2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION
);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any
;
77 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
78 MODULE_PARM_DESC(hpsa_allow_any
,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode
;
81 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
82 MODULE_PARM_DESC(hpsa_simple_mode
,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id
[] = {
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x334D},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1920},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1925},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
124 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
125 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
129 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
131 /* board_id = Subsystem Device ID & Vendor ID
132 * product = Marketing Name for the board
133 * access = Address of the struct of function pointers
135 static struct board_type products
[] = {
136 {0x3241103C, "Smart Array P212", &SA5_access
},
137 {0x3243103C, "Smart Array P410", &SA5_access
},
138 {0x3245103C, "Smart Array P410i", &SA5_access
},
139 {0x3247103C, "Smart Array P411", &SA5_access
},
140 {0x3249103C, "Smart Array P812", &SA5_access
},
141 {0x324A103C, "Smart Array P712m", &SA5_access
},
142 {0x324B103C, "Smart Array P711m", &SA5_access
},
143 {0x3350103C, "Smart Array P222", &SA5_access
},
144 {0x3351103C, "Smart Array P420", &SA5_access
},
145 {0x3352103C, "Smart Array P421", &SA5_access
},
146 {0x3353103C, "Smart Array P822", &SA5_access
},
147 {0x334D103C, "Smart Array P822se", &SA5_access
},
148 {0x3354103C, "Smart Array P420i", &SA5_access
},
149 {0x3355103C, "Smart Array P220i", &SA5_access
},
150 {0x3356103C, "Smart Array P721m", &SA5_access
},
151 {0x1921103C, "Smart Array P830i", &SA5_access
},
152 {0x1922103C, "Smart Array P430", &SA5_access
},
153 {0x1923103C, "Smart Array P431", &SA5_access
},
154 {0x1924103C, "Smart Array P830", &SA5_access
},
155 {0x1926103C, "Smart Array P731m", &SA5_access
},
156 {0x1928103C, "Smart Array P230i", &SA5_access
},
157 {0x1929103C, "Smart Array P530", &SA5_access
},
158 {0x21BD103C, "Smart Array", &SA5_access
},
159 {0x21BE103C, "Smart Array", &SA5_access
},
160 {0x21BF103C, "Smart Array", &SA5_access
},
161 {0x21C0103C, "Smart Array", &SA5_access
},
162 {0x21C1103C, "Smart Array", &SA5_access
},
163 {0x21C2103C, "Smart Array", &SA5_access
},
164 {0x21C3103C, "Smart Array", &SA5_access
},
165 {0x21C4103C, "Smart Array", &SA5_access
},
166 {0x21C5103C, "Smart Array", &SA5_access
},
167 {0x21C7103C, "Smart Array", &SA5_access
},
168 {0x21C8103C, "Smart Array", &SA5_access
},
169 {0x21C9103C, "Smart Array", &SA5_access
},
170 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
173 static int number_of_controllers
;
175 static struct list_head hpsa_ctlr_list
= LIST_HEAD_INIT(hpsa_ctlr_list
);
176 static spinlock_t lockup_detector_lock
;
177 static struct task_struct
*hpsa_lockup_detector
;
179 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
180 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
181 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
182 static void start_io(struct ctlr_info
*h
);
185 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
188 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
189 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
);
190 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
191 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
);
192 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
193 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
196 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
197 static void hpsa_scan_start(struct Scsi_Host
*);
198 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
199 unsigned long elapsed_time
);
200 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
201 int qdepth
, int reason
);
203 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
204 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
205 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
206 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
208 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
209 static int check_for_unit_attention(struct ctlr_info
*h
,
210 struct CommandList
*c
);
211 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
212 struct CommandList
*c
);
213 /* performant mode helper functions */
214 static void calc_bucket_map(int *bucket
, int num_buckets
,
215 int nsgs
, int *bucket_map
);
216 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
217 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
218 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
219 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
221 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
222 unsigned long *memory_bar
);
223 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
224 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
226 static inline void finish_cmd(struct CommandList
*c
);
227 #define BOARD_NOT_READY 0
228 #define BOARD_READY 1
230 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
232 unsigned long *priv
= shost_priv(sdev
->host
);
233 return (struct ctlr_info
*) *priv
;
236 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
238 unsigned long *priv
= shost_priv(sh
);
239 return (struct ctlr_info
*) *priv
;
242 static int check_for_unit_attention(struct ctlr_info
*h
,
243 struct CommandList
*c
)
245 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
248 switch (c
->err_info
->SenseInfo
[12]) {
250 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
251 "detected, command retried\n", h
->ctlr
);
254 dev_warn(&h
->pdev
->dev
, HPSA
"%d: LUN failure "
255 "detected, action required\n", h
->ctlr
);
257 case REPORT_LUNS_CHANGED
:
258 dev_warn(&h
->pdev
->dev
, HPSA
"%d: report LUN data "
259 "changed, action required\n", h
->ctlr
);
261 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
262 * target (array) devices.
266 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
267 "or device reset detected\n", h
->ctlr
);
269 case UNIT_ATTENTION_CLEARED
:
270 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
271 "cleared by another initiator\n", h
->ctlr
);
274 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
275 "unit attention detected\n", h
->ctlr
);
281 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
283 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
284 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
285 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
287 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
291 static ssize_t
host_store_rescan(struct device
*dev
,
292 struct device_attribute
*attr
,
293 const char *buf
, size_t count
)
296 struct Scsi_Host
*shost
= class_to_shost(dev
);
297 h
= shost_to_hba(shost
);
298 hpsa_scan_start(h
->scsi_host
);
302 static ssize_t
host_show_firmware_revision(struct device
*dev
,
303 struct device_attribute
*attr
, char *buf
)
306 struct Scsi_Host
*shost
= class_to_shost(dev
);
307 unsigned char *fwrev
;
309 h
= shost_to_hba(shost
);
310 if (!h
->hba_inquiry_data
)
312 fwrev
= &h
->hba_inquiry_data
[32];
313 return snprintf(buf
, 20, "%c%c%c%c\n",
314 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
317 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct Scsi_Host
*shost
= class_to_shost(dev
);
321 struct ctlr_info
*h
= shost_to_hba(shost
);
323 return snprintf(buf
, 20, "%d\n", h
->commands_outstanding
);
326 static ssize_t
host_show_transport_mode(struct device
*dev
,
327 struct device_attribute
*attr
, char *buf
)
330 struct Scsi_Host
*shost
= class_to_shost(dev
);
332 h
= shost_to_hba(shost
);
333 return snprintf(buf
, 20, "%s\n",
334 h
->transMethod
& CFGTBL_Trans_Performant
?
335 "performant" : "simple");
338 /* List of controllers which cannot be hard reset on kexec with reset_devices */
339 static u32 unresettable_controller
[] = {
340 0x324a103C, /* Smart Array P712m */
341 0x324b103C, /* SmartArray P711m */
342 0x3223103C, /* Smart Array P800 */
343 0x3234103C, /* Smart Array P400 */
344 0x3235103C, /* Smart Array P400i */
345 0x3211103C, /* Smart Array E200i */
346 0x3212103C, /* Smart Array E200 */
347 0x3213103C, /* Smart Array E200i */
348 0x3214103C, /* Smart Array E200i */
349 0x3215103C, /* Smart Array E200i */
350 0x3237103C, /* Smart Array E500 */
351 0x323D103C, /* Smart Array P700m */
352 0x40800E11, /* Smart Array 5i */
353 0x409C0E11, /* Smart Array 6400 */
354 0x409D0E11, /* Smart Array 6400 EM */
355 0x40700E11, /* Smart Array 5300 */
356 0x40820E11, /* Smart Array 532 */
357 0x40830E11, /* Smart Array 5312 */
358 0x409A0E11, /* Smart Array 641 */
359 0x409B0E11, /* Smart Array 642 */
360 0x40910E11, /* Smart Array 6i */
363 /* List of controllers which cannot even be soft reset */
364 static u32 soft_unresettable_controller
[] = {
365 0x40800E11, /* Smart Array 5i */
366 0x40700E11, /* Smart Array 5300 */
367 0x40820E11, /* Smart Array 532 */
368 0x40830E11, /* Smart Array 5312 */
369 0x409A0E11, /* Smart Array 641 */
370 0x409B0E11, /* Smart Array 642 */
371 0x40910E11, /* Smart Array 6i */
372 /* Exclude 640x boards. These are two pci devices in one slot
373 * which share a battery backed cache module. One controls the
374 * cache, the other accesses the cache through the one that controls
375 * it. If we reset the one controlling the cache, the other will
376 * likely not be happy. Just forbid resetting this conjoined mess.
377 * The 640x isn't really supported by hpsa anyway.
379 0x409C0E11, /* Smart Array 6400 */
380 0x409D0E11, /* Smart Array 6400 EM */
383 static int ctlr_is_hard_resettable(u32 board_id
)
387 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
388 if (unresettable_controller
[i
] == board_id
)
393 static int ctlr_is_soft_resettable(u32 board_id
)
397 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
398 if (soft_unresettable_controller
[i
] == board_id
)
403 static int ctlr_is_resettable(u32 board_id
)
405 return ctlr_is_hard_resettable(board_id
) ||
406 ctlr_is_soft_resettable(board_id
);
409 static ssize_t
host_show_resettable(struct device
*dev
,
410 struct device_attribute
*attr
, char *buf
)
413 struct Scsi_Host
*shost
= class_to_shost(dev
);
415 h
= shost_to_hba(shost
);
416 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
419 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
421 return (scsi3addr
[3] & 0xC0) == 0x40;
424 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
427 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429 static ssize_t
raid_level_show(struct device
*dev
,
430 struct device_attribute
*attr
, char *buf
)
433 unsigned char rlevel
;
435 struct scsi_device
*sdev
;
436 struct hpsa_scsi_dev_t
*hdev
;
439 sdev
= to_scsi_device(dev
);
440 h
= sdev_to_hba(sdev
);
441 spin_lock_irqsave(&h
->lock
, flags
);
442 hdev
= sdev
->hostdata
;
444 spin_unlock_irqrestore(&h
->lock
, flags
);
448 /* Is this even a logical drive? */
449 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
450 spin_unlock_irqrestore(&h
->lock
, flags
);
451 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
455 rlevel
= hdev
->raid_level
;
456 spin_unlock_irqrestore(&h
->lock
, flags
);
457 if (rlevel
> RAID_UNKNOWN
)
458 rlevel
= RAID_UNKNOWN
;
459 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
463 static ssize_t
lunid_show(struct device
*dev
,
464 struct device_attribute
*attr
, char *buf
)
467 struct scsi_device
*sdev
;
468 struct hpsa_scsi_dev_t
*hdev
;
470 unsigned char lunid
[8];
472 sdev
= to_scsi_device(dev
);
473 h
= sdev_to_hba(sdev
);
474 spin_lock_irqsave(&h
->lock
, flags
);
475 hdev
= sdev
->hostdata
;
477 spin_unlock_irqrestore(&h
->lock
, flags
);
480 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
481 spin_unlock_irqrestore(&h
->lock
, flags
);
482 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
483 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
484 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
487 static ssize_t
unique_id_show(struct device
*dev
,
488 struct device_attribute
*attr
, char *buf
)
491 struct scsi_device
*sdev
;
492 struct hpsa_scsi_dev_t
*hdev
;
494 unsigned char sn
[16];
496 sdev
= to_scsi_device(dev
);
497 h
= sdev_to_hba(sdev
);
498 spin_lock_irqsave(&h
->lock
, flags
);
499 hdev
= sdev
->hostdata
;
501 spin_unlock_irqrestore(&h
->lock
, flags
);
504 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
505 spin_unlock_irqrestore(&h
->lock
, flags
);
506 return snprintf(buf
, 16 * 2 + 2,
507 "%02X%02X%02X%02X%02X%02X%02X%02X"
508 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
509 sn
[0], sn
[1], sn
[2], sn
[3],
510 sn
[4], sn
[5], sn
[6], sn
[7],
511 sn
[8], sn
[9], sn
[10], sn
[11],
512 sn
[12], sn
[13], sn
[14], sn
[15]);
515 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
516 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
517 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
518 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
519 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
520 host_show_firmware_revision
, NULL
);
521 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
522 host_show_commands_outstanding
, NULL
);
523 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
524 host_show_transport_mode
, NULL
);
525 static DEVICE_ATTR(resettable
, S_IRUGO
,
526 host_show_resettable
, NULL
);
528 static struct device_attribute
*hpsa_sdev_attrs
[] = {
529 &dev_attr_raid_level
,
535 static struct device_attribute
*hpsa_shost_attrs
[] = {
537 &dev_attr_firmware_revision
,
538 &dev_attr_commands_outstanding
,
539 &dev_attr_transport_mode
,
540 &dev_attr_resettable
,
544 static struct scsi_host_template hpsa_driver_template
= {
545 .module
= THIS_MODULE
,
548 .queuecommand
= hpsa_scsi_queue_command
,
549 .scan_start
= hpsa_scan_start
,
550 .scan_finished
= hpsa_scan_finished
,
551 .change_queue_depth
= hpsa_change_queue_depth
,
553 .use_clustering
= ENABLE_CLUSTERING
,
554 .eh_abort_handler
= hpsa_eh_abort_handler
,
555 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
557 .slave_alloc
= hpsa_slave_alloc
,
558 .slave_destroy
= hpsa_slave_destroy
,
560 .compat_ioctl
= hpsa_compat_ioctl
,
562 .sdev_attrs
= hpsa_sdev_attrs
,
563 .shost_attrs
= hpsa_shost_attrs
,
568 /* Enqueuing and dequeuing functions for cmdlists. */
569 static inline void addQ(struct list_head
*list
, struct CommandList
*c
)
571 list_add_tail(&c
->list
, list
);
574 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
577 struct reply_pool
*rq
= &h
->reply_queue
[q
];
580 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
581 return h
->access
.command_completed(h
, q
);
583 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
584 a
= rq
->head
[rq
->current_entry
];
586 spin_lock_irqsave(&h
->lock
, flags
);
587 h
->commands_outstanding
--;
588 spin_unlock_irqrestore(&h
->lock
, flags
);
592 /* Check for wraparound */
593 if (rq
->current_entry
== h
->max_commands
) {
594 rq
->current_entry
= 0;
600 /* set_performant_mode: Modify the tag for cciss performant
601 * set bit 0 for pull model, bits 3-1 for block fetch
604 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
606 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
607 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
608 if (likely(h
->msix_vector
))
609 c
->Header
.ReplyQueue
=
610 raw_smp_processor_id() % h
->nreply_queues
;
614 static int is_firmware_flash_cmd(u8
*cdb
)
616 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
620 * During firmware flash, the heartbeat register may not update as frequently
621 * as it should. So we dial down lockup detection during firmware flash. and
622 * dial it back up when firmware flash completes.
624 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
625 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
626 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
627 struct CommandList
*c
)
629 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
631 atomic_inc(&h
->firmware_flash_in_progress
);
632 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
635 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
636 struct CommandList
*c
)
638 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
639 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
640 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
643 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
644 struct CommandList
*c
)
648 set_performant_mode(h
, c
);
649 dial_down_lockup_detection_during_fw_flash(h
, c
);
650 spin_lock_irqsave(&h
->lock
, flags
);
653 spin_unlock_irqrestore(&h
->lock
, flags
);
657 static inline void removeQ(struct CommandList
*c
)
659 if (WARN_ON(list_empty(&c
->list
)))
661 list_del_init(&c
->list
);
664 static inline int is_hba_lunid(unsigned char scsi3addr
[])
666 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
669 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
671 if (!h
->hba_inquiry_data
)
673 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
678 static int hpsa_find_target_lun(struct ctlr_info
*h
,
679 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
681 /* finds an unused bus, target, lun for a new physical device
682 * assumes h->devlock is held
685 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
687 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
689 for (i
= 0; i
< h
->ndevices
; i
++) {
690 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
691 __set_bit(h
->dev
[i
]->target
, lun_taken
);
694 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
695 if (i
< HPSA_MAX_DEVICES
) {
704 /* Add an entry into h->dev[] array. */
705 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
706 struct hpsa_scsi_dev_t
*device
,
707 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
709 /* assumes h->devlock is held */
712 unsigned char addr1
[8], addr2
[8];
713 struct hpsa_scsi_dev_t
*sd
;
715 if (n
>= HPSA_MAX_DEVICES
) {
716 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
721 /* physical devices do not have lun or target assigned until now. */
722 if (device
->lun
!= -1)
723 /* Logical device, lun is already assigned. */
726 /* If this device a non-zero lun of a multi-lun device
727 * byte 4 of the 8-byte LUN addr will contain the logical
728 * unit no, zero otherise.
