Revert "net: ipv4: ip_forward: fix inverted local_df test"
[linux/fpc-iii.git] / mm / page_alloc.c
blobd8762b234d2a44c935bb33b9ea277d39df68161e
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
136 static void __free_pages_ok(struct page *page, unsigned int order);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
158 #endif
162 EXPORT_SYMBOL(totalram_pages);
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 "DMA32",
170 #endif
171 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 "HighMem",
174 #endif
175 "Movable",
178 int min_free_kbytes = 1024;
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __initdata required_kernelcore;
210 static unsigned long __initdata required_movablecore;
211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
225 int page_group_by_mobility_disabled __read_mostly;
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
237 bool oom_killer_disabled __read_mostly;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
254 return ret;
257 static int page_is_consistent(struct zone *zone, struct page *page)
259 if (!pfn_valid_within(page_to_pfn(page)))
260 return 0;
261 if (zone != page_zone(page))
262 return 0;
264 return 1;
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone *zone, struct page *page)
271 if (page_outside_zone_boundaries(zone, page))
272 return 1;
273 if (!page_is_consistent(zone, page))
274 return 1;
276 return 0;
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
281 return 0;
283 #endif
285 static void bad_page(struct page *page)
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
293 reset_page_mapcount(page); /* remove PageBuddy */
294 return;
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
306 if (nr_unshown) {
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
309 nr_unshown);
310 nr_unshown = 0;
312 nr_shown = 0;
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318 current->comm, page_to_pfn(page));
319 dump_page(page);
321 print_modules();
322 dump_stack();
323 out:
324 /* Leave bad fields for debug, except PageBuddy could make trouble */
325 reset_page_mapcount(page); /* remove PageBuddy */
326 add_taint(TAINT_BAD_PAGE);
330 * Higher-order pages are called "compound pages". They are structured thusly:
332 * The first PAGE_SIZE page is called the "head page".
334 * The remaining PAGE_SIZE pages are called "tail pages".
336 * All pages have PG_compound set. All pages have their ->private pointing at
337 * the head page (even the head page has this).
339 * The first tail page's ->lru.next holds the address of the compound page's
340 * put_page() function. Its ->lru.prev holds the order of allocation.
341 * This usage means that zero-order pages may not be compound.
344 static void free_compound_page(struct page *page)
346 __free_pages_ok(page, compound_order(page));
349 void prep_compound_page(struct page *page, unsigned long order)
351 int i;
352 int nr_pages = 1 << order;
354 set_compound_page_dtor(page, free_compound_page);
355 set_compound_order(page, order);
356 __SetPageHead(page);
357 for (i = 1; i < nr_pages; i++) {
358 struct page *p = page + i;
359 __SetPageTail(p);
360 set_page_count(p, 0);
361 p->first_page = page;
365 /* update __split_huge_page_refcount if you change this function */
366 static int destroy_compound_page(struct page *page, unsigned long order)
368 int i;
369 int nr_pages = 1 << order;
370 int bad = 0;
372 if (unlikely(compound_order(page) != order) ||
373 unlikely(!PageHead(page))) {
374 bad_page(page);
375 bad++;
378 __ClearPageHead(page);
380 for (i = 1; i < nr_pages; i++) {
381 struct page *p = page + i;
383 if (unlikely(!PageTail(p) || (p->first_page != page))) {
384 bad_page(page);
385 bad++;
387 __ClearPageTail(p);
390 return bad;
393 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
395 int i;
398 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
399 * and __GFP_HIGHMEM from hard or soft interrupt context.
401 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
402 for (i = 0; i < (1 << order); i++)
403 clear_highpage(page + i);
406 static inline void set_page_order(struct page *page, int order)
408 set_page_private(page, order);
409 __SetPageBuddy(page);
412 static inline void rmv_page_order(struct page *page)
414 __ClearPageBuddy(page);
415 set_page_private(page, 0);
419 * Locate the struct page for both the matching buddy in our
420 * pair (buddy1) and the combined O(n+1) page they form (page).
422 * 1) Any buddy B1 will have an order O twin B2 which satisfies
423 * the following equation:
424 * B2 = B1 ^ (1 << O)
425 * For example, if the starting buddy (buddy2) is #8 its order
426 * 1 buddy is #10:
427 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
429 * 2) Any buddy B will have an order O+1 parent P which
430 * satisfies the following equation:
431 * P = B & ~(1 << O)
433 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
435 static inline unsigned long
436 __find_buddy_index(unsigned long page_idx, unsigned int order)
438 return page_idx ^ (1 << order);
442 * This function checks whether a page is free && is the buddy
443 * we can do coalesce a page and its buddy if
444 * (a) the buddy is not in a hole &&
445 * (b) the buddy is in the buddy system &&
446 * (c) a page and its buddy have the same order &&
447 * (d) a page and its buddy are in the same zone.
