2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly
;
136 static void __free_pages_ok(struct page
*page
, unsigned int order
);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages
);
164 static char * const zone_names
[MAX_NR_ZONES
] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes
= 1024;
180 static unsigned long __meminitdata nr_kernel_pages
;
181 static unsigned long __meminitdata nr_all_pages
;
182 static unsigned long __meminitdata dma_reserve
;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
206 static int __meminitdata nr_nodemap_entries
;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
209 static unsigned long __initdata required_kernelcore
;
210 static unsigned long __initdata required_movablecore
;
211 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone
);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
220 int nr_online_nodes __read_mostly
= 1;
221 EXPORT_SYMBOL(nr_node_ids
);
222 EXPORT_SYMBOL(nr_online_nodes
);
225 int page_group_by_mobility_disabled __read_mostly
;
227 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
230 if (unlikely(page_group_by_mobility_disabled
))
231 migratetype
= MIGRATE_UNMOVABLE
;
233 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
234 PB_migrate
, PB_migrate_end
);
237 bool oom_killer_disabled __read_mostly
;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
244 unsigned long pfn
= page_to_pfn(page
);
247 seq
= zone_span_seqbegin(zone
);
248 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
250 else if (pfn
< zone
->zone_start_pfn
)
252 } while (zone_span_seqretry(zone
, seq
));
257 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
259 if (!pfn_valid_within(page_to_pfn(page
)))
261 if (zone
!= page_zone(page
))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone
*zone
, struct page
*page
)
271 if (page_outside_zone_boundaries(zone
, page
))
273 if (!page_is_consistent(zone
, page
))
279 static inline int bad_range(struct zone
*zone
, struct page
*page
)
285 static void bad_page(struct page
*page
)
287 static unsigned long resume
;
288 static unsigned long nr_shown
;
289 static unsigned long nr_unshown
;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page
)) {
293 reset_page_mapcount(page
); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown
== 60) {
302 if (time_before(jiffies
, resume
)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume
= jiffies
+ 60 * HZ
;
317 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
318 current
->comm
, page_to_pfn(page
));
324 /* Leave bad fields for debug, except PageBuddy could make trouble */
325 reset_page_mapcount(page
); /* remove PageBuddy */
326 add_taint(TAINT_BAD_PAGE
);
330 * Higher-order pages are called "compound pages". They are structured thusly:
332 * The first PAGE_SIZE page is called the "head page".
334 * The remaining PAGE_SIZE pages are called "tail pages".
336 * All pages have PG_compound set. All pages have their ->private pointing at
337 * the head page (even the head page has this).
339 * The first tail page's ->lru.next holds the address of the compound page's
340 * put_page() function. Its ->lru.prev holds the order of allocation.
341 * This usage means that zero-order pages may not be compound.
344 static void free_compound_page(struct page
*page
)
346 __free_pages_ok(page
, compound_order(page
));
349 void prep_compound_page(struct page
*page
, unsigned long order
)
352 int nr_pages
= 1 << order
;
354 set_compound_page_dtor(page
, free_compound_page
);
355 set_compound_order(page
, order
);
357 for (i
= 1; i
< nr_pages
; i
++) {
358 struct page
*p
= page
+ i
;
360 set_page_count(p
, 0);
361 p
->first_page
= page
;
365 /* update __split_huge_page_refcount if you change this function */
366 static int destroy_compound_page(struct page
*page
, unsigned long order
)
369 int nr_pages
= 1 << order
;
372 if (unlikely(compound_order(page
) != order
) ||
373 unlikely(!PageHead(page
))) {
378 __ClearPageHead(page
);
380 for (i
= 1; i
< nr_pages
; i
++) {
381 struct page
*p
= page
+ i
;
383 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
393 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
398 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
399 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
402 for (i
= 0; i
< (1 << order
); i
++)
403 clear_highpage(page
+ i
);
406 static inline void set_page_order(struct page
*page
, int order
)
408 set_page_private(page
, order
);
409 __SetPageBuddy(page
);
412 static inline void rmv_page_order(struct page
*page
)
414 __ClearPageBuddy(page
);
415 set_page_private(page
, 0);
419 * Locate the struct page for both the matching buddy in our
420 * pair (buddy1) and the combined O(n+1) page they form (page).
422 * 1) Any buddy B1 will have an order O twin B2 which satisfies
423 * the following equation:
425 * For example, if the starting buddy (buddy2) is #8 its order
427 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
429 * 2) Any buddy B will have an order O+1 parent P which
430 * satisfies the following equation:
433 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
435 static inline unsigned long
436 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
438 return page_idx
^ (1 << order
);
442 * This function checks whether a page is free && is the buddy
443 * we can do coalesce a page and its buddy if
444 * (a) the buddy is not in a hole &&
445 * (b) the buddy is in the buddy system &&
446 * (c) a page and its buddy have the same order &&
447 * (d) a page and its buddy are in the same zone.
449 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
450 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
452 * For recording page's order, we use page_private(page).
454 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
457 if (!pfn_valid_within(page_to_pfn(buddy
)))
460 if (page_zone_id(page
) != page_zone_id(buddy
))
463 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
464 VM_BUG_ON(page_count(buddy
) != 0);
471 * Freeing function for a buddy system allocator.
473 * The concept of a buddy system is to maintain direct-mapped table
474 * (containing bit values) for memory blocks of various "orders".
475 * The bottom level table contains the map for the smallest allocatable
476 * units of memory (here, pages), and each level above it describes
477 * pairs of units from the levels below, hence, "buddies".
478 * At a high level, all that happens here is marking the table entry
479 * at the bottom level available, and propagating the changes upward
480 * as necessary, plus some accounting needed to play nicely with other
481 * parts of the VM system.
482 * At each level, we keep a list of pages, which are heads of continuous
483 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
484 * order is recorded in page_private(page) field.
485 * So when we are allocating or freeing one, we can derive the state of the
486 * other. That is, if we allocate a small block, and both were
487 * free, the remainder of the region must be split into blocks.
488 * If a block is freed, and its buddy is also free, then this
489 * triggers coalescing into a block of larger size.
494 static inline void __free_one_page(struct page
*page
,
495 struct zone
*zone
, unsigned int order
,
498 unsigned long page_idx
;
499 unsigned long combined_idx
;
500 unsigned long uninitialized_var(buddy_idx
);
503 if (unlikely(PageCompound(page
)))
504 if (unlikely(destroy_compound_page(page
, order
)))
507 VM_BUG_ON(migratetype
== -1);
509 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
511 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
512 VM_BUG_ON(bad_range(zone
, page
));
514 while (order
< MAX_ORDER
-1) {
515 buddy_idx
= __find_buddy_index(page_idx
, order
);
516 buddy
= page
+ (buddy_idx
- page_idx
);
517 if (!page_is_buddy(page
, buddy
, order
))
520 /* Our buddy is free, merge with it and move up one order. */
521 list_del(&buddy
->lru
);
522 zone
->free_area
[order
].nr_free
--;
523 rmv_page_order(buddy
);
524 combined_idx
= buddy_idx
& page_idx
;
525 page
= page
+ (combined_idx
- page_idx
);
526 page_idx
= combined_idx
;
529 set_page_order(page
, order
);
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
539 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
540 struct page
*higher_page
, *higher_buddy
;
541 combined_idx
= buddy_idx
& page_idx
;
542 higher_page
= page
+ (combined_idx
- page_idx
);
543 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
544 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
545 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
546 list_add_tail(&page
->lru
,
547 &zone
->free_area
[order
].free_list
[migratetype
]);
552 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
554 zone
->free_area
[order
].nr_free
++;
558 * free_page_mlock() -- clean up attempts to free and mlocked() page.
559 * Page should not be on lru, so no need to fix that up.
560 * free_pages_check() will verify...
562 static inline void free_page_mlock(struct page
*page
)
564 __dec_zone_page_state(page
, NR_MLOCK
);
565 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
568 static inline int free_pages_check(struct page
*page
)
570 if (unlikely(page_mapcount(page
) |
571 (page
->mapping
!= NULL
) |
572 (atomic_read(&page
->_count
) != 0) |
573 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
574 (mem_cgroup_bad_page_check(page
)))) {
578 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
579 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
584 * Frees a number of pages from the PCP lists
585 * Assumes all pages on list are in same zone, and of same order.
586 * count is the number of pages to free.
588 * If the zone was previously in an "all pages pinned" state then look to
589 * see if this freeing clears that state.
591 * And clear the zone's pages_scanned counter, to hold off the "all pages are
592 * pinned" detection logic.
594 static void free_pcppages_bulk(struct zone
*zone
, int count
,
595 struct per_cpu_pages
*pcp
)
601 spin_lock(&zone
->lock
);
602 zone
->all_unreclaimable
= 0;
603 zone
->pages_scanned
= 0;
607 struct list_head
*list
;
610 * Remove pages from lists in a round-robin fashion. A
611 * batch_free count is maintained that is incremented when an
612 * empty list is encountered. This is so more pages are freed
613 * off fuller lists instead of spinning excessively around empty
618 if (++migratetype
== MIGRATE_PCPTYPES
)
620 list
= &pcp
->lists
[migratetype
];
621 } while (list_empty(list
));
623 /* This is the only non-empty list. Free them all. */
624 if (batch_free
== MIGRATE_PCPTYPES
)
625 batch_free
= to_free
;
628 page
= list_entry(list
->prev
, struct page
, lru
);
629 /* must delete as __free_one_page list manipulates */
630 list_del(&page
->lru
);
631 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
632 __free_one_page(page
, zone
, 0, page_private(page
));
633 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
634 } while (--to_free
&& --batch_free
&& !list_empty(list
));
636 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
637 spin_unlock(&zone
->lock
);
640 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
643 spin_lock(&zone
->lock
);
644 zone
->all_unreclaimable
= 0;
645 zone
->pages_scanned
= 0;
647 __free_one_page(page
, zone
, order
, migratetype
);
648 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
649 spin_unlock(&zone
->lock
);
652 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
657 trace_mm_page_free_direct(page
, order
);
658 kmemcheck_free_shadow(page
, order
);
661 page
->mapping
= NULL
;
662 for (i
= 0; i
< (1 << order
); i
++)
663 bad
+= free_pages_check(page
+ i
);
667 if (!PageHighMem(page
)) {
668 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
669 debug_check_no_obj_freed(page_address(page
),
672 arch_free_page(page
, order
);
673 kernel_map_pages(page
, 1 << order
, 0);
678 static void __free_pages_ok(struct page
*page
, unsigned int order
)
681 int wasMlocked
= __TestClearPageMlocked(page
);
683 if (!free_pages_prepare(page
, order
))
686 local_irq_save(flags
);
687 if (unlikely(wasMlocked
))
688 free_page_mlock(page
);
689 __count_vm_events(PGFREE
, 1 << order
);
690 free_one_page(page_zone(page
), page
, order
,
691 get_pageblock_migratetype(page
));
692 local_irq_restore(flags
);
696 * permit the bootmem allocator to evade page validation on high-order frees
698 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
701 __ClearPageReserved(page
);
702 set_page_count(page
, 0);
703 set_page_refcounted(page
);
709 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
710 struct page
*p
= &page
[loop
];
712 if (loop
+ 1 < BITS_PER_LONG
)
714 __ClearPageReserved(p
);
715 set_page_count(p
, 0);
718 set_page_refcounted(page
);
719 __free_pages(page
, order
);
725 * The order of subdivision here is critical for the IO subsystem.
726 * Please do not alter this order without good reasons and regression
727 * testing. Specifically, as large blocks of memory are subdivided,
728 * the order in which smaller blocks are delivered depends on the order
729 * they're subdivided in this function. This is the primary factor
730 * influencing the order in which pages are delivered to the IO
731 * subsystem according to empirical testing, and this is also justified
732 * by considering the behavior of a buddy system containing a single
733 * large block of memory acted on by a series of small allocations.
734 * This behavior is a critical factor in sglist merging's success.
738 static inline void expand(struct zone
*zone
, struct page
*page
,
739 int low
, int high
, struct free_area
*area
,
742 unsigned long size
= 1 << high
;
748 VM_BUG_ON(bad_range(zone
, &page
[size
]));
749 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
751 set_page_order(&page
[size
], high
);
756 * This page is about to be returned from the page allocator
758 static inline int check_new_page(struct page
*page
)
760 if (unlikely(page_mapcount(page
) |
761 (page
->mapping
!= NULL
) |
762 (atomic_read(&page
->_count
) != 0) |
763 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
764 (mem_cgroup_bad_page_check(page
)))) {
771 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
775 for (i
= 0; i
< (1 << order
); i
++) {
776 struct page
*p
= page
+ i
;
777 if (unlikely(check_new_page(p
)))
781 set_page_private(page
, 0);
782 set_page_refcounted(page
);
784 arch_alloc_page(page
, order
);
785 kernel_map_pages(page
, 1 << order
, 1);
787 if (gfp_flags
& __GFP_ZERO
)
788 prep_zero_page(page
, order
, gfp_flags
);
790 if (order
&& (gfp_flags
& __GFP_COMP
))
791 prep_compound_page(page
, order
);
797 * Go through the free lists for the given migratetype and remove
798 * the smallest available page from the freelists
801 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
804 unsigned int current_order
;
805 struct free_area
* area
;
808 /* Find a page of the appropriate size in the preferred list */
809 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
810 area
= &(zone
->free_area
[current_order
]);
811 if (list_empty(&area
->free_list
[migratetype
]))
814 page
= list_entry(area
->free_list
[migratetype
].next
,
816 list_del(&page
->lru
);
817 rmv_page_order(page
);
819 expand(zone
, page
, order
, current_order
, area
, migratetype
);
828 * This array describes the order lists are fallen back to when
829 * the free lists for the desirable migrate type are depleted
831 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
832 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
833 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
834 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
835 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
839 * Move the free pages in a range to the free lists of the requested type.
840 * Note that start_page and end_pages are not aligned on a pageblock
841 * boundary. If alignment is required, use move_freepages_block()
843 static int move_freepages(struct zone
*zone
,
844 struct page
*start_page
, struct page
*end_page
,
851 #ifndef CONFIG_HOLES_IN_ZONE
853 * page_zone is not safe to call in this context when
854 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
855 * anyway as we check zone boundaries in move_freepages_block().
856 * Remove at a later date when no bug reports exist related to
857 * grouping pages by mobility
859 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
862 for (page
= start_page
; page
<= end_page
;) {
863 /* Make sure we are not inadvertently changing nodes */
864 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
866 if (!pfn_valid_within(page_to_pfn(page
))) {
871 if (!PageBuddy(page
)) {
876 order
= page_order(page
);
877 list_move(&page
->lru
,
878 &zone
->free_area
[order
].free_list
[migratetype
]);
880 pages_moved
+= 1 << order
;
886 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
889 unsigned long start_pfn
, end_pfn
;
890 struct page
*start_page
, *end_page
;
892 start_pfn
= page_to_pfn(page
);
893 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
894 start_page
= pfn_to_page(start_pfn
);
895 end_page
= start_page
+ pageblock_nr_pages
- 1;
896 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
898 /* Do not cross zone boundaries */
899 if (start_pfn
< zone
->zone_start_pfn
)
901 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
904 return move_freepages(zone
, start_page
, end_page
, migratetype
);
907 static void change_pageblock_range(struct page
*pageblock_page
,
908 int start_order
, int migratetype
)
910 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
912 while (nr_pageblocks
--) {
913 set_pageblock_migratetype(pageblock_page
, migratetype
);
914 pageblock_page
+= pageblock_nr_pages
;
918 /* Remove an element from the buddy allocator from the fallback list */
919 static inline struct page
*
920 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
922 struct free_area
* area
;
927 /* Find the largest possible block of pages in the other list */
928 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
930 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
931 migratetype
= fallbacks
[start_migratetype
][i
];
933 /* MIGRATE_RESERVE handled later if necessary */
934 if (migratetype
== MIGRATE_RESERVE
)
937 area
= &(zone
->free_area
[current_order
]);
938 if (list_empty(&area
->free_list
[migratetype
]))
941 page
= list_entry(area
->free_list
[migratetype
].next
,
946 * If breaking a large block of pages, move all free
947 * pages to the preferred allocation list. If falling
948 * back for a reclaimable kernel allocation, be more
949 * aggressive about taking ownership of free pages
951 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
952 start_migratetype
== MIGRATE_RECLAIMABLE
||
953 page_group_by_mobility_disabled
) {
955 pages
= move_freepages_block(zone
, page
,
958 /* Claim the whole block if over half of it is free */
959 if (pages
>= (1 << (pageblock_order
-1)) ||
960 page_group_by_mobility_disabled
)
961 set_pageblock_migratetype(page
,
964 migratetype
= start_migratetype
;
967 /* Remove the page from the freelists */
968 list_del(&page
->lru
);
969 rmv_page_order(page
);
971 /* Take ownership for orders >= pageblock_order */
972 if (current_order
>= pageblock_order
)
973 change_pageblock_range(page
, current_order
,
976 expand(zone
, page
, order
, current_order
, area
, migratetype
);
978 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
979 start_migratetype
, migratetype
);
989 * Do the hard work of removing an element from the buddy allocator.