730 if (device
->scsi3addr
[4] == 0) {
731 /* This is not a non-zero lun of a multi-lun device */
732 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
733 device
->bus
, &device
->target
, &device
->lun
) != 0)
738 /* This is a non-zero lun of a multi-lun device.
739 * Search through our list and find the device which
740 * has the same 8 byte LUN address, excepting byte 4.
741 * Assign the same bus and target for this new LUN.
742 * Use the logical unit number from the firmware.
744 memcpy(addr1
, device
->scsi3addr
, 8);
746 for (i
= 0; i
< n
; i
++) {
748 memcpy(addr2
, sd
->scsi3addr
, 8);
750 /* differ only in byte 4? */
751 if (memcmp(addr1
, addr2
, 8) == 0) {
752 device
->bus
= sd
->bus
;
753 device
->target
= sd
->target
;
754 device
->lun
= device
->scsi3addr
[4];
758 if (device
->lun
== -1) {
759 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
760 " suspect firmware bug or unsupported hardware "
769 added
[*nadded
] = device
;
772 /* initially, (before registering with scsi layer) we don't
773 * know our hostno and we don't want to print anything first
774 * time anyway (the scsi layer's inquiries will show that info)
776 /* if (hostno != -1) */
777 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
778 scsi_device_type(device
->devtype
), hostno
,
779 device
->bus
, device
->target
, device
->lun
);
783 /* Update an entry in h->dev[] array. */
784 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
785 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
787 /* assumes h->devlock is held */
788 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
790 /* Raid level changed. */
791 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
792 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
793 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
794 new_entry
->target
, new_entry
->lun
);
797 /* Replace an entry from h->dev[] array. */
798 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
799 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
800 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
801 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
803 /* assumes h->devlock is held */
804 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
805 removed
[*nremoved
] = h
->dev
[entry
];
809 * New physical devices won't have target/lun assigned yet
810 * so we need to preserve the values in the slot we are replacing.
812 if (new_entry
->target
== -1) {
813 new_entry
->target
= h
->dev
[entry
]->target
;
814 new_entry
->lun
= h
->dev
[entry
]->lun
;
817 h
->dev
[entry
] = new_entry
;
818 added
[*nadded
] = new_entry
;
820 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
821 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
822 new_entry
->target
, new_entry
->lun
);
825 /* Remove an entry from h->dev[] array. */
826 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
827 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
829 /* assumes h->devlock is held */
831 struct hpsa_scsi_dev_t
*sd
;
833 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
836 removed
[*nremoved
] = h
->dev
[entry
];
839 for (i
= entry
; i
< h
->ndevices
-1; i
++)
840 h
->dev
[i
] = h
->dev
[i
+1];
842 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
843 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
847 #define SCSI3ADDR_EQ(a, b) ( \
848 (a)[7] == (b)[7] && \
849 (a)[6] == (b)[6] && \
850 (a)[5] == (b)[5] && \
851 (a)[4] == (b)[4] && \
852 (a)[3] == (b)[3] && \
853 (a)[2] == (b)[2] && \
854 (a)[1] == (b)[1] && \
857 static void fixup_botched_add(struct ctlr_info
*h
,
858 struct hpsa_scsi_dev_t
*added
)
860 /* called when scsi_add_device fails in order to re-adjust
861 * h->dev[] to match the mid layer's view.
866 spin_lock_irqsave(&h
->lock
, flags
);
867 for (i
= 0; i
< h
->ndevices
; i
++) {
868 if (h
->dev
[i
] == added
) {
869 for (j
= i
; j
< h
->ndevices
-1; j
++)
870 h
->dev
[j
] = h
->dev
[j
+1];
875 spin_unlock_irqrestore(&h
->lock
, flags
);
879 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
880 struct hpsa_scsi_dev_t
*dev2
)
882 /* we compare everything except lun and target as these
883 * are not yet assigned. Compare parts likely
886 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
887 sizeof(dev1
->scsi3addr
)) != 0)
889 if (memcmp(dev1
->device_id
, dev2
->device_id
,
890 sizeof(dev1
->device_id
)) != 0)
892 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
894 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
896 if (dev1
->devtype
!= dev2
->devtype
)
898 if (dev1
->bus
!= dev2
->bus
)
903 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
904 struct hpsa_scsi_dev_t
*dev2
)
906 /* Device attributes that can change, but don't mean
907 * that the device is a different device, nor that the OS
908 * needs to be told anything about the change.
910 if (dev1
->raid_level
!= dev2
->raid_level
)
915 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
916 * and return needle location in *index. If scsi3addr matches, but not
917 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
918 * location in *index.
919 * In the case of a minor device attribute change, such as RAID level, just
920 * return DEVICE_UPDATED, along with the updated device's location in index.
921 * If needle not found, return DEVICE_NOT_FOUND.
923 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
924 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
928 #define DEVICE_NOT_FOUND 0
929 #define DEVICE_CHANGED 1
930 #define DEVICE_SAME 2
931 #define DEVICE_UPDATED 3
932 for (i
= 0; i
< haystack_size
; i
++) {
933 if (haystack
[i
] == NULL
) /* previously removed. */
935 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
937 if (device_is_the_same(needle
, haystack
[i
])) {
938 if (device_updated(needle
, haystack
[i
]))
939 return DEVICE_UPDATED
;
942 return DEVICE_CHANGED
;
947 return DEVICE_NOT_FOUND
;
950 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
951 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
953 /* sd contains scsi3 addresses and devtypes, and inquiry
954 * data. This function takes what's in sd to be the current
955 * reality and updates h->dev[] to reflect that reality.
957 int i
, entry
, device_change
, changes
= 0;
958 struct hpsa_scsi_dev_t
*csd
;
960 struct hpsa_scsi_dev_t
**added
, **removed
;
961 int nadded
, nremoved
;
962 struct Scsi_Host
*sh
= NULL
;
964 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
965 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
967 if (!added
|| !removed
) {
968 dev_warn(&h
->pdev
->dev
, "out of memory in "
969 "adjust_hpsa_scsi_table\n");
973 spin_lock_irqsave(&h
->devlock
, flags
);
975 /* find any devices in h->dev[] that are not in
976 * sd[] and remove them from h->dev[], and for any
977 * devices which have changed, remove the old device
978 * info and add the new device info.
979 * If minor device attributes change, just update
980 * the existing device structure.
985 while (i
< h
->ndevices
) {
987 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
988 if (device_change
== DEVICE_NOT_FOUND
) {
990 hpsa_scsi_remove_entry(h
, hostno
, i
,
992 continue; /* remove ^^^, hence i not incremented */
993 } else if (device_change
== DEVICE_CHANGED
) {
995 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
996 added
, &nadded
, removed
, &nremoved
);
997 /* Set it to NULL to prevent it from being freed
998 * at the bottom of hpsa_update_scsi_devices()
1001 } else if (device_change
== DEVICE_UPDATED
) {
1002 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1007 /* Now, make sure every device listed in sd[] is also
1008 * listed in h->dev[], adding them if they aren't found
1011 for (i
= 0; i
< nsds
; i
++) {
1012 if (!sd
[i
]) /* if already added above. */
1014 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1015 h
->ndevices
, &entry
);
1016 if (device_change
== DEVICE_NOT_FOUND
) {
1018 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1019 added
, &nadded
) != 0)
1021 sd
[i
] = NULL
; /* prevent from being freed later. */
1022 } else if (device_change
== DEVICE_CHANGED
) {
1023 /* should never happen... */
1025 dev_warn(&h
->pdev
->dev
,
1026 "device unexpectedly changed.\n");
1027 /* but if it does happen, we just ignore that device */
1030 spin_unlock_irqrestore(&h
->devlock
, flags
);
1032 /* Don't notify scsi mid layer of any changes the first time through
1033 * (or if there are no changes) scsi_scan_host will do it later the
1034 * first time through.
1036 if (hostno
== -1 || !changes
)
1040 /* Notify scsi mid layer of any removed devices */
1041 for (i
= 0; i
< nremoved
; i
++) {
1042 struct scsi_device
*sdev
=
1043 scsi_device_lookup(sh
, removed
[i
]->bus
,
1044 removed
[i
]->target
, removed
[i
]->lun
);
1046 scsi_remove_device(sdev
);
1047 scsi_device_put(sdev
);
1049 /* We don't expect to get here.
1050 * future cmds to this device will get selection
1051 * timeout as if the device was gone.
1053 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1054 " for removal.", hostno
, removed
[i
]->bus
,
1055 removed
[i
]->target
, removed
[i
]->lun
);
1061 /* Notify scsi mid layer of any added devices */
1062 for (i
= 0; i
< nadded
; i
++) {
1063 if (scsi_add_device(sh
, added
[i
]->bus
,
1064 added
[i
]->target
, added
[i
]->lun
) == 0)
1066 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1067 "device not added.\n", hostno
, added
[i
]->bus
,
1068 added
[i
]->target
, added
[i
]->lun
);
1069 /* now we have to remove it from h->dev,
1070 * since it didn't get added to scsi mid layer
1072 fixup_botched_add(h
, added
[i
]);
1081 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1082 * Assume's h->devlock is held.
1084 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1085 int bus
, int target
, int lun
)
1088 struct hpsa_scsi_dev_t
*sd
;
1090 for (i
= 0; i
< h
->ndevices
; i
++) {
1092 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1098 /* link sdev->hostdata to our per-device structure. */
1099 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1101 struct hpsa_scsi_dev_t
*sd
;
1102 unsigned long flags
;
1103 struct ctlr_info
*h
;
1105 h
= sdev_to_hba(sdev
);
1106 spin_lock_irqsave(&h
->devlock
, flags
);
1107 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1108 sdev_id(sdev
), sdev
->lun
);
1110 sdev
->hostdata
= sd
;
1111 spin_unlock_irqrestore(&h
->devlock
, flags
);
1115 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1117 /* nothing to do. */
1120 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1124 if (!h
->cmd_sg_list
)
1126 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1127 kfree(h
->cmd_sg_list
[i
]);
1128 h
->cmd_sg_list
[i
] = NULL
;
1130 kfree(h
->cmd_sg_list
);
1131 h
->cmd_sg_list
= NULL
;
1134 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1138 if (h
->chainsize
<= 0)
1141 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1143 if (!h
->cmd_sg_list
)
1145 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1146 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1147 h
->chainsize
, GFP_KERNEL
);
1148 if (!h
->cmd_sg_list
[i
])
1154 hpsa_free_sg_chain_blocks(h
);
1158 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1159 struct CommandList
*c
)
1161 struct SGDescriptor
*chain_sg
, *chain_block
;
1164 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1165 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1166 chain_sg
->Ext
= HPSA_SG_CHAIN
;
1167 chain_sg
->Len
= sizeof(*chain_sg
) *
1168 (c
->Header
.SGTotal
- h
->max_cmd_sg_entries
);
1169 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_sg
->Len
,
1171 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1172 /* prevent subsequent unmapping */
1173 chain_sg
->Addr
.lower
= 0;
1174 chain_sg
->Addr
.upper
= 0;
1177 chain_sg
->Addr
.lower
= (u32
) (temp64
& 0x0FFFFFFFFULL
);
1178 chain_sg
->Addr
.upper
= (u32
) ((temp64
>> 32) & 0x0FFFFFFFFULL
);
1182 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1183 struct CommandList
*c
)
1185 struct SGDescriptor
*chain_sg
;
1186 union u64bit temp64
;
1188 if (c
->Header
.SGTotal
<= h
->max_cmd_sg_entries
)
1191 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1192 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
1193 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
1194 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
1197 static void complete_scsi_command(struct CommandList
*cp
)
1199 struct scsi_cmnd
*cmd
;
1200 struct ctlr_info
*h
;
1201 struct ErrorInfo
*ei
;
1203 unsigned char sense_key
;
1204 unsigned char asc
; /* additional sense code */
1205 unsigned char ascq
; /* additional sense code qualifier */
1206 unsigned long sense_data_size
;
1209 cmd
= (struct scsi_cmnd
*) cp
->scsi_cmd
;
1212 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1213 if (cp
->Header
.SGTotal
> h
->max_cmd_sg_entries
)
1214 hpsa_unmap_sg_chain_block(h
, cp
);
1216 cmd
->result
= (DID_OK
<< 16); /* host byte */
1217 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1218 cmd
->result
|= ei
->ScsiStatus
;
1220 /* copy the sense data whether we need to or not. */
1221 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1222 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1224 sense_data_size
= sizeof(ei
->SenseInfo
);
1225 if (ei
->SenseLen
< sense_data_size
)
1226 sense_data_size
= ei
->SenseLen
;
1228 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1229 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1231 if (ei
->CommandStatus
== 0) {
1233 cmd
->scsi_done(cmd
);
1237 /* an error has occurred */
1238 switch (ei
->CommandStatus
) {
1240 case CMD_TARGET_STATUS
:
1241 if (ei
->ScsiStatus
) {
1243 sense_key
= 0xf & ei
->SenseInfo
[2];
1244 /* Get additional sense code */
1245 asc
= ei
->SenseInfo
[12];
1246 /* Get addition sense code qualifier */
1247 ascq
= ei
->SenseInfo
[13];
1250 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1251 if (check_for_unit_attention(h
, cp
)) {
1252 cmd
->result
= DID_SOFT_ERROR
<< 16;
1255 if (sense_key
== ILLEGAL_REQUEST
) {
1257 * SCSI REPORT_LUNS is commonly unsupported on
1258 * Smart Array. Suppress noisy complaint.
1260 if (cp
->Request
.CDB
[0] == REPORT_LUNS
)
1263 /* If ASC/ASCQ indicate Logical Unit
1264 * Not Supported condition,
1266 if ((asc
== 0x25) && (ascq
== 0x0)) {
1267 dev_warn(&h
->pdev
->dev
, "cp %p "
1268 "has check condition\n", cp
);
1273 if (sense_key
== NOT_READY
) {
1274 /* If Sense is Not Ready, Logical Unit
1275 * Not ready, Manual Intervention
1278 if ((asc
== 0x04) && (ascq
== 0x03)) {
1279 dev_warn(&h
->pdev
->dev
, "cp %p "
1280 "has check condition: unit "
1281 "not ready, manual "
1282 "intervention required\n", cp
);
1286 if (sense_key
== ABORTED_COMMAND
) {
1287 /* Aborted command is retryable */
1288 dev_warn(&h
->pdev
->dev
, "cp %p "
1289 "has check condition: aborted command: "
1290 "ASC: 0x%x, ASCQ: 0x%x\n",
1292 cmd
->result
= DID_SOFT_ERROR
<< 16;
1295 /* Must be some other type of check condition */
1296 dev_dbg(&h
->pdev
->dev
, "cp %p has check condition: "
1298 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299 "Returning result: 0x%x, "
1300 "cmd=[%02x %02x %02x %02x %02x "
1301 "%02x %02x %02x %02x %02x %02x "
1302 "%02x %02x %02x %02x %02x]\n",
1303 cp
, sense_key
, asc
, ascq
,
1305 cmd
->cmnd
[0], cmd
->cmnd
[1],
1306 cmd
->cmnd
[2], cmd
->cmnd
[3],
1307 cmd
->cmnd
[4], cmd
->cmnd
[5],
1308 cmd
->cmnd
[6], cmd
->cmnd
[7],
1309 cmd
->cmnd
[8], cmd
->cmnd
[9],
1310 cmd
->cmnd
[10], cmd
->cmnd
[11],
1311 cmd
->cmnd
[12], cmd
->cmnd
[13],
1312 cmd
->cmnd
[14], cmd
->cmnd
[15]);
1317 /* Problem was not a check condition
1318 * Pass it up to the upper layers...
1320 if (ei
->ScsiStatus
) {
1321 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1322 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1323 "Returning result: 0x%x\n",
1325 sense_key
, asc
, ascq
,
1327 } else { /* scsi status is zero??? How??? */
1328 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1329 "Returning no connection.\n", cp
),
1331 /* Ordinarily, this case should never happen,
1332 * but there is a bug in some released firmware
1333 * revisions that allows it to happen if, for
1334 * example, a 4100 backplane loses power and
1335 * the tape drive is in it. We assume that
1336 * it's a fatal error of some kind because we
1337 * can't show that it wasn't. We will make it
1338 * look like selection timeout since that is
1339 * the most common reason for this to occur,
1340 * and it's severe enough.
