powerpc/mm/4k: don't allocate larger pmd page table for 4k
[linux/fpc-iii.git] / drivers / pinctrl / aspeed / pinctrl-aspeed.h
blob3e72ef8c54bf76d464afd12e82df2fb06db308cf
1 /*
2 * Copyright (C) 2016 IBM Corp.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
10 #ifndef PINCTRL_ASPEED
11 #define PINCTRL_ASPEED
13 #include <linux/pinctrl/pinctrl.h>
14 #include <linux/pinctrl/pinmux.h>
15 #include <linux/pinctrl/pinconf.h>
16 #include <linux/pinctrl/pinconf-generic.h>
17 #include <linux/regmap.h>
20 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other
21 * functions. The SoC function enabled on a pin is determined on a priority
22 * basis where a given pin can provide a number of different signal types.
24 * The signal active on a pin is described by both a priority level and
25 * compound logical expressions involving multiple operators, registers and
26 * bits. Some difficulty arises as the pin's function bit masks for each
27 * priority level are frequently not the same (i.e. cannot just flip a bit to
28 * change from a high to low priority signal), or even in the same register.
29 * Further, not all signals can be unmuxed, as some expressions depend on
30 * values in the hardware strapping register (which is treated as read-only).
32 * SoC Multi-function Pin Expression Examples
33 * ------------------------------------------
35 * Here are some sample mux configurations from the AST2400 and AST2500
36 * datasheets to illustrate the corner cases, roughly in order of least to most
37 * corner. The signal priorities are in decending order from P0 (highest).
39 * D6 is a pin with a single function (beside GPIO); a high priority signal
40 * that participates in one function:
42 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
43 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
44 * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0
45 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
47 * C5 is a multi-signal pin (high and low priority signals). Here we touch
48 * different registers for the different functions that enable each signal:
50 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
51 * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4
52 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
54 * E19 is a single-signal pin with two functions that influence the active
55 * signal. In this case both bits have the same meaning - enable a dedicated
56 * LPC reset pin. However it's not always the case that the bits in the
57 * OR-relationship have the same meaning.
59 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
60 * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4
61 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
63 * For example, pin B19 has a low-priority signal that's enabled by two
64 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI
65 * bit in the STRAP register. The ACPI bit configures signals on pins in
66 * addition to B19. Both of the low priority functions as well as the high
67 * priority function must be disabled for GPIOF1 to be used.
69 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
70 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
71 * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1
72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
74 * For pin E18, the SoC ANDs the expected state of three bits to determine the
75 * pin's active signal:
77 * * SCU3C[3]: Enable external SOC reset function
78 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin
79 * * SCU90[31]: Select SPI interface CS# output
81 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
82 * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7
83 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
85 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for
86 * selecting the signals on pin E18)
88 * Pin T5 is a multi-signal pin with a more complex configuration:
90 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
91 * -----+---------+-----------+------------------------------+-----------+---------------+----------
92 * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1
93 * -----+---------+-----------+------------------------------+-----------+---------------+----------
95 * The high priority signal configuration is best thought of in terms of its
96 * exploded form, with reference to the SCU90[5:4] bits:
98 * * SCU90[5:4]=00: disable
99 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode.
100 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode.
101 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode.
103 * Re-writing:
105 * -----+---------+-----------+------------------------------+-----------+---------------+----------
106 * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1
107 * | (SCU90[5:4]=2 & SCU84[17]=1)
108 * | (SCU90[5:4]=3 & SCU84[17]=1)
109 * -----+---------+-----------+------------------------------+-----------+---------------+----------
111 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE
112 * function pin", where the signal itself is determined by whether SCU94[5:4]
113 * is disabled or in one of the 18, 24 or 30bit video modes.
115 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g.
116 * W1 and U5:
118 * -----+---------+-----------+------------------------------+-----------+---------------+----------
119 * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6
120 * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7
121 * -----+---------+-----------+------------------------------+-----------+---------------+----------
123 * The examples of T5 and W1 are particularly fertile, as they also demonstrate
124 * that despite operating as part of the video input bus each signal needs to
125 * be enabled individually via it's own SCU84 (in the cases of T5 and W1)
126 * register bit. This is a little crazy if the bus doesn't have optional
127 * signals, but is used to decent effect with some of the UARTs where not all
128 * signals are required. However, this isn't done consistently - UART1 is
129 * enabled on a per-pin basis, and by contrast, all signals for UART6 are
130 * enabled by a single bit.