990 * Call me with the zone->lock already held.
992 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
998 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1000 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1001 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1004 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1005 * is used because __rmqueue_smallest is an inline function
1006 * and we want just one call site
1009 migratetype
= MIGRATE_RESERVE
;
1014 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1019 * Obtain a specified number of elements from the buddy allocator, all under
1020 * a single hold of the lock, for efficiency. Add them to the supplied list.
1021 * Returns the number of new pages which were placed at *list.
1023 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1024 unsigned long count
, struct list_head
*list
,
1025 int migratetype
, int cold
)
1029 spin_lock(&zone
->lock
);
1030 for (i
= 0; i
< count
; ++i
) {
1031 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1032 if (unlikely(page
== NULL
))
1036 * Split buddy pages returned by expand() are received here
1037 * in physical page order. The page is added to the callers and
1038 * list and the list head then moves forward. From the callers
1039 * perspective, the linked list is ordered by page number in
1040 * some conditions. This is useful for IO devices that can
1041 * merge IO requests if the physical pages are ordered
1044 if (likely(cold
== 0))
1045 list_add(&page
->lru
, list
);
1047 list_add_tail(&page
->lru
, list
);
1048 set_page_private(page
, migratetype
);
1051 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1052 spin_unlock(&zone
->lock
);
1058 * Called from the vmstat counter updater to drain pagesets of this
1059 * currently executing processor on remote nodes after they have
1062 * Note that this function must be called with the thread pinned to
1063 * a single processor.
1065 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1067 unsigned long flags
;
1070 local_irq_save(flags
);
1071 if (pcp
->count
>= pcp
->batch
)
1072 to_drain
= pcp
->batch
;
1074 to_drain
= pcp
->count
;
1075 free_pcppages_bulk(zone
, to_drain
, pcp
);
1076 pcp
->count
-= to_drain
;
1077 local_irq_restore(flags
);
1082 * Drain pages of the indicated processor.
1084 * The processor must either be the current processor and the
1085 * thread pinned to the current processor or a processor that
1088 static void drain_pages(unsigned int cpu
)
1090 unsigned long flags
;
1093 for_each_populated_zone(zone
) {
1094 struct per_cpu_pageset
*pset
;
1095 struct per_cpu_pages
*pcp
;
1097 local_irq_save(flags
);
1098 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1102 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1105 local_irq_restore(flags
);
1110 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1112 void drain_local_pages(void *arg
)
1114 drain_pages(smp_processor_id());
1118 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1120 void drain_all_pages(void)
1122 on_each_cpu(drain_local_pages
, NULL
, 1);
1125 #ifdef CONFIG_HIBERNATION
1127 void mark_free_pages(struct zone
*zone
)
1129 unsigned long pfn
, max_zone_pfn
;
1130 unsigned long flags
;
1132 struct list_head
*curr
;
1134 if (!zone
->spanned_pages
)
1137 spin_lock_irqsave(&zone
->lock
, flags
);
1139 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1140 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1141 if (pfn_valid(pfn
)) {
1142 struct page
*page
= pfn_to_page(pfn
);
1144 if (!swsusp_page_is_forbidden(page
))
1145 swsusp_unset_page_free(page
);
1148 for_each_migratetype_order(order
, t
) {
1149 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1152 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1153 for (i
= 0; i
< (1UL << order
); i
++)
1154 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1157 spin_unlock_irqrestore(&zone
->lock
, flags
);
1159 #endif /* CONFIG_PM */
1162 * Free a 0-order page
1163 * cold == 1 ? free a cold page : free a hot page
1165 void free_hot_cold_page(struct page
*page
, int cold
)
1167 struct zone
*zone
= page_zone(page
);
1168 struct per_cpu_pages
*pcp
;
1169 unsigned long flags
;
1171 int wasMlocked
= __TestClearPageMlocked(page
);
1173 if (!free_pages_prepare(page
, 0))
1176 migratetype
= get_pageblock_migratetype(page
);
1177 set_page_private(page
, migratetype
);
1178 local_irq_save(flags
);
1179 if (unlikely(wasMlocked
))
1180 free_page_mlock(page
);
1181 __count_vm_event(PGFREE
);
1184 * We only track unmovable, reclaimable and movable on pcp lists.
1185 * Free ISOLATE pages back to the allocator because they are being
1186 * offlined but treat RESERVE as movable pages so we can get those
1187 * areas back if necessary. Otherwise, we may have to free
1188 * excessively into the page allocator
1190 if (migratetype
>= MIGRATE_PCPTYPES
) {
1191 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1192 free_one_page(zone
, page
, 0, migratetype
);
1195 migratetype
= MIGRATE_MOVABLE
;
1198 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1200 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1202 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1204 if (pcp
->count
>= pcp
->high
) {
1205 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1206 pcp
->count
-= pcp
->batch
;
1210 local_irq_restore(flags
);
1214 * split_page takes a non-compound higher-order page, and splits it into
1215 * n (1<<order) sub-pages: page[0..n]
1216 * Each sub-page must be freed individually.
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1221 void split_page(struct page
*page
, unsigned int order
)
1225 VM_BUG_ON(PageCompound(page
));
1226 VM_BUG_ON(!page_count(page
));
1228 #ifdef CONFIG_KMEMCHECK
1230 * Split shadow pages too, because free(page[0]) would
1231 * otherwise free the whole shadow.
1233 if (kmemcheck_page_is_tracked(page
))
1234 split_page(virt_to_page(page
[0].shadow
), order
);
1237 for (i
= 1; i
< (1 << order
); i
++)
1238 set_page_refcounted(page
+ i
);
1242 * Similar to split_page except the page is already free. As this is only
1243 * being used for migration, the migratetype of the block also changes.
1244 * As this is called with interrupts disabled, the caller is responsible
1245 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1248 * Note: this is probably too low level an operation for use in drivers.
1249 * Please consult with lkml before using this in your driver.
1251 int split_free_page(struct page
*page
)
1254 unsigned long watermark
;
1257 BUG_ON(!PageBuddy(page
));
1259 zone
= page_zone(page
);
1260 order
= page_order(page
);
1262 /* Obey watermarks as if the page was being allocated */
1263 watermark
= low_wmark_pages(zone
) + (1 << order
);
1264 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1267 /* Remove page from free list */
1268 list_del(&page
->lru
);
1269 zone
->free_area
[order
].nr_free
--;
1270 rmv_page_order(page
);
1271 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1273 /* Split into individual pages */
1274 set_page_refcounted(page
);
1275 split_page(page
, order
);
1277 if (order
>= pageblock_order
- 1) {
1278 struct page
*endpage
= page
+ (1 << order
) - 1;
1279 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1280 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1287 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1288 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1292 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1293 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1296 unsigned long flags
;
1298 int cold
= !!(gfp_flags
& __GFP_COLD
);
1301 if (likely(order
== 0)) {
1302 struct per_cpu_pages
*pcp
;
1303 struct list_head
*list
;
1305 local_irq_save(flags
);
1306 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1307 list
= &pcp
->lists
[migratetype
];
1308 if (list_empty(list
)) {
1309 pcp
->count
+= rmqueue_bulk(zone
, 0,
1312 if (unlikely(list_empty(list
)))
1317 page
= list_entry(list
->prev
, struct page
, lru
);
1319 page
= list_entry(list
->next
, struct page
, lru
);
1321 list_del(&page
->lru
);
1324 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1326 * __GFP_NOFAIL is not to be used in new code.
1328 * All __GFP_NOFAIL callers should be fixed so that they
1329 * properly detect and handle allocation failures.
1331 * We most definitely don't want callers attempting to
1332 * allocate greater than order-1 page units with
1335 WARN_ON_ONCE(order
> 1);
1337 spin_lock_irqsave(&zone
->lock
, flags
);
1338 page
= __rmqueue(zone
, order
, migratetype
);
1339 spin_unlock(&zone
->lock
);
1342 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1345 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1346 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1347 local_irq_restore(flags
);
1349 VM_BUG_ON(bad_range(zone
, page
));
1350 if (prep_new_page(page
, order
, gfp_flags
))
1355 local_irq_restore(flags
);
1359 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1360 #define ALLOC_WMARK_MIN WMARK_MIN
1361 #define ALLOC_WMARK_LOW WMARK_LOW
1362 #define ALLOC_WMARK_HIGH WMARK_HIGH
1363 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1365 /* Mask to get the watermark bits */
1366 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1368 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1369 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1370 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1372 #ifdef CONFIG_FAIL_PAGE_ALLOC
1375 struct fault_attr attr
;
1377 u32 ignore_gfp_highmem
;
1378 u32 ignore_gfp_wait
;
1380 } fail_page_alloc
= {
1381 .attr
= FAULT_ATTR_INITIALIZER
,
1382 .ignore_gfp_wait
= 1,
1383 .ignore_gfp_highmem
= 1,
1387 static int __init
setup_fail_page_alloc(char *str
)
1389 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1391 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1393 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1395 if (order
< fail_page_alloc
.min_order
)
1397 if (gfp_mask
& __GFP_NOFAIL
)
1399 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1401 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1404 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1407 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1409 static int __init
fail_page_alloc_debugfs(void)
1411 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1414 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1415 &fail_page_alloc
.attr
);
1417 return PTR_ERR(dir
);
1419 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1420 &fail_page_alloc
.ignore_gfp_wait
))
1422 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1423 &fail_page_alloc
.ignore_gfp_highmem
))
1425 if (!debugfs_create_u32("min-order", mode
, dir
,
1426 &fail_page_alloc
.min_order
))
1431 debugfs_remove_recursive(dir
);
1436 late_initcall(fail_page_alloc_debugfs
);
1438 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1440 #else /* CONFIG_FAIL_PAGE_ALLOC */
1442 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1447 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1450 * Return true if free pages are above 'mark'. This takes into account the order
1451 * of the allocation.
1453 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1454 int classzone_idx
, int alloc_flags
, long free_pages
)
1456 /* free_pages my go negative - that's OK */
1460 free_pages
-= (1 << order
) + 1;
1461 if (alloc_flags
& ALLOC_HIGH
)
1463 if (alloc_flags
& ALLOC_HARDER
)
1466 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1468 for (o
= 0; o
< order
; o
++) {
1469 /* At the next order, this order's pages become unavailable */
1470 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1472 /* Require fewer higher order pages to be free */
1475 if (free_pages
<= min
)
1481 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1482 int classzone_idx
, int alloc_flags
)
1484 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1485 zone_page_state(z
, NR_FREE_PAGES
));
1488 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1489 int classzone_idx
, int alloc_flags
)
1491 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1493 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1494 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1496 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1502 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1503 * skip over zones that are not allowed by the cpuset, or that have
1504 * been recently (in last second) found to be nearly full. See further
1505 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1506 * that have to skip over a lot of full or unallowed zones.
1508 * If the zonelist cache is present in the passed in zonelist, then
1509 * returns a pointer to the allowed node mask (either the current
1510 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1512 * If the zonelist cache is not available for this zonelist, does
1513 * nothing and returns NULL.
1515 * If the fullzones BITMAP in the zonelist cache is stale (more than
1516 * a second since last zap'd) then we zap it out (clear its bits.)
1518 * We hold off even calling zlc_setup, until after we've checked the
1519 * first zone in the zonelist, on the theory that most allocations will
1520 * be satisfied from that first zone, so best to examine that zone as
1521 * quickly as we can.
1523 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1525 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1526 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1528 zlc
= zonelist
->zlcache_ptr
;
1532 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1533 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1534 zlc
->last_full_zap
= jiffies
;
1537 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1538 &cpuset_current_mems_allowed
:
1539 &node_states
[N_HIGH_MEMORY
];
1540 return allowednodes
;
1544 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1545 * if it is worth looking at further for free memory:
1546 * 1) Check that the zone isn't thought to be full (doesn't have its
1547 * bit set in the zonelist_cache fullzones BITMAP).
1548 * 2) Check that the zones node (obtained from the zonelist_cache
1549 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1550 * Return true (non-zero) if zone is worth looking at further, or
1551 * else return false (zero) if it is not.
1553 * This check -ignores- the distinction between various watermarks,
1554 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1555 * found to be full for any variation of these watermarks, it will
1556 * be considered full for up to one second by all requests, unless
1557 * we are so low on memory on all allowed nodes that we are forced
1558 * into the second scan of the zonelist.
1560 * In the second scan we ignore this zonelist cache and exactly
1561 * apply the watermarks to all zones, even it is slower to do so.
1562 * We are low on memory in the second scan, and should leave no stone
1563 * unturned looking for a free page.
1565 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1566 nodemask_t
*allowednodes
)
1568 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1569 int i
; /* index of *z in zonelist zones */
1570 int n
; /* node that zone *z is on */
1572 zlc
= zonelist
->zlcache_ptr
;
1576 i
= z
- zonelist
->_zonerefs
;
1579 /* This zone is worth trying if it is allowed but not full */
1580 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1584 * Given 'z' scanning a zonelist, set the corresponding bit in
1585 * zlc->fullzones, so that subsequent attempts to allocate a page
1586 * from that zone don't waste time re-examining it.
1588 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1590 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1591 int i
; /* index of *z in zonelist zones */
1593 zlc
= zonelist
->zlcache_ptr
;
1597 i
= z
- zonelist
->_zonerefs
;
1599 set_bit(i
, zlc
->fullzones
);
1603 * clear all zones full, called after direct reclaim makes progress so that
1604 * a zone that was recently full is not skipped over for up to a second
1606 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1608 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1610 zlc
= zonelist
->zlcache_ptr
;
1614 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1617 #else /* CONFIG_NUMA */
1619 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1624 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1625 nodemask_t
*allowednodes
)
1630 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1634 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1637 #endif /* CONFIG_NUMA */
1640 * get_page_from_freelist goes through the zonelist trying to allocate
1643 static struct page
*
1644 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1645 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1646 struct zone
*preferred_zone
, int migratetype
)
1649 struct page
*page
= NULL
;
1652 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1653 int zlc_active
= 0; /* set if using zonelist_cache */
1654 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1656 classzone_idx
= zone_idx(preferred_zone
);
1659 * Scan zonelist, looking for a zone with enough free.
1660 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1662 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1663 high_zoneidx
, nodemask
) {
1664 if (NUMA_BUILD
&& zlc_active
&&
1665 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1667 if ((alloc_flags
& ALLOC_CPUSET
) &&
1668 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1671 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1672 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1676 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1677 if (zone_watermark_ok(zone
, order
, mark
,
1678 classzone_idx
, alloc_flags
))
1681 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1683 * we do zlc_setup if there are multiple nodes
1684 * and before considering the first zone allowed
1687 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1692 if (zone_reclaim_mode
== 0)
1693 goto this_zone_full
;
1696 * As we may have just activated ZLC, check if the first
1697 * eligible zone has failed zone_reclaim recently.