1343 cmd
->result
= DID_NO_CONNECT
<< 16;
1347 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1349 case CMD_DATA_OVERRUN
:
1350 dev_warn(&h
->pdev
->dev
, "cp %p has"
1351 " completed with data overrun "
1355 /* print_bytes(cp, sizeof(*cp), 1, 0);
1357 /* We get CMD_INVALID if you address a non-existent device
1358 * instead of a selection timeout (no response). You will
1359 * see this if you yank out a drive, then try to access it.
1360 * This is kind of a shame because it means that any other
1361 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1362 * missing target. */
1363 cmd
->result
= DID_NO_CONNECT
<< 16;
1366 case CMD_PROTOCOL_ERR
:
1367 cmd
->result
= DID_ERROR
<< 16;
1368 dev_warn(&h
->pdev
->dev
, "cp %p has "
1369 "protocol error\n", cp
);
1371 case CMD_HARDWARE_ERR
:
1372 cmd
->result
= DID_ERROR
<< 16;
1373 dev_warn(&h
->pdev
->dev
, "cp %p had hardware error\n", cp
);
1375 case CMD_CONNECTION_LOST
:
1376 cmd
->result
= DID_ERROR
<< 16;
1377 dev_warn(&h
->pdev
->dev
, "cp %p had connection lost\n", cp
);
1380 cmd
->result
= DID_ABORT
<< 16;
1381 dev_warn(&h
->pdev
->dev
, "cp %p was aborted with status 0x%x\n",
1382 cp
, ei
->ScsiStatus
);
1384 case CMD_ABORT_FAILED
:
1385 cmd
->result
= DID_ERROR
<< 16;
1386 dev_warn(&h
->pdev
->dev
, "cp %p reports abort failed\n", cp
);
1388 case CMD_UNSOLICITED_ABORT
:
1389 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1390 dev_warn(&h
->pdev
->dev
, "cp %p aborted due to an unsolicited "
1394 cmd
->result
= DID_TIME_OUT
<< 16;
1395 dev_warn(&h
->pdev
->dev
, "cp %p timedout\n", cp
);
1397 case CMD_UNABORTABLE
:
1398 cmd
->result
= DID_ERROR
<< 16;
1399 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1402 cmd
->result
= DID_ERROR
<< 16;
1403 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1404 cp
, ei
->CommandStatus
);
1407 cmd
->scsi_done(cmd
);
1410 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1411 struct CommandList
*c
, int sg_used
, int data_direction
)
1414 union u64bit addr64
;
1416 for (i
= 0; i
< sg_used
; i
++) {
1417 addr64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1418 addr64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1419 pci_unmap_single(pdev
, (dma_addr_t
) addr64
.val
, c
->SG
[i
].Len
,
1424 static int hpsa_map_one(struct pci_dev
*pdev
,
1425 struct CommandList
*cp
,
1432 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1433 cp
->Header
.SGList
= 0;
1434 cp
->Header
.SGTotal
= 0;
1438 addr64
= (u64
) pci_map_single(pdev
, buf
, buflen
, data_direction
);
1439 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
1440 /* Prevent subsequent unmap of something never mapped */
1441 cp
->Header
.SGList
= 0;
1442 cp
->Header
.SGTotal
= 0;
1445 cp
->SG
[0].Addr
.lower
=
1446 (u32
) (addr64
& (u64
) 0x00000000FFFFFFFF);
1447 cp
->SG
[0].Addr
.upper
=
1448 (u32
) ((addr64
>> 32) & (u64
) 0x00000000FFFFFFFF);
1449 cp
->SG
[0].Len
= buflen
;
1450 cp
->Header
.SGList
= (u8
) 1; /* no. SGs contig in this cmd */
1451 cp
->Header
.SGTotal
= (u16
) 1; /* total sgs in this cmd list */
1455 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
1456 struct CommandList
*c
)
1458 DECLARE_COMPLETION_ONSTACK(wait
);
1461 enqueue_cmd_and_start_io(h
, c
);
1462 wait_for_completion(&wait
);
1465 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
1466 struct CommandList
*c
)
1468 unsigned long flags
;
1470 /* If controller lockup detected, fake a hardware error. */
1471 spin_lock_irqsave(&h
->lock
, flags
);
1472 if (unlikely(h
->lockup_detected
)) {
1473 spin_unlock_irqrestore(&h
->lock
, flags
);
1474 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
1476 spin_unlock_irqrestore(&h
->lock
, flags
);
1477 hpsa_scsi_do_simple_cmd_core(h
, c
);
1481 #define MAX_DRIVER_CMD_RETRIES 25
1482 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
1483 struct CommandList
*c
, int data_direction
)
1485 int backoff_time
= 10, retry_count
= 0;
1488 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
1489 hpsa_scsi_do_simple_cmd_core(h
, c
);
1491 if (retry_count
> 3) {
1492 msleep(backoff_time
);
1493 if (backoff_time
< 1000)
1496 } while ((check_for_unit_attention(h
, c
) ||
1497 check_for_busy(h
, c
)) &&
1498 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
1499 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
1502 static void hpsa_scsi_interpret_error(struct CommandList
*cp
)
1504 struct ErrorInfo
*ei
;
1505 struct device
*d
= &cp
->h
->pdev
->dev
;
1508 switch (ei
->CommandStatus
) {
1509 case CMD_TARGET_STATUS
:
1510 dev_warn(d
, "cmd %p has completed with errors\n", cp
);
1511 dev_warn(d
, "cmd %p has SCSI Status = %x\n", cp
,
1513 if (ei
->ScsiStatus
== 0)
1514 dev_warn(d
, "SCSI status is abnormally zero. "
1515 "(probably indicates selection timeout "
1516 "reported incorrectly due to a known "
1517 "firmware bug, circa July, 2001.)\n");
1519 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1520 dev_info(d
, "UNDERRUN\n");
1522 case CMD_DATA_OVERRUN
:
1523 dev_warn(d
, "cp %p has completed with data overrun\n", cp
);
1526 /* controller unfortunately reports SCSI passthru's
1527 * to non-existent targets as invalid commands.
1529 dev_warn(d
, "cp %p is reported invalid (probably means "
1530 "target device no longer present)\n", cp
);
1531 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1535 case CMD_PROTOCOL_ERR
:
1536 dev_warn(d
, "cp %p has protocol error \n", cp
);
1538 case CMD_HARDWARE_ERR
:
1539 /* cmd->result = DID_ERROR << 16; */
1540 dev_warn(d
, "cp %p had hardware error\n", cp
);
1542 case CMD_CONNECTION_LOST
:
1543 dev_warn(d
, "cp %p had connection lost\n", cp
);
1546 dev_warn(d
, "cp %p was aborted\n", cp
);
1548 case CMD_ABORT_FAILED
:
1549 dev_warn(d
, "cp %p reports abort failed\n", cp
);
1551 case CMD_UNSOLICITED_ABORT
:
1552 dev_warn(d
, "cp %p aborted due to an unsolicited abort\n", cp
);
1555 dev_warn(d
, "cp %p timed out\n", cp
);
1557 case CMD_UNABORTABLE
:
1558 dev_warn(d
, "Command unabortable\n");
1561 dev_warn(d
, "cp %p returned unknown status %x\n", cp
,
1566 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1567 unsigned char page
, unsigned char *buf
,
1568 unsigned char bufsize
)
1571 struct CommandList
*c
;
1572 struct ErrorInfo
*ei
;
1574 c
= cmd_special_alloc(h
);
1576 if (c
== NULL
) { /* trouble... */
1577 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1581 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
1582 page
, scsi3addr
, TYPE_CMD
)) {
1586 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1588 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1589 hpsa_scsi_interpret_error(c
);
1593 cmd_special_free(h
, c
);
1597 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
)
1600 struct CommandList
*c
;
1601 struct ErrorInfo
*ei
;
1603 c
= cmd_special_alloc(h
);
1605 if (c
== NULL
) { /* trouble... */
1606 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1610 /* fill_cmd can't fail here, no data buffer to map. */
1611 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
,
1612 NULL
, 0, 0, scsi3addr
, TYPE_MSG
);
1613 hpsa_scsi_do_simple_cmd_core(h
, c
);
1614 /* no unmap needed here because no data xfer. */
1617 if (ei
->CommandStatus
!= 0) {
1618 hpsa_scsi_interpret_error(c
);
1621 cmd_special_free(h
, c
);
1625 static void hpsa_get_raid_level(struct ctlr_info
*h
,
1626 unsigned char *scsi3addr
, unsigned char *raid_level
)
1631 *raid_level
= RAID_UNKNOWN
;
1632 buf
= kzalloc(64, GFP_KERNEL
);
1635 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0xC1, buf
, 64);
1637 *raid_level
= buf
[8];
1638 if (*raid_level
> RAID_UNKNOWN
)
1639 *raid_level
= RAID_UNKNOWN
;
1644 /* Get the device id from inquiry page 0x83 */
1645 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1646 unsigned char *device_id
, int buflen
)
1653 buf
= kzalloc(64, GFP_KERNEL
);
1656 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0x83, buf
, 64);
1658 memcpy(device_id
, &buf
[8], buflen
);
1663 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
1664 struct ReportLUNdata
*buf
, int bufsize
,
1665 int extended_response
)
1668 struct CommandList
*c
;
1669 unsigned char scsi3addr
[8];
1670 struct ErrorInfo
*ei
;
1672 c
= cmd_special_alloc(h
);
1673 if (c
== NULL
) { /* trouble... */
1674 dev_err(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1677 /* address the controller */
1678 memset(scsi3addr
, 0, sizeof(scsi3addr
));
1679 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
1680 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
1684 if (extended_response
)
1685 c
->Request
.CDB
[1] = extended_response
;
1686 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1688 if (ei
->CommandStatus
!= 0 &&
1689 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1690 hpsa_scsi_interpret_error(c
);
1694 cmd_special_free(h
, c
);
1698 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
1699 struct ReportLUNdata
*buf
,
1700 int bufsize
, int extended_response
)
1702 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
, extended_response
);
1705 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
1706 struct ReportLUNdata
*buf
, int bufsize
)
1708 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
1711 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
1712 int bus
, int target
, int lun
)
1715 device
->target
= target
;
1719 static int hpsa_update_device_info(struct ctlr_info
*h
,
1720 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
1721 unsigned char *is_OBDR_device
)
1724 #define OBDR_SIG_OFFSET 43
1725 #define OBDR_TAPE_SIG "$DR-10"
1726 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1727 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1729 unsigned char *inq_buff
;
1730 unsigned char *obdr_sig
;
1732 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
1736 /* Do an inquiry to the device to see what it is. */
1737 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
1738 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
1739 /* Inquiry failed (msg printed already) */
1740 dev_err(&h
->pdev
->dev
,
1741 "hpsa_update_device_info: inquiry failed\n");
1745 this_device
->devtype
= (inq_buff
[0] & 0x1f);
1746 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
1747 memcpy(this_device
->vendor
, &inq_buff
[8],
1748 sizeof(this_device
->vendor
));
1749 memcpy(this_device
->model
, &inq_buff
[16],
1750 sizeof(this_device
->model
));
1751 memset(this_device
->device_id
, 0,
1752 sizeof(this_device
->device_id
));
1753 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
1754 sizeof(this_device
->device_id
));
1756 if (this_device
->devtype
== TYPE_DISK
&&
1757 is_logical_dev_addr_mode(scsi3addr
))
1758 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
1760 this_device
->raid_level
= RAID_UNKNOWN
;
1762 if (is_OBDR_device
) {
1763 /* See if this is a One-Button-Disaster-Recovery device
1764 * by looking for "$DR-10" at offset 43 in inquiry data.
1766 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
1767 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
1768 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
1769 OBDR_SIG_LEN
) == 0);
1780 static unsigned char *ext_target_model
[] = {
1789 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1793 for (i
= 0; ext_target_model
[i
]; i
++)
1794 if (strncmp(device
->model
, ext_target_model
[i
],
1795 strlen(ext_target_model
[i
])) == 0)
1800 /* Helper function to assign bus, target, lun mapping of devices.
1801 * Puts non-external target logical volumes on bus 0, external target logical
1802 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1803 * Logical drive target and lun are assigned at this time, but
1804 * physical device lun and target assignment are deferred (assigned
1805 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1807 static void figure_bus_target_lun(struct ctlr_info
*h
,
1808 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
1810 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
1812 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
1813 /* physical device, target and lun filled in later */
1814 if (is_hba_lunid(lunaddrbytes
))
1815 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
1817 /* defer target, lun assignment for physical devices */
1818 hpsa_set_bus_target_lun(device
, 2, -1, -1);
1821 /* It's a logical device */
1822 if (is_ext_target(h
, device
)) {
1823 /* external target way, put logicals on bus 1
1824 * and match target/lun numbers box
1825 * reports, other smart array, bus 0, target 0, match lunid
1827 hpsa_set_bus_target_lun(device
,
1828 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
1831 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
1835 * If there is no lun 0 on a target, linux won't find any devices.
1836 * For the external targets (arrays), we have to manually detect the enclosure
1837 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1838 * it for some reason. *tmpdevice is the target we're adding,
1839 * this_device is a pointer into the current element of currentsd[]
1840 * that we're building up in update_scsi_devices(), below.
1841 * lunzerobits is a bitmap that tracks which targets already have a
1843 * Returns 1 if an enclosure was added, 0 if not.
1845 static int add_ext_target_dev(struct ctlr_info
*h
,
1846 struct hpsa_scsi_dev_t
*tmpdevice
,
1847 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
1848 unsigned long lunzerobits
[], int *n_ext_target_devs
)
1850 unsigned char scsi3addr
[8];
1852 if (test_bit(tmpdevice
->target
, lunzerobits
))
1853 return 0; /* There is already a lun 0 on this target. */
1855 if (!is_logical_dev_addr_mode(lunaddrbytes
))
1856 return 0; /* It's the logical targets that may lack lun 0. */
1858 if (!is_ext_target(h
, tmpdevice
))
1859 return 0; /* Only external target devices have this problem. */
1861 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
1864 memset(scsi3addr
, 0, 8);
1865 scsi3addr
[3] = tmpdevice
->target
;
1866 if (is_hba_lunid(scsi3addr
))
1867 return 0; /* Don't add the RAID controller here. */
1869 if (is_scsi_rev_5(h
))
1870 return 0; /* p1210m doesn't need to do this. */
1872 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
1873 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
1874 "target devices exceeded. Check your hardware "
1879 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
1881 (*n_ext_target_devs
)++;
1882 hpsa_set_bus_target_lun(this_device
,
1883 tmpdevice
->bus
, tmpdevice
->target
, 0);
1884 set_bit(tmpdevice
->target
, lunzerobits
);
1889 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1890 * logdev. The number of luns in physdev and logdev are returned in
1891 * *nphysicals and *nlogicals, respectively.
1892 * Returns 0 on success, -1 otherwise.
1894 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
1896 struct ReportLUNdata
*physdev
, u32
*nphysicals
,
1897 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
1899 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, reportlunsize
, 0)) {
1900 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
1903 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 8;
1904 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
1905 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded."
1906 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1907 *nphysicals
- HPSA_MAX_PHYS_LUN
);
1908 *nphysicals
= HPSA_MAX_PHYS_LUN
;
1910 if (hpsa_scsi_do_report_log_luns(h
, logdev
, reportlunsize
)) {
1911 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
1914 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
1915 /* Reject Logicals in excess of our max capability. */
1916 if (*nlogicals
> HPSA_MAX_LUN
) {
1917 dev_warn(&h
->pdev
->dev
,
1918 "maximum logical LUNs (%d) exceeded. "
1919 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
1920 *nlogicals
- HPSA_MAX_LUN
);
1921 *nlogicals
= HPSA_MAX_LUN
;
1923 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
1924 dev_warn(&h
->pdev
->dev
,
1925 "maximum logical + physical LUNs (%d) exceeded. "
1926 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1927 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
1928 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
1933 u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
, int i
,
1934 int nphysicals
, int nlogicals
, struct ReportLUNdata
*physdev_list
,
1935 struct ReportLUNdata
*logdev_list
)
1937 /* Helper function, figure out where the LUN ID info is coming from
1938 * given index i, lists of physical and logical devices, where in
1939 * the list the raid controller is supposed to appear (first or last)
1942 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
1943 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
1945 if (i
== raid_ctlr_position
)
1946 return RAID_CTLR_LUNID
;
1948 if (i
< logicals_start
)
1949 return &physdev_list
->LUN
[i
- (raid_ctlr_position
== 0)][0];
1951 if (i
< last_device
)
1952 return &logdev_list
->LUN
[i
- nphysicals
-
1953 (raid_ctlr_position
== 0)][0];
1958 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
1960 /* the idea here is we could get notified
1961 * that some devices have changed, so we do a report
1962 * physical luns and report logical luns cmd, and adjust
1963 * our list of devices accordingly.
