Merge tag 'powerpc-5.9-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / mm / migrate.c
blob34a842a8eb6a7b85b191e58adca66002a1a5072c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
58 #include "internal.h"
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 int migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
73 lru_add_drain_all();
75 return 0;
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
81 lru_add_drain();
83 return 0;
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
88 struct address_space *mapping;
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
137 return 0;
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
150 struct address_space *mapping;
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
169 void putback_movable_pages(struct list_head *l)
171 struct page *page;
172 struct page *page2;
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
179 list_del(&page->lru);
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -thp_nr_pages(page));
197 putback_lru_page(page);
203 * Restore a potential migration pte to a working pte entry
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
233 #endif
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
241 * Recheck VMA as permissions can change since migration started
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
249 if (unlikely(is_zone_device_page(new))) {
250 if (is_device_private_page(new)) {
251 entry = make_device_private_entry(new, pte_write(pte));
252 pte = swp_entry_to_pte(entry);
253 if (pte_swp_uffd_wp(*pvmw.pte))
254 pte = pte_mkuffd_wp(pte);
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
287 return true;
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
328 page = migration_entry_to_page(entry);
331 * Once page cache replacement of page migration started, page_count
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 put_and_wait_on_page_locked(page);
339 return;
340 out:
341 pte_unmap_unlock(ptep, ptl);
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 __migration_entry_wait(mm, pte, ptl);
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 spinlock_t *ptl;
363 struct page *page;
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
372 put_and_wait_on_page_locked(page);
373 return;
374 unlock:
375 spin_unlock(ptl);
377 #endif
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 int expected_count = 1;
384 * Device public or private pages have an extra refcount as they are
385 * ZONE_DEVICE pages.
387 expected_count += is_device_private_page(page);
388 if (mapping)
389 expected_count += thp_nr_pages(page) + page_has_private(page);
391 return expected_count;
395 * Replace the page in the mapping.
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 int migrate_page_move_mapping(struct address_space *mapping,
403 struct page *newpage, struct page *page, int extra_count)
405 XA_STATE(xas, &mapping->i_pages, page_index(page));
406 struct zone *oldzone, *newzone;
407 int dirty;
408 int expected_count = expected_page_refs(mapping, page) + extra_count;
410 if (!mapping) {
411 /* Anonymous page without mapping */
412 if (page_count(page) != expected_count)
413 return -EAGAIN;
415 /* No turning back from here */
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
419 __SetPageSwapBacked(newpage);
421 return MIGRATEPAGE_SUCCESS;
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
427 xas_lock_irq(&xas);
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
430 return -EAGAIN;
433 if (!page_ref_freeze(page, expected_count)) {
434 xas_unlock_irq(&xas);
435 return -EAGAIN;
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
462 xas_store(&xas, newpage);
463 if (PageTransHuge(page)) {
464 int i;
466 for (i = 1; i < HPAGE_PMD_NR; i++) {
467 xas_next(&xas);
468 xas_store(&xas, newpage);
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
475 * We know this isn't the last reference.
477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
479 xas_unlock(&xas);
480 /* Leave irq disabled to prevent preemption while updating stats */
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
488 * Note that anonymous pages are accounted for
489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 * are mapped to swap space.
492 if (newzone != oldzone) {
493 struct lruvec *old_lruvec, *new_lruvec;
494 struct mem_cgroup *memcg;
496 memcg = page_memcg(page);
497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 __dec_lruvec_state(old_lruvec, NR_SHMEM);
504 __inc_lruvec_state(new_lruvec, NR_SHMEM);
506 if (dirty && mapping_cap_account_dirty(mapping)) {
507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
513 local_irq_enable();
515 return MIGRATEPAGE_SUCCESS;
517 EXPORT_SYMBOL(migrate_page_move_mapping);
520 * The expected number of remaining references is the same as that
521 * of migrate_page_move_mapping().
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 struct page *newpage, struct page *page)
526 XA_STATE(xas, &mapping->i_pages, page_index(page));
527 int expected_count;
529 xas_lock_irq(&xas);
530 expected_count = 2 + page_has_private(page);
531 if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 xas_unlock_irq(&xas);
533 return -EAGAIN;
536 if (!page_ref_freeze(page, expected_count)) {
537 xas_unlock_irq(&xas);
538 return -EAGAIN;
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
544 get_page(newpage);
546 xas_store(&xas, newpage);
548 page_ref_unfreeze(page, expected_count - 1);
550 xas_unlock_irq(&xas);
552 return MIGRATEPAGE_SUCCESS;
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
577 static void copy_huge_page(struct page *dst, struct page *src)
579 int i;
580 int nr_pages;
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
594 nr_pages = thp_nr_pages(src);
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
604 * Copy the page to its new location
606 void migrate_page_states(struct page *newpage, struct page *page)
608 int cpupid;
610 if (PageError(page))
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
616 if (TestClearPageActive(page)) {
617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 SetPageActive(newpage);
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
621 if (PageWorkingset(page))
622 SetPageWorkingset(newpage);
623 if (PageChecked(page))
624 SetPageChecked(newpage);
625 if (PageMappedToDisk(page))
626 SetPageMappedToDisk(newpage);
628 /* Move dirty on pages not done by migrate_page_move_mapping() */
629 if (PageDirty(page))
630 SetPageDirty(newpage);
632 if (page_is_young(page))
633 set_page_young(newpage);
634 if (page_is_idle(page))
635 set_page_idle(newpage);
638 * Copy NUMA information to the new page, to prevent over-eager
639 * future migrations of this same page.
641 cpupid = page_cpupid_xchg_last(page, -1);
642 page_cpupid_xchg_last(newpage, cpupid);
644 ksm_migrate_page(newpage, page);
646 * Please do not reorder this without considering how mm/ksm.c's
647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
649 if (PageSwapCache(page))
650 ClearPageSwapCache(page);
651 ClearPagePrivate(page);
652 set_page_private(page, 0);
655 * If any waiters have accumulated on the new page then
656 * wake them up.
658 if (PageWriteback(newpage))
659 end_page_writeback(newpage);
662 * PG_readahead shares the same bit with PG_reclaim. The above
663 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 * bit after that.
666 if (PageReadahead(page))
667 SetPageReadahead(newpage);
669 copy_page_owner(page, newpage);
671 mem_cgroup_migrate(page, newpage);
673 EXPORT_SYMBOL(migrate_page_states);
675 void migrate_page_copy(struct page *newpage, struct page *page)
677 if (PageHuge(page) || PageTransHuge(page))
678 copy_huge_page(newpage, page);
679 else
680 copy_highpage(newpage, page);
682 migrate_page_states(newpage, page);
684 EXPORT_SYMBOL(migrate_page_copy);
686 /************************************************************
687 * Migration functions
688 ***********************************************************/
691 * Common logic to directly migrate a single LRU page suitable for
692 * pages that do not use PagePrivate/PagePrivate2.
694 * Pages are locked upon entry and exit.
696 int migrate_page(struct address_space *mapping,
697 struct page *newpage, struct page *page,
698 enum migrate_mode mode)
700 int rc;
702 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
704 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
706 if (rc != MIGRATEPAGE_SUCCESS)
707 return rc;
709 if (mode != MIGRATE_SYNC_NO_COPY)
710 migrate_page_copy(newpage, page);
711 else
712 migrate_page_states(newpage, page);
713 return MIGRATEPAGE_SUCCESS;
715 EXPORT_SYMBOL(migrate_page);
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720 enum migrate_mode mode)
722 struct buffer_head *bh = head;
724 /* Simple case, sync compaction */
725 if (mode != MIGRATE_ASYNC) {
726 do {
727 lock_buffer(bh);
728 bh = bh->b_this_page;
730 } while (bh != head);
732 return true;
735 /* async case, we cannot block on lock_buffer so use trylock_buffer */
736 do {
737 if (!trylock_buffer(bh)) {
739 * We failed to lock the buffer and cannot stall in
740 * async migration. Release the taken locks
742 struct buffer_head *failed_bh = bh;
743 bh = head;
744 while (bh != failed_bh) {
745 unlock_buffer(bh);
746 bh = bh->b_this_page;
748 return false;
751 bh = bh->b_this_page;
752 } while (bh != head);
753 return true;
756 static int __buffer_migrate_page(struct address_space *mapping,
757 struct page *newpage, struct page *page, enum migrate_mode mode,
758 bool check_refs)
760 struct buffer_head *bh, *head;
761 int rc;
762 int expected_count;
764 if (!page_has_buffers(page))
765 return migrate_page(mapping, newpage, page, mode);
767 /* Check whether page does not have extra refs before we do more work */
768 expected_count = expected_page_refs(mapping, page);
769 if (page_count(page) != expected_count)
770 return -EAGAIN;
772 head = page_buffers(page);
773 if (!buffer_migrate_lock_buffers(head, mode))
774 return -EAGAIN;
776 if (check_refs) {
777 bool busy;
778 bool invalidated = false;
780 recheck_buffers:
781 busy = false;
782 spin_lock(&mapping->private_lock);
783 bh = head;
784 do {
785 if (atomic_read(&bh->b_count)) {
786 busy = true;
787 break;
789 bh = bh->b_this_page;
790 } while (bh != head);
791 if (busy) {
792 if (invalidated) {
793 rc = -EAGAIN;
794 goto unlock_buffers;
796 spin_unlock(&mapping->private_lock);
797 invalidate_bh_lrus();
798 invalidated = true;
799 goto recheck_buffers;
803 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804 if (rc != MIGRATEPAGE_SUCCESS)
805 goto unlock_buffers;
807 attach_page_private(newpage, detach_page_private(page));
809 bh = head;
810 do {
811 set_bh_page(bh, newpage, bh_offset(bh));
812 bh = bh->b_this_page;
814 } while (bh != head);
816 if (mode != MIGRATE_SYNC_NO_COPY)
817 migrate_page_copy(newpage, page);
818 else
819 migrate_page_states(newpage, page);
821 rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823 if (check_refs)
824 spin_unlock(&mapping->private_lock);
825 bh = head;
826 do {
827 unlock_buffer(bh);
828 bh = bh->b_this_page;
830 } while (bh != head);
832 return rc;
836 * Migration function for pages with buffers. This function can only be used
837 * if the underlying filesystem guarantees that no other references to "page"
838 * exist. For example attached buffer heads are accessed only under page lock.