1699 if (NUMA_BUILD
&& zlc_active
&&
1700 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1703 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1705 case ZONE_RECLAIM_NOSCAN
:
1708 case ZONE_RECLAIM_FULL
:
1709 /* scanned but unreclaimable */
1712 /* did we reclaim enough */
1713 if (!zone_watermark_ok(zone
, order
, mark
,
1714 classzone_idx
, alloc_flags
))
1715 goto this_zone_full
;
1720 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1721 gfp_mask
, migratetype
);
1726 zlc_mark_zone_full(zonelist
, z
);
1729 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1730 /* Disable zlc cache for second zonelist scan */
1738 * Large machines with many possible nodes should not always dump per-node
1739 * meminfo in irq context.
1741 static inline bool should_suppress_show_mem(void)
1746 ret
= in_interrupt();
1751 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1752 DEFAULT_RATELIMIT_INTERVAL
,
1753 DEFAULT_RATELIMIT_BURST
);
1755 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1757 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1759 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1763 * Walking all memory to count page types is very expensive and should
1764 * be inhibited in non-blockable contexts.
1766 if (!(gfp_mask
& __GFP_WAIT
))
1767 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
1770 * This documents exceptions given to allocations in certain
1771 * contexts that are allowed to allocate outside current's set
1774 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1775 if (test_thread_flag(TIF_MEMDIE
) ||
1776 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1777 filter
&= ~SHOW_MEM_FILTER_NODES
;
1778 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1779 filter
&= ~SHOW_MEM_FILTER_NODES
;
1782 struct va_format vaf
;
1785 va_start(args
, fmt
);
1790 pr_warn("%pV", &vaf
);
1795 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1796 current
->comm
, order
, gfp_mask
);
1799 if (!should_suppress_show_mem())
1804 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1805 unsigned long pages_reclaimed
)
1807 /* Do not loop if specifically requested */
1808 if (gfp_mask
& __GFP_NORETRY
)
1812 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1813 * means __GFP_NOFAIL, but that may not be true in other
1816 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1820 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1821 * specified, then we retry until we no longer reclaim any pages
1822 * (above), or we've reclaimed an order of pages at least as
1823 * large as the allocation's order. In both cases, if the
1824 * allocation still fails, we stop retrying.
1826 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1830 * Don't let big-order allocations loop unless the caller
1831 * explicitly requests that.
1833 if (gfp_mask
& __GFP_NOFAIL
)
1839 static inline struct page
*
1840 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1841 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1842 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1847 /* Acquire the OOM killer lock for the zones in zonelist */
1848 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1849 schedule_timeout_uninterruptible(1);
1854 * Go through the zonelist yet one more time, keep very high watermark
1855 * here, this is only to catch a parallel oom killing, we must fail if
1856 * we're still under heavy pressure.
1858 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1859 order
, zonelist
, high_zoneidx
,
1860 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1861 preferred_zone
, migratetype
);
1865 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1866 /* The OOM killer will not help higher order allocs */
1867 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1869 /* The OOM killer does not needlessly kill tasks for lowmem */
1870 if (high_zoneidx
< ZONE_NORMAL
)
1873 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1874 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1875 * The caller should handle page allocation failure by itself if
1876 * it specifies __GFP_THISNODE.
1877 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1879 if (gfp_mask
& __GFP_THISNODE
)
1882 /* Exhausted what can be done so it's blamo time */
1883 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1886 clear_zonelist_oom(zonelist
, gfp_mask
);
1890 #ifdef CONFIG_COMPACTION
1891 /* Try memory compaction for high-order allocations before reclaim */
1892 static struct page
*
1893 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1894 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1895 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1896 int migratetype
, bool sync_migration
,
1897 bool *deferred_compaction
,
1898 unsigned long *did_some_progress
)
1905 if (compaction_deferred(preferred_zone
)) {
1906 *deferred_compaction
= true;
1910 current
->flags
|= PF_MEMALLOC
;
1911 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1912 nodemask
, sync_migration
);
1913 current
->flags
&= ~PF_MEMALLOC
;
1914 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1916 /* Page migration frees to the PCP lists but we want merging */
1917 drain_pages(get_cpu());
1920 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1921 order
, zonelist
, high_zoneidx
,
1922 alloc_flags
, preferred_zone
,
1925 preferred_zone
->compact_considered
= 0;
1926 preferred_zone
->compact_defer_shift
= 0;
1927 count_vm_event(COMPACTSUCCESS
);
1932 * It's bad if compaction run occurs and fails.
1933 * The most likely reason is that pages exist,
1934 * but not enough to satisfy watermarks.
1936 count_vm_event(COMPACTFAIL
);
1939 * As async compaction considers a subset of pageblocks, only
1940 * defer if the failure was a sync compaction failure.
1943 defer_compaction(preferred_zone
);
1951 static inline struct page
*
1952 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1953 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1954 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1955 int migratetype
, bool sync_migration
,
1956 bool *deferred_compaction
,
1957 unsigned long *did_some_progress
)
1961 #endif /* CONFIG_COMPACTION */
1963 /* The really slow allocator path where we enter direct reclaim */
1964 static inline struct page
*
1965 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1966 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1967 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1968 int migratetype
, unsigned long *did_some_progress
)
1970 struct page
*page
= NULL
;
1971 struct reclaim_state reclaim_state
;
1972 bool drained
= false;
1976 /* We now go into synchronous reclaim */
1977 cpuset_memory_pressure_bump();
1978 current
->flags
|= PF_MEMALLOC
;
1979 lockdep_set_current_reclaim_state(gfp_mask
);
1980 reclaim_state
.reclaimed_slab
= 0;
1981 current
->reclaim_state
= &reclaim_state
;
1983 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1985 current
->reclaim_state
= NULL
;
1986 lockdep_clear_current_reclaim_state();
1987 current
->flags
&= ~PF_MEMALLOC
;
1991 if (unlikely(!(*did_some_progress
)))
1994 /* After successful reclaim, reconsider all zones for allocation */
1996 zlc_clear_zones_full(zonelist
);
1999 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2000 zonelist
, high_zoneidx
,
2001 alloc_flags
, preferred_zone
,
2005 * If an allocation failed after direct reclaim, it could be because
2006 * pages are pinned on the per-cpu lists. Drain them and try again
2008 if (!page
&& !drained
) {
2018 * This is called in the allocator slow-path if the allocation request is of
2019 * sufficient urgency to ignore watermarks and take other desperate measures
2021 static inline struct page
*
2022 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2023 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2024 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2030 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2031 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2032 preferred_zone
, migratetype
);
2034 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2035 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2036 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2042 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2043 enum zone_type high_zoneidx
,
2044 enum zone_type classzone_idx
)
2049 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2050 wakeup_kswapd(zone
, order
, classzone_idx
);
2054 gfp_to_alloc_flags(gfp_t gfp_mask
)
2056 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2057 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2059 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2060 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2063 * The caller may dip into page reserves a bit more if the caller
2064 * cannot run direct reclaim, or if the caller has realtime scheduling
2065 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2066 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2068 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2072 * Not worth trying to allocate harder for
2073 * __GFP_NOMEMALLOC even if it can't schedule.
2075 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2076 alloc_flags
|= ALLOC_HARDER
;
2078 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2079 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2081 alloc_flags
&= ~ALLOC_CPUSET
;
2082 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2083 alloc_flags
|= ALLOC_HARDER
;
2085 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2086 if (!in_interrupt() &&
2087 ((current
->flags
& PF_MEMALLOC
) ||
2088 unlikely(test_thread_flag(TIF_MEMDIE
))))
2089 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2095 static inline struct page
*
2096 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2097 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2098 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2101 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2102 struct page
*page
= NULL
;
2104 unsigned long pages_reclaimed
= 0;
2105 unsigned long did_some_progress
;
2106 bool sync_migration
= false;
2107 bool deferred_compaction
= false;
2110 * In the slowpath, we sanity check order to avoid ever trying to
2111 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2112 * be using allocators in order of preference for an area that is
2115 if (order
>= MAX_ORDER
) {
2116 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2121 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2122 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2123 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2124 * using a larger set of nodes after it has established that the
2125 * allowed per node queues are empty and that nodes are
2128 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2132 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2133 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2134 zone_idx(preferred_zone
));
2137 * OK, we're below the kswapd watermark and have kicked background
2138 * reclaim. Now things get more complex, so set up alloc_flags according
2139 * to how we want to proceed.
2141 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2144 * Find the true preferred zone if the allocation is unconstrained by
2147 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2148 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2152 /* This is the last chance, in general, before the goto nopage. */
2153 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2154 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2155 preferred_zone
, migratetype
);
2159 /* Allocate without watermarks if the context allows */
2160 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2161 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2162 zonelist
, high_zoneidx
, nodemask
,
2163 preferred_zone
, migratetype
);
2168 /* Atomic allocations - we can't balance anything */
2172 /* Avoid recursion of direct reclaim */
2173 if (current
->flags
& PF_MEMALLOC
)
2176 /* Avoid allocations with no watermarks from looping endlessly */
2177 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2181 * Try direct compaction. The first pass is asynchronous. Subsequent
2182 * attempts after direct reclaim are synchronous
2184 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2185 zonelist
, high_zoneidx
,
2187 alloc_flags
, preferred_zone
,
2188 migratetype
, sync_migration
,
2189 &deferred_compaction
,
2190 &did_some_progress
);
2193 sync_migration
= true;
2196 * If compaction is deferred for high-order allocations, it is because
2197 * sync compaction recently failed. In this is the case and the caller
2198 * has requested the system not be heavily disrupted, fail the
2199 * allocation now instead of entering direct reclaim
2201 if (deferred_compaction
&& (gfp_mask
& __GFP_NO_KSWAPD
))
2204 /* Try direct reclaim and then allocating */
2205 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2206 zonelist
, high_zoneidx
,
2208 alloc_flags
, preferred_zone
,
2209 migratetype
, &did_some_progress
);
2214 * If we failed to make any progress reclaiming, then we are
2215 * running out of options and have to consider going OOM
2217 if (!did_some_progress
) {
2218 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2219 if (oom_killer_disabled
)
2221 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2222 zonelist
, high_zoneidx
,
2223 nodemask
, preferred_zone
,
2228 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2230 * The oom killer is not called for high-order
2231 * allocations that may fail, so if no progress
2232 * is being made, there are no other options and
2233 * retrying is unlikely to help.
2235 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2238 * The oom killer is not called for lowmem
2239 * allocations to prevent needlessly killing
2242 if (high_zoneidx
< ZONE_NORMAL
)
2250 /* Check if we should retry the allocation */
2251 pages_reclaimed
+= did_some_progress
;
2252 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2253 /* Wait for some write requests to complete then retry */
2254 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2258 * High-order allocations do not necessarily loop after
2259 * direct reclaim and reclaim/compaction depends on compaction
2260 * being called after reclaim so call directly if necessary
2262 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2263 zonelist
, high_zoneidx
,
2265 alloc_flags
, preferred_zone
,
2266 migratetype
, sync_migration
,
2267 &deferred_compaction
,
2268 &did_some_progress
);
2274 warn_alloc_failed(gfp_mask
, order
, NULL
);
2277 if (kmemcheck_enabled
)
2278 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2284 * This is the 'heart' of the zoned buddy allocator.
2287 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2288 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2290 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2291 struct zone
*preferred_zone
;
2292 struct page
*page
= NULL
;
2293 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2294 unsigned int cpuset_mems_cookie
;
2296 gfp_mask
&= gfp_allowed_mask
;
2298 lockdep_trace_alloc(gfp_mask
);
2300 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2302 if (should_fail_alloc_page(gfp_mask
, order
))
2306 * Check the zones suitable for the gfp_mask contain at least one
2307 * valid zone. It's possible to have an empty zonelist as a result
2308 * of GFP_THISNODE and a memoryless node
2310 if (unlikely(!zonelist
->_zonerefs
->zone
))
2314 cpuset_mems_cookie
= get_mems_allowed();
2316 /* The preferred zone is used for statistics later */
2317 first_zones_zonelist(zonelist
, high_zoneidx
,
2318 nodemask
? : &cpuset_current_mems_allowed
,
2320 if (!preferred_zone
)
2323 /* First allocation attempt */
2324 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2325 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2326 preferred_zone
, migratetype
);
2327 if (unlikely(!page
))
2328 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2329 zonelist
, high_zoneidx
, nodemask
,
2330 preferred_zone
, migratetype
);
2332 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2336 * When updating a task's mems_allowed, it is possible to race with
2337 * parallel threads in such a way that an allocation can fail while
2338 * the mask is being updated. If a page allocation is about to fail,
2339 * check if the cpuset changed during allocation and if so, retry.
2341 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2346 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2349 * Common helper functions.
2351 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2356 * __get_free_pages() returns a 32-bit address, which cannot represent
2359 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2361 page
= alloc_pages(gfp_mask
, order
);
2364 return (unsigned long) page_address(page
);
2366 EXPORT_SYMBOL(__get_free_pages
);
2368 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2370 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2372 EXPORT_SYMBOL(get_zeroed_page
);
2374 void __pagevec_free(struct pagevec
*pvec
)
2376 int i
= pagevec_count(pvec
);
2379 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2380 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2384 void __free_pages(struct page
*page
, unsigned int order
)
2386 if (put_page_testzero(page
)) {
2388 free_hot_cold_page(page
, 0);
2390 __free_pages_ok(page
, order
);
2394 EXPORT_SYMBOL(__free_pages
);
2396 void free_pages(unsigned long addr
, unsigned int order
)
2399 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2400 __free_pages(virt_to_page((void *)addr
), order
);
2404 EXPORT_SYMBOL(free_pages
);
2406 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2409 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2410 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2412 split_page(virt_to_page((void *)addr
), order
);
2413 while (used
< alloc_end
) {
2418 return (void *)addr
;
2422 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2423 * @size: the number of bytes to allocate
2424 * @gfp_mask: GFP flags for the allocation
2426 * This function is similar to alloc_pages(), except that it allocates the
2427 * minimum number of pages to satisfy the request. alloc_pages() can only
2428 * allocate memory in power-of-two pages.
2430 * This function is also limited by MAX_ORDER.
2432 * Memory allocated by this function must be released by free_pages_exact().
2434 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2436 unsigned int order
= get_order(size
);
2439 addr
= __get_free_pages(gfp_mask
, order
);
2440 return make_alloc_exact(addr
, order
, size
);
2442 EXPORT_SYMBOL(alloc_pages_exact
);
2445 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2447 * @nid: the preferred node ID where memory should be allocated
2448 * @size: the number of bytes to allocate
2449 * @gfp_mask: GFP flags for the allocation
2451 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2453 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2456 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2458 unsigned order
= get_order(size
);
2459 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2462 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2464 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2467 * free_pages_exact - release memory allocated via alloc_pages_exact()
2468 * @virt: the value returned by alloc_pages_exact.
2469 * @size: size of allocation, same value as passed to alloc_pages_exact().
2471 * Release the memory allocated by a previous call to alloc_pages_exact.