132 * Further, the high and low priority signals listed in the table above share
133 * a configuration bit. The VPI signals should operate in concert in a single
134 * function, but the UART signals should retain the ability to be configured
135 * independently. This pushes the implementation down the path of tagging a
136 * signal's expressions with the function they participate in, rather than
137 * defining masks affecting multiple signals per function. The latter approach
138 * fails in this instance where applying the configuration for the UART pin of
139 * interest will stomp on the state of other UART signals when disabling the
140 * VPI functions on the current pin.
142 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other
143 * -----+------------+-----------+---------------------------+-----------+---------------+------------
144 * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK
145 * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL
146 * -----+------------+-----------+---------------------------+-----------+---------------+------------
148 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case
149 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO
150 * should be treated like any other signal type with full function expression
151 * requirements, and not assumed to be the default case. Separately, GPIOT0 and
152 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all
153 * pins in the function's group to disable the higher-priority signals such
154 * that the signal for the function of interest is correctly enabled.
156 * Finally, three priority levels aren't always enough; the AST2500 brings with
157 * it 18 pins of five priority levels, however the 18 pins only use three of
158 * the five priority levels.
160 * Ultimately the requirement to control pins in the examples above drive the
161 * design:
163 * * Pins provide signals according to functions activated in the mux
164 * configuration
166 * * Pins provide up to five signal types in a priority order
168 * * For priorities levels defined on a pin, each priority provides one signal
170 * * Enabling lower priority signals requires higher priority signals be
171 * disabled
173 * * A function represents a set of signals; functions are distinct if their
174 * sets of signals are not equal
176 * * Signals participate in one or more functions
178 * * A function is described by an expression of one or more signal
179 * descriptors, which compare bit values in a register
181 * * A signal expression is the smallest set of signal descriptors whose
182 * comparisons must evaluate 'true' for a signal to be enabled on a pin.
184 * * A function's signal is active on a pin if evaluating all signal
185 * descriptors in the pin's signal expression for the function yields a 'true'
186 * result
188 * * A signal at a given priority on a given pin is active if any of the
189 * functions in which the signal participates are active, and no higher
190 * priority signal on the pin is active
192 * * GPIO is configured per-pin
194 * And so:
196 * * To disable a signal, any function(s) activating the signal must be
197 * disabled
199 * * Each pin must know the signal expressions of functions in which it
200 * participates, for the purpose of enabling the Other function. This is done
201 * by deactivating all functions that activate higher priority signals on the
202 * pin.
204 * As a concrete example:
206 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO
208 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30
210 * * The NDCD1 signal participates in just its own NDCD1 function
212 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least
213 * prioritised
215 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24
216 * and VPI30 functions all be disabled
218 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled
219 * to provide GPIOL6
221 * Considerations
222 * --------------
224 * If pinctrl allows us to allocate a pin we can configure a function without
225 * concern for the function of already allocated pins, if pin groups are
226 * created with respect to the SoC functions in which they participate. This is
227 * intuitive, but it did not feel obvious from the bit/pin relationships.
229 * Conversely, failing to allocate all pins in a group indicates some bits (as
230 * well as pins) required for the group's configuration will already be in use,
231 * likely in a way that's inconsistent with the requirements of the failed
232 * group.
236 * The "Multi-function Pins Mapping and Control" table in the SoC datasheet
237 * references registers by the device/offset mnemonic. The register macros
238 * below are named the same way to ease transcription and verification (as
239 * opposed to naming them e.g. PINMUX_CTRL_[0-9]). Further, signal expressions
240 * reference registers beyond those dedicated to pinmux, such as the system
241 * reset control and MAC clock configuration registers. The AST2500 goes a step
242 * further and references registers in the graphics IP block, but that isn't
243 * handled yet.
245 #define SCU2C 0x2C /* Misc. Control Register */
246 #define SCU3C 0x3C /* System Reset Control/Status Register */
247 #define SCU48 0x48 /* MAC Interface Clock Delay Setting */
248 #define HW_STRAP1 0x70 /* AST2400 strapping is 33 bits, is split */
249 #define SCU80 0x80 /* Multi-function Pin Control #1 */
250 #define SCU84 0x84 /* Multi-function Pin Control #2 */
251 #define SCU88 0x88 /* Multi-function Pin Control #3 */
252 #define SCU8C 0x8C /* Multi-function Pin Control #4 */
253 #define SCU90 0x90 /* Multi-function Pin Control #5 */
254 #define SCU94 0x94 /* Multi-function Pin Control #6 */
255 #define SCUA0 0xA0 /* Multi-function Pin Control #7 */
256 #define SCUA4 0xA4 /* Multi-function Pin Control #8 */
257 #define SCUA8 0xA8 /* Multi-function Pin Control #9 */
258 #define HW_STRAP2 0xD0 /* Strapping */
261 * A signal descriptor, which describes the register, bits and the
262 * enable/disable values that should be compared or written.