840 int buffer_migrate_page(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
843 return __buffer_migrate_page(mapping, newpage, page, mode, false);
845 EXPORT_SYMBOL(buffer_migrate_page);
848 * Same as above except that this variant is more careful and checks that there
849 * are also no buffer head references. This function is the right one for
850 * mappings where buffer heads are directly looked up and referenced (such as
851 * block device mappings).
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854 struct page *newpage, struct page *page, enum migrate_mode mode)
856 return __buffer_migrate_page(mapping, newpage, page, mode, true);
858 #endif
861 * Writeback a page to clean the dirty state
863 static int writeout(struct address_space *mapping, struct page *page)
865 struct writeback_control wbc = {
866 .sync_mode = WB_SYNC_NONE,
867 .nr_to_write = 1,
868 .range_start = 0,
869 .range_end = LLONG_MAX,
870 .for_reclaim = 1
872 int rc;
874 if (!mapping->a_ops->writepage)
875 /* No write method for the address space */
876 return -EINVAL;
878 if (!clear_page_dirty_for_io(page))
879 /* Someone else already triggered a write */
880 return -EAGAIN;
883 * A dirty page may imply that the underlying filesystem has
884 * the page on some queue. So the page must be clean for
885 * migration. Writeout may mean we loose the lock and the
886 * page state is no longer what we checked for earlier.
887 * At this point we know that the migration attempt cannot
888 * be successful.
890 remove_migration_ptes(page, page, false);
892 rc = mapping->a_ops->writepage(page, &wbc);
894 if (rc != AOP_WRITEPAGE_ACTIVATE)
895 /* unlocked. Relock */
896 lock_page(page);
898 return (rc < 0) ? -EIO : -EAGAIN;
902 * Default handling if a filesystem does not provide a migration function.
904 static int fallback_migrate_page(struct address_space *mapping,
905 struct page *newpage, struct page *page, enum migrate_mode mode)
907 if (PageDirty(page)) {
908 /* Only writeback pages in full synchronous migration */
909 switch (mode) {
910 case MIGRATE_SYNC:
911 case MIGRATE_SYNC_NO_COPY:
912 break;
913 default:
914 return -EBUSY;
916 return writeout(mapping, page);
920 * Buffers may be managed in a filesystem specific way.
921 * We must have no buffers or drop them.
923 if (page_has_private(page) &&
924 !try_to_release_page(page, GFP_KERNEL))
925 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927 return migrate_page(mapping, newpage, page, mode);
931 * Move a page to a newly allocated page
932 * The page is locked and all ptes have been successfully removed.
934 * The new page will have replaced the old page if this function
935 * is successful.
937 * Return value:
938 * < 0 - error code
939 * MIGRATEPAGE_SUCCESS - success
941 static int move_to_new_page(struct page *newpage, struct page *page,
942 enum migrate_mode mode)
944 struct address_space *mapping;
945 int rc = -EAGAIN;
946 bool is_lru = !__PageMovable(page);
948 VM_BUG_ON_PAGE(!PageLocked(page), page);
949 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
951 mapping = page_mapping(page);
953 if (likely(is_lru)) {
954 if (!mapping)
955 rc = migrate_page(mapping, newpage, page, mode);
956 else if (mapping->a_ops->migratepage)
958 * Most pages have a mapping and most filesystems
959 * provide a migratepage callback. Anonymous pages
960 * are part of swap space which also has its own
961 * migratepage callback. This is the most common path
962 * for page migration.
964 rc = mapping->a_ops->migratepage(mapping, newpage,
965 page, mode);
966 else
967 rc = fallback_migrate_page(mapping, newpage,
968 page, mode);
969 } else {
971 * In case of non-lru page, it could be released after
972 * isolation step. In that case, we shouldn't try migration.
974 VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 if (!PageMovable(page)) {
976 rc = MIGRATEPAGE_SUCCESS;
977 __ClearPageIsolated(page);
978 goto out;
981 rc = mapping->a_ops->migratepage(mapping, newpage,
982 page, mode);
983 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984 !PageIsolated(page));
988 * When successful, old pagecache page->mapping must be cleared before
989 * page is freed; but stats require that PageAnon be left as PageAnon.
991 if (rc == MIGRATEPAGE_SUCCESS) {
992 if (__PageMovable(page)) {
993 VM_BUG_ON_PAGE(!PageIsolated(page), page);
996 * We clear PG_movable under page_lock so any compactor
997 * cannot try to migrate this page.
999 __ClearPageIsolated(page);
1003 * Anonymous and movable page->mapping will be cleared by
1004 * free_pages_prepare so don't reset it here for keeping
1005 * the type to work PageAnon, for example.
1007 if (!PageMappingFlags(page))
1008 page->mapping = NULL;
1010 if (likely(!is_zone_device_page(newpage)))
1011 flush_dcache_page(newpage);
1014 out:
1015 return rc;
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019 int force, enum migrate_mode mode)
1021 int rc = -EAGAIN;
1022 int page_was_mapped = 0;
1023 struct anon_vma *anon_vma = NULL;
1024 bool is_lru = !__PageMovable(page);
1026 if (!trylock_page(page)) {
1027 if (!force || mode == MIGRATE_ASYNC)
1028 goto out;
1031 * It's not safe for direct compaction to call lock_page.
1032 * For example, during page readahead pages are added locked
1033 * to the LRU. Later, when the IO completes the pages are
1034 * marked uptodate and unlocked. However, the queueing
1035 * could be merging multiple pages for one bio (e.g.
1036 * mpage_readahead). If an allocation happens for the
1037 * second or third page, the process can end up locking
1038 * the same page twice and deadlocking. Rather than
1039 * trying to be clever about what pages can be locked,
1040 * avoid the use of lock_page for direct compaction
1041 * altogether.
1043 if (current->flags & PF_MEMALLOC)
1044 goto out;
1046 lock_page(page);
1049 if (PageWriteback(page)) {
1051 * Only in the case of a full synchronous migration is it
1052 * necessary to wait for PageWriteback. In the async case,
1053 * the retry loop is too short and in the sync-light case,
1054 * the overhead of stalling is too much
1056 switch (mode) {
1057 case MIGRATE_SYNC:
1058 case MIGRATE_SYNC_NO_COPY:
1059 break;
1060 default:
1061 rc = -EBUSY;
1062 goto out_unlock;
1064 if (!force)
1065 goto out_unlock;
1066 wait_on_page_writeback(page);
1070 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071 * we cannot notice that anon_vma is freed while we migrates a page.
1072 * This get_anon_vma() delays freeing anon_vma pointer until the end
1073 * of migration. File cache pages are no problem because of page_lock()
1074 * File Caches may use write_page() or lock_page() in migration, then,
1075 * just care Anon page here.
1077 * Only page_get_anon_vma() understands the subtleties of
1078 * getting a hold on an anon_vma from outside one of its mms.
1079 * But if we cannot get anon_vma, then we won't need it anyway,
1080 * because that implies that the anon page is no longer mapped
1081 * (and cannot be remapped so long as we hold the page lock).
1083 if (PageAnon(page) && !PageKsm(page))
1084 anon_vma = page_get_anon_vma(page);
1087 * Block others from accessing the new page when we get around to
1088 * establishing additional references. We are usually the only one
1089 * holding a reference to newpage at this point. We used to have a BUG
1090 * here if trylock_page(newpage) fails, but would like to allow for
1091 * cases where there might be a race with the previous use of newpage.
1092 * This is much like races on refcount of oldpage: just don't BUG().