2473 void free_pages_exact(void *virt
, size_t size
)
2475 unsigned long addr
= (unsigned long)virt
;
2476 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2478 while (addr
< end
) {
2483 EXPORT_SYMBOL(free_pages_exact
);
2485 static unsigned int nr_free_zone_pages(int offset
)
2490 /* Just pick one node, since fallback list is circular */
2491 unsigned int sum
= 0;
2493 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2495 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2496 unsigned long size
= zone
->present_pages
;
2497 unsigned long high
= high_wmark_pages(zone
);
2506 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2508 unsigned int nr_free_buffer_pages(void)
2510 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2512 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2515 * Amount of free RAM allocatable within all zones
2517 unsigned int nr_free_pagecache_pages(void)
2519 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2522 static inline void show_node(struct zone
*zone
)
2525 printk("Node %d ", zone_to_nid(zone
));
2528 void si_meminfo(struct sysinfo
*val
)
2530 val
->totalram
= totalram_pages
;
2532 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2533 val
->bufferram
= nr_blockdev_pages();
2534 val
->totalhigh
= totalhigh_pages
;
2535 val
->freehigh
= nr_free_highpages();
2536 val
->mem_unit
= PAGE_SIZE
;
2539 EXPORT_SYMBOL(si_meminfo
);
2542 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2544 pg_data_t
*pgdat
= NODE_DATA(nid
);
2546 val
->totalram
= pgdat
->node_present_pages
;
2547 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2548 #ifdef CONFIG_HIGHMEM
2549 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2550 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2556 val
->mem_unit
= PAGE_SIZE
;
2561 * Determine whether the node should be displayed or not, depending on whether
2562 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2564 bool skip_free_areas_node(unsigned int flags
, int nid
)
2567 unsigned int cpuset_mems_cookie
;
2569 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2573 cpuset_mems_cookie
= get_mems_allowed();
2574 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2575 } while (!put_mems_allowed(cpuset_mems_cookie
));
2580 #define K(x) ((x) << (PAGE_SHIFT-10))
2583 * Show free area list (used inside shift_scroll-lock stuff)
2584 * We also calculate the percentage fragmentation. We do this by counting the
2585 * memory on each free list with the exception of the first item on the list.
2586 * Suppresses nodes that are not allowed by current's cpuset if
2587 * SHOW_MEM_FILTER_NODES is passed.
2589 void show_free_areas(unsigned int filter
)
2594 for_each_populated_zone(zone
) {
2595 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2598 printk("%s per-cpu:\n", zone
->name
);
2600 for_each_online_cpu(cpu
) {
2601 struct per_cpu_pageset
*pageset
;
2603 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2605 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2606 cpu
, pageset
->pcp
.high
,
2607 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2611 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2612 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2614 " dirty:%lu writeback:%lu unstable:%lu\n"
2615 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2616 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2617 global_page_state(NR_ACTIVE_ANON
),
2618 global_page_state(NR_INACTIVE_ANON
),
2619 global_page_state(NR_ISOLATED_ANON
),
2620 global_page_state(NR_ACTIVE_FILE
),
2621 global_page_state(NR_INACTIVE_FILE
),
2622 global_page_state(NR_ISOLATED_FILE
),
2623 global_page_state(NR_UNEVICTABLE
),
2624 global_page_state(NR_FILE_DIRTY
),
2625 global_page_state(NR_WRITEBACK
),
2626 global_page_state(NR_UNSTABLE_NFS
),
2627 global_page_state(NR_FREE_PAGES
),
2628 global_page_state(NR_SLAB_RECLAIMABLE
),
2629 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2630 global_page_state(NR_FILE_MAPPED
),
2631 global_page_state(NR_SHMEM
),
2632 global_page_state(NR_PAGETABLE
),
2633 global_page_state(NR_BOUNCE
));
2635 for_each_populated_zone(zone
) {
2638 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2646 " active_anon:%lukB"
2647 " inactive_anon:%lukB"
2648 " active_file:%lukB"
2649 " inactive_file:%lukB"
2650 " unevictable:%lukB"
2651 " isolated(anon):%lukB"
2652 " isolated(file):%lukB"
2659 " slab_reclaimable:%lukB"
2660 " slab_unreclaimable:%lukB"
2661 " kernel_stack:%lukB"
2665 " writeback_tmp:%lukB"
2666 " pages_scanned:%lu"
2667 " all_unreclaimable? %s"
2670 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2671 K(min_wmark_pages(zone
)),
2672 K(low_wmark_pages(zone
)),
2673 K(high_wmark_pages(zone
)),
2674 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2675 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2676 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2677 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2678 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2679 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2680 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2681 K(zone
->present_pages
),
2682 K(zone_page_state(zone
, NR_MLOCK
)),
2683 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2684 K(zone_page_state(zone
, NR_WRITEBACK
)),
2685 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2686 K(zone_page_state(zone
, NR_SHMEM
)),
2687 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2688 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2689 zone_page_state(zone
, NR_KERNEL_STACK
) *
2691 K(zone_page_state(zone
, NR_PAGETABLE
)),
2692 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2693 K(zone_page_state(zone
, NR_BOUNCE
)),
2694 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2695 zone
->pages_scanned
,
2696 (zone
->all_unreclaimable
? "yes" : "no")
2698 printk("lowmem_reserve[]:");
2699 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2700 printk(" %lu", zone
->lowmem_reserve
[i
]);
2704 for_each_populated_zone(zone
) {
2705 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2707 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2710 printk("%s: ", zone
->name
);
2712 spin_lock_irqsave(&zone
->lock
, flags
);
2713 for (order
= 0; order
< MAX_ORDER
; order
++) {
2714 nr
[order
] = zone
->free_area
[order
].nr_free
;
2715 total
+= nr
[order
] << order
;
2717 spin_unlock_irqrestore(&zone
->lock
, flags
);
2718 for (order
= 0; order
< MAX_ORDER
; order
++)
2719 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2720 printk("= %lukB\n", K(total
));
2723 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2725 show_swap_cache_info();
2728 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2730 zoneref
->zone
= zone
;
2731 zoneref
->zone_idx
= zone_idx(zone
);
2735 * Builds allocation fallback zone lists.
2737 * Add all populated zones of a node to the zonelist.
2739 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2740 int nr_zones
, enum zone_type zone_type
)
2744 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2749 zone
= pgdat
->node_zones
+ zone_type
;
2750 if (populated_zone(zone
)) {
2751 zoneref_set_zone(zone
,
2752 &zonelist
->_zonerefs
[nr_zones
++]);
2753 check_highest_zone(zone_type
);
2756 } while (zone_type
);
2763 * 0 = automatic detection of better ordering.
2764 * 1 = order by ([node] distance, -zonetype)
2765 * 2 = order by (-zonetype, [node] distance)
2767 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2768 * the same zonelist. So only NUMA can configure this param.
2770 #define ZONELIST_ORDER_DEFAULT 0
2771 #define ZONELIST_ORDER_NODE 1
2772 #define ZONELIST_ORDER_ZONE 2
2774 /* zonelist order in the kernel.
2775 * set_zonelist_order() will set this to NODE or ZONE.
2777 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2778 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2782 /* The value user specified ....changed by config */
2783 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2784 /* string for sysctl */
2785 #define NUMA_ZONELIST_ORDER_LEN 16
2786 char numa_zonelist_order
[16] = "default";
2789 * interface for configure zonelist ordering.
2790 * command line option "numa_zonelist_order"
2791 * = "[dD]efault - default, automatic configuration.
2792 * = "[nN]ode - order by node locality, then by zone within node
2793 * = "[zZ]one - order by zone, then by locality within zone
2796 static int __parse_numa_zonelist_order(char *s
)
2798 if (*s
== 'd' || *s
== 'D') {
2799 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2800 } else if (*s
== 'n' || *s
== 'N') {
2801 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2802 } else if (*s
== 'z' || *s
== 'Z') {
2803 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2806 "Ignoring invalid numa_zonelist_order value: "
2813 static __init
int setup_numa_zonelist_order(char *s
)
2820 ret
= __parse_numa_zonelist_order(s
);
2822 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2826 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2829 * sysctl handler for numa_zonelist_order
2831 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2832 void __user
*buffer
, size_t *length
,
2835 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2837 static DEFINE_MUTEX(zl_order_mutex
);
2839 mutex_lock(&zl_order_mutex
);
2841 strcpy(saved_string
, (char*)table
->data
);
2842 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2846 int oldval
= user_zonelist_order
;
2847 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2849 * bogus value. restore saved string
2851 strncpy((char*)table
->data
, saved_string
,
2852 NUMA_ZONELIST_ORDER_LEN
);
2853 user_zonelist_order
= oldval
;
2854 } else if (oldval
!= user_zonelist_order
) {
2855 mutex_lock(&zonelists_mutex
);
2856 build_all_zonelists(NULL
);
2857 mutex_unlock(&zonelists_mutex
);
2861 mutex_unlock(&zl_order_mutex
);
2866 #define MAX_NODE_LOAD (nr_online_nodes)
2867 static int node_load
[MAX_NUMNODES
];
2870 * find_next_best_node - find the next node that should appear in a given node's fallback list
2871 * @node: node whose fallback list we're appending
2872 * @used_node_mask: nodemask_t of already used nodes
2874 * We use a number of factors to determine which is the next node that should
2875 * appear on a given node's fallback list. The node should not have appeared
2876 * already in @node's fallback list, and it should be the next closest node
2877 * according to the distance array (which contains arbitrary distance values
2878 * from each node to each node in the system), and should also prefer nodes
2879 * with no CPUs, since presumably they'll have very little allocation pressure
2880 * on them otherwise.
2881 * It returns -1 if no node is found.
2883 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2886 int min_val
= INT_MAX
;
2888 const struct cpumask
*tmp
= cpumask_of_node(0);
2890 /* Use the local node if we haven't already */
2891 if (!node_isset(node
, *used_node_mask
)) {
2892 node_set(node
, *used_node_mask
);
2896 for_each_node_state(n
, N_HIGH_MEMORY
) {
2898 /* Don't want a node to appear more than once */
2899 if (node_isset(n
, *used_node_mask
))
2902 /* Use the distance array to find the distance */
2903 val
= node_distance(node
, n
);
2905 /* Penalize nodes under us ("prefer the next node") */
2908 /* Give preference to headless and unused nodes */
2909 tmp
= cpumask_of_node(n
);
2910 if (!cpumask_empty(tmp
))
2911 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2913 /* Slight preference for less loaded node */
2914 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2915 val
+= node_load
[n
];
2917 if (val
< min_val
) {
2924 node_set(best_node
, *used_node_mask
);
2931 * Build zonelists ordered by node and zones within node.
2932 * This results in maximum locality--normal zone overflows into local
2933 * DMA zone, if any--but risks exhausting DMA zone.
2935 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2938 struct zonelist
*zonelist
;
2940 zonelist
= &pgdat
->node_zonelists
[0];
2941 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2943 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2945 zonelist
->_zonerefs
[j
].zone
= NULL
;
2946 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2950 * Build gfp_thisnode zonelists
2952 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2955 struct zonelist
*zonelist
;
2957 zonelist
= &pgdat
->node_zonelists
[1];
2958 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2959 zonelist
->_zonerefs
[j
].zone
= NULL
;
2960 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2964 * Build zonelists ordered by zone and nodes within zones.
2965 * This results in conserving DMA zone[s] until all Normal memory is
2966 * exhausted, but results in overflowing to remote node while memory
2967 * may still exist in local DMA zone.
2969 static int node_order
[MAX_NUMNODES
];
2971 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2974 int zone_type
; /* needs to be signed */
2976 struct zonelist
*zonelist
;
2978 zonelist
= &pgdat
->node_zonelists
[0];
2980 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2981 for (j
= 0; j
< nr_nodes
; j
++) {
2982 node
= node_order
[j
];
2983 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2984 if (populated_zone(z
)) {
2986 &zonelist
->_zonerefs
[pos
++]);
2987 check_highest_zone(zone_type
);
2991 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2992 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2995 static int default_zonelist_order(void)
2998 unsigned long low_kmem_size
,total_size
;
3002 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3003 * If they are really small and used heavily, the system can fall
3004 * into OOM very easily.
3005 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3007 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3010 for_each_online_node(nid
) {
3011 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3012 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3013 if (populated_zone(z
)) {
3014 if (zone_type
< ZONE_NORMAL
)
3015 low_kmem_size
+= z
->present_pages
;
3016 total_size
+= z
->present_pages
;
3017 } else if (zone_type
== ZONE_NORMAL
) {
3019 * If any node has only lowmem, then node order
3020 * is preferred to allow kernel allocations
3021 * locally; otherwise, they can easily infringe
3022 * on other nodes when there is an abundance of
3023 * lowmem available to allocate from.
3025 return ZONELIST_ORDER_NODE
;
3029 if (!low_kmem_size
|| /* there are no DMA area. */
3030 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3031 return ZONELIST_ORDER_NODE
;
3033 * look into each node's config.
3034 * If there is a node whose DMA/DMA32 memory is very big area on
3035 * local memory, NODE_ORDER may be suitable.
3037 average_size
= total_size
/
3038 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3039 for_each_online_node(nid
) {
3042 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3043 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3044 if (populated_zone(z
)) {
3045 if (zone_type
< ZONE_NORMAL
)
3046 low_kmem_size
+= z
->present_pages
;
3047 total_size
+= z
->present_pages
;
3050 if (low_kmem_size
&&
3051 total_size
> average_size
&& /* ignore small node */
3052 low_kmem_size
> total_size
* 70/100)
3053 return ZONELIST_ORDER_NODE
;
3055 return ZONELIST_ORDER_ZONE
;
3058 static void set_zonelist_order(void)
3060 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3061 current_zonelist_order
= default_zonelist_order();
3063 current_zonelist_order
= user_zonelist_order
;
3066 static void build_zonelists(pg_data_t
*pgdat
)
3070 nodemask_t used_mask
;
3071 int local_node
, prev_node
;
3072 struct zonelist
*zonelist
;
3073 int order
= current_zonelist_order
;
3075 /* initialize zonelists */
3076 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3077 zonelist
= pgdat
->node_zonelists
+ i
;
3078 zonelist
->_zonerefs
[0].zone
= NULL
;
3079 zonelist
->_zonerefs
[0].zone_idx
= 0;
3082 /* NUMA-aware ordering of nodes */
3083 local_node
= pgdat
->node_id
;
3084 load
= nr_online_nodes
;
3085 prev_node
= local_node
;
3086 nodes_clear(used_mask
);
3088 memset(node_order
, 0, sizeof(node_order
));
3091 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3092 int distance
= node_distance(local_node
, node
);
3095 * If another node is sufficiently far away then it is better
3096 * to reclaim pages in a zone before going off node.
3098 if (distance
> RECLAIM_DISTANCE
)
3099 zone_reclaim_mode
= 1;
3102 * We don't want to pressure a particular node.
3103 * So adding penalty to the first node in same
3104 * distance group to make it round-robin.
3106 if (distance
!= node_distance(local_node
, prev_node
))
3107 node_load
[node
] = load
;
3111 if (order
== ZONELIST_ORDER_NODE
)
3112 build_zonelists_in_node_order(pgdat
, node
);
3114 node_order
[j
++] = node
; /* remember order */
3117 if (order
== ZONELIST_ORDER_ZONE
) {
3118 /* calculate node order -- i.e., DMA last! */
3119 build_zonelists_in_zone_order(pgdat
, j
);
3122 build_thisnode_zonelists(pgdat
);
3125 /* Construct the zonelist performance cache - see further mmzone.h */
3126 static void build_zonelist_cache(pg_data_t
*pgdat
)
3128 struct zonelist
*zonelist
;
3129 struct zonelist_cache
*zlc
;
3132 zonelist
= &pgdat
->node_zonelists
[0];
3133 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3134 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3135 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3136 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3141 * Return node id of node used for "local" allocations.
3142 * I.e., first node id of first zone in arg node's generic zonelist.
3143 * Used for initializing percpu 'numa_mem', which is used primarily
3144 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3146 int local_memory_node(int node
)
3150 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3151 gfp_zone(GFP_KERNEL
),
3158 #else /* CONFIG_NUMA */
3160 static void set_zonelist_order(void)
3162 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3165 static void build_zonelists(pg_data_t
*pgdat
)
3167 int node
, local_node
;
3169 struct zonelist
*zonelist
;
3171 local_node
= pgdat
->node_id
;
3173 zonelist
= &pgdat
->node_zonelists
[0];
3174 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3177 * Now we build the zonelist so that it contains the zones
3178 * of all the other nodes.