449 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
450 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
452 * For recording page's order, we use page_private(page).
454 static inline int page_is_buddy(struct page *page, struct page *buddy,
455 int order)
457 if (!pfn_valid_within(page_to_pfn(buddy)))
458 return 0;
460 if (page_zone_id(page) != page_zone_id(buddy))
461 return 0;
463 if (PageBuddy(buddy) && page_order(buddy) == order) {
464 VM_BUG_ON(page_count(buddy) != 0);
465 return 1;
467 return 0;
471 * Freeing function for a buddy system allocator.
473 * The concept of a buddy system is to maintain direct-mapped table
474 * (containing bit values) for memory blocks of various "orders".
475 * The bottom level table contains the map for the smallest allocatable
476 * units of memory (here, pages), and each level above it describes
477 * pairs of units from the levels below, hence, "buddies".
478 * At a high level, all that happens here is marking the table entry
479 * at the bottom level available, and propagating the changes upward
480 * as necessary, plus some accounting needed to play nicely with other
481 * parts of the VM system.
482 * At each level, we keep a list of pages, which are heads of continuous
483 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
484 * order is recorded in page_private(page) field.
485 * So when we are allocating or freeing one, we can derive the state of the
486 * other. That is, if we allocate a small block, and both were
487 * free, the remainder of the region must be split into blocks.
488 * If a block is freed, and its buddy is also free, then this
489 * triggers coalescing into a block of larger size.
491 * -- wli
494 static inline void __free_one_page(struct page *page,
495 struct zone *zone, unsigned int order,
496 int migratetype)
498 unsigned long page_idx;
499 unsigned long combined_idx;
500 unsigned long uninitialized_var(buddy_idx);
501 struct page *buddy;
503 if (unlikely(PageCompound(page)))
504 if (unlikely(destroy_compound_page(page, order)))
505 return;
507 VM_BUG_ON(migratetype == -1);
509 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511 VM_BUG_ON(page_idx & ((1 << order) - 1));
512 VM_BUG_ON(bad_range(zone, page));
514 while (order < MAX_ORDER-1) {
515 buddy_idx = __find_buddy_index(page_idx, order);
516 buddy = page + (buddy_idx - page_idx);
517 if (!page_is_buddy(page, buddy, order))
518 break;
520 /* Our buddy is free, merge with it and move up one order. */
521 list_del(&buddy->lru);
522 zone->free_area[order].nr_free--;
523 rmv_page_order(buddy);
524 combined_idx = buddy_idx & page_idx;
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
529 set_page_order(page, order);
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540 struct page *higher_page, *higher_buddy;
541 combined_idx = buddy_idx & page_idx;
542 higher_page = page + (combined_idx - page_idx);
543 buddy_idx = __find_buddy_index(combined_idx, order + 1);
544 higher_buddy = higher_page + (buddy_idx - combined_idx);
545 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
546 list_add_tail(&page->lru,
547 &zone->free_area[order].free_list[migratetype]);
548 goto out;
552 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553 out:
554 zone->free_area[order].nr_free++;
558 * free_page_mlock() -- clean up attempts to free and mlocked() page.
559 * Page should not be on lru, so no need to fix that up.
560 * free_pages_check() will verify...
562 static inline void free_page_mlock(struct page *page)
564 __dec_zone_page_state(page, NR_MLOCK);
565 __count_vm_event(UNEVICTABLE_MLOCKFREED);
568 static inline int free_pages_check(struct page *page)
570 if (unlikely(page_mapcount(page) |
571 (page->mapping != NULL) |
572 (atomic_read(&page->_count) != 0) |
573 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
574 (mem_cgroup_bad_page_check(page)))) {
575 bad_page(page);
576 return 1;
578 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
579 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
580 return 0;
584 * Frees a number of pages from the PCP lists
585 * Assumes all pages on list are in same zone, and of same order.
586 * count is the number of pages to free.
588 * If the zone was previously in an "all pages pinned" state then look to
589 * see if this freeing clears that state.
591 * And clear the zone's pages_scanned counter, to hold off the "all pages are
592 * pinned" detection logic.