1094 if (unlikely(!trylock_page(newpage)))
1095 goto out_unlock;
1097 if (unlikely(!is_lru)) {
1098 rc = move_to_new_page(newpage, page, mode);
1099 goto out_unlock_both;
1103 * Corner case handling:
1104 * 1. When a new swap-cache page is read into, it is added to the LRU
1105 * and treated as swapcache but it has no rmap yet.
1106 * Calling try_to_unmap() against a page->mapping==NULL page will
1107 * trigger a BUG. So handle it here.
1108 * 2. An orphaned page (see truncate_complete_page) might have
1109 * fs-private metadata. The page can be picked up due to memory
1110 * offlining. Everywhere else except page reclaim, the page is
1111 * invisible to the vm, so the page can not be migrated. So try to
1112 * free the metadata, so the page can be freed.
1114 if (!page->mapping) {
1115 VM_BUG_ON_PAGE(PageAnon(page), page);
1116 if (page_has_private(page)) {
1117 try_to_free_buffers(page);
1118 goto out_unlock_both;
1120 } else if (page_mapped(page)) {
1121 /* Establish migration ptes */
1122 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123 page);
1124 try_to_unmap(page,
1125 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126 page_was_mapped = 1;
1129 if (!page_mapped(page))
1130 rc = move_to_new_page(newpage, page, mode);
1132 if (page_was_mapped)
1133 remove_migration_ptes(page,
1134 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136 out_unlock_both:
1137 unlock_page(newpage);
1138 out_unlock:
1139 /* Drop an anon_vma reference if we took one */
1140 if (anon_vma)
1141 put_anon_vma(anon_vma);
1142 unlock_page(page);
1143 out:
1145 * If migration is successful, decrease refcount of the newpage
1146 * which will not free the page because new page owner increased
1147 * refcounter. As well, if it is LRU page, add the page to LRU
1148 * list in here. Use the old state of the isolated source page to
1149 * determine if we migrated a LRU page. newpage was already unlocked
1150 * and possibly modified by its owner - don't rely on the page
1151 * state.
1153 if (rc == MIGRATEPAGE_SUCCESS) {
1154 if (unlikely(!is_lru))
1155 put_page(newpage);
1156 else
1157 putback_lru_page(newpage);
1160 return rc;
1164 * Obtain the lock on page, remove all ptes and migrate the page
1165 * to the newly allocated page in newpage.
1167 static int unmap_and_move(new_page_t get_new_page,
1168 free_page_t put_new_page,
1169 unsigned long private, struct page *page,
1170 int force, enum migrate_mode mode,
1171 enum migrate_reason reason)
1173 int rc = MIGRATEPAGE_SUCCESS;
1174 struct page *newpage = NULL;
1176 if (!thp_migration_supported() && PageTransHuge(page))
1177 return -ENOMEM;
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
1183 if (unlikely(__PageMovable(page))) {
1184 lock_page(page);
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1187 unlock_page(page);
1189 goto out;
1192 newpage = get_new_page(page, private);
1193 if (!newpage)
1194 return -ENOMEM;
1196 rc = __unmap_and_move(page, newpage, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(newpage, reason);
1200 out:
1201 if (rc != -EAGAIN) {
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
1205 * migrated will have kept its references and be restored.
1207 list_del(&page->lru);
1210 * Compaction can migrate also non-LRU pages which are
1211 * not accounted to NR_ISOLATED_*. They can be recognized
1212 * as __PageMovable
1214 if (likely(!__PageMovable(page)))
1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 page_is_file_lru(page), -thp_nr_pages(page));
1220 * If migration is successful, releases reference grabbed during
1221 * isolation. Otherwise, restore the page to right list unless
1222 * we want to retry.
1224 if (rc == MIGRATEPAGE_SUCCESS) {
1225 put_page(page);
1226 if (reason == MR_MEMORY_FAILURE) {
1228 * Set PG_HWPoison on just freed page
1229 * intentionally. Although it's rather weird,
1230 * it's how HWPoison flag works at the moment.
1232 if (set_hwpoison_free_buddy_page(page))
1233 num_poisoned_pages_inc();
1235 } else {
1236 if (rc != -EAGAIN) {
1237 if (likely(!__PageMovable(page))) {
1238 putback_lru_page(page);
1239 goto put_new;
1242 lock_page(page);
1243 if (PageMovable(page))
1244 putback_movable_page(page);
1245 else
1246 __ClearPageIsolated(page);
1247 unlock_page(page);
1248 put_page(page);
1250 put_new:
1251 if (put_new_page)
1252 put_new_page(newpage, private);
1253 else
1254 put_page(newpage);
1257 return rc;
1261 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 * This function doesn't wait the completion of hugepage I/O
1264 * because there is no race between I/O and migration for hugepage.
1265 * Note that currently hugepage I/O occurs only in direct I/O
1266 * where no lock is held and PG_writeback is irrelevant,
1267 * and writeback status of all subpages are counted in the reference
1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269 * under direct I/O, the reference of the head page is 512 and a bit more.)
1270 * This means that when we try to migrate hugepage whose subpages are
1271 * doing direct I/O, some references remain after try_to_unmap() and
1272 * hugepage migration fails without data corruption.
1274 * There is also no race when direct I/O is issued on the page under migration,
1275 * because then pte is replaced with migration swap entry and direct I/O code
1276 * will wait in the page fault for migration to complete.
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279 free_page_t put_new_page, unsigned long private,
1280 struct page *hpage, int force,
1281 enum migrate_mode mode, int reason)
1283 int rc = -EAGAIN;
1284 int page_was_mapped = 0;
1285 struct page *new_hpage;
1286 struct anon_vma *anon_vma = NULL;
1287 struct address_space *mapping = NULL;
1290 * Migratability of hugepages depends on architectures and their size.
1291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 putback_active_hugepage(hpage);
1298 return -ENOSYS;
1301 new_hpage = get_new_page(hpage, private);
1302 if (!new_hpage)
1303 return -ENOMEM;
1305 if (!trylock_page(hpage)) {
1306 if (!force)
1307 goto out;
1308 switch (mode) {
1309 case MIGRATE_SYNC:
1310 case MIGRATE_SYNC_NO_COPY:
1311 break;
1312 default:
1313 goto out;
1315 lock_page(hpage);
1319 * Check for pages which are in the process of being freed. Without
1320 * page_mapping() set, hugetlbfs specific move page routine will not
1321 * be called and we could leak usage counts for subpools.
1323 if (page_private(hpage) && !page_mapping(hpage)) {
1324 rc = -EBUSY;
1325 goto out_unlock;
1328 if (PageAnon(hpage))
1329 anon_vma = page_get_anon_vma(hpage);
1331 if (unlikely(!trylock_page(new_hpage)))
1332 goto put_anon;
1334 if (page_mapped(hpage)) {
1336 * try_to_unmap could potentially call huge_pmd_unshare.
1337 * Because of this, take semaphore in write mode here and
1338 * set TTU_RMAP_LOCKED to let lower levels know we have
1339 * taken the lock.
1341 mapping = hugetlb_page_mapping_lock_write(hpage);
1342 if (unlikely(!mapping))
1343 goto unlock_put_anon;
1345 try_to_unmap(hpage,
1346 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347 TTU_RMAP_LOCKED);
1348 page_was_mapped = 1;
1350 * Leave mapping locked until after subsequent call to
1351 * remove_migration_ptes()
1355 if (!page_mapped(hpage))
1356 rc = move_to_new_page(new_hpage, hpage, mode);
1358 if (page_was_mapped) {
1359 remove_migration_ptes(hpage,
1360 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361 i_mmap_unlock_write(mapping);
1364 unlock_put_anon:
1365 unlock_page(new_hpage);
1367 put_anon:
1368 if (anon_vma)
1369 put_anon_vma(anon_vma);
1371 if (rc == MIGRATEPAGE_SUCCESS) {
1372 move_hugetlb_state(hpage, new_hpage, reason);
1373 put_new_page = NULL;
1376 out_unlock:
1377 unlock_page(hpage);
1378 out:
1379 if (rc != -EAGAIN)
1380 putback_active_hugepage(hpage);
1383 * If migration was not successful and there's a freeing callback, use
1384 * it. Otherwise, put_page() will drop the reference grabbed during
1385 * isolation.
1387 if (put_new_page)
1388 put_new_page(new_hpage, private);
1389 else
1390 putback_active_hugepage(new_hpage);
1392 return rc;
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * The caller should call putback_movable_pages() to return pages to the LRU
1412 * or free list only if ret != 0.
1414 * Returns the number of pages that were not migrated, or an error code.
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 free_page_t put_new_page, unsigned long private,
1418 enum migrate_mode mode, int reason)
1420 int retry = 1;
1421 int thp_retry = 1;
1422 int nr_failed = 0;
1423 int nr_succeeded = 0;
1424 int nr_thp_succeeded = 0;
1425 int nr_thp_failed = 0;
1426 int nr_thp_split = 0;
1427 int pass = 0;
1428 bool is_thp = false;
1429 struct page *page;
1430 struct page *page2;
1431 int swapwrite = current->flags & PF_SWAPWRITE;
1432 int rc, nr_subpages;
1434 if (!swapwrite)
1435 current->flags |= PF_SWAPWRITE;
1437 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438 retry = 0;
1439 thp_retry = 0;
1441 list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1444 * THP statistics is based on the source huge page.