3179 * We don't want to pressure a particular node, so when
3180 * building the zones for node N, we make sure that the
3181 * zones coming right after the local ones are those from
3182 * node N+1 (modulo N)
3184 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3185 if (!node_online(node
))
3187 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3190 for (node
= 0; node
< local_node
; node
++) {
3191 if (!node_online(node
))
3193 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3197 zonelist
->_zonerefs
[j
].zone
= NULL
;
3198 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3201 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3202 static void build_zonelist_cache(pg_data_t
*pgdat
)
3204 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3207 #endif /* CONFIG_NUMA */
3210 * Boot pageset table. One per cpu which is going to be used for all
3211 * zones and all nodes. The parameters will be set in such a way
3212 * that an item put on a list will immediately be handed over to
3213 * the buddy list. This is safe since pageset manipulation is done
3214 * with interrupts disabled.
3216 * The boot_pagesets must be kept even after bootup is complete for
3217 * unused processors and/or zones. They do play a role for bootstrapping
3218 * hotplugged processors.
3220 * zoneinfo_show() and maybe other functions do
3221 * not check if the processor is online before following the pageset pointer.
3222 * Other parts of the kernel may not check if the zone is available.
3224 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3225 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3226 static void setup_zone_pageset(struct zone
*zone
);
3229 * Global mutex to protect against size modification of zonelists
3230 * as well as to serialize pageset setup for the new populated zone.
3232 DEFINE_MUTEX(zonelists_mutex
);
3234 /* return values int ....just for stop_machine() */
3235 static __init_refok
int __build_all_zonelists(void *data
)
3241 memset(node_load
, 0, sizeof(node_load
));
3243 for_each_online_node(nid
) {
3244 pg_data_t
*pgdat
= NODE_DATA(nid
);
3246 build_zonelists(pgdat
);
3247 build_zonelist_cache(pgdat
);
3251 * Initialize the boot_pagesets that are going to be used
3252 * for bootstrapping processors. The real pagesets for
3253 * each zone will be allocated later when the per cpu
3254 * allocator is available.
3256 * boot_pagesets are used also for bootstrapping offline
3257 * cpus if the system is already booted because the pagesets
3258 * are needed to initialize allocators on a specific cpu too.
3259 * F.e. the percpu allocator needs the page allocator which
3260 * needs the percpu allocator in order to allocate its pagesets
3261 * (a chicken-egg dilemma).
3263 for_each_possible_cpu(cpu
) {
3264 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3268 * We now know the "local memory node" for each node--
3269 * i.e., the node of the first zone in the generic zonelist.
3270 * Set up numa_mem percpu variable for on-line cpus. During
3271 * boot, only the boot cpu should be on-line; we'll init the
3272 * secondary cpus' numa_mem as they come on-line. During
3273 * node/memory hotplug, we'll fixup all on-line cpus.
3275 if (cpu_online(cpu
))
3276 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3284 * Called with zonelists_mutex held always
3285 * unless system_state == SYSTEM_BOOTING.
3287 void __ref
build_all_zonelists(void *data
)
3289 set_zonelist_order();
3291 if (system_state
== SYSTEM_BOOTING
) {
3292 __build_all_zonelists(NULL
);
3293 mminit_verify_zonelist();
3294 cpuset_init_current_mems_allowed();
3296 /* we have to stop all cpus to guarantee there is no user
3298 #ifdef CONFIG_MEMORY_HOTPLUG
3300 setup_zone_pageset((struct zone
*)data
);
3302 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3303 /* cpuset refresh routine should be here */
3305 vm_total_pages
= nr_free_pagecache_pages();
3307 * Disable grouping by mobility if the number of pages in the
3308 * system is too low to allow the mechanism to work. It would be
3309 * more accurate, but expensive to check per-zone. This check is
3310 * made on memory-hotadd so a system can start with mobility
3311 * disabled and enable it later
3313 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3314 page_group_by_mobility_disabled
= 1;
3316 page_group_by_mobility_disabled
= 0;
3318 printk("Built %i zonelists in %s order, mobility grouping %s. "
3319 "Total pages: %ld\n",
3321 zonelist_order_name
[current_zonelist_order
],
3322 page_group_by_mobility_disabled
? "off" : "on",
3325 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3330 * Helper functions to size the waitqueue hash table.
3331 * Essentially these want to choose hash table sizes sufficiently
3332 * large so that collisions trying to wait on pages are rare.
3333 * But in fact, the number of active page waitqueues on typical
3334 * systems is ridiculously low, less than 200. So this is even
3335 * conservative, even though it seems large.
3337 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3338 * waitqueues, i.e. the size of the waitq table given the number of pages.
3340 #define PAGES_PER_WAITQUEUE 256
3342 #ifndef CONFIG_MEMORY_HOTPLUG
3343 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3345 unsigned long size
= 1;
3347 pages
/= PAGES_PER_WAITQUEUE
;
3349 while (size
< pages
)
3353 * Once we have dozens or even hundreds of threads sleeping
3354 * on IO we've got bigger problems than wait queue collision.
3355 * Limit the size of the wait table to a reasonable size.
3357 size
= min(size
, 4096UL);
3359 return max(size
, 4UL);
3363 * A zone's size might be changed by hot-add, so it is not possible to determine
3364 * a suitable size for its wait_table. So we use the maximum size now.
3366 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3368 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3369 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3370 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3372 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3373 * or more by the traditional way. (See above). It equals:
3375 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3376 * ia64(16K page size) : = ( 8G + 4M)byte.
3377 * powerpc (64K page size) : = (32G +16M)byte.
3379 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3386 * This is an integer logarithm so that shifts can be used later
3387 * to extract the more random high bits from the multiplicative
3388 * hash function before the remainder is taken.
3390 static inline unsigned long wait_table_bits(unsigned long size
)
3395 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3398 * Check if a pageblock contains reserved pages
3400 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3404 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3405 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3412 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3413 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3414 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3415 * higher will lead to a bigger reserve which will get freed as contiguous
3416 * blocks as reclaim kicks in
3418 static void setup_zone_migrate_reserve(struct zone
*zone
)
3420 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3422 unsigned long block_migratetype
;
3426 * Get the start pfn, end pfn and the number of blocks to reserve
3427 * We have to be careful to be aligned to pageblock_nr_pages to
3428 * make sure that we always check pfn_valid for the first page in
3431 start_pfn
= zone
->zone_start_pfn
;
3432 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3433 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3434 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3438 * Reserve blocks are generally in place to help high-order atomic
3439 * allocations that are short-lived. A min_free_kbytes value that
3440 * would result in more than 2 reserve blocks for atomic allocations
3441 * is assumed to be in place to help anti-fragmentation for the
3442 * future allocation of hugepages at runtime.
3444 reserve
= min(2, reserve
);
3446 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3447 if (!pfn_valid(pfn
))
3449 page
= pfn_to_page(pfn
);
3451 /* Watch out for overlapping nodes */
3452 if (page_to_nid(page
) != zone_to_nid(zone
))
3455 block_migratetype
= get_pageblock_migratetype(page
);
3457 /* Only test what is necessary when the reserves are not met */
3460 * Blocks with reserved pages will never free, skip
3463 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3464 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3467 /* If this block is reserved, account for it */
3468 if (block_migratetype
== MIGRATE_RESERVE
) {
3473 /* Suitable for reserving if this block is movable */
3474 if (block_migratetype
== MIGRATE_MOVABLE
) {
3475 set_pageblock_migratetype(page
,
3477 move_freepages_block(zone
, page
,
3485 * If the reserve is met and this is a previous reserved block,
3488 if (block_migratetype
== MIGRATE_RESERVE
) {
3489 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3490 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3496 * Initially all pages are reserved - free ones are freed
3497 * up by free_all_bootmem() once the early boot process is
3498 * done. Non-atomic initialization, single-pass.
3500 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3501 unsigned long start_pfn
, enum memmap_context context
)
3504 unsigned long end_pfn
= start_pfn
+ size
;
3508 if (highest_memmap_pfn
< end_pfn
- 1)
3509 highest_memmap_pfn
= end_pfn
- 1;
3511 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3512 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3514 * There can be holes in boot-time mem_map[]s
3515 * handed to this function. They do not
3516 * exist on hotplugged memory.
3518 if (context
== MEMMAP_EARLY
) {
3519 if (!early_pfn_valid(pfn
))
3521 if (!early_pfn_in_nid(pfn
, nid
))
3524 page
= pfn_to_page(pfn
);
3525 set_page_links(page
, zone
, nid
, pfn
);
3526 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3527 init_page_count(page
);
3528 reset_page_mapcount(page
);
3529 SetPageReserved(page
);
3531 * Mark the block movable so that blocks are reserved for
3532 * movable at startup. This will force kernel allocations
3533 * to reserve their blocks rather than leaking throughout
3534 * the address space during boot when many long-lived
3535 * kernel allocations are made. Later some blocks near
3536 * the start are marked MIGRATE_RESERVE by
3537 * setup_zone_migrate_reserve()
3539 * bitmap is created for zone's valid pfn range. but memmap
3540 * can be created for invalid pages (for alignment)
3541 * check here not to call set_pageblock_migratetype() against
3544 if ((z
->zone_start_pfn
<= pfn
)
3545 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3546 && !(pfn
& (pageblock_nr_pages
- 1)))
3547 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3549 INIT_LIST_HEAD(&page
->lru
);
3550 #ifdef WANT_PAGE_VIRTUAL
3551 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3552 if (!is_highmem_idx(zone
))
3553 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3558 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3561 for_each_migratetype_order(order
, t
) {
3562 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3563 zone
->free_area
[order
].nr_free
= 0;
3567 #ifndef __HAVE_ARCH_MEMMAP_INIT
3568 #define memmap_init(size, nid, zone, start_pfn) \
3569 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3572 static int zone_batchsize(struct zone
*zone
)
3578 * The per-cpu-pages pools are set to around 1000th of the
3579 * size of the zone. But no more than 1/2 of a meg.
3581 * OK, so we don't know how big the cache is. So guess.
3583 batch
= zone
->present_pages
/ 1024;
3584 if (batch
* PAGE_SIZE
> 512 * 1024)
3585 batch
= (512 * 1024) / PAGE_SIZE
;
3586 batch
/= 4; /* We effectively *= 4 below */
3591 * Clamp the batch to a 2^n - 1 value. Having a power
3592 * of 2 value was found to be more likely to have
3593 * suboptimal cache aliasing properties in some cases.
3595 * For example if 2 tasks are alternately allocating
3596 * batches of pages, one task can end up with a lot
3597 * of pages of one half of the possible page colors
3598 * and the other with pages of the other colors.
3600 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3605 /* The deferral and batching of frees should be suppressed under NOMMU
3608 * The problem is that NOMMU needs to be able to allocate large chunks
3609 * of contiguous memory as there's no hardware page translation to
3610 * assemble apparent contiguous memory from discontiguous pages.
3612 * Queueing large contiguous runs of pages for batching, however,
3613 * causes the pages to actually be freed in smaller chunks. As there
3614 * can be a significant delay between the individual batches being
3615 * recycled, this leads to the once large chunks of space being
3616 * fragmented and becoming unavailable for high-order allocations.
3622 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3624 struct per_cpu_pages
*pcp
;
3627 memset(p
, 0, sizeof(*p
));
3631 pcp
->high
= 6 * batch
;
3632 pcp
->batch
= max(1UL, 1 * batch
);
3633 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3634 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3638 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3639 * to the value high for the pageset p.
3642 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3645 struct per_cpu_pages
*pcp
;
3649 pcp
->batch
= max(1UL, high
/4);
3650 if ((high
/4) > (PAGE_SHIFT
* 8))
3651 pcp
->batch
= PAGE_SHIFT
* 8;
3654 static void setup_zone_pageset(struct zone
*zone
)
3658 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3660 for_each_possible_cpu(cpu
) {
3661 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3663 setup_pageset(pcp
, zone_batchsize(zone
));
3665 if (percpu_pagelist_fraction
)
3666 setup_pagelist_highmark(pcp
,
3667 (zone
->present_pages
/
3668 percpu_pagelist_fraction
));
3673 * Allocate per cpu pagesets and initialize them.
3674 * Before this call only boot pagesets were available.
3676 void __init
setup_per_cpu_pageset(void)
3680 for_each_populated_zone(zone
)
3681 setup_zone_pageset(zone
);
3684 static noinline __init_refok
3685 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3688 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3692 * The per-page waitqueue mechanism uses hashed waitqueues
3695 zone
->wait_table_hash_nr_entries
=
3696 wait_table_hash_nr_entries(zone_size_pages
);
3697 zone
->wait_table_bits
=
3698 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3699 alloc_size
= zone
->wait_table_hash_nr_entries
3700 * sizeof(wait_queue_head_t
);
3702 if (!slab_is_available()) {
3703 zone
->wait_table
= (wait_queue_head_t
*)
3704 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3707 * This case means that a zone whose size was 0 gets new memory
3708 * via memory hot-add.
3709 * But it may be the case that a new node was hot-added. In
3710 * this case vmalloc() will not be able to use this new node's
3711 * memory - this wait_table must be initialized to use this new
3712 * node itself as well.
3713 * To use this new node's memory, further consideration will be
3716 zone
->wait_table
= vmalloc(alloc_size
);
3718 if (!zone
->wait_table
)
3721 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3722 init_waitqueue_head(zone
->wait_table
+ i
);
3727 static int __zone_pcp_update(void *data
)
3729 struct zone
*zone
= data
;
3731 unsigned long batch
= zone_batchsize(zone
), flags
;
3733 for_each_possible_cpu(cpu
) {
3734 struct per_cpu_pageset
*pset
;
3735 struct per_cpu_pages
*pcp
;
3737 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3740 local_irq_save(flags
);
3741 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3742 setup_pageset(pset
, batch
);
3743 local_irq_restore(flags
);
3748 void zone_pcp_update(struct zone
*zone
)
3750 stop_machine(__zone_pcp_update
, zone
, NULL
);
3753 static __meminit
void zone_pcp_init(struct zone
*zone
)
3756 * per cpu subsystem is not up at this point. The following code
3757 * relies on the ability of the linker to provide the
3758 * offset of a (static) per cpu variable into the per cpu area.
3760 zone
->pageset
= &boot_pageset
;
3762 if (zone
->present_pages
)
3763 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3764 zone
->name
, zone
->present_pages
,
3765 zone_batchsize(zone
));
3768 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3769 unsigned long zone_start_pfn
,
3771 enum memmap_context context
)
3773 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3775 ret
= zone_wait_table_init(zone
, size
);
3778 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3780 zone
->zone_start_pfn
= zone_start_pfn
;
3782 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3783 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3785 (unsigned long)zone_idx(zone
),
3786 zone_start_pfn
, (zone_start_pfn
+ size
));
3788 zone_init_free_lists(zone
);
3793 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3795 * Basic iterator support. Return the first range of PFNs for a node
3796 * Note: nid == MAX_NUMNODES returns first region regardless of node
3798 static int __meminit
first_active_region_index_in_nid(int nid
)
3802 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3803 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3810 * Basic iterator support. Return the next active range of PFNs for a node
3811 * Note: nid == MAX_NUMNODES returns next region regardless of node
3813 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3815 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3816 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3822 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3824 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3825 * Architectures may implement their own version but if add_active_range()
3826 * was used and there are no special requirements, this is a convenient
3829 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3833 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3834 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3835 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3837 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3838 return early_node_map
[i
].nid
;
3840 /* This is a memory hole */
3843 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3845 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3849 nid
= __early_pfn_to_nid(pfn
);
3852 /* just returns 0 */
3856 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3857 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3861 nid
= __early_pfn_to_nid(pfn
);
3862 if (nid
>= 0 && nid
!= node
)
3868 /* Basic iterator support to walk early_node_map[] */
3869 #define for_each_active_range_index_in_nid(i, nid) \
3870 for (i = first_active_region_index_in_nid(nid); i != -1; \
3871 i = next_active_region_index_in_nid(i, nid))
3874 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3875 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3876 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3878 * If an architecture guarantees that all ranges registered with
3879 * add_active_ranges() contain no holes and may be freed, this
3880 * this function may be used instead of calling free_bootmem() manually.