264 * @reg: The register offset from base in bytes
265 * @mask: The mask to apply to the register. The lowest set bit of the mask is
266 * used to derive the shift value.
267 * @enable: The value that enables the function. Value should be in the LSBs,
268 * not at the position of the mask.
269 * @disable: The value that disables the function. Value should be in the
270 * LSBs, not at the position of the mask.
272 struct aspeed_sig_desc {
273 unsigned int reg;
274 u32 mask;
275 u32 enable;
276 u32 disable;
280 * Describes a signal expression. The expression is evaluated by ANDing the
281 * evaluation of the descriptors.
283 * @signal: The signal name for the priority level on the pin. If the signal
284 * type is GPIO, then the signal name must begin with the string
285 * "GPIO", e.g. GPIOA0, GPIOT4 etc.
286 * @function: The name of the function the signal participates in for the
287 * associated expression
288 * @ndescs: The number of signal descriptors in the expression
289 * @descs: Pointer to an array of signal descriptors that comprise the
290 * function expression
292 struct aspeed_sig_expr {
293 const char *signal;
294 const char *function;
295 int ndescs;
296 const struct aspeed_sig_desc *descs;
300 * A struct capturing the list of expressions enabling signals at each priority
301 * for a given pin. The signal configuration for a priority level is evaluated
302 * by ORing the evaluation of the signal expressions in the respective
303 * priority's list.
305 * @name: A name for the pin
306 * @prios: A pointer to an array of expression list pointers
309 struct aspeed_pin_desc {
310 const char *name;
311 const struct aspeed_sig_expr ***prios;
314 /* Macro hell */
317 * Short-hand macro for describing a configuration enabled by the state of one
318 * bit. The disable value is derived.
320 * @reg: The signal's associated register, offset from base
321 * @idx: The signal's bit index in the register
322 * @val: The value (0 or 1) that enables the function
324 #define SIG_DESC_BIT(reg, idx, val) \
325 { reg, BIT_MASK(idx), val, (((val) + 1) & 1) }
328 * A further short-hand macro describing a configuration enabled with a set bit.
330 * @reg: The configuration's associated register, offset from base
331 * @idx: The configuration's bit index in the register
333 #define SIG_DESC_SET(reg, idx) SIG_DESC_BIT(reg, idx, 1)
335 #define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func
336 #define SIG_DESC_LIST_DECL(sig, func, ...) \
337 static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \
338 { __VA_ARGS__ }
340 #define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func
341 #define SIG_EXPR_DECL_(sig, func) \
342 static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \
344 .signal = #sig, \
345 .function = #func, \
346 .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \
347 .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \
351 * Declare a signal expression.
353 * @sig: A macro symbol name for the signal (is subjected to stringification
354 * and token pasting)
355 * @func: The function in which the signal is participating
356 * @...: Signal descriptors that define the signal expression
358 * For example, the following declares the ROMD8 signal for the ROM16 function:
360 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
362 * And with multiple signal descriptors:
364 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
365 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
367 #define SIG_EXPR_DECL(sig, func, ...) \
368 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
369 SIG_EXPR_DECL_(sig, func)
372 * Declare a pointer to a signal expression
374 * @sig: The macro symbol name for the signal (subjected to token pasting)
375 * @func: The macro symbol name for the function (subjected to token pasting)
377 #define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func))
379 #define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig
382 * Declare a signal expression list for reference in a struct aspeed_pin_prio.
384 * @sig: A macro symbol name for the signal (is subjected to token pasting)
385 * @...: Signal expression structure pointers (use SIG_EXPR_PTR())
387 * For example, the 16-bit ROM bus can be enabled by one of two possible signal
388 * expressions:
390 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
391 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
392 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
393 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
394 * SIG_EXPR_PTR(ROMD8, ROM16S));
396 #define SIG_EXPR_LIST_DECL(sig, ...) \
397 static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \
398 { __VA_ARGS__, NULL }
401 * A short-hand macro for declaring a function expression and an expression
402 * list with a single function.