1445 * Capture required information that might get lost
1446 * during migration.
1448 is_thp = PageTransHuge(page);
1449 nr_subpages = thp_nr_pages(page);
1450 cond_resched();
1452 if (PageHuge(page))
1453 rc = unmap_and_move_huge_page(get_new_page,
1454 put_new_page, private, page,
1455 pass > 2, mode, reason);
1456 else
1457 rc = unmap_and_move(get_new_page, put_new_page,
1458 private, page, pass > 2, mode,
1459 reason);
1461 switch(rc) {
1462 case -ENOMEM:
1464 * THP migration might be unsupported or the
1465 * allocation could've failed so we should
1466 * retry on the same page with the THP split
1467 * to base pages.
1469 * Head page is retried immediately and tail
1470 * pages are added to the tail of the list so
1471 * we encounter them after the rest of the list
1472 * is processed.
1474 if (PageTransHuge(page) && !PageHuge(page)) {
1475 lock_page(page);
1476 rc = split_huge_page_to_list(page, from);
1477 unlock_page(page);
1478 if (!rc) {
1479 list_safe_reset_next(page, page2, lru);
1480 nr_thp_split++;
1481 goto retry;
1484 if (is_thp) {
1485 nr_thp_failed++;
1486 nr_failed += nr_subpages;
1487 goto out;
1489 nr_failed++;
1490 goto out;
1491 case -EAGAIN:
1492 if (is_thp) {
1493 thp_retry++;
1494 break;
1496 retry++;
1497 break;
1498 case MIGRATEPAGE_SUCCESS:
1499 if (is_thp) {
1500 nr_thp_succeeded++;
1501 nr_succeeded += nr_subpages;
1502 break;
1504 nr_succeeded++;
1505 break;
1506 default:
1508 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509 * unlike -EAGAIN case, the failed page is
1510 * removed from migration page list and not
1511 * retried in the next outer loop.
1513 if (is_thp) {
1514 nr_thp_failed++;
1515 nr_failed += nr_subpages;
1516 break;
1518 nr_failed++;
1519 break;
1523 nr_failed += retry + thp_retry;
1524 nr_thp_failed += thp_retry;
1525 rc = nr_failed;
1526 out:
1527 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533 nr_thp_failed, nr_thp_split, mode, reason);
1535 if (!swapwrite)
1536 current->flags &= ~PF_SWAPWRITE;
1538 return rc;
1541 struct page *alloc_migration_target(struct page *page, unsigned long private)
1543 struct migration_target_control *mtc;
1544 gfp_t gfp_mask;
1545 unsigned int order = 0;
1546 struct page *new_page = NULL;
1547 int nid;
1548 int zidx;
1550 mtc = (struct migration_target_control *)private;
1551 gfp_mask = mtc->gfp_mask;
1552 nid = mtc->nid;
1553 if (nid == NUMA_NO_NODE)
1554 nid = page_to_nid(page);
1556 if (PageHuge(page)) {
1557 struct hstate *h = page_hstate(compound_head(page));
1559 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1560 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1563 if (PageTransHuge(page)) {
1565 * clear __GFP_RECLAIM to make the migration callback
1566 * consistent with regular THP allocations.
1568 gfp_mask &= ~__GFP_RECLAIM;
1569 gfp_mask |= GFP_TRANSHUGE;
1570 order = HPAGE_PMD_ORDER;
1572 zidx = zone_idx(page_zone(page));
1573 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1574 gfp_mask |= __GFP_HIGHMEM;
1576 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1578 if (new_page && PageTransHuge(new_page))
1579 prep_transhuge_page(new_page);
1581 return new_page;
1584 #ifdef CONFIG_NUMA
1586 static int store_status(int __user *status, int start, int value, int nr)
1588 while (nr-- > 0) {
1589 if (put_user(value, status + start))
1590 return -EFAULT;
1591 start++;
1594 return 0;
1597 static int do_move_pages_to_node(struct mm_struct *mm,
1598 struct list_head *pagelist, int node)
1600 int err;
1601 struct migration_target_control mtc = {
1602 .nid = node,
1603 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1606 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1607 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1608 if (err)
1609 putback_movable_pages(pagelist);
1610 return err;
1614 * Resolves the given address to a struct page, isolates it from the LRU and
1615 * puts it to the given pagelist.
1616 * Returns:
1617 * errno - if the page cannot be found/isolated
1618 * 0 - when it doesn't have to be migrated because it is already on the
1619 * target node
1620 * 1 - when it has been queued
1622 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1623 int node, struct list_head *pagelist, bool migrate_all)
1625 struct vm_area_struct *vma;
1626 struct page *page;
1627 unsigned int follflags;
1628 int err;
1630 mmap_read_lock(mm);
1631 err = -EFAULT;
1632 vma = find_vma(mm, addr);
1633 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1634 goto out;
1636 /* FOLL_DUMP to ignore special (like zero) pages */
1637 follflags = FOLL_GET | FOLL_DUMP;
1638 page = follow_page(vma, addr, follflags);
1640 err = PTR_ERR(page);
1641 if (IS_ERR(page))
1642 goto out;
1644 err = -ENOENT;
1645 if (!page)
1646 goto out;
1648 err = 0;
1649 if (page_to_nid(page) == node)
1650 goto out_putpage;
1652 err = -EACCES;
1653 if (page_mapcount(page) > 1 && !migrate_all)
1654 goto out_putpage;
1656 if (PageHuge(page)) {
1657 if (PageHead(page)) {
1658 isolate_huge_page(page, pagelist);
1659 err = 1;
1661 } else {
1662 struct page *head;
1664 head = compound_head(page);
1665 err = isolate_lru_page(head);
1666 if (err)
1667 goto out_putpage;
1669 err = 1;
1670 list_add_tail(&head->lru, pagelist);
1671 mod_node_page_state(page_pgdat(head),
1672 NR_ISOLATED_ANON + page_is_file_lru(head),
1673 thp_nr_pages(head));
1675 out_putpage:
1677 * Either remove the duplicate refcount from
1678 * isolate_lru_page() or drop the page ref if it was
1679 * not isolated.
1681 put_page(page);
1682 out:
1683 mmap_read_unlock(mm);
1684 return err;
1687 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1688 struct list_head *pagelist, int __user *status,
1689 int start, int i, unsigned long nr_pages)
1691 int err;
1693 if (list_empty(pagelist))
1694 return 0;
1696 err = do_move_pages_to_node(mm, pagelist, node);
1697 if (err) {
1699 * Positive err means the number of failed
1700 * pages to migrate. Since we are going to
1701 * abort and return the number of non-migrated
1702 * pages, so need to incude the rest of the
1703 * nr_pages that have not been attempted as
1704 * well.
1706 if (err > 0)
1707 err += nr_pages - i - 1;
1708 return err;
1710 return store_status(status, start, node, i - start);
1714 * Migrate an array of page address onto an array of nodes and fill
1715 * the corresponding array of status.
1717 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1718 unsigned long nr_pages,
1719 const void __user * __user *pages,
1720 const int __user *nodes,
1721 int __user *status, int flags)
1723 int current_node = NUMA_NO_NODE;
1724 LIST_HEAD(pagelist);
1725 int start, i;
1726 int err = 0, err1;
1728 migrate_prep();
1730 for (i = start = 0; i < nr_pages; i++) {
1731 const void __user *p;
1732 unsigned long addr;
1733 int node;
1735 err = -EFAULT;
1736 if (get_user(p, pages + i))
1737 goto out_flush;
1738 if (get_user(node, nodes + i))
1739 goto out_flush;
1740 addr = (unsigned long)untagged_addr(p);
1742 err = -ENODEV;
1743 if (node < 0 || node >= MAX_NUMNODES)
1744 goto out_flush;
1745 if (!node_state(node, N_MEMORY))
1746 goto out_flush;
1748 err = -EACCES;
1749 if (!node_isset(node, task_nodes))
1750 goto out_flush;
1752 if (current_node == NUMA_NO_NODE) {
1753 current_node = node;
1754 start = i;
1755 } else if (node != current_node) {
1756 err = move_pages_and_store_status(mm, current_node,
1757 &pagelist, status, start, i, nr_pages);
1758 if (err)
1759 goto out;
1760 start = i;
1761 current_node = node;
1765 * Errors in the page lookup or isolation are not fatal and we simply
1766 * report them via status
1768 err = add_page_for_migration(mm, addr, current_node,
1769 &pagelist, flags & MPOL_MF_MOVE_ALL);
1771 if (err > 0) {
1772 /* The page is successfully queued for migration */
1773 continue;
1777 * If the page is already on the target node (!err), store the
1778 * node, otherwise, store the err.