3882 void __init
free_bootmem_with_active_regions(int nid
,
3883 unsigned long max_low_pfn
)
3887 for_each_active_range_index_in_nid(i
, nid
) {
3888 unsigned long size_pages
= 0;
3889 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3891 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3894 if (end_pfn
> max_low_pfn
)
3895 end_pfn
= max_low_pfn
;
3897 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3898 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3899 PFN_PHYS(early_node_map
[i
].start_pfn
),
3900 size_pages
<< PAGE_SHIFT
);
3904 #ifdef CONFIG_HAVE_MEMBLOCK
3906 * Basic iterator support. Return the last range of PFNs for a node
3907 * Note: nid == MAX_NUMNODES returns last region regardless of node
3909 static int __meminit
last_active_region_index_in_nid(int nid
)
3913 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3914 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3921 * Basic iterator support. Return the previous active range of PFNs for a node
3922 * Note: nid == MAX_NUMNODES returns next region regardless of node
3924 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3926 for (index
= index
- 1; index
>= 0; index
--)
3927 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3933 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3934 for (i = last_active_region_index_in_nid(nid); i != -1; \
3935 i = previous_active_region_index_in_nid(i, nid))
3937 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3938 u64 goal
, u64 limit
)
3942 /* Need to go over early_node_map to find out good range for node */
3943 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3945 u64 ei_start
, ei_last
;
3946 u64 final_start
, final_end
;
3948 ei_last
= early_node_map
[i
].end_pfn
;
3949 ei_last
<<= PAGE_SHIFT
;
3950 ei_start
= early_node_map
[i
].start_pfn
;
3951 ei_start
<<= PAGE_SHIFT
;
3953 final_start
= max(ei_start
, goal
);
3954 final_end
= min(ei_last
, limit
);
3956 if (final_start
>= final_end
)
3959 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3961 if (addr
== MEMBLOCK_ERROR
)
3967 return MEMBLOCK_ERROR
;
3971 int __init
add_from_early_node_map(struct range
*range
, int az
,
3972 int nr_range
, int nid
)
3977 /* need to go over early_node_map to find out good range for node */
3978 for_each_active_range_index_in_nid(i
, nid
) {
3979 start
= early_node_map
[i
].start_pfn
;
3980 end
= early_node_map
[i
].end_pfn
;
3981 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3986 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3991 for_each_active_range_index_in_nid(i
, nid
) {
3992 ret
= work_fn(early_node_map
[i
].start_pfn
,
3993 early_node_map
[i
].end_pfn
, data
);
3999 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4000 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4002 * If an architecture guarantees that all ranges registered with
4003 * add_active_ranges() contain no holes and may be freed, this
4004 * function may be used instead of calling memory_present() manually.
4006 void __init
sparse_memory_present_with_active_regions(int nid
)
4010 for_each_active_range_index_in_nid(i
, nid
)
4011 memory_present(early_node_map
[i
].nid
,
4012 early_node_map
[i
].start_pfn
,
4013 early_node_map
[i
].end_pfn
);
4017 * get_pfn_range_for_nid - Return the start and end page frames for a node
4018 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4019 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4020 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4022 * It returns the start and end page frame of a node based on information
4023 * provided by an arch calling add_active_range(). If called for a node
4024 * with no available memory, a warning is printed and the start and end
4027 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4028 unsigned long *start_pfn
, unsigned long *end_pfn
)
4034 for_each_active_range_index_in_nid(i
, nid
) {
4035 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
4036 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
4039 if (*start_pfn
== -1UL)
4044 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4045 * assumption is made that zones within a node are ordered in monotonic
4046 * increasing memory addresses so that the "highest" populated zone is used
4048 static void __init
find_usable_zone_for_movable(void)
4051 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4052 if (zone_index
== ZONE_MOVABLE
)
4055 if (arch_zone_highest_possible_pfn
[zone_index
] >
4056 arch_zone_lowest_possible_pfn
[zone_index
])
4060 VM_BUG_ON(zone_index
== -1);
4061 movable_zone
= zone_index
;
4065 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4066 * because it is sized independent of architecture. Unlike the other zones,
4067 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4068 * in each node depending on the size of each node and how evenly kernelcore
4069 * is distributed. This helper function adjusts the zone ranges
4070 * provided by the architecture for a given node by using the end of the
4071 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4072 * zones within a node are in order of monotonic increases memory addresses
4074 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4075 unsigned long zone_type
,
4076 unsigned long node_start_pfn
,
4077 unsigned long node_end_pfn
,
4078 unsigned long *zone_start_pfn
,
4079 unsigned long *zone_end_pfn
)
4081 /* Only adjust if ZONE_MOVABLE is on this node */
4082 if (zone_movable_pfn
[nid
]) {
4083 /* Size ZONE_MOVABLE */
4084 if (zone_type
== ZONE_MOVABLE
) {
4085 *zone_start_pfn
= zone_movable_pfn
[nid
];
4086 *zone_end_pfn
= min(node_end_pfn
,
4087 arch_zone_highest_possible_pfn
[movable_zone
]);
4089 /* Adjust for ZONE_MOVABLE starting within this range */
4090 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4091 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4092 *zone_end_pfn
= zone_movable_pfn
[nid
];
4094 /* Check if this whole range is within ZONE_MOVABLE */
4095 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4096 *zone_start_pfn
= *zone_end_pfn
;
4101 * Return the number of pages a zone spans in a node, including holes
4102 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4104 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4105 unsigned long zone_type
,
4106 unsigned long *ignored
)
4108 unsigned long node_start_pfn
, node_end_pfn
;
4109 unsigned long zone_start_pfn
, zone_end_pfn
;
4111 /* Get the start and end of the node and zone */
4112 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4113 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4114 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4115 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4116 node_start_pfn
, node_end_pfn
,
4117 &zone_start_pfn
, &zone_end_pfn
);
4119 /* Check that this node has pages within the zone's required range */
4120 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4123 /* Move the zone boundaries inside the node if necessary */
4124 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4125 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4127 /* Return the spanned pages */
4128 return zone_end_pfn
- zone_start_pfn
;
4132 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4133 * then all holes in the requested range will be accounted for.
4135 unsigned long __meminit
__absent_pages_in_range(int nid
,
4136 unsigned long range_start_pfn
,
4137 unsigned long range_end_pfn
)
4140 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4141 unsigned long start_pfn
;
4143 /* Find the end_pfn of the first active range of pfns in the node */
4144 i
= first_active_region_index_in_nid(nid
);
4148 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4150 /* Account for ranges before physical memory on this node */
4151 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4152 hole_pages
= prev_end_pfn
- range_start_pfn
;
4154 /* Find all holes for the zone within the node */
4155 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4157 /* No need to continue if prev_end_pfn is outside the zone */
4158 if (prev_end_pfn
>= range_end_pfn
)
4161 /* Make sure the end of the zone is not within the hole */
4162 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4163 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4165 /* Update the hole size cound and move on */
4166 if (start_pfn
> range_start_pfn
) {
4167 BUG_ON(prev_end_pfn
> start_pfn
);
4168 hole_pages
+= start_pfn
- prev_end_pfn
;
4170 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4173 /* Account for ranges past physical memory on this node */
4174 if (range_end_pfn
> prev_end_pfn
)
4175 hole_pages
+= range_end_pfn
-
4176 max(range_start_pfn
, prev_end_pfn
);
4182 * absent_pages_in_range - Return number of page frames in holes within a range
4183 * @start_pfn: The start PFN to start searching for holes
4184 * @end_pfn: The end PFN to stop searching for holes
4186 * It returns the number of pages frames in memory holes within a range.
4188 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4189 unsigned long end_pfn
)
4191 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4194 /* Return the number of page frames in holes in a zone on a node */
4195 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4196 unsigned long zone_type
,
4197 unsigned long *ignored
)
4199 unsigned long node_start_pfn
, node_end_pfn
;
4200 unsigned long zone_start_pfn
, zone_end_pfn
;
4202 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4203 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4205 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4208 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4209 node_start_pfn
, node_end_pfn
,
4210 &zone_start_pfn
, &zone_end_pfn
);
4211 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4215 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4216 unsigned long zone_type
,
4217 unsigned long *zones_size
)
4219 return zones_size
[zone_type
];
4222 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4223 unsigned long zone_type
,
4224 unsigned long *zholes_size
)
4229 return zholes_size
[zone_type
];
4234 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4235 unsigned long *zones_size
, unsigned long *zholes_size
)
4237 unsigned long realtotalpages
, totalpages
= 0;
4240 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4241 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4243 pgdat
->node_spanned_pages
= totalpages
;
4245 realtotalpages
= totalpages
;
4246 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4248 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4250 pgdat
->node_present_pages
= realtotalpages
;
4251 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4255 #ifndef CONFIG_SPARSEMEM
4257 * Calculate the size of the zone->blockflags rounded to an unsigned long
4258 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4259 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4260 * round what is now in bits to nearest long in bits, then return it in
4263 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4265 unsigned long usemapsize
;
4267 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4268 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4269 usemapsize
= usemapsize
>> pageblock_order
;
4270 usemapsize
*= NR_PAGEBLOCK_BITS
;
4271 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4273 return usemapsize
/ 8;
4276 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4278 unsigned long zone_start_pfn
,
4279 unsigned long zonesize
)
4281 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4282 zone
->pageblock_flags
= NULL
;
4284 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4288 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4289 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4290 #endif /* CONFIG_SPARSEMEM */
4292 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4294 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4295 void __init
set_pageblock_order(void)
4299 /* Check that pageblock_nr_pages has not already been setup */
4300 if (pageblock_order
)
4303 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4304 order
= HUGETLB_PAGE_ORDER
;
4306 order
= MAX_ORDER
- 1;
4309 * Assume the largest contiguous order of interest is a huge page.
4310 * This value may be variable depending on boot parameters on IA64 and
4313 pageblock_order
= order
;
4315 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4319 * is unused as pageblock_order is set at compile-time. See
4320 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4323 void __init
set_pageblock_order(void)
4327 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4330 * Set up the zone data structures:
4331 * - mark all pages reserved
4332 * - mark all memory queues empty
4333 * - clear the memory bitmaps
4335 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4336 unsigned long *zones_size
, unsigned long *zholes_size
)
4339 int nid
= pgdat
->node_id
;
4340 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4343 pgdat_resize_init(pgdat
);
4344 pgdat
->nr_zones
= 0;
4345 init_waitqueue_head(&pgdat
->kswapd_wait
);
4346 pgdat
->kswapd_max_order
= 0;
4347 pgdat_page_cgroup_init(pgdat
);
4349 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4350 struct zone
*zone
= pgdat
->node_zones
+ j
;
4351 unsigned long size
, realsize
, memmap_pages
;
4354 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4355 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4359 * Adjust realsize so that it accounts for how much memory
4360 * is used by this zone for memmap. This affects the watermark
4361 * and per-cpu initialisations
4364 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4365 if (realsize
>= memmap_pages
) {
4366 realsize
-= memmap_pages
;
4369 " %s zone: %lu pages used for memmap\n",
4370 zone_names
[j
], memmap_pages
);
4373 " %s zone: %lu pages exceeds realsize %lu\n",
4374 zone_names
[j
], memmap_pages
, realsize
);
4376 /* Account for reserved pages */
4377 if (j
== 0 && realsize
> dma_reserve
) {
4378 realsize
-= dma_reserve
;
4379 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4380 zone_names
[0], dma_reserve
);
4383 if (!is_highmem_idx(j
))
4384 nr_kernel_pages
+= realsize
;
4385 nr_all_pages
+= realsize
;
4387 zone
->spanned_pages
= size
;
4388 zone
->present_pages
= realsize
;
4391 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4393 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4395 zone
->name
= zone_names
[j
];
4396 spin_lock_init(&zone
->lock
);
4397 spin_lock_init(&zone
->lru_lock
);
4398 zone_seqlock_init(zone
);
4399 zone
->zone_pgdat
= pgdat
;
4401 zone_pcp_init(zone
);
4403 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4404 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4405 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4406 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4407 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4408 zap_zone_vm_stats(zone
);
4413 set_pageblock_order();
4414 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4415 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4416 size
, MEMMAP_EARLY
);
4418 memmap_init(size
, nid
, j
, zone_start_pfn
);
4419 zone_start_pfn
+= size
;
4423 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4425 /* Skip empty nodes */
4426 if (!pgdat
->node_spanned_pages
)
4429 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4430 /* ia64 gets its own node_mem_map, before this, without bootmem */
4431 if (!pgdat
->node_mem_map
) {
4432 unsigned long size
, start
, end
;
4436 * The zone's endpoints aren't required to be MAX_ORDER
4437 * aligned but the node_mem_map endpoints must be in order
4438 * for the buddy allocator to function correctly.
4440 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4441 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4442 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4443 size
= (end
- start
) * sizeof(struct page
);
4444 map
= alloc_remap(pgdat
->node_id
, size
);
4446 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4447 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4449 #ifndef CONFIG_NEED_MULTIPLE_NODES
4451 * With no DISCONTIG, the global mem_map is just set as node 0's
4453 if (pgdat
== NODE_DATA(0)) {
4454 mem_map
= NODE_DATA(0)->node_mem_map
;
4455 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4456 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4457 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4458 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4461 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4464 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4465 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4467 pg_data_t
*pgdat
= NODE_DATA(nid
);
4469 pgdat
->node_id
= nid
;
4470 pgdat
->node_start_pfn
= node_start_pfn
;
4471 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4473 alloc_node_mem_map(pgdat
);
4474 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4475 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4476 nid
, (unsigned long)pgdat
,
4477 (unsigned long)pgdat
->node_mem_map
);
4480 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4483 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4485 #if MAX_NUMNODES > 1
4487 * Figure out the number of possible node ids.
4489 static void __init
setup_nr_node_ids(void)
4492 unsigned int highest
= 0;
4494 for_each_node_mask(node
, node_possible_map
)
4496 nr_node_ids
= highest
+ 1;
4499 static inline void setup_nr_node_ids(void)
4505 * add_active_range - Register a range of PFNs backed by physical memory
4506 * @nid: The node ID the range resides on
4507 * @start_pfn: The start PFN of the available physical memory
4508 * @end_pfn: The end PFN of the available physical memory
4510 * These ranges are stored in an early_node_map[] and later used by
4511 * free_area_init_nodes() to calculate zone sizes and holes. If the
4512 * range spans a memory hole, it is up to the architecture to ensure
4513 * the memory is not freed by the bootmem allocator. If possible
4514 * the range being registered will be merged with existing ranges.