1965 * The scsi3addr's of devices won't change so long as the
1966 * adapter is not reset. That means we can rescan and
1967 * tell which devices we already know about, vs. new
1968 * devices, vs. disappearing devices.
1970 struct ReportLUNdata
*physdev_list
= NULL
;
1971 struct ReportLUNdata
*logdev_list
= NULL
;
1974 u32 ndev_allocated
= 0;
1975 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
1977 int reportlunsize
= sizeof(*physdev_list
) + HPSA_MAX_PHYS_LUN
* 8;
1978 int i
, n_ext_target_devs
, ndevs_to_allocate
;
1979 int raid_ctlr_position
;
1980 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
1982 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1983 physdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1984 logdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1985 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
1987 if (!currentsd
|| !physdev_list
|| !logdev_list
|| !tmpdevice
) {
1988 dev_err(&h
->pdev
->dev
, "out of memory\n");
1991 memset(lunzerobits
, 0, sizeof(lunzerobits
));
1993 if (hpsa_gather_lun_info(h
, reportlunsize
, physdev_list
, &nphysicals
,
1994 logdev_list
, &nlogicals
))
1997 /* We might see up to the maximum number of logical and physical disks
1998 * plus external target devices, and a device for the local RAID
2001 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
2003 /* Allocate the per device structures */
2004 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
2005 if (i
>= HPSA_MAX_DEVICES
) {
2006 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
2007 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
2008 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
2012 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
2013 if (!currentsd
[i
]) {
2014 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
2015 __FILE__
, __LINE__
);
2021 if (unlikely(is_scsi_rev_5(h
)))
2022 raid_ctlr_position
= 0;
2024 raid_ctlr_position
= nphysicals
+ nlogicals
;
2026 /* adjust our table of devices */
2027 n_ext_target_devs
= 0;
2028 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
2029 u8
*lunaddrbytes
, is_OBDR
= 0;
2031 /* Figure out where the LUN ID info is coming from */
2032 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
2033 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
2034 /* skip masked physical devices. */
2035 if (lunaddrbytes
[3] & 0xC0 &&
2036 i
< nphysicals
+ (raid_ctlr_position
== 0))
2039 /* Get device type, vendor, model, device id */
2040 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
2042 continue; /* skip it if we can't talk to it. */
2043 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
2044 this_device
= currentsd
[ncurrent
];
2047 * For external target devices, we have to insert a LUN 0 which
2048 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2049 * is nonetheless an enclosure device there. We have to
2050 * present that otherwise linux won't find anything if
2051 * there is no lun 0.
2053 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
2054 lunaddrbytes
, lunzerobits
,
2055 &n_ext_target_devs
)) {
2057 this_device
= currentsd
[ncurrent
];
2060 *this_device
= *tmpdevice
;
2062 switch (this_device
->devtype
) {
2064 /* We don't *really* support actual CD-ROM devices,
2065 * just "One Button Disaster Recovery" tape drive
2066 * which temporarily pretends to be a CD-ROM drive.
2067 * So we check that the device is really an OBDR tape
2068 * device by checking for "$DR-10" in bytes 43-48 of
2080 case TYPE_MEDIUM_CHANGER
:
2084 /* Only present the Smartarray HBA as a RAID controller.
2085 * If it's a RAID controller other than the HBA itself
2086 * (an external RAID controller, MSA500 or similar)
2089 if (!is_hba_lunid(lunaddrbytes
))
2096 if (ncurrent
>= HPSA_MAX_DEVICES
)
2099 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
2102 for (i
= 0; i
< ndev_allocated
; i
++)
2103 kfree(currentsd
[i
]);
2105 kfree(physdev_list
);
2109 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2110 * dma mapping and fills in the scatter gather entries of the
2113 static int hpsa_scatter_gather(struct ctlr_info
*h
,
2114 struct CommandList
*cp
,
2115 struct scsi_cmnd
*cmd
)
2118 struct scatterlist
*sg
;
2120 int use_sg
, i
, sg_index
, chained
;
2121 struct SGDescriptor
*curr_sg
;
2123 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
2125 use_sg
= scsi_dma_map(cmd
);
2130 goto sglist_finished
;
2135 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
2136 if (i
== h
->max_cmd_sg_entries
- 1 &&
2137 use_sg
> h
->max_cmd_sg_entries
) {
2139 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
2142 addr64
= (u64
) sg_dma_address(sg
);
2143 len
= sg_dma_len(sg
);
2144 curr_sg
->Addr
.lower
= (u32
) (addr64
& 0x0FFFFFFFFULL
);
2145 curr_sg
->Addr
.upper
= (u32
) ((addr64
>> 32) & 0x0FFFFFFFFULL
);
2147 curr_sg
->Ext
= 0; /* we are not chaining */
2151 if (use_sg
+ chained
> h
->maxSG
)
2152 h
->maxSG
= use_sg
+ chained
;
2155 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
2156 cp
->Header
.SGTotal
= (u16
) (use_sg
+ 1);
2157 if (hpsa_map_sg_chain_block(h
, cp
)) {
2158 scsi_dma_unmap(cmd
);
2166 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
2167 cp
->Header
.SGTotal
= (u16
) use_sg
; /* total sgs in this cmd list */
2172 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd
*cmd
,
2173 void (*done
)(struct scsi_cmnd
*))
2175 struct ctlr_info
*h
;
2176 struct hpsa_scsi_dev_t
*dev
;
2177 unsigned char scsi3addr
[8];
2178 struct CommandList
*c
;
2179 unsigned long flags
;
2181 /* Get the ptr to our adapter structure out of cmd->host. */
2182 h
= sdev_to_hba(cmd
->device
);
2183 dev
= cmd
->device
->hostdata
;
2185 cmd
->result
= DID_NO_CONNECT
<< 16;
2189 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
2191 spin_lock_irqsave(&h
->lock
, flags
);
2192 if (unlikely(h
->lockup_detected
)) {
2193 spin_unlock_irqrestore(&h
->lock
, flags
);
2194 cmd
->result
= DID_ERROR
<< 16;
2198 spin_unlock_irqrestore(&h
->lock
, flags
);
2200 if (c
== NULL
) { /* trouble... */
2201 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2202 return SCSI_MLQUEUE_HOST_BUSY
;
2205 /* Fill in the command list header */
2207 cmd
->scsi_done
= done
; /* save this for use by completion code */
2209 /* save c in case we have to abort it */
2210 cmd
->host_scribble
= (unsigned char *) c
;
2212 c
->cmd_type
= CMD_SCSI
;
2214 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
2215 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
2216 c
->Header
.Tag
.lower
= (c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
2217 c
->Header
.Tag
.lower
|= DIRECT_LOOKUP_BIT
;
2219 /* Fill in the request block... */
2221 c
->Request
.Timeout
= 0;
2222 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
2223 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
2224 c
->Request
.CDBLen
= cmd
->cmd_len
;
2225 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
2226 c
->Request
.Type
.Type
= TYPE_CMD
;
2227 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2228 switch (cmd
->sc_data_direction
) {
2230 c
->Request
.Type
.Direction
= XFER_WRITE
;
2232 case DMA_FROM_DEVICE
:
2233 c
->Request
.Type
.Direction
= XFER_READ
;
2236 c
->Request
.Type
.Direction
= XFER_NONE
;
2238 case DMA_BIDIRECTIONAL
:
2239 /* This can happen if a buggy application does a scsi passthru
2240 * and sets both inlen and outlen to non-zero. ( see
2241 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2244 c
->Request
.Type
.Direction
= XFER_RSVD
;
2245 /* This is technically wrong, and hpsa controllers should
2246 * reject it with CMD_INVALID, which is the most correct
2247 * response, but non-fibre backends appear to let it
2248 * slide by, and give the same results as if this field
2249 * were set correctly. Either way is acceptable for
2250 * our purposes here.
2256 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
2257 cmd
->sc_data_direction
);
2262 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
2264 return SCSI_MLQUEUE_HOST_BUSY
;
2266 enqueue_cmd_and_start_io(h
, c
);
2267 /* the cmd'll come back via intr handler in complete_scsi_command() */
2271 static DEF_SCSI_QCMD(hpsa_scsi_queue_command
)
2273 static void hpsa_scan_start(struct Scsi_Host
*sh
)
2275 struct ctlr_info
*h
= shost_to_hba(sh
);
2276 unsigned long flags
;
2278 /* wait until any scan already in progress is finished. */
2280 spin_lock_irqsave(&h
->scan_lock
, flags
);
2281 if (h
->scan_finished
)
2283 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2284 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
2285 /* Note: We don't need to worry about a race between this
2286 * thread and driver unload because the midlayer will
2287 * have incremented the reference count, so unload won't
2288 * happen if we're in here.
2291 h
->scan_finished
= 0; /* mark scan as in progress */
2292 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2294 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
2296 spin_lock_irqsave(&h
->scan_lock
, flags
);
2297 h
->scan_finished
= 1; /* mark scan as finished. */
2298 wake_up_all(&h
->scan_wait_queue
);
2299 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2302 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
2303 unsigned long elapsed_time
)
2305 struct ctlr_info
*h
= shost_to_hba(sh
);
2306 unsigned long flags
;
2309 spin_lock_irqsave(&h
->scan_lock
, flags
);
2310 finished
= h
->scan_finished
;
2311 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2315 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
2316 int qdepth
, int reason
)
2318 struct ctlr_info
*h
= sdev_to_hba(sdev
);
2320 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2326 if (qdepth
> h
->nr_cmds
)
2327 qdepth
= h
->nr_cmds
;
2328 scsi_adjust_queue_depth(sdev
, scsi_get_tag_type(sdev
), qdepth
);
2329 return sdev
->queue_depth
;
2332 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
2334 /* we are being forcibly unloaded, and may not refuse. */
2335 scsi_remove_host(h
->scsi_host
);
2336 scsi_host_put(h
->scsi_host
);
2337 h
->scsi_host
= NULL
;
2340 static int hpsa_register_scsi(struct ctlr_info
*h
)
2342 struct Scsi_Host
*sh
;
2345 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
2352 sh
->max_channel
= 3;
2353 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
2354 sh
->max_lun
= HPSA_MAX_LUN
;
2355 sh
->max_id
= HPSA_MAX_LUN
;
2356 sh
->can_queue
= h
->nr_cmds
;
2357 sh
->cmd_per_lun
= h
->nr_cmds
;
2358 sh
->sg_tablesize
= h
->maxsgentries
;
2360 sh
->hostdata
[0] = (unsigned long) h
;
2361 sh
->irq
= h
->intr
[h
->intr_mode
];
2362 sh
->unique_id
= sh
->irq
;
2363 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
2370 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
2371 " failed for controller %d\n", __func__
, h
->ctlr
);
2375 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
2376 " failed for controller %d\n", __func__
, h
->ctlr
);
2380 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
2381 unsigned char lunaddr
[])
2385 int waittime
= 1; /* seconds */
2386 struct CommandList
*c
;
2388 c
= cmd_special_alloc(h
);
2390 dev_warn(&h
->pdev
->dev
, "out of memory in "
2391 "wait_for_device_to_become_ready.\n");
2395 /* Send test unit ready until device ready, or give up. */
2396 while (count
< HPSA_TUR_RETRY_LIMIT
) {
2398 /* Wait for a bit. do this first, because if we send
2399 * the TUR right away, the reset will just abort it.
2401 msleep(1000 * waittime
);
2404 /* Increase wait time with each try, up to a point. */
2405 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
2406 waittime
= waittime
* 2;
2408 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2409 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
2410 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
2411 hpsa_scsi_do_simple_cmd_core(h
, c
);
2412 /* no unmap needed here because no data xfer. */
2414 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2417 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
2418 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
2419 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
2420 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
2423 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
2424 "for device to become ready.\n", waittime
);
2425 rc
= 1; /* device not ready. */
2429 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
2431 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
2433 cmd_special_free(h
, c
);
2437 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2438 * complaining. Doing a host- or bus-reset can't do anything good here.
2440 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
2443 struct ctlr_info
*h
;
2444 struct hpsa_scsi_dev_t
*dev
;
2446 /* find the controller to which the command to be aborted was sent */
2447 h
= sdev_to_hba(scsicmd
->device
);
2448 if (h
== NULL
) /* paranoia */
2450 dev
= scsicmd
->device
->hostdata
;
2452 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
2453 "device lookup failed.\n");
2456 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
2457 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2458 /* send a reset to the SCSI LUN which the command was sent to */
2459 rc
= hpsa_send_reset(h
, dev
->scsi3addr
);
2460 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
2463 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
2467 static void swizzle_abort_tag(u8
*tag
)
2471 memcpy(original_tag
, tag
, 8);
2472 tag
[0] = original_tag
[3];
2473 tag
[1] = original_tag
[2];
2474 tag
[2] = original_tag
[1];
2475 tag
[3] = original_tag
[0];
2476 tag
[4] = original_tag
[7];
2477 tag
[5] = original_tag
[6];
2478 tag
[6] = original_tag
[5];
2479 tag
[7] = original_tag
[4];
2482 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2483 struct CommandList
*abort
, int swizzle
)
2486 struct CommandList
*c
;
2487 struct ErrorInfo
*ei
;
2489 c
= cmd_special_alloc(h
);
2490 if (c
== NULL
) { /* trouble... */
2491 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2495 /* fill_cmd can't fail here, no buffer to map */
2496 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
,
2497 0, 0, scsi3addr
, TYPE_MSG
);
2499 swizzle_abort_tag(&c
->Request
.CDB
[4]);
2500 hpsa_scsi_do_simple_cmd_core(h
, c
);
2501 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2502 __func__
, abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2503 /* no unmap needed here because no data xfer. */
2506 switch (ei
->CommandStatus
) {
2509 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
2513 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2514 __func__
, abort
->Header
.Tag
.upper
,
2515 abort
->Header
.Tag
.lower
);
2516 hpsa_scsi_interpret_error(c
);
2520 cmd_special_free(h
, c
);
2521 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
2522 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2527 * hpsa_find_cmd_in_queue
2529 * Used to determine whether a command (find) is still present
2530 * in queue_head. Optionally excludes the last element of queue_head.
2532 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2533 * not yet been submitted, and so can be aborted by the driver without
2534 * sending an abort to the hardware.
2536 * Returns pointer to command if found in queue, NULL otherwise.
2538 static struct CommandList
*hpsa_find_cmd_in_queue(struct ctlr_info
*h
,
2539 struct scsi_cmnd
*find
, struct list_head
*queue_head
)
2541 unsigned long flags
;
2542 struct CommandList
*c
= NULL
; /* ptr into cmpQ */
2546 spin_lock_irqsave(&h
->lock
, flags
);
2547 list_for_each_entry(c
, queue_head
, list
) {
2548 if (c
->scsi_cmd
== NULL
) /* e.g.: passthru ioctl */
2550 if (c
->scsi_cmd
== find
) {
2551 spin_unlock_irqrestore(&h
->lock
, flags
);
2555 spin_unlock_irqrestore(&h
->lock
, flags
);
2559 static struct CommandList
*hpsa_find_cmd_in_queue_by_tag(struct ctlr_info
*h
,
2560 u8
*tag
, struct list_head
*queue_head
)
2562 unsigned long flags
;
2563 struct CommandList
*c
;
2565 spin_lock_irqsave(&h
->lock
, flags
);
2566 list_for_each_entry(c
, queue_head
, list
) {
2567 if (memcmp(&c
->Header
.Tag
, tag
, 8) != 0)
2569 spin_unlock_irqrestore(&h
->lock
, flags
);
2572 spin_unlock_irqrestore(&h
->lock
, flags
);
2576 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2577 * tell which kind we're dealing with, so we send the abort both ways. There
2578 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2579 * way we construct our tags but we check anyway in case the assumptions which
2580 * make this true someday become false.