1780 err = store_status(status, i, err ? : current_node, 1);
1781 if (err)
1782 goto out_flush;
1784 err = move_pages_and_store_status(mm, current_node, &pagelist,
1785 status, start, i, nr_pages);
1786 if (err)
1787 goto out;
1788 current_node = NUMA_NO_NODE;
1790 out_flush:
1791 /* Make sure we do not overwrite the existing error */
1792 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1793 status, start, i, nr_pages);
1794 if (err >= 0)
1795 err = err1;
1796 out:
1797 return err;
1801 * Determine the nodes of an array of pages and store it in an array of status.
1803 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1804 const void __user **pages, int *status)
1806 unsigned long i;
1808 mmap_read_lock(mm);
1810 for (i = 0; i < nr_pages; i++) {
1811 unsigned long addr = (unsigned long)(*pages);
1812 struct vm_area_struct *vma;
1813 struct page *page;
1814 int err = -EFAULT;
1816 vma = find_vma(mm, addr);
1817 if (!vma || addr < vma->vm_start)
1818 goto set_status;
1820 /* FOLL_DUMP to ignore special (like zero) pages */
1821 page = follow_page(vma, addr, FOLL_DUMP);
1823 err = PTR_ERR(page);
1824 if (IS_ERR(page))
1825 goto set_status;
1827 err = page ? page_to_nid(page) : -ENOENT;
1828 set_status:
1829 *status = err;
1831 pages++;
1832 status++;
1835 mmap_read_unlock(mm);
1839 * Determine the nodes of a user array of pages and store it in
1840 * a user array of status.
1842 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843 const void __user * __user *pages,
1844 int __user *status)
1846 #define DO_PAGES_STAT_CHUNK_NR 16
1847 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1850 while (nr_pages) {
1851 unsigned long chunk_nr;
1853 chunk_nr = nr_pages;
1854 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1855 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1857 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1858 break;
1860 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1862 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1863 break;
1865 pages += chunk_nr;
1866 status += chunk_nr;
1867 nr_pages -= chunk_nr;
1869 return nr_pages ? -EFAULT : 0;
1873 * Move a list of pages in the address space of the currently executing
1874 * process.
1876 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1877 const void __user * __user *pages,
1878 const int __user *nodes,
1879 int __user *status, int flags)
1881 struct task_struct *task;
1882 struct mm_struct *mm;
1883 int err;
1884 nodemask_t task_nodes;
1886 /* Check flags */
1887 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1888 return -EINVAL;
1890 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1891 return -EPERM;
1893 /* Find the mm_struct */
1894 rcu_read_lock();
1895 task = pid ? find_task_by_vpid(pid) : current;
1896 if (!task) {
1897 rcu_read_unlock();
1898 return -ESRCH;
1900 get_task_struct(task);
1903 * Check if this process has the right to modify the specified
1904 * process. Use the regular "ptrace_may_access()" checks.
1906 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907 rcu_read_unlock();
1908 err = -EPERM;
1909 goto out;
1911 rcu_read_unlock();
1913 err = security_task_movememory(task);
1914 if (err)
1915 goto out;
1917 task_nodes = cpuset_mems_allowed(task);
1918 mm = get_task_mm(task);
1919 put_task_struct(task);
1921 if (!mm)
1922 return -EINVAL;
1924 if (nodes)
1925 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1926 nodes, status, flags);
1927 else
1928 err = do_pages_stat(mm, nr_pages, pages, status);
1930 mmput(mm);
1931 return err;
1933 out:
1934 put_task_struct(task);
1935 return err;
1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939 const void __user * __user *, pages,
1940 const int __user *, nodes,
1941 int __user *, status, int, flags)
1943 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1946 #ifdef CONFIG_COMPAT
1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948 compat_uptr_t __user *, pages32,
1949 const int __user *, nodes,
1950 int __user *, status,
1951 int, flags)
1953 const void __user * __user *pages;
1954 int i;
1956 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957 for (i = 0; i < nr_pages; i++) {
1958 compat_uptr_t p;
1960 if (get_user(p, pages32 + i) ||
1961 put_user(compat_ptr(p), pages + i))
1962 return -EFAULT;
1964 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1966 #endif /* CONFIG_COMPAT */
1968 #ifdef CONFIG_NUMA_BALANCING
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974 unsigned long nr_migrate_pages)
1976 int z;
1978 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979 struct zone *zone = pgdat->node_zones + z;
1981 if (!populated_zone(zone))
1982 continue;
1984 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985 if (!zone_watermark_ok(zone, 0,
1986 high_wmark_pages(zone) +
1987 nr_migrate_pages,
1988 ZONE_MOVABLE, 0))
1989 continue;
1990 return true;
1992 return false;
1995 static struct page *alloc_misplaced_dst_page(struct page *page,
1996 unsigned long data)
1998 int nid = (int) data;
1999 struct page *newpage;
2001 newpage = __alloc_pages_node(nid,
2002 (GFP_HIGHUSER_MOVABLE |
2003 __GFP_THISNODE | __GFP_NOMEMALLOC |
2004 __GFP_NORETRY | __GFP_NOWARN) &
2005 ~__GFP_RECLAIM, 0);
2007 return newpage;
2010 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2012 int page_lru;
2014 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2016 /* Avoid migrating to a node that is nearly full */
2017 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2018 return 0;
2020 if (isolate_lru_page(page))
2021 return 0;
2024 * migrate_misplaced_transhuge_page() skips page migration's usual
2025 * check on page_count(), so we must do it here, now that the page
2026 * has been isolated: a GUP pin, or any other pin, prevents migration.
2027 * The expected page count is 3: 1 for page's mapcount and 1 for the
2028 * caller's pin and 1 for the reference taken by isolate_lru_page().
2030 if (PageTransHuge(page) && page_count(page) != 3) {
2031 putback_lru_page(page);
2032 return 0;
2035 page_lru = page_is_file_lru(page);
2036 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2037 thp_nr_pages(page));
2040 * Isolating the page has taken another reference, so the
2041 * caller's reference can be safely dropped without the page
2042 * disappearing underneath us during migration.
2044 put_page(page);
2045 return 1;
2048 bool pmd_trans_migrating(pmd_t pmd)
2050 struct page *page = pmd_page(pmd);
2051 return PageLocked(page);
2055 * Attempt to migrate a misplaced page to the specified destination
2056 * node. Caller is expected to have an elevated reference count on
2057 * the page that will be dropped by this function before returning.
2059 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2060 int node)
2062 pg_data_t *pgdat = NODE_DATA(node);
2063 int isolated;
2064 int nr_remaining;
2065 LIST_HEAD(migratepages);
2068 * Don't migrate file pages that are mapped in multiple processes
2069 * with execute permissions as they are probably shared libraries.
2071 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2072 (vma->vm_flags & VM_EXEC))
2073 goto out;
2076 * Also do not migrate dirty pages as not all filesystems can move
2077 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2079 if (page_is_file_lru(page) && PageDirty(page))
2080 goto out;
2082 isolated = numamigrate_isolate_page(pgdat, page);
2083 if (!isolated)
2084 goto out;
2086 list_add(&page->lru, &migratepages);
2087 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2088 NULL, node, MIGRATE_ASYNC,
2089 MR_NUMA_MISPLACED);
2090 if (nr_remaining) {
2091 if (!list_empty(&migratepages)) {
2092 list_del(&page->lru);
2093 dec_node_page_state(page, NR_ISOLATED_ANON +
2094 page_is_file_lru(page));
2095 putback_lru_page(page);
2097 isolated = 0;
2098 } else
2099 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2100 BUG_ON(!list_empty(&migratepages));
2101 return isolated;
2103 out:
2104 put_page(page);
2105 return 0;
2107 #endif /* CONFIG_NUMA_BALANCING */
2109 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2111 * Migrates a THP to a given target node. page must be locked and is unlocked
2112 * before returning.
