write_ctxt *wc)
2324 void *kaddr;
2326 if (unlikely(*copied < len)) {
2327 if (!PageUptodate(wc->w_target_page)) {
2328 *copied = 0;
2329 return;
2333 kaddr = kmap_atomic(wc->w_target_page);
2334 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2335 kunmap_atomic(kaddr);
2337 trace_ocfs2_write_end_inline(
2338 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2339 (unsigned long long)pos, *copied,
2340 le16_to_cpu(di->id2.i_data.id_count),
2341 le16_to_cpu(di->i_dyn_features));
2344 int ocfs2_write_end_nolock(struct address_space *mapping,
2345 loff_t pos, unsigned len, unsigned copied,
2346 struct page *page, void *fsdata)
2348 int i;
2349 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2350 struct inode *inode = mapping->host;
2351 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2352 struct ocfs2_write_ctxt *wc = fsdata;
2353 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2354 handle_t *handle = wc->w_handle;
2355 struct page *tmppage;
2357 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2358 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2359 goto out_write_size;
2362 if (unlikely(copied < len)) {
2363 if (!PageUptodate(wc->w_target_page))
2364 copied = 0;
2366 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2367 start+len);
2369 flush_dcache_page(wc->w_target_page);
2371 for(i = 0; i < wc->w_num_pages; i++) {
2372 tmppage = wc->w_pages[i];
2374 if (tmppage == wc->w_target_page) {
2375 from = wc->w_target_from;
2376 to = wc->w_target_to;
2378 BUG_ON(from > PAGE_CACHE_SIZE ||
2379 to > PAGE_CACHE_SIZE ||
2380 to < from);
2381 } else {
2383 * Pages adjacent to the target (if any) imply
2384 * a hole-filling write in which case we want
2385 * to flush their entire range.
2387 from = 0;
2388 to = PAGE_CACHE_SIZE;
2391 if (page_has_buffers(tmppage)) {
2392 if (ocfs2_should_order_data(inode))
2393 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2394 block_commit_write(tmppage, from, to);
2398 out_write_size:
2399 pos += copied;
2400 if (pos > i_size_read(inode)) {
2401 i_size_write(inode, pos);
2402 mark_inode_dirty(inode);
2404 inode->i_blocks = ocfs2_inode_sector_count(inode);
2405 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2406 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2407 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2408 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2409 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2410 ocfs2_journal_dirty(handle, wc->w_di_bh);
2412 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2413 * lock, or it will cause a deadlock since journal commit threads holds
2414 * this lock and will ask for the page lock when flushing the data.
2415 * put it here to preserve the unlock order.
2417 ocfs2_unlock_pages(wc);
2419 ocfs2_commit_trans(osb, handle);
2421 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2423 brelse(wc->w_di_bh);
2424 kfree(wc);
2426 return copied;
2429 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2430 loff_t pos, unsigned len, unsigned copied,
2431 struct page *page, void *fsdata)
2433 int ret;
2434 struct inode *inode = mapping->host;
2436 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2438 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2439 ocfs2_inode_unlock(inode, 1);
2441 return ret;
2444 const struct address_space_operations ocfs2_aops = {
2445 .readpage = ocfs2_readpage,
2446 .readpages = ocfs2_readpages,
2447 .writepage = ocfs2_writepage,
2448 .write_begin = ocfs2_write_begin,
2449 .write_end = ocfs2_write_end,
2450 .bmap = ocfs2_bmap,
2451 .direct_IO = ocfs2_direct_IO,
2452 .invalidatepage = block_invalidatepage,
2453 .releasepage = ocfs2_releasepage,
2454 .migratepage = buffer_migrate_page,
2455 .is_partially_uptodate = block_is_partially_uptodate,
2456 .error_remove_page = generic_error_remove_page,