594 static void free_pcppages_bulk(struct zone *zone, int count,
595 struct per_cpu_pages *pcp)
597 int migratetype = 0;
598 int batch_free = 0;
599 int to_free = count;
601 spin_lock(&zone->lock);
602 zone->all_unreclaimable = 0;
603 zone->pages_scanned = 0;
605 while (to_free) {
606 struct page *page;
607 struct list_head *list;
610 * Remove pages from lists in a round-robin fashion. A
611 * batch_free count is maintained that is incremented when an
612 * empty list is encountered. This is so more pages are freed
613 * off fuller lists instead of spinning excessively around empty
614 * lists
616 do {
617 batch_free++;
618 if (++migratetype == MIGRATE_PCPTYPES)
619 migratetype = 0;
620 list = &pcp->lists[migratetype];
621 } while (list_empty(list));
623 /* This is the only non-empty list. Free them all. */
624 if (batch_free == MIGRATE_PCPTYPES)
625 batch_free = to_free;
627 do {
628 page = list_entry(list->prev, struct page, lru);
629 /* must delete as __free_one_page list manipulates */
630 list_del(&page->lru);
631 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
632 __free_one_page(page, zone, 0, page_private(page));
633 trace_mm_page_pcpu_drain(page, 0, page_private(page));
634 } while (--to_free && --batch_free && !list_empty(list));
636 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
637 spin_unlock(&zone->lock);
640 static void free_one_page(struct zone *zone, struct page *page, int order,
641 int migratetype)
643 spin_lock(&zone->lock);
644 zone->all_unreclaimable = 0;
645 zone->pages_scanned = 0;
647 __free_one_page(page, zone, order, migratetype);
648 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
649 spin_unlock(&zone->lock);
652 static bool free_pages_prepare(struct page *page, unsigned int order)
654 int i;
655 int bad = 0;
657 trace_mm_page_free_direct(page, order);
658 kmemcheck_free_shadow(page, order);
660 if (PageAnon(page))
661 page->mapping = NULL;
662 for (i = 0; i < (1 << order); i++)
663 bad += free_pages_check(page + i);
664 if (bad)
665 return false;
667 if (!PageHighMem(page)) {
668 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
669 debug_check_no_obj_freed(page_address(page),
670 PAGE_SIZE << order);
672 arch_free_page(page, order);
673 kernel_map_pages(page, 1 << order, 0);
675 return true;
678 static void __free_pages_ok(struct page *page, unsigned int order)
680 unsigned long flags;
681 int wasMlocked = __TestClearPageMlocked(page);
683 if (!free_pages_prepare(page, order))
684 return;
686 local_irq_save(flags);
687 if (unlikely(wasMlocked))
688 free_page_mlock(page);
689 __count_vm_events(PGFREE, 1 << order);
690 free_one_page(page_zone(page), page, order,
691 get_pageblock_migratetype(page));
692 local_irq_restore(flags);
696 * permit the bootmem allocator to evade page validation on high-order frees
698 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
700 if (order == 0) {
701 __ClearPageReserved(page);
702 set_page_count(page, 0);
703 set_page_refcounted(page);
704 __free_page(page);
705 } else {
706 int loop;
708 prefetchw(page);
709 for (loop = 0; loop < BITS_PER_LONG; loop++) {
710 struct page *p = &page[loop];
712 if (loop + 1 < BITS_PER_LONG)
713 prefetchw(p + 1);
714 __ClearPageReserved(p);
715 set_page_count(p, 0);
718 set_page_refcounted(page);
719 __free_pages(page, order);
725 * The order of subdivision here is critical for the IO subsystem.
726 * Please do not alter this order without good reasons and regression
727 * testing. Specifically, as large blocks of memory are subdivided,
728 * the order in which smaller blocks are delivered depends on the order
729 * they're subdivided in this function. This is the primary factor
730 * influencing the order in which pages are delivered to the IO
731 * subsystem according to empirical testing, and this is also justified
732 * by considering the behavior of a buddy system containing a single
733 * large block of memory acted on by a series of small allocations.
734 * This behavior is a critical factor in sglist merging's success.