2114 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2115 struct vm_area_struct *vma,
2116 pmd_t *pmd, pmd_t entry,
2117 unsigned long address,
2118 struct page *page, int node)
2120 spinlock_t *ptl;
2121 pg_data_t *pgdat = NODE_DATA(node);
2122 int isolated = 0;
2123 struct page *new_page = NULL;
2124 int page_lru = page_is_file_lru(page);
2125 unsigned long start = address & HPAGE_PMD_MASK;
2127 new_page = alloc_pages_node(node,
2128 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2129 HPAGE_PMD_ORDER);
2130 if (!new_page)
2131 goto out_fail;
2132 prep_transhuge_page(new_page);
2134 isolated = numamigrate_isolate_page(pgdat, page);
2135 if (!isolated) {
2136 put_page(new_page);
2137 goto out_fail;
2140 /* Prepare a page as a migration target */
2141 __SetPageLocked(new_page);
2142 if (PageSwapBacked(page))
2143 __SetPageSwapBacked(new_page);
2145 /* anon mapping, we can simply copy page->mapping to the new page: */
2146 new_page->mapping = page->mapping;
2147 new_page->index = page->index;
2148 /* flush the cache before copying using the kernel virtual address */
2149 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2150 migrate_page_copy(new_page, page);
2151 WARN_ON(PageLRU(new_page));
2153 /* Recheck the target PMD */
2154 ptl = pmd_lock(mm, pmd);
2155 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2156 spin_unlock(ptl);
2158 /* Reverse changes made by migrate_page_copy() */
2159 if (TestClearPageActive(new_page))
2160 SetPageActive(page);
2161 if (TestClearPageUnevictable(new_page))
2162 SetPageUnevictable(page);
2164 unlock_page(new_page);
2165 put_page(new_page); /* Free it */
2167 /* Retake the callers reference and putback on LRU */
2168 get_page(page);
2169 putback_lru_page(page);
2170 mod_node_page_state(page_pgdat(page),
2171 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2173 goto out_unlock;
2176 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2177 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2180 * Overwrite the old entry under pagetable lock and establish
2181 * the new PTE. Any parallel GUP will either observe the old
2182 * page blocking on the page lock, block on the page table
2183 * lock or observe the new page. The SetPageUptodate on the
2184 * new page and page_add_new_anon_rmap guarantee the copy is
2185 * visible before the pagetable update.
2187 page_add_anon_rmap(new_page, vma, start, true);
2189 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2190 * has already been flushed globally. So no TLB can be currently
2191 * caching this non present pmd mapping. There's no need to clear the
2192 * pmd before doing set_pmd_at(), nor to flush the TLB after
2193 * set_pmd_at(). Clearing the pmd here would introduce a race
2194 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2195 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2196 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2197 * pmd.
2199 set_pmd_at(mm, start, pmd, entry);
2200 update_mmu_cache_pmd(vma, address, &entry);
2202 page_ref_unfreeze(page, 2);
2203 mlock_migrate_page(new_page, page);
2204 page_remove_rmap(page, true);
2205 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2207 spin_unlock(ptl);
2209 /* Take an "isolate" reference and put new page on the LRU. */
2210 get_page(new_page);
2211 putback_lru_page(new_page);
2213 unlock_page(new_page);
2214 unlock_page(page);
2215 put_page(page); /* Drop the rmap reference */
2216 put_page(page); /* Drop the LRU isolation reference */
2218 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2219 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2221 mod_node_page_state(page_pgdat(page),
2222 NR_ISOLATED_ANON + page_lru,
2223 -HPAGE_PMD_NR);
2224 return isolated;
2226 out_fail:
2227 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2228 ptl = pmd_lock(mm, pmd);
2229 if (pmd_same(*pmd, entry)) {
2230 entry = pmd_modify(entry, vma->vm_page_prot);
2231 set_pmd_at(mm, start, pmd, entry);
2232 update_mmu_cache_pmd(vma, address, &entry);
2234 spin_unlock(ptl);
2236 out_unlock:
2237 unlock_page(page);
2238 put_page(page);
2239 return 0;
2241 #endif /* CONFIG_NUMA_BALANCING */
2243 #endif /* CONFIG_NUMA */
2245 #ifdef CONFIG_DEVICE_PRIVATE
2246 static int migrate_vma_collect_hole(unsigned long start,
2247 unsigned long end,
2248 __always_unused int depth,
2249 struct mm_walk *walk)
2251 struct migrate_vma *migrate = walk->private;
2252 unsigned long addr;
2254 /* Only allow populating anonymous memory. */
2255 if (!vma_is_anonymous(walk->vma)) {
2256 for (addr = start; addr < end; addr += PAGE_SIZE) {
2257 migrate->src[migrate->npages] = 0;
2258 migrate->dst[migrate->npages] = 0;
2259 migrate->npages++;
2261 return 0;
2264 for (addr = start; addr < end; addr += PAGE_SIZE) {
2265 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2266 migrate->dst[migrate->npages] = 0;
2267 migrate->npages++;
2268 migrate->cpages++;
2271 return 0;
2274 static int migrate_vma_collect_skip(unsigned long start,
2275 unsigned long end,
2276 struct mm_walk *walk)
2278 struct migrate_vma *migrate = walk->private;
2279 unsigned long addr;
2281 for (addr = start; addr < end; addr += PAGE_SIZE) {
2282 migrate->dst[migrate->npages] = 0;
2283 migrate->src[migrate->npages++] = 0;
2286 return 0;
2289 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2290 unsigned long start,
2291 unsigned long end,
2292 struct mm_walk *walk)
2294 struct migrate_vma *migrate = walk->private;
2295 struct vm_area_struct *vma = walk->vma;
2296 struct mm_struct *mm = vma->vm_mm;
2297 unsigned long addr = start, unmapped = 0;
2298 spinlock_t *ptl;
2299 pte_t *ptep;
2301 again:
2302 if (pmd_none(*pmdp))
2303 return migrate_vma_collect_hole(start, end, -1, walk);
2305 if (pmd_trans_huge(*pmdp)) {
2306 struct page *page;
2308 ptl = pmd_lock(mm, pmdp);
2309 if (unlikely(!pmd_trans_huge(*pmdp))) {
2310 spin_unlock(ptl);
2311 goto again;
2314 page = pmd_page(*pmdp);
2315 if (is_huge_zero_page(page)) {
2316 spin_unlock(ptl);
2317 split_huge_pmd(vma, pmdp, addr);
2318 if (pmd_trans_unstable(pmdp))
2319 return migrate_vma_collect_skip(start, end,
2320 walk);
2321 } else {
2322 int ret;
2324 get_page(page);
2325 spin_unlock(ptl);
2326 if (unlikely(!trylock_page(page)))
2327 return migrate_vma_collect_skip(start, end,
2328 walk);
2329 ret = split_huge_page(page);
2330 unlock_page(page);
2331 put_page(page);
2332 if (ret)
2333 return migrate_vma_collect_skip(start, end,
2334 walk);
2335 if (pmd_none(*pmdp))
2336 return migrate_vma_collect_hole(start, end, -1,
2337 walk);
2341 if (unlikely(pmd_bad(*pmdp)))
2342 return migrate_vma_collect_skip(start, end, walk);
2344 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2345 arch_enter_lazy_mmu_mode();
2347 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2348 unsigned long mpfn = 0, pfn;
2349 struct page *page;
2350 swp_entry_t entry;
2351 pte_t pte;
2353 pte = *ptep;
2355 if (pte_none(pte)) {
2356 if (vma_is_anonymous(vma)) {
2357 mpfn = MIGRATE_PFN_MIGRATE;
2358 migrate->cpages++;
2360 goto next;
2363 if (!pte_present(pte)) {
2365 * Only care about unaddressable device page special
2366 * page table entry. Other special swap entries are not
2367 * migratable, and we ignore regular swapped page.
2369 entry = pte_to_swp_entry(pte);
2370 if (!is_device_private_entry(entry))
2371 goto next;
2373 page = device_private_entry_to_page(entry);
2374 if (!(migrate->flags &
2375 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2376 page->pgmap->owner != migrate->pgmap_owner)
2377 goto next;
2379 mpfn = migrate_pfn(page_to_pfn(page)) |
2380 MIGRATE_PFN_MIGRATE;
2381 if (is_write_device_private_entry(entry))
2382 mpfn |= MIGRATE_PFN_WRITE;
2383 } else {
2384 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2385 goto next;
2386 pfn = pte_pfn(pte);
2387 if (is_zero_pfn(pfn)) {
2388 mpfn = MIGRATE_PFN_MIGRATE;
2389 migrate->cpages++;
2390 goto next;
2392 page = vm_normal_page(migrate->vma, addr, pte);
2393 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2394 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2397 /* FIXME support THP */
2398 if (!page || !page->mapping || PageTransCompound(page)) {
2399 mpfn = 0;
2400 goto next;
2404 * By getting a reference on the page we pin it and that blocks
2405 * any kind of migration. Side effect is that it "freezes" the
2406 * pte.
2408 * We drop this reference after isolating the page from the lru
2409 * for non device page (device page are not on the lru and thus
2410 * can't be dropped from it).
2412 get_page(page);
2413 migrate->cpages++;
2416 * Optimize for the common case where page is only mapped once
2417 * in one process. If we can lock the page, then we can safely
2418 * set up a special migration page table entry now.
2420 if (trylock_page(page)) {
2421 pte_t swp_pte;
2423 mpfn |= MIGRATE_PFN_LOCKED;
2424 ptep_get_and_clear(mm, addr, ptep);
2426 /* Setup special migration page table entry */
2427 entry = make_migration_entry(page, mpfn &
2428 MIGRATE_PFN_WRITE);
2429 swp_pte = swp_entry_to_pte(entry);
2430 if (pte_soft_dirty(pte))
2431 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2432 if (pte_uffd_wp(pte))
2433 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2434 set_pte_at(mm, addr, ptep, swp_pte);
2437 * This is like regular unmap: we remove the rmap and
2438 * drop page refcount. Page won't be freed, as we took
2439 * a reference just above.