404 * @func: A macro symbol name for the function (is subjected to token pasting)
405 * @...: Function descriptors that define the function expression
407 * For example, signal NCTS6 participates in its own function with one group:
409 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
411 #define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \
412 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
413 SIG_EXPR_DECL_(sig, func); \
414 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func))
416 #define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \
417 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1))
419 #define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0])
421 #define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin
422 #define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0])
423 #define PIN_SYM(pin) pin_ ## pin
425 #define MS_PIN_DECL_(pin, ...) \
426 static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \
427 { __VA_ARGS__, NULL }; \
428 static const struct aspeed_pin_desc PIN_SYM(pin) = \
429 { #pin, PIN_EXPRS_PTR(pin) }
432 * Declare a multi-signal pin
434 * @pin: The pin number
435 * @other: Macro name for "other" functionality (subjected to stringification)
436 * @high: Macro name for the highest priority signal functions
437 * @low: Macro name for the low signal functions
439 * For example:
441 * #define A8 56
442 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
443 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
444 * { HW_STRAP1, GENMASK(1, 0), 0, 0 });
445 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
446 * SIG_EXPR_PTR(ROMD8, ROM16S));
447 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
448 * MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6);
450 #define MS_PIN_DECL(pin, other, high, low) \
451 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
452 MS_PIN_DECL_(pin, \
453 SIG_EXPR_LIST_PTR(high), \
454 SIG_EXPR_LIST_PTR(low), \
455 SIG_EXPR_LIST_PTR(other))
457 #define PIN_GROUP_SYM(func) pins_ ## func
458 #define FUNC_GROUP_SYM(func) groups_ ## func
459 #define FUNC_GROUP_DECL(func, ...) \
460 static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \
461 static const char *FUNC_GROUP_SYM(func)[] = { #func }
464 * Declare a single signal pin
466 * @pin: The pin number
467 * @other: Macro name for "other" functionality (subjected to stringification)
468 * @sig: Macro name for the signal (subjected to stringification)
470 * For example:
472 * #define E3 80
473 * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC);
474 * SS_PIN_DECL(E3, GPIOK0, SCL5);
476 #define SS_PIN_DECL(pin, other, sig) \
477 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
478 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other))
481 * Single signal, single function pin declaration
483 * @pin: The pin number
484 * @other: Macro name for "other" functionality (subjected to stringification)
485 * @sig: Macro name for the signal (subjected to stringification)
486 * @...: Signal descriptors that define the function expression
488 * For example:
490 * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2));
492 #define SSSF_PIN_DECL(pin, other, sig, ...) \
493 SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \
494 SIG_EXPR_LIST_DECL_SINGLE(other, other); \
495 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \
496 FUNC_GROUP_DECL(sig, pin)
498 #define GPIO_PIN_DECL(pin, gpio) \
499 SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \
500 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio))
502 struct aspeed_pinctrl_data {
503 struct regmap *map;
505 const struct pinctrl_pin_desc *pins;
506 const unsigned int npins;
508 const struct aspeed_pin_group *groups;
509 const unsigned int ngroups;
511 const struct aspeed_pin_function *functions;
512 const unsigned int nfunctions;
515 #define ASPEED_PINCTRL_PIN(name_) \
516 [name_] = { \
517 .number = name_, \
518 .name = #name_, \
519 .drv_data = (void *) &(PIN_SYM(name_)) \
522 struct aspeed_pin_group {
523 const char *name;
524 const unsigned int *pins;
525 const unsigned int npins;
528 #define ASPEED_PINCTRL_GROUP(name_) { \
529 .name = #name_, \
530 .pins = &(PIN_GROUP_SYM(name_))[0], \
531 .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \
534 struct aspeed_pin_function {
535 const char *name;
536 const char *const *groups;
537 unsigned int ngroups;
540 #define ASPEED_PINCTRL_FUNC(name_, ...) { \
541 .name = #name_, \
542 .groups = &FUNC_GROUP_SYM(name_)[0], \
543 .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \
546 int aspeed_pinctrl_get_groups_count(struct pinctrl_dev *pctldev);
547 const char *aspeed_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
548 unsigned int group);
549 int aspeed_pinctrl_get_group_pins(struct pinctrl_dev *pctldev,
550 unsigned int group, const unsigned int **pins,
551 unsigned int *npins);
552 void aspeed_pinctrl_pin_dbg_show(struct pinctrl_dev *pctldev,
553 struct seq_file *s, unsigned int offset);
554 int aspeed_pinmux_get_fn_count(struct pinctrl_dev *pctldev);
555 const char *aspeed_pinmux_get_fn_name(struct pinctrl_dev *pctldev,
556 unsigned int function);
557 int aspeed_pinmux_get_fn_groups(struct pinctrl_dev *pctldev,
558 unsigned int function, const char * const **groups,
559 unsigned int * const num_groups);
560 int aspeed_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function,
561 unsigned int group);
562 int aspeed_gpio_request_enable(struct pinctrl_dev *pctldev,
563 struct pinctrl_gpio_range *range,
564 unsigned int offset);
565 int aspeed_pinctrl_probe(struct platform_device *pdev,
566 struct pinctrl_desc *pdesc,
567 struct aspeed_pinctrl_data *pdata);
569 #endif /* PINCTRL_ASPEED */