4516 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4517 unsigned long end_pfn
)
4521 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4522 "Entering add_active_range(%d, %#lx, %#lx) "
4523 "%d entries of %d used\n",
4524 nid
, start_pfn
, end_pfn
,
4525 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4527 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4529 /* Merge with existing active regions if possible */
4530 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4531 if (early_node_map
[i
].nid
!= nid
)
4534 /* Skip if an existing region covers this new one */
4535 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4536 end_pfn
<= early_node_map
[i
].end_pfn
)
4539 /* Merge forward if suitable */
4540 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4541 end_pfn
> early_node_map
[i
].end_pfn
) {
4542 early_node_map
[i
].end_pfn
= end_pfn
;
4546 /* Merge backward if suitable */
4547 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4548 end_pfn
>= early_node_map
[i
].start_pfn
) {
4549 early_node_map
[i
].start_pfn
= start_pfn
;
4554 /* Check that early_node_map is large enough */
4555 if (i
>= MAX_ACTIVE_REGIONS
) {
4556 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4557 MAX_ACTIVE_REGIONS
);
4561 early_node_map
[i
].nid
= nid
;
4562 early_node_map
[i
].start_pfn
= start_pfn
;
4563 early_node_map
[i
].end_pfn
= end_pfn
;
4564 nr_nodemap_entries
= i
+ 1;
4568 * remove_active_range - Shrink an existing registered range of PFNs
4569 * @nid: The node id the range is on that should be shrunk
4570 * @start_pfn: The new PFN of the range
4571 * @end_pfn: The new PFN of the range
4573 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4574 * The map is kept near the end physical page range that has already been
4575 * registered. This function allows an arch to shrink an existing registered
4578 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4579 unsigned long end_pfn
)
4584 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4585 nid
, start_pfn
, end_pfn
);
4587 /* Find the old active region end and shrink */
4588 for_each_active_range_index_in_nid(i
, nid
) {
4589 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4590 early_node_map
[i
].end_pfn
<= end_pfn
) {
4592 early_node_map
[i
].start_pfn
= 0;
4593 early_node_map
[i
].end_pfn
= 0;
4597 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4598 early_node_map
[i
].end_pfn
> start_pfn
) {
4599 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4600 early_node_map
[i
].end_pfn
= start_pfn
;
4601 if (temp_end_pfn
> end_pfn
)
4602 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4605 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4606 early_node_map
[i
].end_pfn
> end_pfn
&&
4607 early_node_map
[i
].start_pfn
< end_pfn
) {
4608 early_node_map
[i
].start_pfn
= end_pfn
;
4616 /* remove the blank ones */
4617 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4618 if (early_node_map
[i
].nid
!= nid
)
4620 if (early_node_map
[i
].end_pfn
)
4622 /* we found it, get rid of it */
4623 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4624 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4625 sizeof(early_node_map
[j
]));
4626 j
= nr_nodemap_entries
- 1;
4627 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4628 nr_nodemap_entries
--;
4633 * remove_all_active_ranges - Remove all currently registered regions
4635 * During discovery, it may be found that a table like SRAT is invalid
4636 * and an alternative discovery method must be used. This function removes
4637 * all currently registered regions.
4639 void __init
remove_all_active_ranges(void)
4641 memset(early_node_map
, 0, sizeof(early_node_map
));
4642 nr_nodemap_entries
= 0;
4645 /* Compare two active node_active_regions */
4646 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4648 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4649 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4651 /* Done this way to avoid overflows */
4652 if (arange
->start_pfn
> brange
->start_pfn
)
4654 if (arange
->start_pfn
< brange
->start_pfn
)
4660 /* sort the node_map by start_pfn */
4661 void __init
sort_node_map(void)
4663 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4664 sizeof(struct node_active_region
),
4665 cmp_node_active_region
, NULL
);
4669 * node_map_pfn_alignment - determine the maximum internode alignment
4671 * This function should be called after node map is populated and sorted.
4672 * It calculates the maximum power of two alignment which can distinguish
4675 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4676 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4677 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4678 * shifted, 1GiB is enough and this function will indicate so.
4680 * This is used to test whether pfn -> nid mapping of the chosen memory
4681 * model has fine enough granularity to avoid incorrect mapping for the
4682 * populated node map.
4684 * Returns the determined alignment in pfn's. 0 if there is no alignment
4685 * requirement (single node).
4687 unsigned long __init
node_map_pfn_alignment(void)
4689 unsigned long accl_mask
= 0, last_end
= 0;
4693 for_each_active_range_index_in_nid(i
, MAX_NUMNODES
) {
4694 int nid
= early_node_map
[i
].nid
;
4695 unsigned long start
= early_node_map
[i
].start_pfn
;
4696 unsigned long end
= early_node_map
[i
].end_pfn
;
4699 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4706 * Start with a mask granular enough to pin-point to the
4707 * start pfn and tick off bits one-by-one until it becomes
4708 * too coarse to separate the current node from the last.
4710 mask
= ~((1 << __ffs(start
)) - 1);
4711 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4714 /* accumulate all internode masks */
4718 /* convert mask to number of pages */
4719 return ~accl_mask
+ 1;
4722 /* Find the lowest pfn for a node */
4723 static unsigned long __init
find_min_pfn_for_node(int nid
)
4726 unsigned long min_pfn
= ULONG_MAX
;
4728 /* Assuming a sorted map, the first range found has the starting pfn */
4729 for_each_active_range_index_in_nid(i
, nid
)
4730 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4732 if (min_pfn
== ULONG_MAX
) {
4734 "Could not find start_pfn for node %d\n", nid
);
4742 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4744 * It returns the minimum PFN based on information provided via
4745 * add_active_range().
4747 unsigned long __init
find_min_pfn_with_active_regions(void)
4749 return find_min_pfn_for_node(MAX_NUMNODES
);
4753 * early_calculate_totalpages()
4754 * Sum pages in active regions for movable zone.
4755 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4757 static unsigned long __init
early_calculate_totalpages(void)
4760 unsigned long totalpages
= 0;
4762 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4763 unsigned long pages
= early_node_map
[i
].end_pfn
-
4764 early_node_map
[i
].start_pfn
;
4765 totalpages
+= pages
;
4767 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4773 * Find the PFN the Movable zone begins in each node. Kernel memory
4774 * is spread evenly between nodes as long as the nodes have enough
4775 * memory. When they don't, some nodes will have more kernelcore than
4778 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4781 unsigned long usable_startpfn
;
4782 unsigned long kernelcore_node
, kernelcore_remaining
;
4783 /* save the state before borrow the nodemask */
4784 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4785 unsigned long totalpages
= early_calculate_totalpages();
4786 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4789 * If movablecore was specified, calculate what size of
4790 * kernelcore that corresponds so that memory usable for
4791 * any allocation type is evenly spread. If both kernelcore
4792 * and movablecore are specified, then the value of kernelcore
4793 * will be used for required_kernelcore if it's greater than
4794 * what movablecore would have allowed.
4796 if (required_movablecore
) {
4797 unsigned long corepages
;
4800 * Round-up so that ZONE_MOVABLE is at least as large as what
4801 * was requested by the user
4803 required_movablecore
=
4804 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4805 corepages
= totalpages
- required_movablecore
;
4807 required_kernelcore
= max(required_kernelcore
, corepages
);
4810 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4811 if (!required_kernelcore
)
4814 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4815 find_usable_zone_for_movable();
4816 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4819 /* Spread kernelcore memory as evenly as possible throughout nodes */
4820 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4821 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4823 * Recalculate kernelcore_node if the division per node
4824 * now exceeds what is necessary to satisfy the requested
4825 * amount of memory for the kernel
4827 if (required_kernelcore
< kernelcore_node
)
4828 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4831 * As the map is walked, we track how much memory is usable
4832 * by the kernel using kernelcore_remaining. When it is
4833 * 0, the rest of the node is usable by ZONE_MOVABLE
4835 kernelcore_remaining
= kernelcore_node
;
4837 /* Go through each range of PFNs within this node */
4838 for_each_active_range_index_in_nid(i
, nid
) {
4839 unsigned long start_pfn
, end_pfn
;
4840 unsigned long size_pages
;
4842 start_pfn
= max(early_node_map
[i
].start_pfn
,
4843 zone_movable_pfn
[nid
]);
4844 end_pfn
= early_node_map
[i
].end_pfn
;
4845 if (start_pfn
>= end_pfn
)
4848 /* Account for what is only usable for kernelcore */
4849 if (start_pfn
< usable_startpfn
) {
4850 unsigned long kernel_pages
;
4851 kernel_pages
= min(end_pfn
, usable_startpfn
)
4854 kernelcore_remaining
-= min(kernel_pages
,
4855 kernelcore_remaining
);
4856 required_kernelcore
-= min(kernel_pages
,
4857 required_kernelcore
);
4859 /* Continue if range is now fully accounted */
4860 if (end_pfn
<= usable_startpfn
) {
4863 * Push zone_movable_pfn to the end so
4864 * that if we have to rebalance
4865 * kernelcore across nodes, we will
4866 * not double account here
4868 zone_movable_pfn
[nid
] = end_pfn
;
4871 start_pfn
= usable_startpfn
;
4875 * The usable PFN range for ZONE_MOVABLE is from
4876 * start_pfn->end_pfn. Calculate size_pages as the
4877 * number of pages used as kernelcore
4879 size_pages
= end_pfn
- start_pfn
;
4880 if (size_pages
> kernelcore_remaining
)
4881 size_pages
= kernelcore_remaining
;
4882 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4885 * Some kernelcore has been met, update counts and
4886 * break if the kernelcore for this node has been
4889 required_kernelcore
-= min(required_kernelcore
,
4891 kernelcore_remaining
-= size_pages
;
4892 if (!kernelcore_remaining
)
4898 * If there is still required_kernelcore, we do another pass with one
4899 * less node in the count. This will push zone_movable_pfn[nid] further
4900 * along on the nodes that still have memory until kernelcore is
4904 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4907 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4908 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4909 zone_movable_pfn
[nid
] =
4910 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4913 /* restore the node_state */
4914 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4917 /* Any regular memory on that node ? */
4918 static void check_for_regular_memory(pg_data_t
*pgdat
)
4920 #ifdef CONFIG_HIGHMEM
4921 enum zone_type zone_type
;
4923 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4924 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4925 if (zone
->present_pages
)
4926 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4932 * free_area_init_nodes - Initialise all pg_data_t and zone data
4933 * @max_zone_pfn: an array of max PFNs for each zone
4935 * This will call free_area_init_node() for each active node in the system.
4936 * Using the page ranges provided by add_active_range(), the size of each
4937 * zone in each node and their holes is calculated. If the maximum PFN
4938 * between two adjacent zones match, it is assumed that the zone is empty.
4939 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4940 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4941 * starts where the previous one ended. For example, ZONE_DMA32 starts
4942 * at arch_max_dma_pfn.
4944 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4949 /* Sort early_node_map as initialisation assumes it is sorted */
4952 /* Record where the zone boundaries are */
4953 memset(arch_zone_lowest_possible_pfn
, 0,
4954 sizeof(arch_zone_lowest_possible_pfn
));
4955 memset(arch_zone_highest_possible_pfn
, 0,
4956 sizeof(arch_zone_highest_possible_pfn
));
4957 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4958 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4959 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4960 if (i
== ZONE_MOVABLE
)
4962 arch_zone_lowest_possible_pfn
[i
] =
4963 arch_zone_highest_possible_pfn
[i
-1];
4964 arch_zone_highest_possible_pfn
[i
] =
4965 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4967 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4968 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4970 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4971 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4972 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4974 /* Print out the zone ranges */
4975 printk("Zone PFN ranges:\n");
4976 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4977 if (i
== ZONE_MOVABLE
)
4979 printk(" %-8s ", zone_names
[i
]);
4980 if (arch_zone_lowest_possible_pfn
[i
] ==
4981 arch_zone_highest_possible_pfn
[i
])
4984 printk("%0#10lx -> %0#10lx\n",
4985 arch_zone_lowest_possible_pfn
[i
],
4986 arch_zone_highest_possible_pfn
[i
]);
4989 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4990 printk("Movable zone start PFN for each node\n");
4991 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4992 if (zone_movable_pfn
[i
])
4993 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4996 /* Print out the early_node_map[] */
4997 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4998 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4999 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
5000 early_node_map
[i
].start_pfn
,
5001 early_node_map
[i
].end_pfn
);
5003 /* Initialise every node */
5004 mminit_verify_pageflags_layout();
5005 setup_nr_node_ids();
5006 for_each_online_node(nid
) {
5007 pg_data_t
*pgdat
= NODE_DATA(nid
);
5008 free_area_init_node(nid
, NULL
,
5009 find_min_pfn_for_node(nid
), NULL
);
5011 /* Any memory on that node */
5012 if (pgdat
->node_present_pages
)
5013 node_set_state(nid
, N_HIGH_MEMORY
);
5014 check_for_regular_memory(pgdat
);
5018 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5020 unsigned long long coremem
;
5024 coremem
= memparse(p
, &p
);
5025 *core
= coremem
>> PAGE_SHIFT
;
5027 /* Paranoid check that UL is enough for the coremem value */
5028 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5034 * kernelcore=size sets the amount of memory for use for allocations that
5035 * cannot be reclaimed or migrated.
5037 static int __init
cmdline_parse_kernelcore(char *p
)
5039 return cmdline_parse_core(p
, &required_kernelcore
);
5043 * movablecore=size sets the amount of memory for use for allocations that
5044 * can be reclaimed or migrated.
5046 static int __init
cmdline_parse_movablecore(char *p
)
5048 return cmdline_parse_core(p
, &required_movablecore
);
5051 early_param("kernelcore", cmdline_parse_kernelcore
);
5052 early_param("movablecore", cmdline_parse_movablecore
);
5054 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
5057 * set_dma_reserve - set the specified number of pages reserved in the first zone
5058 * @new_dma_reserve: The number of pages to mark reserved
5060 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5061 * In the DMA zone, a significant percentage may be consumed by kernel image
5062 * and other unfreeable allocations which can skew the watermarks badly. This
5063 * function may optionally be used to account for unfreeable pages in the
5064 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5065 * smaller per-cpu batchsize.
5067 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5069 dma_reserve
= new_dma_reserve
;
5072 void __init
free_area_init(unsigned long *zones_size
)
5074 free_area_init_node(0, zones_size
,
5075 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5078 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5079 unsigned long action
, void *hcpu
)
5081 int cpu
= (unsigned long)hcpu
;
5083 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5087 * Spill the event counters of the dead processor
5088 * into the current processors event counters.
5089 * This artificially elevates the count of the current
5092 vm_events_fold_cpu(cpu
);
5095 * Zero the differential counters of the dead processor
5096 * so that the vm statistics are consistent.
5098 * This is only okay since the processor is dead and cannot
5099 * race with what we are doing.
5101 refresh_cpu_vm_stats(cpu
);
5106 void __init
page_alloc_init(void)
5108 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5112 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5113 * or min_free_kbytes changes.
5115 static void calculate_totalreserve_pages(void)
5117 struct pglist_data
*pgdat
;
5118 unsigned long reserve_pages
= 0;
5119 enum zone_type i
, j
;
5121 for_each_online_pgdat(pgdat
) {
5122 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5123 struct zone
*zone
= pgdat
->node_zones
+ i
;
5124 unsigned long max
= 0;
5126 /* Find valid and maximum lowmem_reserve in the zone */
5127 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5128 if (zone
->lowmem_reserve
[j
] > max
)
5129 max
= zone
->lowmem_reserve
[j
];
5132 /* we treat the high watermark as reserved pages. */
5133 max
+= high_wmark_pages(zone
);
5135 if (max
> zone
->present_pages
)
5136 max
= zone
->present_pages
;
5137 reserve_pages
+= max
;
5140 totalreserve_pages
= reserve_pages
;
5144 * setup_per_zone_lowmem_reserve - called whenever
5145 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5146 * has a correct pages reserved value, so an adequate number of
5147 * pages are left in the zone after a successful __alloc_pages().
5149 static void setup_per_zone_lowmem_reserve(void)
5151 struct pglist_data
*pgdat
;
5152 enum zone_type j
, idx
;
5154 for_each_online_pgdat(pgdat
) {
5155 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5156 struct zone
*zone
= pgdat
->node_zones
+ j
;
5157 unsigned long present_pages
= zone
->present_pages
;
5159 zone
->lowmem_reserve
[j
] = 0;
5163 struct zone
*lower_zone
;
5167 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5168 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5170 lower_zone
= pgdat
->node_zones
+ idx
;
5171 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5172 sysctl_lowmem_reserve_ratio
[idx
];
5173 present_pages
+= lower_zone
->present_pages
;
5178 /* update totalreserve_pages */
5179 calculate_totalreserve_pages();
5183 * setup_per_zone_wmarks - called when min_free_kbytes changes
5184 * or when memory is hot-{added|removed}
5186 * Ensures that the watermark[min,low,high] values for each zone are set
5187 * correctly with respect to min_free_kbytes.