2441 page_remove_rmap(page, false);
2442 put_page(page);
2444 if (pte_present(pte))
2445 unmapped++;
2448 next:
2449 migrate->dst[migrate->npages] = 0;
2450 migrate->src[migrate->npages++] = mpfn;
2452 arch_leave_lazy_mmu_mode();
2453 pte_unmap_unlock(ptep - 1, ptl);
2455 /* Only flush the TLB if we actually modified any entries */
2456 if (unmapped)
2457 flush_tlb_range(walk->vma, start, end);
2459 return 0;
2462 static const struct mm_walk_ops migrate_vma_walk_ops = {
2463 .pmd_entry = migrate_vma_collect_pmd,
2464 .pte_hole = migrate_vma_collect_hole,
2468 * migrate_vma_collect() - collect pages over a range of virtual addresses
2469 * @migrate: migrate struct containing all migration information
2471 * This will walk the CPU page table. For each virtual address backed by a
2472 * valid page, it updates the src array and takes a reference on the page, in
2473 * order to pin the page until we lock it and unmap it.
2475 static void migrate_vma_collect(struct migrate_vma *migrate)
2477 struct mmu_notifier_range range;
2480 * Note that the pgmap_owner is passed to the mmu notifier callback so
2481 * that the registered device driver can skip invalidating device
2482 * private page mappings that won't be migrated.
2484 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2485 migrate->vma->vm_mm, migrate->start, migrate->end,
2486 migrate->pgmap_owner);
2487 mmu_notifier_invalidate_range_start(&range);
2489 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2490 &migrate_vma_walk_ops, migrate);
2492 mmu_notifier_invalidate_range_end(&range);
2493 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2497 * migrate_vma_check_page() - check if page is pinned or not
2498 * @page: struct page to check
2500 * Pinned pages cannot be migrated. This is the same test as in
2501 * migrate_page_move_mapping(), except that here we allow migration of a
2502 * ZONE_DEVICE page.
2504 static bool migrate_vma_check_page(struct page *page)
2507 * One extra ref because caller holds an extra reference, either from
2508 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2509 * a device page.
2511 int extra = 1;
2514 * FIXME support THP (transparent huge page), it is bit more complex to
2515 * check them than regular pages, because they can be mapped with a pmd
2516 * or with a pte (split pte mapping).
2518 if (PageCompound(page))
2519 return false;
2521 /* Page from ZONE_DEVICE have one extra reference */
2522 if (is_zone_device_page(page)) {
2524 * Private page can never be pin as they have no valid pte and
2525 * GUP will fail for those. Yet if there is a pending migration
2526 * a thread might try to wait on the pte migration entry and
2527 * will bump the page reference count. Sadly there is no way to
2528 * differentiate a regular pin from migration wait. Hence to
2529 * avoid 2 racing thread trying to migrate back to CPU to enter
2530 * infinite loop (one stoping migration because the other is
2531 * waiting on pte migration entry). We always return true here.
2533 * FIXME proper solution is to rework migration_entry_wait() so
2534 * it does not need to take a reference on page.
2536 return is_device_private_page(page);
2539 /* For file back page */
2540 if (page_mapping(page))
2541 extra += 1 + page_has_private(page);
2543 if ((page_count(page) - extra) > page_mapcount(page))
2544 return false;
2546 return true;
2550 * migrate_vma_prepare() - lock pages and isolate them from the lru
2551 * @migrate: migrate struct containing all migration information
2553 * This locks pages that have been collected by migrate_vma_collect(). Once each
2554 * page is locked it is isolated from the lru (for non-device pages). Finally,
2555 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2556 * migrated by concurrent kernel threads.
2558 static void migrate_vma_prepare(struct migrate_vma *migrate)
2560 const unsigned long npages = migrate->npages;
2561 const unsigned long start = migrate->start;
2562 unsigned long addr, i, restore = 0;
2563 bool allow_drain = true;
2565 lru_add_drain();
2567 for (i = 0; (i < npages) && migrate->cpages; i++) {
2568 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2569 bool remap = true;
2571 if (!page)
2572 continue;
2574 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2576 * Because we are migrating several pages there can be
2577 * a deadlock between 2 concurrent migration where each
2578 * are waiting on each other page lock.
2580 * Make migrate_vma() a best effort thing and backoff
2581 * for any page we can not lock right away.
2583 if (!trylock_page(page)) {
2584 migrate->src[i] = 0;
2585 migrate->cpages--;
2586 put_page(page);
2587 continue;
2589 remap = false;
2590 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2593 /* ZONE_DEVICE pages are not on LRU */
2594 if (!is_zone_device_page(page)) {
2595 if (!PageLRU(page) && allow_drain) {
2596 /* Drain CPU's pagevec */
2597 lru_add_drain_all();
2598 allow_drain = false;
2601 if (isolate_lru_page(page)) {
2602 if (remap) {
2603 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2604 migrate->cpages--;
2605 restore++;
2606 } else {
2607 migrate->src[i] = 0;
2608 unlock_page(page);
2609 migrate->cpages--;
2610 put_page(page);
2612 continue;
2615 /* Drop the reference we took in collect */
2616 put_page(page);
2619 if (!migrate_vma_check_page(page)) {
2620 if (remap) {
2621 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2622 migrate->cpages--;
2623 restore++;
2625 if (!is_zone_device_page(page)) {
2626 get_page(page);
2627 putback_lru_page(page);
2629 } else {
2630 migrate->src[i] = 0;
2631 unlock_page(page);
2632 migrate->cpages--;
2634 if (!is_zone_device_page(page))
2635 putback_lru_page(page);
2636 else
2637 put_page(page);
2642 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2643 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2645 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2646 continue;
2648 remove_migration_pte(page, migrate->vma, addr, page);
2650 migrate->src[i] = 0;
2651 unlock_page(page);
2652 put_page(page);
2653 restore--;
2658 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2659 * @migrate: migrate struct containing all migration information
2661 * Replace page mapping (CPU page table pte) with a special migration pte entry
2662 * and check again if it has been pinned. Pinned pages are restored because we
2663 * cannot migrate them.
2665 * This is the last step before we call the device driver callback to allocate
2666 * destination memory and copy contents of original page over to new page.
2668 static void migrate_vma_unmap(struct migrate_vma *migrate)
2670 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2671 const unsigned long npages = migrate->npages;
2672 const unsigned long start = migrate->start;
2673 unsigned long addr, i, restore = 0;
2675 for (i = 0; i < npages; i++) {
2676 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2678 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2679 continue;
2681 if (page_mapped(page)) {
2682 try_to_unmap(page, flags);
2683 if (page_mapped(page))
2684 goto restore;
2687 if (migrate_vma_check_page(page))
2688 continue;
2690 restore:
2691 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2692 migrate->cpages--;
2693 restore++;
2696 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2697 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2699 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700 continue;
2702 remove_migration_ptes(page, page, false);
2704 migrate->src[i] = 0;
2705 unlock_page(page);
2706 restore--;
2708 if (is_zone_device_page(page))
2709 put_page(page);
2710 else
2711 putback_lru_page(page);
2716 * migrate_vma_setup() - prepare to migrate a range of memory
2717 * @args: contains the vma, start, and pfns arrays for the migration
2719 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2720 * without an error.
2722 * Prepare to migrate a range of memory virtual address range by collecting all
2723 * the pages backing each virtual address in the range, saving them inside the
2724 * src array. Then lock those pages and unmap them. Once the pages are locked
2725 * and unmapped, check whether each page is pinned or not. Pages that aren't
2726 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2727 * corresponding src array entry. Then restores any pages that are pinned, by
2728 * remapping and unlocking those pages.
2730 * The caller should then allocate destination memory and copy source memory to
2731 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2732 * flag set). Once these are allocated and copied, the caller must update each
2733 * corresponding entry in the dst array with the pfn value of the destination
2734 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2735 * (destination pages must have their struct pages locked, via lock_page()).
2737 * Note that the caller does not have to migrate all the pages that are marked
2738 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2739 * device memory to system memory. If the caller cannot migrate a device page
2740 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2741 * consequences for the userspace process, so it must be avoided if at all
2742 * possible.
2744 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2745 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2746 * allowing the caller to allocate device memory for those unback virtual
2747 * address. For this the caller simply has to allocate device memory and
2748 * properly set the destination entry like for regular migration. Note that
2749 * this can still fails and thus inside the device driver must check if the
2750 * migration was successful for those entries after calling migrate_vma_pages()
2751 * just like for regular migration.
2753 * After that, the callers must call migrate_vma_pages() to go over each entry
2754 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2755 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2756 * then migrate_vma_pages() to migrate struct page information from the source
2757 * struct page to the destination struct page. If it fails to migrate the
2758 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2759 * src array.
2761 * At this point all successfully migrated pages have an entry in the src
2762 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2763 * array entry with MIGRATE_PFN_VALID flag set.