2582 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
2583 unsigned char *scsi3addr
, struct CommandList
*abort
)
2586 struct CommandList
*c
;
2587 int rc
= 0, rc2
= 0;
2589 /* we do not expect to find the swizzled tag in our queue, but
2590 * check anyway just to be sure the assumptions which make this
2591 * the case haven't become wrong.
2593 memcpy(swizzled_tag
, &abort
->Request
.CDB
[4], 8);
2594 swizzle_abort_tag(swizzled_tag
);
2595 c
= hpsa_find_cmd_in_queue_by_tag(h
, swizzled_tag
, &h
->cmpQ
);
2597 dev_warn(&h
->pdev
->dev
, "Unexpectedly found byte-swapped tag in completion queue.\n");
2598 return hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2600 rc
= hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2602 /* if the command is still in our queue, we can't conclude that it was
2603 * aborted (it might have just completed normally) but in any case
2604 * we don't need to try to abort it another way.
2606 c
= hpsa_find_cmd_in_queue(h
, abort
->scsi_cmd
, &h
->cmpQ
);
2608 rc2
= hpsa_send_abort(h
, scsi3addr
, abort
, 1);
2612 /* Send an abort for the specified command.
2613 * If the device and controller support it,
2614 * send a task abort request.
2616 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
2620 struct ctlr_info
*h
;
2621 struct hpsa_scsi_dev_t
*dev
;
2622 struct CommandList
*abort
; /* pointer to command to be aborted */
2623 struct CommandList
*found
;
2624 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
2625 char msg
[256]; /* For debug messaging. */
2628 /* Find the controller of the command to be aborted */
2629 h
= sdev_to_hba(sc
->device
);
2631 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2634 /* Check that controller supports some kind of task abort */
2635 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
2636 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
2639 memset(msg
, 0, sizeof(msg
));
2640 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2641 h
->scsi_host
->host_no
, sc
->device
->channel
,
2642 sc
->device
->id
, sc
->device
->lun
);
2644 /* Find the device of the command to be aborted */
2645 dev
= sc
->device
->hostdata
;
2647 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
2652 /* Get SCSI command to be aborted */
2653 abort
= (struct CommandList
*) sc
->host_scribble
;
2654 if (abort
== NULL
) {
2655 dev_err(&h
->pdev
->dev
, "%s FAILED, Command to abort is NULL.\n",
2660 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ",
2661 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2662 as
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
2664 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
2665 as
->cmnd
[0], as
->serial_number
);
2666 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
2667 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
2668 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2670 /* Search reqQ to See if command is queued but not submitted,
2671 * if so, complete the command with aborted status and remove
2674 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->reqQ
);
2676 found
->err_info
->CommandStatus
= CMD_ABORTED
;
2678 dev_info(&h
->pdev
->dev
, "%s Request SUCCEEDED (driver queue).\n",
2683 /* not in reqQ, if also not in cmpQ, must have already completed */
2684 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2686 dev_dbg(&h
->pdev
->dev
, "%s Request SUCCEEDED (not known to driver).\n",
2692 * Command is in flight, or possibly already completed
2693 * by the firmware (but not to the scsi mid layer) but we can't
2694 * distinguish which. Send the abort down.
2696 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
2698 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
2699 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2700 h
->scsi_host
->host_no
,
2701 dev
->bus
, dev
->target
, dev
->lun
);
2704 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
2706 /* If the abort(s) above completed and actually aborted the
2707 * command, then the command to be aborted should already be
2708 * completed. If not, wait around a bit more to see if they
2709 * manage to complete normally.
2711 #define ABORT_COMPLETE_WAIT_SECS 30
2712 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
2713 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2718 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2719 msg
, ABORT_COMPLETE_WAIT_SECS
);
2725 * For operations that cannot sleep, a command block is allocated at init,
2726 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2727 * which ones are free or in use. Lock must be held when calling this.
2728 * cmd_free() is the complement.
2730 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
2732 struct CommandList
*c
;
2734 union u64bit temp64
;
2735 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2736 unsigned long flags
;
2738 spin_lock_irqsave(&h
->lock
, flags
);
2740 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
2741 if (i
== h
->nr_cmds
) {
2742 spin_unlock_irqrestore(&h
->lock
, flags
);
2745 } while (test_and_set_bit
2746 (i
& (BITS_PER_LONG
- 1),
2747 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
2748 spin_unlock_irqrestore(&h
->lock
, flags
);
2750 c
= h
->cmd_pool
+ i
;
2751 memset(c
, 0, sizeof(*c
));
2752 cmd_dma_handle
= h
->cmd_pool_dhandle
2754 c
->err_info
= h
->errinfo_pool
+ i
;
2755 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2756 err_dma_handle
= h
->errinfo_pool_dhandle
2757 + i
* sizeof(*c
->err_info
);
2761 INIT_LIST_HEAD(&c
->list
);
2762 c
->busaddr
= (u32
) cmd_dma_handle
;
2763 temp64
.val
= (u64
) err_dma_handle
;
2764 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2765 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2766 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2772 /* For operations that can wait for kmalloc to possibly sleep,
2773 * this routine can be called. Lock need not be held to call
2774 * cmd_special_alloc. cmd_special_free() is the complement.
2776 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
)
2778 struct CommandList
*c
;
2779 union u64bit temp64
;
2780 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2782 c
= pci_alloc_consistent(h
->pdev
, sizeof(*c
), &cmd_dma_handle
);
2785 memset(c
, 0, sizeof(*c
));
2789 c
->err_info
= pci_alloc_consistent(h
->pdev
, sizeof(*c
->err_info
),
2792 if (c
->err_info
== NULL
) {
2793 pci_free_consistent(h
->pdev
,
2794 sizeof(*c
), c
, cmd_dma_handle
);
2797 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2799 INIT_LIST_HEAD(&c
->list
);
2800 c
->busaddr
= (u32
) cmd_dma_handle
;
2801 temp64
.val
= (u64
) err_dma_handle
;
2802 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2803 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2804 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2810 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
2813 unsigned long flags
;
2815 i
= c
- h
->cmd_pool
;
2816 spin_lock_irqsave(&h
->lock
, flags
);
2817 clear_bit(i
& (BITS_PER_LONG
- 1),
2818 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
2819 spin_unlock_irqrestore(&h
->lock
, flags
);
2822 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
)
2824 union u64bit temp64
;
2826 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
2827 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
2828 pci_free_consistent(h
->pdev
, sizeof(*c
->err_info
),
2829 c
->err_info
, (dma_addr_t
) temp64
.val
);
2830 pci_free_consistent(h
->pdev
, sizeof(*c
),
2831 c
, (dma_addr_t
) (c
->busaddr
& DIRECT_LOOKUP_MASK
));
2834 #ifdef CONFIG_COMPAT
2836 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
, void *arg
)
2838 IOCTL32_Command_struct __user
*arg32
=
2839 (IOCTL32_Command_struct __user
*) arg
;
2840 IOCTL_Command_struct arg64
;
2841 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
2845 memset(&arg64
, 0, sizeof(arg64
));
2847 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2848 sizeof(arg64
.LUN_info
));
2849 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2850 sizeof(arg64
.Request
));
2851 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2852 sizeof(arg64
.error_info
));
2853 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2854 err
|= get_user(cp
, &arg32
->buf
);
2855 arg64
.buf
= compat_ptr(cp
);
2856 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2861 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, (void *)p
);
2864 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2865 sizeof(arg32
->error_info
));
2871 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
2874 BIG_IOCTL32_Command_struct __user
*arg32
=
2875 (BIG_IOCTL32_Command_struct __user
*) arg
;
2876 BIG_IOCTL_Command_struct arg64
;
2877 BIG_IOCTL_Command_struct __user
*p
=
2878 compat_alloc_user_space(sizeof(arg64
));
2882 memset(&arg64
, 0, sizeof(arg64
));
2884 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2885 sizeof(arg64
.LUN_info
));
2886 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2887 sizeof(arg64
.Request
));
2888 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2889 sizeof(arg64
.error_info
));
2890 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2891 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
2892 err
|= get_user(cp
, &arg32
->buf
);
2893 arg64
.buf
= compat_ptr(cp
);
2894 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2899 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, (void *)p
);
2902 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2903 sizeof(arg32
->error_info
));
2909 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
2912 case CCISS_GETPCIINFO
:
2913 case CCISS_GETINTINFO
:
2914 case CCISS_SETINTINFO
:
2915 case CCISS_GETNODENAME
:
2916 case CCISS_SETNODENAME
:
2917 case CCISS_GETHEARTBEAT
:
2918 case CCISS_GETBUSTYPES
:
2919 case CCISS_GETFIRMVER
:
2920 case CCISS_GETDRIVVER
:
2921 case CCISS_REVALIDVOLS
:
2922 case CCISS_DEREGDISK
:
2923 case CCISS_REGNEWDISK
:
2925 case CCISS_RESCANDISK
:
2926 case CCISS_GETLUNINFO
:
2927 return hpsa_ioctl(dev
, cmd
, arg
);
2929 case CCISS_PASSTHRU32
:
2930 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
2931 case CCISS_BIG_PASSTHRU32
:
2932 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
2935 return -ENOIOCTLCMD
;
2940 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2942 struct hpsa_pci_info pciinfo
;
2946 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
2947 pciinfo
.bus
= h
->pdev
->bus
->number
;
2948 pciinfo
.dev_fn
= h
->pdev
->devfn
;
2949 pciinfo
.board_id
= h
->board_id
;
2950 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
2955 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2957 DriverVer_type DriverVer
;
2958 unsigned char vmaj
, vmin
, vsubmin
;
2961 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
2962 &vmaj
, &vmin
, &vsubmin
);
2964 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
2965 "unrecognized.", HPSA_DRIVER_VERSION
);
2970 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
2973 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
2978 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2980 IOCTL_Command_struct iocommand
;
2981 struct CommandList
*c
;
2983 union u64bit temp64
;
2988 if (!capable(CAP_SYS_RAWIO
))
2990 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
2992 if ((iocommand
.buf_size
< 1) &&
2993 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
2996 if (iocommand
.buf_size
> 0) {
2997 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
3000 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
3001 /* Copy the data into the buffer we created */
3002 if (copy_from_user(buff
, iocommand
.buf
,
3003 iocommand
.buf_size
)) {
3008 memset(buff
, 0, iocommand
.buf_size
);
3011 c
= cmd_special_alloc(h
);
3016 /* Fill in the command type */
3017 c
->cmd_type
= CMD_IOCTL_PEND
;
3018 /* Fill in Command Header */
3019 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3020 if (iocommand
.buf_size
> 0) { /* buffer to fill */
3021 c
->Header
.SGList
= 1;
3022 c
->Header
.SGTotal
= 1;
3023 } else { /* no buffers to fill */
3024 c
->Header
.SGList
= 0;
3025 c
->Header
.SGTotal
= 0;
3027 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
3028 /* use the kernel address the cmd block for tag */
3029 c
->Header
.Tag
.lower
= c
->busaddr
;
3031 /* Fill in Request block */
3032 memcpy(&c
->Request
, &iocommand
.Request
,
3033 sizeof(c
->Request
));
3035 /* Fill in the scatter gather information */
3036 if (iocommand
.buf_size
> 0) {
3037 temp64
.val
= pci_map_single(h
->pdev
, buff
,
3038 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
3039 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3040 c
->SG
[0].Addr
.lower
= 0;
3041 c
->SG
[0].Addr
.upper
= 0;
3046 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
3047 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
3048 c
->SG
[0].Len
= iocommand
.buf_size
;
3049 c
->SG
[0].Ext
= 0; /* we are not chaining*/
3051 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3052 if (iocommand
.buf_size
> 0)
3053 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
3054 check_ioctl_unit_attention(h
, c
);
3056 /* Copy the error information out */
3057 memcpy(&iocommand
.error_info
, c
->err_info
,
3058 sizeof(iocommand
.error_info
));
3059 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
3063 if (iocommand
.Request
.Type
.Direction
== XFER_READ
&&
3064 iocommand
.buf_size
> 0) {
3065 /* Copy the data out of the buffer we created */
3066 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
3072 cmd_special_free(h
, c
);
3078 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
3080 BIG_IOCTL_Command_struct
*ioc
;
3081 struct CommandList
*c
;
3082 unsigned char **buff
= NULL
;
3083 int *buff_size
= NULL
;
3084 union u64bit temp64
;
3090 BYTE __user
*data_ptr
;
3094 if (!capable(CAP_SYS_RAWIO
))
3096 ioc
= (BIG_IOCTL_Command_struct
*)
3097 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
3102 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
3106 if ((ioc
->buf_size
< 1) &&
3107 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
3111 /* Check kmalloc limits using all SGs */
3112 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
3116 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
3120 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
3125 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
3130 left
= ioc
->buf_size
;
3131 data_ptr
= ioc
->buf
;
3133 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
3134 buff_size
[sg_used
] = sz
;
3135 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
3136 if (buff
[sg_used
] == NULL
) {
3140 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
3141 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
3146 memset(buff
[sg_used
], 0, sz
);
3151 c
= cmd_special_alloc(h
);
3156 c
->cmd_type
= CMD_IOCTL_PEND
;
3157 c
->Header
.ReplyQueue
= 0;
3158 c
->Header
.SGList
= c
->Header
.SGTotal
= sg_used
;
3159 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
3160 c
->Header
.Tag
.lower
= c
->busaddr
;
3161 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
3162 if (ioc
->buf_size
> 0) {
3164 for (i
= 0; i
< sg_used
; i
++) {
3165 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
],
3166 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
3167 if (dma_mapping_error(&h
->pdev
->dev
, temp64
.val
)) {
3168 c
->SG
[i
].Addr
.lower
= 0;
3169 c
->SG
[i
].Addr
.upper
= 0;
3171 hpsa_pci_unmap(h
->pdev
, c
, i
,
3172 PCI_DMA_BIDIRECTIONAL
);
3176 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3177 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3178 c
->SG
[i
].Len
= buff_size
[i
];
3179 /* we are not chaining */
3183 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3185 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
3186 check_ioctl_unit_attention(h
, c
);
3187 /* Copy the error information out */
3188 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
3189 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
3190 cmd_special_free(h
, c
);
3194 if (ioc
->Request
.Type
.Direction
== XFER_READ
&& ioc
->buf_size
> 0) {
3195 /* Copy the data out of the buffer we created */
3196 BYTE __user
*ptr
= ioc
->buf
;
3197 for (i
= 0; i
< sg_used
; i
++) {
3198 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
3199 cmd_special_free(h
, c
);
3203 ptr
+= buff_size
[i
];
3206 cmd_special_free(h
, c
);
3210 for (i
= 0; i
< sg_used
; i
++)
3219 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
3220 struct CommandList
*c
)
3222 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
3223 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
3224 (void) check_for_unit_attention(h
, c
);
3229 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
3231 struct ctlr_info
*h
;
3232 void __user
*argp
= (void __user
*)arg
;
3234 h
= sdev_to_hba(dev
);
3237 case CCISS_DEREGDISK
:
3238 case CCISS_REGNEWDISK
:
3240 hpsa_scan_start(h
->scsi_host
);
3242 case CCISS_GETPCIINFO
:
3243 return hpsa_getpciinfo_ioctl(h
, argp
);
3244 case CCISS_GETDRIVVER
:
3245 return hpsa_getdrivver_ioctl(h
, argp
);
3246 case CCISS_PASSTHRU
:
3247 return hpsa_passthru_ioctl(h
, argp
);
3248 case CCISS_BIG_PASSTHRU
:
3249 return hpsa_big_passthru_ioctl(h
, argp
);
3255 static int hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3258 struct CommandList
*c
;
3263 /* fill_cmd can't fail here, no data buffer to map */
3264 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
3265 RAID_CTLR_LUNID
, TYPE_MSG
);
3266 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
3268 enqueue_cmd_and_start_io(h
, c
);
3269 /* Don't wait for completion, the reset won't complete. Don't free
3270 * the command either. This is the last command we will send before
3271 * re-initializing everything, so it doesn't matter and won't leak.