5189 void setup_per_zone_wmarks(void)
5191 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5192 unsigned long lowmem_pages
= 0;
5194 unsigned long flags
;
5196 /* Calculate total number of !ZONE_HIGHMEM pages */
5197 for_each_zone(zone
) {
5198 if (!is_highmem(zone
))
5199 lowmem_pages
+= zone
->present_pages
;
5202 for_each_zone(zone
) {
5205 spin_lock_irqsave(&zone
->lock
, flags
);
5206 tmp
= (u64
)pages_min
* zone
->present_pages
;
5207 do_div(tmp
, lowmem_pages
);
5208 if (is_highmem(zone
)) {
5210 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5211 * need highmem pages, so cap pages_min to a small
5214 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5215 * deltas controls asynch page reclaim, and so should
5216 * not be capped for highmem.
5220 min_pages
= zone
->present_pages
/ 1024;
5221 if (min_pages
< SWAP_CLUSTER_MAX
)
5222 min_pages
= SWAP_CLUSTER_MAX
;
5223 if (min_pages
> 128)
5225 zone
->watermark
[WMARK_MIN
] = min_pages
;
5228 * If it's a lowmem zone, reserve a number of pages
5229 * proportionate to the zone's size.
5231 zone
->watermark
[WMARK_MIN
] = tmp
;
5234 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5235 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5236 setup_zone_migrate_reserve(zone
);
5237 spin_unlock_irqrestore(&zone
->lock
, flags
);
5240 /* update totalreserve_pages */
5241 calculate_totalreserve_pages();
5245 * The inactive anon list should be small enough that the VM never has to
5246 * do too much work, but large enough that each inactive page has a chance
5247 * to be referenced again before it is swapped out.
5249 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5250 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5251 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5252 * the anonymous pages are kept on the inactive list.
5255 * memory ratio inactive anon
5256 * -------------------------------------
5265 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5267 unsigned int gb
, ratio
;
5269 /* Zone size in gigabytes */
5270 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5272 ratio
= int_sqrt(10 * gb
);
5276 zone
->inactive_ratio
= ratio
;
5279 static void __meminit
setup_per_zone_inactive_ratio(void)
5284 calculate_zone_inactive_ratio(zone
);
5288 * Initialise min_free_kbytes.
5290 * For small machines we want it small (128k min). For large machines
5291 * we want it large (64MB max). But it is not linear, because network
5292 * bandwidth does not increase linearly with machine size. We use
5294 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5295 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5311 int __meminit
init_per_zone_wmark_min(void)
5313 unsigned long lowmem_kbytes
;
5315 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5317 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5318 if (min_free_kbytes
< 128)
5319 min_free_kbytes
= 128;
5320 if (min_free_kbytes
> 65536)
5321 min_free_kbytes
= 65536;
5322 setup_per_zone_wmarks();
5323 refresh_zone_stat_thresholds();
5324 setup_per_zone_lowmem_reserve();
5325 setup_per_zone_inactive_ratio();
5328 module_init(init_per_zone_wmark_min
)
5331 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5332 * that we can call two helper functions whenever min_free_kbytes
5335 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5336 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5338 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5340 setup_per_zone_wmarks();
5345 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5346 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5351 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5356 zone
->min_unmapped_pages
= (zone
->present_pages
*
5357 sysctl_min_unmapped_ratio
) / 100;
5361 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5362 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5367 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5372 zone
->min_slab_pages
= (zone
->present_pages
*
5373 sysctl_min_slab_ratio
) / 100;
5379 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5380 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5381 * whenever sysctl_lowmem_reserve_ratio changes.
5383 * The reserve ratio obviously has absolutely no relation with the
5384 * minimum watermarks. The lowmem reserve ratio can only make sense
5385 * if in function of the boot time zone sizes.
5387 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5388 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5390 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5391 setup_per_zone_lowmem_reserve();
5396 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5397 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5398 * can have before it gets flushed back to buddy allocator.
5401 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5402 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5408 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5409 if (!write
|| (ret
== -EINVAL
))
5411 for_each_populated_zone(zone
) {
5412 for_each_possible_cpu(cpu
) {
5414 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5415 setup_pagelist_highmark(
5416 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5422 int hashdist
= HASHDIST_DEFAULT
;
5425 static int __init
set_hashdist(char *str
)
5429 hashdist
= simple_strtoul(str
, &str
, 0);
5432 __setup("hashdist=", set_hashdist
);
5436 * allocate a large system hash table from bootmem
5437 * - it is assumed that the hash table must contain an exact power-of-2
5438 * quantity of entries
5439 * - limit is the number of hash buckets, not the total allocation size
5441 void *__init
alloc_large_system_hash(const char *tablename
,
5442 unsigned long bucketsize
,
5443 unsigned long numentries
,
5446 unsigned int *_hash_shift
,
5447 unsigned int *_hash_mask
,
5448 unsigned long limit
)
5450 unsigned long long max
= limit
;
5451 unsigned long log2qty
, size
;
5454 /* allow the kernel cmdline to have a say */
5456 /* round applicable memory size up to nearest megabyte */
5457 numentries
= nr_kernel_pages
;
5458 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5459 numentries
>>= 20 - PAGE_SHIFT
;
5460 numentries
<<= 20 - PAGE_SHIFT
;
5462 /* limit to 1 bucket per 2^scale bytes of low memory */
5463 if (scale
> PAGE_SHIFT
)
5464 numentries
>>= (scale
- PAGE_SHIFT
);
5466 numentries
<<= (PAGE_SHIFT
- scale
);
5468 /* Make sure we've got at least a 0-order allocation.. */
5469 if (unlikely(flags
& HASH_SMALL
)) {
5470 /* Makes no sense without HASH_EARLY */
5471 WARN_ON(!(flags
& HASH_EARLY
));
5472 if (!(numentries
>> *_hash_shift
)) {
5473 numentries
= 1UL << *_hash_shift
;
5474 BUG_ON(!numentries
);
5476 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5477 numentries
= PAGE_SIZE
/ bucketsize
;
5479 numentries
= roundup_pow_of_two(numentries
);
5481 /* limit allocation size to 1/16 total memory by default */
5483 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5484 do_div(max
, bucketsize
);
5487 if (numentries
> max
)
5490 log2qty
= ilog2(numentries
);
5493 size
= bucketsize
<< log2qty
;
5494 if (flags
& HASH_EARLY
)
5495 table
= alloc_bootmem_nopanic(size
);
5497 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5500 * If bucketsize is not a power-of-two, we may free
5501 * some pages at the end of hash table which
5502 * alloc_pages_exact() automatically does
5504 if (get_order(size
) < MAX_ORDER
) {
5505 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5506 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5509 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5512 panic("Failed to allocate %s hash table\n", tablename
);
5514 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5517 ilog2(size
) - PAGE_SHIFT
,
5521 *_hash_shift
= log2qty
;
5523 *_hash_mask
= (1 << log2qty
) - 1;
5528 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5529 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5532 #ifdef CONFIG_SPARSEMEM
5533 return __pfn_to_section(pfn
)->pageblock_flags
;
5535 return zone
->pageblock_flags
;
5536 #endif /* CONFIG_SPARSEMEM */
5539 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5541 #ifdef CONFIG_SPARSEMEM
5542 pfn
&= (PAGES_PER_SECTION
-1);
5543 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5545 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5546 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5547 #endif /* CONFIG_SPARSEMEM */
5551 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5552 * @page: The page within the block of interest
5553 * @start_bitidx: The first bit of interest to retrieve
5554 * @end_bitidx: The last bit of interest
5555 * returns pageblock_bits flags
5557 unsigned long get_pageblock_flags_group(struct page
*page
,
5558 int start_bitidx
, int end_bitidx
)
5561 unsigned long *bitmap
;
5562 unsigned long pfn
, bitidx
;
5563 unsigned long flags
= 0;
5564 unsigned long value
= 1;
5566 zone
= page_zone(page
);
5567 pfn
= page_to_pfn(page
);
5568 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5569 bitidx
= pfn_to_bitidx(zone
, pfn
);
5571 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5572 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5579 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5580 * @page: The page within the block of interest
5581 * @start_bitidx: The first bit of interest
5582 * @end_bitidx: The last bit of interest
5583 * @flags: The flags to set
5585 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5586 int start_bitidx
, int end_bitidx
)
5589 unsigned long *bitmap
;
5590 unsigned long pfn
, bitidx
;
5591 unsigned long value
= 1;
5593 zone
= page_zone(page
);
5594 pfn
= page_to_pfn(page
);
5595 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5596 bitidx
= pfn_to_bitidx(zone
, pfn
);
5597 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5598 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5600 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5602 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5604 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5608 * This is designed as sub function...plz see page_isolation.c also.
5609 * set/clear page block's type to be ISOLATE.
5610 * page allocater never alloc memory from ISOLATE block.
5614 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5616 unsigned long pfn
, iter
, found
;
5618 * For avoiding noise data, lru_add_drain_all() should be called
5619 * If ZONE_MOVABLE, the zone never contains immobile pages
5621 if (zone_idx(zone
) == ZONE_MOVABLE
)
5624 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5627 pfn
= page_to_pfn(page
);
5628 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5629 unsigned long check
= pfn
+ iter
;
5631 if (!pfn_valid_within(check
))
5634 page
= pfn_to_page(check
);
5635 if (!page_count(page
)) {
5636 if (PageBuddy(page
))
5637 iter
+= (1 << page_order(page
)) - 1;
5643 * If there are RECLAIMABLE pages, we need to check it.
5644 * But now, memory offline itself doesn't call shrink_slab()
5645 * and it still to be fixed.
5648 * If the page is not RAM, page_count()should be 0.
5649 * we don't need more check. This is an _used_ not-movable page.
5651 * The problematic thing here is PG_reserved pages. PG_reserved
5652 * is set to both of a memory hole page and a _used_ kernel
5661 bool is_pageblock_removable_nolock(struct page
*page
)
5663 struct zone
*zone
= page_zone(page
);
5664 unsigned long pfn
= page_to_pfn(page
);
5667 * We have to be careful here because we are iterating over memory
5668 * sections which are not zone aware so we might end up outside of
5669 * the zone but still within the section.
5671 if (!zone
|| zone
->zone_start_pfn
> pfn
||
5672 zone
->zone_start_pfn
+ zone
->spanned_pages
<= pfn
)
5675 return __count_immobile_pages(zone
, page
, 0);
5678 int set_migratetype_isolate(struct page
*page
)
5681 unsigned long flags
, pfn
;
5682 struct memory_isolate_notify arg
;
5686 zone
= page_zone(page
);
5688 spin_lock_irqsave(&zone
->lock
, flags
);
5690 pfn
= page_to_pfn(page
);
5691 arg
.start_pfn
= pfn
;
5692 arg
.nr_pages
= pageblock_nr_pages
;
5693 arg
.pages_found
= 0;
5696 * It may be possible to isolate a pageblock even if the
5697 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5698 * notifier chain is used by balloon drivers to return the
5699 * number of pages in a range that are held by the balloon
5700 * driver to shrink memory. If all the pages are accounted for
5701 * by balloons, are free, or on the LRU, isolation can continue.
5702 * Later, for example, when memory hotplug notifier runs, these
5703 * pages reported as "can be isolated" should be isolated(freed)
5704 * by the balloon driver through the memory notifier chain.
5706 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5707 notifier_ret
= notifier_to_errno(notifier_ret
);
5711 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5712 * We just check MOVABLE pages.
5714 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5718 * immobile means "not-on-lru" paes. If immobile is larger than
5719 * removable-by-driver pages reported by notifier, we'll fail.
5724 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5725 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5728 spin_unlock_irqrestore(&zone
->lock
, flags
);
5734 void unset_migratetype_isolate(struct page
*page
)
5737 unsigned long flags
;
5738 zone
= page_zone(page
);
5739 spin_lock_irqsave(&zone
->lock
, flags
);
5740 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5742 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5743 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5745 spin_unlock_irqrestore(&zone
->lock
, flags
);
5748 #ifdef CONFIG_MEMORY_HOTREMOVE
5750 * All pages in the range must be isolated before calling this.
5753 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5759 unsigned long flags
;
5760 /* find the first valid pfn */
5761 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5766 zone
= page_zone(pfn_to_page(pfn
));
5767 spin_lock_irqsave(&zone
->lock
, flags
);
5769 while (pfn
< end_pfn
) {
5770 if (!pfn_valid(pfn
)) {
5774 page
= pfn_to_page(pfn
);
5775 BUG_ON(page_count(page
));
5776 BUG_ON(!PageBuddy(page
));
5777 order
= page_order(page
);
5778 #ifdef CONFIG_DEBUG_VM
5779 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5780 pfn
, 1 << order
, end_pfn
);
5782 list_del(&page
->lru
);
5783 rmv_page_order(page
);
5784 zone
->free_area
[order
].nr_free
--;
5785 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5787 #ifdef CONFIG_HIGHMEM
5788 if (PageHighMem(page
))
5789 totalhigh_pages
-= 1 << order
;
5791 for (i
= 0; i
< (1 << order
); i
++)
5792 SetPageReserved((page
+i
));
5793 pfn
+= (1 << order
);
5795 spin_unlock_irqrestore(&zone
->lock
, flags
);
5799 #ifdef CONFIG_MEMORY_FAILURE
5800 bool is_free_buddy_page(struct page
*page
)
5802 struct zone
*zone
= page_zone(page
);
5803 unsigned long pfn
= page_to_pfn(page
);
5804 unsigned long flags
;
5807 spin_lock_irqsave(&zone
->lock
, flags
);
5808 for (order
= 0; order
< MAX_ORDER
; order
++) {
5809 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5811 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5814 spin_unlock_irqrestore(&zone
->lock
, flags
);
5816 return order
< MAX_ORDER
;
5820 static struct trace_print_flags pageflag_names
[] = {
5821 {1UL << PG_locked
, "locked" },
5822 {1UL << PG_error
, "error" },
5823 {1UL << PG_referenced
, "referenced" },
5824 {1UL << PG_uptodate
, "uptodate" },
5825 {1UL << PG_dirty
, "dirty" },
5826 {1UL << PG_lru
, "lru" },
5827 {1UL << PG_active
, "active" },
5828 {1UL << PG_slab
, "slab" },
5829 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5830 {1UL << PG_arch_1
, "arch_1" },
5831 {1UL << PG_reserved
, "reserved" },
5832 {1UL << PG_private
, "private" },
5833 {1UL << PG_private_2
, "private_2" },
5834 {1UL << PG_writeback
, "writeback" },
5835 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5836 {1UL << PG_head
, "head" },
5837 {1UL << PG_tail
, "tail" },
5839 {1UL << PG_compound
, "compound" },
5841 {1UL << PG_swapcache
, "swapcache" },
5842 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5843 {1UL << PG_reclaim
, "reclaim" },
5844 {1UL << PG_swapbacked
, "swapbacked" },
5845 {1UL << PG_unevictable
, "unevictable" },
5847 {1UL << PG_mlocked
, "mlocked" },
5849 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5850 {1UL << PG_uncached
, "uncached" },
5852 #ifdef CONFIG_MEMORY_FAILURE
5853 {1UL << PG_hwpoison
, "hwpoison" },
5858 static void dump_page_flags(unsigned long flags
)
5860 const char *delim
= "";
5864 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5866 /* remove zone id */
5867 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5869 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5871 mask
= pageflag_names
[i
].mask
;
5872 if ((flags
& mask
) != mask
)
5876 printk("%s%s", delim
, pageflag_names
[i
].name
);
5880 /* check for left over flags */
5882 printk("%s%#lx", delim
, flags
);
5887 void dump_page(struct page
*page
)
5890 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5891 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5892 page
->mapping
, page
->index
);
5893 dump_page_flags(page
->flags
);
5894 mem_cgroup_print_bad_page(page
);