2765 * Once migrate_vma_pages() returns the caller may inspect which pages were
2766 * successfully migrated, and which were not. Successfully migrated pages will
2767 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2769 * It is safe to update device page table after migrate_vma_pages() because
2770 * both destination and source page are still locked, and the mmap_lock is held
2771 * in read mode (hence no one can unmap the range being migrated).
2773 * Once the caller is done cleaning up things and updating its page table (if it
2774 * chose to do so, this is not an obligation) it finally calls
2775 * migrate_vma_finalize() to update the CPU page table to point to new pages
2776 * for successfully migrated pages or otherwise restore the CPU page table to
2777 * point to the original source pages.
2779 int migrate_vma_setup(struct migrate_vma *args)
2781 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2783 args->start &= PAGE_MASK;
2784 args->end &= PAGE_MASK;
2785 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2786 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2787 return -EINVAL;
2788 if (nr_pages <= 0)
2789 return -EINVAL;
2790 if (args->start < args->vma->vm_start ||
2791 args->start >= args->vma->vm_end)
2792 return -EINVAL;
2793 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2794 return -EINVAL;
2795 if (!args->src || !args->dst)
2796 return -EINVAL;
2798 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2799 args->cpages = 0;
2800 args->npages = 0;
2802 migrate_vma_collect(args);
2804 if (args->cpages)
2805 migrate_vma_prepare(args);
2806 if (args->cpages)
2807 migrate_vma_unmap(args);
2810 * At this point pages are locked and unmapped, and thus they have
2811 * stable content and can safely be copied to destination memory that
2812 * is allocated by the drivers.
2814 return 0;
2817 EXPORT_SYMBOL(migrate_vma_setup);
2820 * This code closely matches the code in:
2821 * __handle_mm_fault()
2822 * handle_pte_fault()
2823 * do_anonymous_page()
2824 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2825 * private page.
2827 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2828 unsigned long addr,
2829 struct page *page,
2830 unsigned long *src,
2831 unsigned long *dst)
2833 struct vm_area_struct *vma = migrate->vma;
2834 struct mm_struct *mm = vma->vm_mm;
2835 bool flush = false;
2836 spinlock_t *ptl;
2837 pte_t entry;
2838 pgd_t *pgdp;
2839 p4d_t *p4dp;
2840 pud_t *pudp;
2841 pmd_t *pmdp;
2842 pte_t *ptep;
2844 /* Only allow populating anonymous memory */
2845 if (!vma_is_anonymous(vma))
2846 goto abort;
2848 pgdp = pgd_offset(mm, addr);
2849 p4dp = p4d_alloc(mm, pgdp, addr);
2850 if (!p4dp)
2851 goto abort;
2852 pudp = pud_alloc(mm, p4dp, addr);
2853 if (!pudp)
2854 goto abort;
2855 pmdp = pmd_alloc(mm, pudp, addr);
2856 if (!pmdp)
2857 goto abort;
2859 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2860 goto abort;
2863 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2864 * pte_offset_map() on pmds where a huge pmd might be created
2865 * from a different thread.
2867 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2868 * parallel threads are excluded by other means.
2870 * Here we only have mmap_read_lock(mm).
2872 if (pte_alloc(mm, pmdp))
2873 goto abort;
2875 /* See the comment in pte_alloc_one_map() */
2876 if (unlikely(pmd_trans_unstable(pmdp)))
2877 goto abort;
2879 if (unlikely(anon_vma_prepare(vma)))
2880 goto abort;
2881 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2882 goto abort;
2885 * The memory barrier inside __SetPageUptodate makes sure that
2886 * preceding stores to the page contents become visible before
2887 * the set_pte_at() write.
2889 __SetPageUptodate(page);
2891 if (is_zone_device_page(page)) {
2892 if (is_device_private_page(page)) {
2893 swp_entry_t swp_entry;
2895 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2896 entry = swp_entry_to_pte(swp_entry);
2898 } else {
2899 entry = mk_pte(page, vma->vm_page_prot);
2900 if (vma->vm_flags & VM_WRITE)
2901 entry = pte_mkwrite(pte_mkdirty(entry));
2904 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2906 if (check_stable_address_space(mm))
2907 goto unlock_abort;
2909 if (pte_present(*ptep)) {
2910 unsigned long pfn = pte_pfn(*ptep);
2912 if (!is_zero_pfn(pfn))
2913 goto unlock_abort;
2914 flush = true;
2915 } else if (!pte_none(*ptep))
2916 goto unlock_abort;
2919 * Check for userfaultfd but do not deliver the fault. Instead,
2920 * just back off.
2922 if (userfaultfd_missing(vma))
2923 goto unlock_abort;
2925 inc_mm_counter(mm, MM_ANONPAGES);
2926 page_add_new_anon_rmap(page, vma, addr, false);
2927 if (!is_zone_device_page(page))
2928 lru_cache_add_inactive_or_unevictable(page, vma);
2929 get_page(page);
2931 if (flush) {
2932 flush_cache_page(vma, addr, pte_pfn(*ptep));
2933 ptep_clear_flush_notify(vma, addr, ptep);
2934 set_pte_at_notify(mm, addr, ptep, entry);
2935 update_mmu_cache(vma, addr, ptep);
2936 } else {
2937 /* No need to invalidate - it was non-present before */
2938 set_pte_at(mm, addr, ptep, entry);
2939 update_mmu_cache(vma, addr, ptep);
2942 pte_unmap_unlock(ptep, ptl);
2943 *src = MIGRATE_PFN_MIGRATE;
2944 return;
2946 unlock_abort:
2947 pte_unmap_unlock(ptep, ptl);
2948 abort:
2949 *src &= ~MIGRATE_PFN_MIGRATE;
2953 * migrate_vma_pages() - migrate meta-data from src page to dst page
2954 * @migrate: migrate struct containing all migration information
2956 * This migrates struct page meta-data from source struct page to destination
2957 * struct page. This effectively finishes the migration from source page to the
2958 * destination page.
2960 void migrate_vma_pages(struct migrate_vma *migrate)
2962 const unsigned long npages = migrate->npages;
2963 const unsigned long start = migrate->start;
2964 struct mmu_notifier_range range;
2965 unsigned long addr, i;
2966 bool notified = false;
2968 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2969 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2970 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2971 struct address_space *mapping;
2972 int r;
2974 if (!newpage) {
2975 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2976 continue;
2979 if (!page) {
2980 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2981 continue;
2982 if (!notified) {
2983 notified = true;
2985 mmu_notifier_range_init(&range,
2986 MMU_NOTIFY_CLEAR, 0,
2987 NULL,
2988 migrate->vma->vm_mm,
2989 addr, migrate->end);
2990 mmu_notifier_invalidate_range_start(&range);
2992 migrate_vma_insert_page(migrate, addr, newpage,
2993 &migrate->src[i],
2994 &migrate->dst[i]);
2995 continue;
2998 mapping = page_mapping(page);
3000 if (is_zone_device_page(newpage)) {
3001 if (is_device_private_page(newpage)) {
3003 * For now only support private anonymous when
3004 * migrating to un-addressable device memory.
3006 if (mapping) {
3007 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3008 continue;
3010 } else {
3012 * Other types of ZONE_DEVICE page are not
3013 * supported.
3015 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3016 continue;
3020 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3021 if (r != MIGRATEPAGE_SUCCESS)
3022 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3026 * No need to double call mmu_notifier->invalidate_range() callback as
3027 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3028 * did already call it.
3030 if (notified)
3031 mmu_notifier_invalidate_range_only_end(&range);
3033 EXPORT_SYMBOL(migrate_vma_pages);
3036 * migrate_vma_finalize() - restore CPU page table entry
3037 * @migrate: migrate struct containing all migration information
3039 * This replaces the special migration pte entry with either a mapping to the
3040 * new page if migration was successful for that page, or to the original page
3041 * otherwise.
3043 * This also unlocks the pages and puts them back on the lru, or drops the extra
3044 * refcount, for device pages.
3046 void migrate_vma_finalize(struct migrate_vma *migrate)
3048 const unsigned long npages = migrate->npages;
3049 unsigned long i;
3051 for (i = 0; i < npages; i++) {
3052 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3053 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3055 if (!page) {
3056 if (newpage) {
3057 unlock_page(newpage);
3058 put_page(newpage);
3060 continue;
3063 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3064 if (newpage) {
3065 unlock_page(newpage);
3066 put_page(newpage);
3068 newpage = page;
3071 remove_migration_ptes(page, newpage, false);
3072 unlock_page(page);
3073 migrate->cpages--;
3075 if (is_zone_device_page(page))
3076 put_page(page);
3077 else
3078 putback_lru_page(page);
3080 if (newpage != page) {
3081 unlock_page(newpage);
3082 if (is_zone_device_page(newpage))
3083 put_page(newpage);
3084 else
3085 putback_lru_page(newpage);
3089 EXPORT_SYMBOL(migrate_vma_finalize);
3090 #endif /* CONFIG_DEVICE_PRIVATE */