736 * -- wli
738 static inline void expand(struct zone *zone, struct page *page,
739 int low, int high, struct free_area *area,
740 int migratetype)
742 unsigned long size = 1 << high;
744 while (high > low) {
745 area--;
746 high--;
747 size >>= 1;
748 VM_BUG_ON(bad_range(zone, &page[size]));
749 list_add(&page[size].lru, &area->free_list[migratetype]);
750 area->nr_free++;
751 set_page_order(&page[size], high);
756 * This page is about to be returned from the page allocator
758 static inline int check_new_page(struct page *page)
760 if (unlikely(page_mapcount(page) |
761 (page->mapping != NULL) |
762 (atomic_read(&page->_count) != 0) |
763 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
764 (mem_cgroup_bad_page_check(page)))) {
765 bad_page(page);
766 return 1;
768 return 0;
771 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
773 int i;
775 for (i = 0; i < (1 << order); i++) {
776 struct page *p = page + i;
777 if (unlikely(check_new_page(p)))
778 return 1;
781 set_page_private(page, 0);
782 set_page_refcounted(page);
784 arch_alloc_page(page, order);
785 kernel_map_pages(page, 1 << order, 1);
787 if (gfp_flags & __GFP_ZERO)
788 prep_zero_page(page, order, gfp_flags);
790 if (order && (gfp_flags & __GFP_COMP))
791 prep_compound_page(page, order);
793 return 0;
797 * Go through the free lists for the given migratetype and remove
798 * the smallest available page from the freelists
800 static inline
801 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
802 int migratetype)
804 unsigned int current_order;
805 struct free_area * area;
806 struct page *page;
808 /* Find a page of the appropriate size in the preferred list */
809 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
810 area = &(zone->free_area[current_order]);
811 if (list_empty(&area->free_list[migratetype]))
812 continue;
814 page = list_entry(area->free_list[migratetype].next,
815 struct page, lru);
816 list_del(&page->lru);
817 rmv_page_order(page);
818 area->nr_free--;
819 expand(zone, page, order, current_order, area, migratetype);
820 return page;
823 return NULL;
828 * This array describes the order lists are fallen back to when
829 * the free lists for the desirable migrate type are depleted
831 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
832 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
835 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
839 * Move the free pages in a range to the free lists of the requested type.
840 * Note that start_page and end_pages are not aligned on a pageblock
841 * boundary. If alignment is required, use move_freepages_block()
843 static int move_freepages(struct zone *zone,
844 struct page *start_page, struct page *end_page,
845 int migratetype)
847 struct page *page;
848 unsigned long order;
849 int pages_moved = 0;
851 #ifndef CONFIG_HOLES_IN_ZONE
853 * page_zone is not safe to call in this context when
854 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
855 * anyway as we check zone boundaries in move_freepages_block().
856 * Remove at a later date when no bug reports exist related to
857 * grouping pages by mobility
859 BUG_ON(page_zone(start_page) != page_zone(end_page));
860 #endif
862 for (page = start_page; page <= end_page;) {
863 /* Make sure we are not inadvertently changing nodes */
864 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
866 if (!pfn_valid_within(page_to_pfn(page))) {
867 page++;
868 continue;
871 if (!PageBuddy(page)) {
872 page++;
873 continue;
876 order = page_order(page);
877 list_move(&page->lru,
878 &zone->free_area[order].free_list[migratetype]);
879 page += 1 << order;
880 pages_moved += 1 << order;
883 return pages_moved;
886 static int move_freepages_block(struct zone *zone, struct page *page,
887 int migratetype)
889 unsigned long start_pfn, end_pfn;
890 struct page *start_page, *end_page;
892 start_pfn = page_to_pfn(page);
893 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
894 start_page = pfn_to_page(start_pfn);
895 end_page = start_page + pageblock_nr_pages - 1;
896 end_pfn = start_pfn + pageblock_nr_pages - 1;
898 /* Do not cross zone boundaries */
899 if (start_pfn < zone->zone_start_pfn)
900 start_page = page;
901 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
902 return 0;
904 return move_freepages(zone, start_page, end_page, migratetype);
907 static void change_pageblock_range(struct page *pageblock_page,
908 int start_order, int migratetype)
910 int nr_pageblocks = 1 << (start_order - pageblock_order);
912 while (nr_pageblocks--) {
913 set_pageblock_migratetype(pageblock_page, migratetype);
914 pageblock_page += pageblock_nr_pages;
918 /* Remove an element from the buddy allocator from the fallback list */
919 static inline struct page *
920 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
922 struct free_area * area;
923 int current_order;
924 struct page *page;
925 int migratetype, i;
927 /* Find the largest possible block of pages in the other list */
928 for (current_order = MAX_ORDER-1; current_order >= order;
929 --current_order) {
930 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
931 migratetype = fallbacks[start_migratetype][i];
933 /* MIGRATE_RESERVE handled later if necessary */
934 if (migratetype == MIGRATE_RESERVE)
935 continue;
937 area = &(zone->free_area[current_order]);
938 if (list_empty(&area->free_list[migratetype]))
939 continue;
941 page = list_entry(area->free_list[migratetype].next,
942 struct page, lru);
943 area->nr_free--;
946 * If breaking a large block of pages, move all free
947 * pages to the preferred allocation list. If falling
948 * back for a reclaimable kernel allocation, be more
949 * aggressive about taking ownership of free pages
951 if (unlikely(current_order >= (pageblock_order >> 1)) ||
952 start_migratetype == MIGRATE_RECLAIMABLE ||
953 page_group_by_mobility_disabled) {
954 unsigned long pages;
955 pages = move_freepages_block(zone, page,
956 start_migratetype);
958 /* Claim the whole block if over half of it is free */
959 if (pages >= (1 << (pageblock_order-1)) ||
960 page_group_by_mobility_disabled)
961 set_pageblock_migratetype(page,
962 start_migratetype);
964 migratetype = start_migratetype;
967 /* Remove the page from the freelists */
968 list_del(&page->lru);
969 rmv_page_order(page);
971 /* Take ownership for orders >= pageblock_order */
972 if (current_order >= pageblock_order)
973 change_pageblock_range(page, current_order,
974 start_migratetype);
976 expand(zone, page, order, current_order, area, migratetype);
978 trace_mm_page_alloc_extfrag(page, order, current_order,
979 start_migratetype, migratetype);
981 return page;
985 return NULL;
989 * Do the hard work of removing an element from the buddy allocator.