3276 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
3277 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
3280 int pci_dir
= XFER_NONE
;
3281 struct CommandList
*a
; /* for commands to be aborted */
3283 c
->cmd_type
= CMD_IOCTL_PEND
;
3284 c
->Header
.ReplyQueue
= 0;
3285 if (buff
!= NULL
&& size
> 0) {
3286 c
->Header
.SGList
= 1;
3287 c
->Header
.SGTotal
= 1;
3289 c
->Header
.SGList
= 0;
3290 c
->Header
.SGTotal
= 0;
3292 c
->Header
.Tag
.lower
= c
->busaddr
;
3293 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
3295 c
->Request
.Type
.Type
= cmd_type
;
3296 if (cmd_type
== TYPE_CMD
) {
3299 /* are we trying to read a vital product page */
3300 if (page_code
!= 0) {
3301 c
->Request
.CDB
[1] = 0x01;
3302 c
->Request
.CDB
[2] = page_code
;
3304 c
->Request
.CDBLen
= 6;
3305 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3306 c
->Request
.Type
.Direction
= XFER_READ
;
3307 c
->Request
.Timeout
= 0;
3308 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
3309 c
->Request
.CDB
[4] = size
& 0xFF;
3311 case HPSA_REPORT_LOG
:
3312 case HPSA_REPORT_PHYS
:
3313 /* Talking to controller so It's a physical command
3314 mode = 00 target = 0. Nothing to write.
3316 c
->Request
.CDBLen
= 12;
3317 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3318 c
->Request
.Type
.Direction
= XFER_READ
;
3319 c
->Request
.Timeout
= 0;
3320 c
->Request
.CDB
[0] = cmd
;
3321 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
3322 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
3323 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
3324 c
->Request
.CDB
[9] = size
& 0xFF;
3326 case HPSA_CACHE_FLUSH
:
3327 c
->Request
.CDBLen
= 12;
3328 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3329 c
->Request
.Type
.Direction
= XFER_WRITE
;
3330 c
->Request
.Timeout
= 0;
3331 c
->Request
.CDB
[0] = BMIC_WRITE
;
3332 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
3333 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
3334 c
->Request
.CDB
[8] = size
& 0xFF;
3336 case TEST_UNIT_READY
:
3337 c
->Request
.CDBLen
= 6;
3338 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3339 c
->Request
.Type
.Direction
= XFER_NONE
;
3340 c
->Request
.Timeout
= 0;
3343 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
3347 } else if (cmd_type
== TYPE_MSG
) {
3350 case HPSA_DEVICE_RESET_MSG
:
3351 c
->Request
.CDBLen
= 16;
3352 c
->Request
.Type
.Type
= 1; /* It is a MSG not a CMD */
3353 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3354 c
->Request
.Type
.Direction
= XFER_NONE
;
3355 c
->Request
.Timeout
= 0; /* Don't time out */
3356 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
3357 c
->Request
.CDB
[0] = cmd
;
3358 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
3359 /* If bytes 4-7 are zero, it means reset the */
3361 c
->Request
.CDB
[4] = 0x00;
3362 c
->Request
.CDB
[5] = 0x00;
3363 c
->Request
.CDB
[6] = 0x00;
3364 c
->Request
.CDB
[7] = 0x00;
3366 case HPSA_ABORT_MSG
:
3367 a
= buff
; /* point to command to be aborted */
3368 dev_dbg(&h
->pdev
->dev
, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3369 a
->Header
.Tag
.upper
, a
->Header
.Tag
.lower
,
3370 c
->Header
.Tag
.upper
, c
->Header
.Tag
.lower
);
3371 c
->Request
.CDBLen
= 16;
3372 c
->Request
.Type
.Type
= TYPE_MSG
;
3373 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3374 c
->Request
.Type
.Direction
= XFER_WRITE
;
3375 c
->Request
.Timeout
= 0; /* Don't time out */
3376 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
3377 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
3378 c
->Request
.CDB
[2] = 0x00; /* reserved */
3379 c
->Request
.CDB
[3] = 0x00; /* reserved */
3380 /* Tag to abort goes in CDB[4]-CDB[11] */
3381 c
->Request
.CDB
[4] = a
->Header
.Tag
.lower
& 0xFF;
3382 c
->Request
.CDB
[5] = (a
->Header
.Tag
.lower
>> 8) & 0xFF;
3383 c
->Request
.CDB
[6] = (a
->Header
.Tag
.lower
>> 16) & 0xFF;
3384 c
->Request
.CDB
[7] = (a
->Header
.Tag
.lower
>> 24) & 0xFF;
3385 c
->Request
.CDB
[8] = a
->Header
.Tag
.upper
& 0xFF;
3386 c
->Request
.CDB
[9] = (a
->Header
.Tag
.upper
>> 8) & 0xFF;
3387 c
->Request
.CDB
[10] = (a
->Header
.Tag
.upper
>> 16) & 0xFF;
3388 c
->Request
.CDB
[11] = (a
->Header
.Tag
.upper
>> 24) & 0xFF;
3389 c
->Request
.CDB
[12] = 0x00; /* reserved */
3390 c
->Request
.CDB
[13] = 0x00; /* reserved */
3391 c
->Request
.CDB
[14] = 0x00; /* reserved */
3392 c
->Request
.CDB
[15] = 0x00; /* reserved */
3395 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
3400 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
3404 switch (c
->Request
.Type
.Direction
) {
3406 pci_dir
= PCI_DMA_FROMDEVICE
;
3409 pci_dir
= PCI_DMA_TODEVICE
;
3412 pci_dir
= PCI_DMA_NONE
;
3415 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
3417 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
3423 * Map (physical) PCI mem into (virtual) kernel space
3425 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3427 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3428 ulong page_offs
= ((ulong
) base
) - page_base
;
3429 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
3432 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3435 /* Takes cmds off the submission queue and sends them to the hardware,
3436 * then puts them on the queue of cmds waiting for completion.
3438 static void start_io(struct ctlr_info
*h
)
3440 struct CommandList
*c
;
3441 unsigned long flags
;
3443 spin_lock_irqsave(&h
->lock
, flags
);
3444 while (!list_empty(&h
->reqQ
)) {
3445 c
= list_entry(h
->reqQ
.next
, struct CommandList
, list
);
3446 /* can't do anything if fifo is full */
3447 if ((h
->access
.fifo_full(h
))) {
3448 dev_warn(&h
->pdev
->dev
, "fifo full\n");
3452 /* Get the first entry from the Request Q */
3456 /* Put job onto the completed Q */
3459 /* Must increment commands_outstanding before unlocking
3460 * and submitting to avoid race checking for fifo full
3463 h
->commands_outstanding
++;
3464 if (h
->commands_outstanding
> h
->max_outstanding
)
3465 h
->max_outstanding
= h
->commands_outstanding
;
3467 /* Tell the controller execute command */
3468 spin_unlock_irqrestore(&h
->lock
, flags
);
3469 h
->access
.submit_command(h
, c
);
3470 spin_lock_irqsave(&h
->lock
, flags
);
3472 spin_unlock_irqrestore(&h
->lock
, flags
);
3475 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
3477 return h
->access
.command_completed(h
, q
);
3480 static inline bool interrupt_pending(struct ctlr_info
*h
)
3482 return h
->access
.intr_pending(h
);
3485 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
3487 return (h
->access
.intr_pending(h
) == 0) ||
3488 (h
->interrupts_enabled
== 0);
3491 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
3494 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3495 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3501 static inline void finish_cmd(struct CommandList
*c
)
3503 unsigned long flags
;
3505 spin_lock_irqsave(&c
->h
->lock
, flags
);
3507 spin_unlock_irqrestore(&c
->h
->lock
, flags
);
3508 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
3509 if (likely(c
->cmd_type
== CMD_SCSI
))
3510 complete_scsi_command(c
);
3511 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3512 complete(c
->waiting
);
3515 static inline u32
hpsa_tag_contains_index(u32 tag
)
3517 return tag
& DIRECT_LOOKUP_BIT
;
3520 static inline u32
hpsa_tag_to_index(u32 tag
)
3522 return tag
>> DIRECT_LOOKUP_SHIFT
;
3526 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
3528 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3529 #define HPSA_SIMPLE_ERROR_BITS 0x03
3530 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
3531 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
3532 return tag
& ~HPSA_PERF_ERROR_BITS
;
3535 /* process completion of an indexed ("direct lookup") command */
3536 static inline void process_indexed_cmd(struct ctlr_info
*h
,
3540 struct CommandList
*c
;
3542 tag_index
= hpsa_tag_to_index(raw_tag
);
3543 if (!bad_tag(h
, tag_index
, raw_tag
)) {
3544 c
= h
->cmd_pool
+ tag_index
;
3549 /* process completion of a non-indexed command */
3550 static inline void process_nonindexed_cmd(struct ctlr_info
*h
,
3554 struct CommandList
*c
= NULL
;
3555 unsigned long flags
;
3557 tag
= hpsa_tag_discard_error_bits(h
, raw_tag
);
3558 spin_lock_irqsave(&h
->lock
, flags
);
3559 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3560 if ((c
->busaddr
& 0xFFFFFFE0) == (tag
& 0xFFFFFFE0)) {
3561 spin_unlock_irqrestore(&h
->lock
, flags
);
3566 spin_unlock_irqrestore(&h
->lock
, flags
);
3567 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3570 /* Some controllers, like p400, will give us one interrupt
3571 * after a soft reset, even if we turned interrupts off.
3572 * Only need to check for this in the hpsa_xxx_discard_completions
3575 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
3577 if (likely(!reset_devices
))
3580 if (likely(h
->interrupts_enabled
))
3583 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
3584 "(known firmware bug.) Ignoring.\n");
3590 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3591 * Relies on (h-q[x] == x) being true for x such that
3592 * 0 <= x < MAX_REPLY_QUEUES.
3594 static struct ctlr_info
*queue_to_hba(u8
*queue
)
3596 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
3599 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
3601 struct ctlr_info
*h
= queue_to_hba(queue
);
3602 u8 q
= *(u8
*) queue
;
3605 if (ignore_bogus_interrupt(h
))
3608 if (interrupt_not_for_us(h
))
3610 h
->last_intr_timestamp
= get_jiffies_64();
3611 while (interrupt_pending(h
)) {
3612 raw_tag
= get_next_completion(h
, q
);
3613 while (raw_tag
!= FIFO_EMPTY
)
3614 raw_tag
= next_command(h
, q
);
3619 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
3621 struct ctlr_info
*h
= queue_to_hba(queue
);
3623 u8 q
= *(u8
*) queue
;
3625 if (ignore_bogus_interrupt(h
))
3628 h
->last_intr_timestamp
= get_jiffies_64();
3629 raw_tag
= get_next_completion(h
, q
);
3630 while (raw_tag
!= FIFO_EMPTY
)
3631 raw_tag
= next_command(h
, q
);
3635 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
3637 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
3639 u8 q
= *(u8
*) queue
;
3641 if (interrupt_not_for_us(h
))
3643 h
->last_intr_timestamp
= get_jiffies_64();
3644 while (interrupt_pending(h
)) {
3645 raw_tag
= get_next_completion(h
, q
);
3646 while (raw_tag
!= FIFO_EMPTY
) {
3647 if (likely(hpsa_tag_contains_index(raw_tag
)))
3648 process_indexed_cmd(h
, raw_tag
);
3650 process_nonindexed_cmd(h
, raw_tag
);
3651 raw_tag
= next_command(h
, q
);
3657 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
3659 struct ctlr_info
*h
= queue_to_hba(queue
);
3661 u8 q
= *(u8
*) queue
;
3663 h
->last_intr_timestamp
= get_jiffies_64();
3664 raw_tag
= get_next_completion(h
, q
);
3665 while (raw_tag
!= FIFO_EMPTY
) {
3666 if (likely(hpsa_tag_contains_index(raw_tag
)))
3667 process_indexed_cmd(h
, raw_tag
);
3669 process_nonindexed_cmd(h
, raw_tag
);
3670 raw_tag
= next_command(h
, q
);
3675 /* Send a message CDB to the firmware. Careful, this only works
3676 * in simple mode, not performant mode due to the tag lookup.
3677 * We only ever use this immediately after a controller reset.
3679 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
3683 struct CommandListHeader CommandHeader
;
3684 struct RequestBlock Request
;
3685 struct ErrDescriptor ErrorDescriptor
;
3687 struct Command
*cmd
;
3688 static const size_t cmd_sz
= sizeof(*cmd
) +
3689 sizeof(cmd
->ErrorDescriptor
);
3691 uint32_t paddr32
, tag
;
3692 void __iomem
*vaddr
;
3695 vaddr
= pci_ioremap_bar(pdev
, 0);
3699 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3700 * CCISS commands, so they must be allocated from the lower 4GiB of
3703 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3709 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3715 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3716 * although there's no guarantee, we assume that the address is at
3717 * least 4-byte aligned (most likely, it's page-aligned).
3721 cmd
->CommandHeader
.ReplyQueue
= 0;
3722 cmd
->CommandHeader
.SGList
= 0;
3723 cmd
->CommandHeader
.SGTotal
= 0;
3724 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3725 cmd
->CommandHeader
.Tag
.upper
= 0;
3726 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3728 cmd
->Request
.CDBLen
= 16;
3729 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3730 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3731 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3732 cmd
->Request
.Timeout
= 0; /* Don't time out */
3733 cmd
->Request
.CDB
[0] = opcode
;
3734 cmd
->Request
.CDB
[1] = type
;
3735 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
3736 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(*cmd
);
3737 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3738 cmd
->ErrorDescriptor
.Len
= sizeof(struct ErrorInfo
);
3740 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3742 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
3743 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3744 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr32
)
3746 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
3751 /* we leak the DMA buffer here ... no choice since the controller could
3752 * still complete the command.
3754 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
3755 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
3760 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3762 if (tag
& HPSA_ERROR_BIT
) {
3763 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
3768 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
3773 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3775 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
3776 void * __iomem vaddr
, u32 use_doorbell
)
3782 /* For everything after the P600, the PCI power state method
3783 * of resetting the controller doesn't work, so we have this
3784 * other way using the doorbell register.
3786 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
3787 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
3788 } else { /* Try to do it the PCI power state way */
3790 /* Quoting from the Open CISS Specification: "The Power
3791 * Management Control/Status Register (CSR) controls the power
3792 * state of the device. The normal operating state is D0,
3793 * CSR=00h. The software off state is D3, CSR=03h. To reset
3794 * the controller, place the interface device in D3 then to D0,
3795 * this causes a secondary PCI reset which will reset the
3798 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3801 "hpsa_reset_controller: "
3802 "PCI PM not supported\n");
3805 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
3806 /* enter the D3hot power management state */
3807 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3808 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3810 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3814 /* enter the D0 power management state */
3815 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3817 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3820 * The P600 requires a small delay when changing states.
3821 * Otherwise we may think the board did not reset and we bail.
3822 * This for kdump only and is particular to the P600.
3829 static void init_driver_version(char *driver_version
, int len
)
3831 memset(driver_version
, 0, len
);
3832 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
3835 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
3837 char *driver_version
;
3838 int i
, size
= sizeof(cfgtable
->driver_version
);
3840 driver_version
= kmalloc(size
, GFP_KERNEL
);
3841 if (!driver_version
)
3844 init_driver_version(driver_version
, size
);
3845 for (i
= 0; i
< size
; i
++)
3846 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
3847 kfree(driver_version
);
3851 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
3852 unsigned char *driver_ver
)
3856 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
3857 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
3860 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
3863 char *driver_ver
, *old_driver_ver
;
3864 int rc
, size
= sizeof(cfgtable
->driver_version
);
3866 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
3867 if (!old_driver_ver
)
3869 driver_ver
= old_driver_ver
+ size
;
3871 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3872 * should have been changed, otherwise we know the reset failed.
3874 init_driver_version(old_driver_ver
, size
);
3875 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
3876 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
3877 kfree(old_driver_ver
);
3880 /* This does a hard reset of the controller using PCI power management
3881 * states or the using the doorbell register.
3883 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
3887 u64 cfg_base_addr_index
;
3888 void __iomem
*vaddr
;
3889 unsigned long paddr
;
3890 u32 misc_fw_support
;
3892 struct CfgTable __iomem
*cfgtable
;
3895 u16 command_register
;
3897 /* For controllers as old as the P600, this is very nearly
3900 * pci_save_state(pci_dev);
3901 * pci_set_power_state(pci_dev, PCI_D3hot);
3902 * pci_set_power_state(pci_dev, PCI_D0);
3903 * pci_restore_state(pci_dev);
3905 * For controllers newer than the P600, the pci power state
3906 * method of resetting doesn't work so we have another way
3907 * using the doorbell register.
3910 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
3911 if (rc
< 0 || !ctlr_is_resettable(board_id
)) {
3912 dev_warn(&pdev
->dev
, "Not resetting device.\n");
3916 /* if controller is soft- but not hard resettable... */
3917 if (!ctlr_is_hard_resettable(board_id
))
3918 return -ENOTSUPP
; /* try soft reset later. */
3920 /* Save the PCI command register */
3921 pci_read_config_word(pdev
, 4, &command_register
);
3922 /* Turn the board off. This is so that later pci_restore_state()
3923 * won't turn the board on before the rest of config space is ready.
3925 pci_disable_device(pdev
);
3926 pci_save_state(pdev
);
3928 /* find the first memory BAR, so we can find the cfg table */
3929 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
3932 vaddr
= remap_pci_mem(paddr
, 0x250);
3936 /* find cfgtable in order to check if reset via doorbell is supported */
3937 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
3938 &cfg_base_addr_index
, &cfg_offset
);
3941 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3942 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
3947 rc
= write_driver_ver_to_cfgtable(cfgtable
);
3951 /* If reset via doorbell register is supported, use that.
3952 * There are two such methods. Favor the newest method.
3954 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
3955 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
3957 use_doorbell
= DOORBELL_CTLR_RESET2
;
3959 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
3961 dev_warn(&pdev
->dev
, "Soft reset not supported. "
3962 "Firmware update is required.\n");
3963 rc
= -ENOTSUPP
; /* try soft reset */
3964 goto unmap_cfgtable
;
3968 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
3970 goto unmap_cfgtable
;
3972 pci_restore_state(pdev
);
3973 rc
= pci_enable_device(pdev
);
3975 dev_warn(&pdev
->dev
, "failed to enable device.\n");
3976 goto unmap_cfgtable
;
3978 pci_write_config_word(pdev
, 4, command_register
);
3980 /* Some devices (notably the HP Smart Array 5i Controller)
3981 need a little pause here */
3982 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
3984 /* Wait for board to become not ready, then ready. */
3985 dev_info(&pdev
->dev
, "Waiting for board to reset.\n");
3986 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
3988 dev_warn(&pdev
->dev
,
3989 "failed waiting for board to reset."
3990 " Will try soft reset.\n");
3991 rc
= -ENOTSUPP
; /* Not expected, but try soft reset later */
3992 goto unmap_cfgtable
;
3994 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
3996 dev_warn(&pdev
->dev
,
3997 "failed waiting for board to become ready "
3998 "after hard reset\n");
3999 goto unmap_cfgtable
;
4002 rc
= controller_reset_failed(vaddr
);
4004 goto unmap_cfgtable
;
4006 dev_warn(&pdev
->dev
, "Unable to successfully reset "
4007 "controller. Will try soft reset.\n");
4010 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
4022 * We cannot read the structure directly, for portability we must use
4024 * This is for debug only.
4026 static void print_cfg_table(struct device
*dev
, struct CfgTable
*tb
)
4032 dev_info(dev
, "Controller Configuration information\n");
4033 dev_info(dev
, "------------------------------------\n");
4034 for (i
= 0; i
< 4; i
++)
4035 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
4036 temp_name
[4] = '\0';
4037 dev_info(dev
, " Signature = %s\n", temp_name
);
4038 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
4039 dev_info(dev
, " Transport methods supported = 0x%x\n",
4040 readl(&(tb
->TransportSupport
)));
4041 dev_info(dev
, " Transport methods active = 0x%x\n",
4042 readl(&(tb
->TransportActive
)));
4043 dev_info(dev
, " Requested transport Method = 0x%x\n",
4044 readl(&(tb
->HostWrite
.TransportRequest
)));
4045 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
4046 readl(&(tb
->HostWrite
.CoalIntDelay
)));
4047 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
4048 readl(&(tb
->HostWrite
.CoalIntCount
)));
4049 dev_info(dev
, " Max outstanding commands = 0x%d\n",
4050 readl(&(tb
->CmdsOutMax
)));
4051 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
4052 for (i
= 0; i
< 16; i
++)
4053 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
4054 temp_name
[16] = '\0';
4055 dev_info(dev
, " Server Name = %s\n", temp_name
);
4056 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
4057 readl(&(tb
->HeartBeat
)));
4058 #endif /* HPSA_DEBUG */
4061 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
4063 int i
, offset
, mem_type
, bar_type
;
4065 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
4068 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
4069 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
4070 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
4073 mem_type
= pci_resource_flags(pdev
, i
) &
4074 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
4076 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
4077 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
4078 offset
+= 4; /* 32 bit */
4080 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
4083 default: /* reserved in PCI 2.2 */
4084 dev_warn(&pdev
->dev
,
4085 "base address is invalid\n");
4090 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
4096 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4097 * controllers that are capable. If not, we use IO-APIC mode.
4100 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
4102 #ifdef CONFIG_PCI_MSI
4104 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
4106 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
4107 hpsa_msix_entries
[i
].vector
= 0;
4108 hpsa_msix_entries
[i
].entry
= i
;
4111 /* Some boards advertise MSI but don't really support it */
4112 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
4113 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
4114 goto default_int_mode
;
4115 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
4116 dev_info(&h
->pdev
->dev
, "MSIX\n");
4117 err
= pci_enable_msix(h
->pdev
, hpsa_msix_entries
,
4120 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4121 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
4126 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
4127 "available\n", err
);
4128 goto default_int_mode
;
4130 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n",
4132 goto default_int_mode
;
4135 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
4136 dev_info(&h
->pdev
->dev
, "MSI\n");
4137 if (!pci_enable_msi(h
->pdev
))
4140 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
4143 #endif /* CONFIG_PCI_MSI */
4144 /* if we get here we're going to use the default interrupt mode */
4145 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
4148 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
4151 u32 subsystem_vendor_id
, subsystem_device_id
;
4153 subsystem_vendor_id
= pdev
->subsystem_vendor
;
4154 subsystem_device_id
= pdev
->subsystem_device
;
4155 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
4156 subsystem_vendor_id
;
4158 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
4159 if (*board_id
== products
[i
].board_id
)
4162 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
4163 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
4165 dev_warn(&pdev
->dev
, "unrecognized board ID: "
4166 "0x%08x, ignoring.\n", *board_id
);
4169 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
4172 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
4173 unsigned long *memory_bar
)
4177 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4178 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4179 /* addressing mode bits already removed */
4180 *memory_bar
= pci_resource_start(pdev
, i
);
4181 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4185 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4189 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4195 iterations
= HPSA_BOARD_READY_ITERATIONS
;
4197 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
4199 for (i
= 0; i
< iterations
; i
++) {
4200 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4201 if (wait_for_ready
) {
4202 if (scratchpad
== HPSA_FIRMWARE_READY
)
4205 if (scratchpad
!= HPSA_FIRMWARE_READY
)
4208 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
4210 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4214 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4215 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4218 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4219 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4220 *cfg_base_addr
&= (u32
) 0x0000ffff;
4221 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4222 if (*cfg_base_addr_index
== -1) {
4223 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
4229 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
4233 u64 cfg_base_addr_index
;
4237 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4238 &cfg_base_addr_index
, &cfg_offset
);
4241 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4242 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
4245 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
4248 /* Find performant mode table. */
4249 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4250 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4251 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4252 sizeof(*h
->transtable
));
4258 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4260 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4262 /* Limit commands in memory limited kdump scenario. */
4263 if (reset_devices
&& h
->max_commands
> 32)
4264 h
->max_commands
= 32;
4266 if (h
->max_commands
< 16) {
4267 dev_warn(&h
->pdev
->dev
, "Controller reports "
4268 "max supported commands of %d, an obvious lie. "
4269 "Using 16. Ensure that firmware is up to date.\n",
4271 h
->max_commands
= 16;
4275 /* Interrogate the hardware for some limits:
4276 * max commands, max SG elements without chaining, and with chaining,
4277 * SG chain block size, etc.
4279 static void hpsa_find_board_params(struct ctlr_info
*h
)
4281 hpsa_get_max_perf_mode_cmds(h
);
4282 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4283 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
4285 * Limit in-command s/g elements to 32 save dma'able memory.
4286 * Howvever spec says if 0, use 31
4288 h
->max_cmd_sg_entries
= 31;
4289 if (h
->maxsgentries
> 512) {
4290 h
->max_cmd_sg_entries
= 32;
4291 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
+ 1;
4292 h
->maxsgentries
--; /* save one for chain pointer */
4294 h
->maxsgentries
= 31; /* default to traditional values */
4298 /* Find out what task management functions are supported and cache */
4299 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
4302 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
4304 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
4305 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4311 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4312 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info
*h
)
4317 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4319 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4323 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4324 * in a prefetch beyond physical memory.
4326 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
4330 if (h
->board_id
!= 0x3225103C)
4332 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4333 dma_prefetch
|= 0x8000;
4334 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4337 static void hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
4341 unsigned long flags
;
4343 /* under certain very rare conditions, this can take awhile.
4344 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4345 * as we enter this code.)
4347 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
4348 spin_lock_irqsave(&h
->lock
, flags
);
4349 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
4350 spin_unlock_irqrestore(&h
->lock
, flags
);
4351 if (!(doorbell_value
& CFGTBL_ChangeReq
))
4353 /* delay and try again */
4354 usleep_range(10000, 20000);
4358 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
4362 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
4363 if (!(trans_support
& SIMPLE_MODE
))
4366 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
4367 /* Update the field, and then ring the doorbell */
4368 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
4369 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
4370 hpsa_wait_for_mode_change_ack(h
);
4371 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
4372 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
4373 dev_warn(&h
->pdev
->dev
,
4374 "unable to get board into simple mode\n");
4377 h
->transMethod
= CFGTBL_Trans_Simple
;
4381 static int hpsa_pci_init(struct ctlr_info
*h
)
4383 int prod_index
, err
;
4385 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
4388 h
->product_name
= products
[prod_index
].product_name
;
4389 h
->access
= *(products
[prod_index
].access
);
4391 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
4392 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
4394 err
= pci_enable_device(h
->pdev
);
4396 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
4400 /* Enable bus mastering (pci_disable_device may disable this) */
4401 pci_set_master(h
->pdev
);
4403 err
= pci_request_regions(h
->pdev
, HPSA
);
4405 dev_err(&h
->pdev
->dev
,
4406 "cannot obtain PCI resources, aborting\n");
4409 hpsa_interrupt_mode(h
);
4410 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4412 goto err_out_free_res
;
4413 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4416 goto err_out_free_res
;
4418 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4420 goto err_out_free_res
;
4421 err
= hpsa_find_cfgtables(h
);
4423 goto err_out_free_res
;
4424 hpsa_find_board_params(h
);
4426 if (!hpsa_CISS_signature_present(h
)) {
4428 goto err_out_free_res
;
4430 hpsa_enable_scsi_prefetch(h
);
4431 hpsa_p600_dma_prefetch_quirk(h
);
4432 err
= hpsa_enter_simple_mode(h
);
4434 goto err_out_free_res
;
4439 iounmap(h
->transtable
);
4441 iounmap(h
->cfgtable
);
4444 pci_disable_device(h
->pdev
);
4445 pci_release_regions(h
->pdev
);
4449 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
4453 #define HBA_INQUIRY_BYTE_COUNT 64
4454 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
4455 if (!h
->hba_inquiry_data
)
4457 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
4458 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
4460 kfree(h
->hba_inquiry_data
);
4461 h
->hba_inquiry_data
= NULL
;
4465 static int hpsa_init_reset_devices(struct pci_dev
*pdev
)
4472 /* Reset the controller with a PCI power-cycle or via doorbell */
4473 rc
= hpsa_kdump_hard_reset_controller(pdev
);
4475 /* -ENOTSUPP here means we cannot reset the controller
4476 * but it's already (and still) up and running in
4477 * "performant mode". Or, it might be 640x, which can't reset
4478 * due to concerns about shared bbwc between 6402/6404 pair.
4480 if (rc
== -ENOTSUPP
)
4481 return rc
; /* just try to do the kdump anyhow. */
4485 /* Now try to get the controller to respond to a no-op */
4486 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
4487 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
4488 if (hpsa_noop(pdev
) == 0)
4491 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4492 (i
< 11 ? "; re-trying" : ""));
4497 static int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
4499 h
->cmd_pool_bits
= kzalloc(
4500 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
4501 sizeof(unsigned long), GFP_KERNEL
);
4502 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
4503 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
4504 &(h
->cmd_pool_dhandle
));
4505 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
4506 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
4507 &(h
->errinfo_pool_dhandle
));
4508 if ((h
->cmd_pool_bits
== NULL
)
4509 || (h
->cmd_pool
== NULL
)
4510 || (h
->errinfo_pool
== NULL
)) {
4511 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
4517 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
4519 kfree(h
->cmd_pool_bits
);
4521 pci_free_consistent(h
->pdev
,
4522 h
->nr_cmds
* sizeof(struct CommandList
),
4523 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4524 if (h
->errinfo_pool
)
4525 pci_free_consistent(h
->pdev
,
4526 h
->nr_cmds
* sizeof(struct ErrorInfo
),
4528 h
->errinfo_pool_dhandle
);
4531 static int hpsa_request_irq(struct ctlr_info
*h
,
4532 irqreturn_t (*msixhandler
)(int, void *),
4533 irqreturn_t (*intxhandler
)(int, void *))
4538 * initialize h->q[x] = x so that interrupt handlers know which
4541 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4544 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
) {
4545 /* If performant mode and MSI-X, use multiple reply queues */
4546 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4547 rc
= request_irq(h
->intr
[i
], msixhandler
,
4551 /* Use single reply pool */
4552 if (h
->msix_vector
|| h
->msi_vector
) {
4553 rc
= request_irq(h
->intr
[h
->intr_mode
],
4554 msixhandler
, 0, h
->devname
,
4555 &h
->q
[h
->intr_mode
]);
4557 rc
= request_irq(h
->intr
[h
->intr_mode
],
4558 intxhandler
, IRQF_SHARED
, h
->devname
,
4559 &h
->q
[h
->intr_mode
]);
4563 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
4564 h
->intr
[h
->intr_mode
], h
->devname
);
4570 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
4572 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
4573 HPSA_RESET_TYPE_CONTROLLER
)) {
4574 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
4578 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
4579 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
4580 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
4584 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
4585 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
4586 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
4587 "after soft reset.\n");
4594 static void free_irqs(struct ctlr_info
*h
)
4598 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
4599 /* Single reply queue, only one irq to free */
4601 free_irq(h
->intr
[i
], &h
->q
[i
]);
4605 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4606 free_irq(h
->intr
[i
], &h
->q
[i
]);
4609 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
4612 #ifdef CONFIG_PCI_MSI
4613 if (h
->msix_vector
) {
4614 if (h
->pdev
->msix_enabled
)
4615 pci_disable_msix(h
->pdev
);
4616 } else if (h
->msi_vector
) {
4617 if (h
->pdev
->msi_enabled
)
4618 pci_disable_msi(h
->pdev
);
4620 #endif /* CONFIG_PCI_MSI */
4623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
4625 hpsa_free_irqs_and_disable_msix(h
);
4626 hpsa_free_sg_chain_blocks(h
);
4627 hpsa_free_cmd_pool(h
);
4628 kfree(h
->blockFetchTable
);
4629 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
4630 h
->reply_pool
, h
->reply_pool_dhandle
);
4634 iounmap(h
->transtable
);
4636 iounmap(h
->cfgtable
);
4637 pci_release_regions(h
->pdev
);
4641 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info
*h
)
4643 assert_spin_locked(&lockup_detector_lock
);
4644 if (!hpsa_lockup_detector
)
4646 if (h
->lockup_detected
)
4647 return; /* already stopped the lockup detector */
4648 list_del(&h
->lockup_list
);
4651 /* Called when controller lockup detected. */
4652 static void fail_all_cmds_on_list(struct ctlr_info
*h
, struct list_head
*list
)
4654 struct CommandList
*c
= NULL
;
4656 assert_spin_locked(&h
->lock
);
4657 /* Mark all outstanding commands as failed and complete them. */
4658 while (!list_empty(list
)) {
4659 c
= list_entry(list
->next
, struct CommandList
, list
);
4660 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4665 static void controller_lockup_detected(struct ctlr_info
*h
)
4667 unsigned long flags
;
4669 assert_spin_locked(&lockup_detector_lock
);
4670 remove_ctlr_from_lockup_detector_list(h
);
4671 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4672 spin_lock_irqsave(&h
->lock
, flags
);
4673 h
->lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4674 spin_unlock_irqrestore(&h
->lock
, flags
);
4675 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
4676 h
->lockup_detected
);
4677 pci_disable_device(h
->pdev
);
4678 spin_lock_irqsave(&h
->lock
, flags
);
4679 fail_all_cmds_on_list(h
, &h
->cmpQ
);
4680 fail_all_cmds_on_list(h
, &h
->reqQ
);
4681 spin_unlock_irqrestore(&h
->lock
, flags
);
4684 static void detect_controller_lockup(struct ctlr_info
*h
)
4688 unsigned long flags
;
4690 assert_spin_locked(&lockup_detector_lock
);
4691 now
= get_jiffies_64();
4692 /* If we've received an interrupt recently, we're ok. */
4693 if (time_after64(h
->last_intr_timestamp
+
4694 (h
->heartbeat_sample_interval
), now
))
4698 * If we've already checked the heartbeat recently, we're ok.
4699 * This could happen if someone sends us a signal. We
4700 * otherwise don't care about signals in this thread.
4702 if (time_after64(h
->last_heartbeat_timestamp
+
4703 (h
->heartbeat_sample_interval
), now
))
4706 /* If heartbeat has not changed since we last looked, we're not ok. */
4707 spin_lock_irqsave(&h
->lock
, flags
);
4708 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
4709 spin_unlock_irqrestore(&h
->lock
, flags
);
4710 if (h
->last_heartbeat
== heartbeat
) {
4711 controller_lockup_detected(h
);
4716 h
->last_heartbeat
= heartbeat
;
4717 h
->last_heartbeat_timestamp
= now
;
4720 static int detect_controller_lockup_thread(void *notused
)
4722 struct ctlr_info
*h
;
4723 unsigned long flags
;
4726 struct list_head
*this, *tmp
;
4728 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL
);
4729 if (kthread_should_stop())
4731 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4732 list_for_each_safe(this, tmp
, &hpsa_ctlr_list
) {
4733 h
= list_entry(this, struct ctlr_info
, lockup_list
);
4734 detect_controller_lockup(h
);
4736 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4741 static void add_ctlr_to_lockup_detector_list(struct ctlr_info
*h
)
4743 unsigned long flags
;
4745 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
4746 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4747 list_add_tail(&h
->lockup_list
, &hpsa_ctlr_list
);
4748 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4751 static void start_controller_lockup_detector(struct ctlr_info
*h
)
4753 /* Start the lockup detector thread if not already started */
4754 if (!hpsa_lockup_detector
) {
4755 spin_lock_init(&lockup_detector_lock
);
4756 hpsa_lockup_detector
=
4757 kthread_run(detect_controller_lockup_thread
,
4760 if (!hpsa_lockup_detector
) {
4761 dev_warn(&h
->pdev
->dev
,
4762 "Could not start lockup detector thread\n");
4765 add_ctlr_to_lockup_detector_list(h
);
4768 static void stop_controller_lockup_detector(struct ctlr_info
*h
)
4770 unsigned long flags
;
4772 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4773 remove_ctlr_from_lockup_detector_list(h
);
4774 /* If the list of ctlr's to monitor is empty, stop the thread */
4775 if (list_empty(&hpsa_ctlr_list
)) {
4776 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4777 kthread_stop(hpsa_lockup_detector
);
4778 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4779 hpsa_lockup_detector
= NULL
;
4781 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4784 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4787 struct ctlr_info
*h
;
4788 int try_soft_reset
= 0;
4789 unsigned long flags
;
4791 if (number_of_controllers
== 0)
4792 printk(KERN_INFO DRIVER_NAME
"\n");
4794 rc
= hpsa_init_reset_devices(pdev
);
4796 if (rc
!= -ENOTSUPP
)
4798 /* If the reset fails in a particular way (it has no way to do
4799 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4800 * a soft reset once we get the controller configured up to the
4801 * point that it can accept a command.
4807 reinit_after_soft_reset
:
4809 /* Command structures must be aligned on a 32-byte boundary because
4810 * the 5 lower bits of the address are used by the hardware. and by
4811 * the driver. See comments in hpsa.h for more info.
4813 #define COMMANDLIST_ALIGNMENT 32
4814 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
4815 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
4820 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
4821 INIT_LIST_HEAD(&h
->cmpQ
);
4822 INIT_LIST_HEAD(&h
->reqQ
);
4823 spin_lock_init(&h
->lock
);
4824 spin_lock_init(&h
->scan_lock
);
4825 rc
= hpsa_pci_init(h
);
4829 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
4830 h
->ctlr
= number_of_controllers
;
4831 number_of_controllers
++;
4833 /* configure PCI DMA stuff */
4834 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4838 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4842 dev_err(&pdev
->dev
, "no suitable DMA available\n");
4847 /* make sure the board interrupts are off */
4848 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4850 if (hpsa_request_irq(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
4852 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
4853 h
->devname
, pdev
->device
,
4854 h
->intr
[h
->intr_mode
], dac
? "" : " not");
4855 if (hpsa_allocate_cmd_pool(h
))
4857 if (hpsa_allocate_sg_chain_blocks(h
))
4859 init_waitqueue_head(&h
->scan_wait_queue
);
4860 h
->scan_finished
= 1; /* no scan currently in progress */
4862 pci_set_drvdata(pdev
, h
);
4864 h
->scsi_host
= NULL
;
4865 spin_lock_init(&h
->devlock
);
4866 hpsa_put_ctlr_into_performant_mode(h
);
4868 /* At this point, the controller is ready to take commands.
4869 * Now, if reset_devices and the hard reset didn't work, try
4870 * the soft reset and see if that works.
4872 if (try_soft_reset
) {
4874 /* This is kind of gross. We may or may not get a completion
4875 * from the soft reset command, and if we do, then the value
4876 * from the fifo may or may not be valid. So, we wait 10 secs
4877 * after the reset throwing away any completions we get during
4878 * that time. Unregister the interrupt handler and register
4879 * fake ones to scoop up any residual completions.
4881 spin_lock_irqsave(&h
->lock
, flags
);
4882 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4883 spin_unlock_irqrestore(&h
->lock
, flags
);
4885 rc
= hpsa_request_irq(h
, hpsa_msix_discard_completions
,
4886 hpsa_intx_discard_completions
);
4888 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
4893 rc
= hpsa_kdump_soft_reset(h
);
4895 /* Neither hard nor soft reset worked, we're hosed. */
4898 dev_info(&h
->pdev
->dev
, "Board READY.\n");
4899 dev_info(&h
->pdev
->dev
,
4900 "Waiting for stale completions to drain.\n");
4901 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4903 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4905 rc
= controller_reset_failed(h
->cfgtable
);
4907 dev_info(&h
->pdev
->dev
,
4908 "Soft reset appears to have failed.\n");
4910 /* since the controller's reset, we have to go back and re-init
4911 * everything. Easiest to just forget what we've done and do it
4914 hpsa_undo_allocations_after_kdump_soft_reset(h
);
4917 /* don't go to clean4, we already unallocated */
4920 goto reinit_after_soft_reset
;
4923 /* Turn the interrupts on so we can service requests */
4924 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4926 hpsa_hba_inquiry(h
);
4927 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
4928 start_controller_lockup_detector(h
);
4932 hpsa_free_sg_chain_blocks(h
);
4933 hpsa_free_cmd_pool(h
);
4941 static void hpsa_flush_cache(struct ctlr_info
*h
)
4944 struct CommandList
*c
;
4946 flush_buf
= kzalloc(4, GFP_KERNEL
);
4950 c
= cmd_special_alloc(h
);
4952 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
4955 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
4956 RAID_CTLR_LUNID
, TYPE_CMD
)) {
4959 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
4960 if (c
->err_info
->CommandStatus
!= 0)
4962 dev_warn(&h
->pdev
->dev
,
4963 "error flushing cache on controller\n");
4964 cmd_special_free(h
, c
);
4969 static void hpsa_shutdown(struct pci_dev
*pdev
)
4971 struct ctlr_info
*h
;
4973 h
= pci_get_drvdata(pdev
);
4974 /* Turn board interrupts off and send the flush cache command
4975 * sendcmd will turn off interrupt, and send the flush...
4976 * To write all data in the battery backed cache to disks
4978 hpsa_flush_cache(h
);
4979 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4980 hpsa_free_irqs_and_disable_msix(h
);
4983 static void hpsa_free_device_info(struct ctlr_info
*h
)
4987 for (i
= 0; i
< h
->ndevices
; i
++)
4991 static void hpsa_remove_one(struct pci_dev
*pdev
)
4993 struct ctlr_info
*h
;
4995 if (pci_get_drvdata(pdev
) == NULL
) {
4996 dev_err(&pdev
->dev
, "unable to remove device\n");
4999 h
= pci_get_drvdata(pdev
);
5000 stop_controller_lockup_detector(h
);
5001 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
5002 hpsa_shutdown(pdev
);
5004 iounmap(h
->transtable
);
5005 iounmap(h
->cfgtable
);
5006 hpsa_free_device_info(h
);
5007 hpsa_free_sg_chain_blocks(h
);
5008 pci_free_consistent(h
->pdev
,
5009 h
->nr_cmds
* sizeof(struct CommandList
),
5010 h
->cmd_pool
, h
->cmd_pool_dhandle
);
5011 pci_free_consistent(h
->pdev
,
5012 h
->nr_cmds
* sizeof(struct ErrorInfo
),
5013 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
5014 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5015 h
->reply_pool
, h
->reply_pool_dhandle
);
5016 kfree(h
->cmd_pool_bits
);
5017 kfree(h
->blockFetchTable
);
5018 kfree(h
->hba_inquiry_data
);
5019 pci_disable_device(pdev
);
5020 pci_release_regions(pdev
);
5021 pci_set_drvdata(pdev
, NULL
);
5025 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
5026 __attribute__((unused
)) pm_message_t state
)
5031 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
5036 static struct pci_driver hpsa_pci_driver
= {
5038 .probe
= hpsa_init_one
,
5039 .remove
= hpsa_remove_one
,
5040 .id_table
= hpsa_pci_device_id
, /* id_table */
5041 .shutdown
= hpsa_shutdown
,
5042 .suspend
= hpsa_suspend
,
5043 .resume
= hpsa_resume
,
5046 /* Fill in bucket_map[], given nsgs (the max number of
5047 * scatter gather elements supported) and bucket[],
5048 * which is an array of 8 integers. The bucket[] array
5049 * contains 8 different DMA transfer sizes (in 16
5050 * byte increments) which the controller uses to fetch
5051 * commands. This function fills in bucket_map[], which
5052 * maps a given number of scatter gather elements to one of
5053 * the 8 DMA transfer sizes. The point of it is to allow the
5054 * controller to only do as much DMA as needed to fetch the
5055 * command, with the DMA transfer size encoded in the lower
5056 * bits of the command address.
5058 static void calc_bucket_map(int bucket
[], int num_buckets
,
5059 int nsgs
, int *bucket_map
)
5063 /* even a command with 0 SGs requires 4 blocks */
5064 #define MINIMUM_TRANSFER_BLOCKS 4
5065 #define NUM_BUCKETS 8
5066 /* Note, bucket_map must have nsgs+1 entries. */
5067 for (i
= 0; i
<= nsgs
; i
++) {
5068 /* Compute size of a command with i SG entries */
5069 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
5070 b
= num_buckets
; /* Assume the biggest bucket */
5071 /* Find the bucket that is just big enough */
5072 for (j
= 0; j
< 8; j
++) {
5073 if (bucket
[j
] >= size
) {
5078 /* for a command with i SG entries, use bucket b. */
5083 static void hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 use_short_tags
)
5086 unsigned long register_value
;
5088 /* This is a bit complicated. There are 8 registers on
5089 * the controller which we write to to tell it 8 different
5090 * sizes of commands which there may be. It's a way of
5091 * reducing the DMA done to fetch each command. Encoded into
5092 * each command's tag are 3 bits which communicate to the controller
5093 * which of the eight sizes that command fits within. The size of
5094 * each command depends on how many scatter gather entries there are.
5095 * Each SG entry requires 16 bytes. The eight registers are programmed
5096 * with the number of 16-byte blocks a command of that size requires.
5097 * The smallest command possible requires 5 such 16 byte blocks.
5098 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5099 * blocks. Note, this only extends to the SG entries contained
5100 * within the command block, and does not extend to chained blocks
5101 * of SG elements. bft[] contains the eight values we write to
5102 * the registers. They are not evenly distributed, but have more
5103 * sizes for small commands, and fewer sizes for larger commands.
5105 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
5106 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
5107 /* 5 = 1 s/g entry or 4k
5108 * 6 = 2 s/g entry or 8k
5109 * 8 = 4 s/g entry or 16k
5110 * 10 = 6 s/g entry or 24k
5113 /* Controller spec: zero out this buffer. */
5114 memset(h
->reply_pool
, 0, h
->reply_pool_size
);
5116 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
5117 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
5118 SG_ENTRIES_IN_CMD
, h
->blockFetchTable
);
5119 for (i
= 0; i
< 8; i
++)
5120 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
5122 /* size of controller ring buffer */
5123 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
5124 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
5125 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
5126 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
5128 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5129 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
5130 writel(h
->reply_pool_dhandle
+
5131 (h
->max_commands
* sizeof(u64
) * i
),
5132 &h
->transtable
->RepQAddr
[i
].lower
);
5135 writel(CFGTBL_Trans_Performant
| use_short_tags
|
5136 CFGTBL_Trans_enable_directed_msix
,
5137 &(h
->cfgtable
->HostWrite
.TransportRequest
));
5138 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
5139 hpsa_wait_for_mode_change_ack(h
);
5140 register_value
= readl(&(h
->cfgtable
->TransportActive
));
5141 if (!(register_value
& CFGTBL_Trans_Performant
)) {
5142 dev_warn(&h
->pdev
->dev
, "unable to get board into"
5143 " performant mode\n");
5146 /* Change the access methods to the performant access methods */
5147 h
->access
= SA5_performant_access
;
5148 h
->transMethod
= CFGTBL_Trans_Performant
;
5151 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
5156 if (hpsa_simple_mode
)
5159 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
5160 if (!(trans_support
& PERFORMANT_MODE
))
5163 h
->nreply_queues
= h
->msix_vector
? MAX_REPLY_QUEUES
: 1;
5164 hpsa_get_max_perf_mode_cmds(h
);
5165 /* Performant mode ring buffer and supporting data structures */
5166 h
->reply_pool_size
= h
->max_commands
* sizeof(u64
) * h
->nreply_queues
;
5167 h
->reply_pool
= pci_alloc_consistent(h
->pdev
, h
->reply_pool_size
,
5168 &(h
->reply_pool_dhandle
));
5170 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5171 h
->reply_queue
[i
].head
= &h
->reply_pool
[h
->max_commands
* i
];
5172 h
->reply_queue
[i
].size
= h
->max_commands
;
5173 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
5174 h
->reply_queue
[i
].current_entry
= 0;
5177 /* Need a block fetch table for performant mode */
5178 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
5179 sizeof(u32
)), GFP_KERNEL
);
5181 if ((h
->reply_pool
== NULL
)
5182 || (h
->blockFetchTable
== NULL
))
5185 hpsa_enter_performant_mode(h
,
5186 trans_support
& CFGTBL_Trans_use_short_tags
);
5192 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5193 h
->reply_pool
, h
->reply_pool_dhandle
);
5194 kfree(h
->blockFetchTable
);
5198 * This is it. Register the PCI driver information for the cards we control
5199 * the OS will call our registered routines when it finds one of our cards.
5201 static int __init
hpsa_init(void)
5203 return pci_register_driver(&hpsa_pci_driver
);
5206 static void __exit
hpsa_cleanup(void)
5208 pci_unregister_driver(&hpsa_pci_driver
);
5211 module_init(hpsa_init
);
5212 module_exit(hpsa_cleanup
);