990 * Call me with the zone->lock already held.
992 static struct page *__rmqueue(struct zone *zone, unsigned int order,
993 int migratetype)
995 struct page *page;
997 retry_reserve:
998 page = __rmqueue_smallest(zone, order, migratetype);
1000 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1001 page = __rmqueue_fallback(zone, order, migratetype);
1004 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1005 * is used because __rmqueue_smallest is an inline function
1006 * and we want just one call site
1008 if (!page) {
1009 migratetype = MIGRATE_RESERVE;
1010 goto retry_reserve;
1014 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1015 return page;
1019 * Obtain a specified number of elements from the buddy allocator, all under
1020 * a single hold of the lock, for efficiency. Add them to the supplied list.
1021 * Returns the number of new pages which were placed at *list.
1023 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1024 unsigned long count, struct list_head *list,
1025 int migratetype, int cold)
1027 int i;
1029 spin_lock(&zone->lock);
1030 for (i = 0; i < count; ++i) {
1031 struct page *page = __rmqueue(zone, order, migratetype);
1032 if (unlikely(page == NULL))
1033 break;
1036 * Split buddy pages returned by expand() are received here
1037 * in physical page order. The page is added to the callers and
1038 * list and the list head then moves forward. From the callers
1039 * perspective, the linked list is ordered by page number in
1040 * some conditions. This is useful for IO devices that can
1041 * merge IO requests if the physical pages are ordered
1042 * properly.
1044 if (likely(cold == 0))
1045 list_add(&page->lru, list);
1046 else
1047 list_add_tail(&page->lru, list);
1048 set_page_private(page, migratetype);
1049 list = &page->lru;
1051 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1052 spin_unlock(&zone->lock);
1053 return i;
1056 #ifdef CONFIG_NUMA
1058 * Called from the vmstat counter updater to drain pagesets of this
1059 * currently executing processor on remote nodes after they have
1060 * expired.
1062 * Note that this function must be called with the thread pinned to
1063 * a single processor.
1065 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1067 unsigned long flags;
1068 int to_drain;
1070 local_irq_save(flags);
1071 if (pcp->count >= pcp->batch)
1072 to_drain = pcp->batch;
1073 else
1074 to_drain = pcp->count;
1075 free_pcppages_bulk(zone, to_drain, pcp);
1076 pcp->count -= to_drain;
1077 local_irq_restore(flags);
1079 #endif
1082 * Drain pages of the indicated processor.
1084 * The processor must either be the current processor and the
1085 * thread pinned to the current processor or a processor that
1086 * is not online.
1088 static void drain_pages(unsigned int cpu)
1090 unsigned long flags;
1091 struct zone *zone;
1093 for_each_populated_zone(zone) {
1094 struct per_cpu_pageset *pset;
1095 struct per_cpu_pages *pcp;
1097 local_irq_save(flags);
1098 pset = per_cpu_ptr(zone->pageset, cpu);
1100 pcp = &pset->pcp;
1101 if (pcp->count) {
1102 free_pcppages_bulk(zone, pcp->count, pcp);
1103 pcp->count = 0;
1105 local_irq_restore(flags);
1110 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1112 void drain_local_pages(void *arg)
1114 drain_pages(smp_processor_id());
1118 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1120 void drain_all_pages(void)
1122 on_each_cpu(drain_local_pages, NULL, 1);
1125 #ifdef CONFIG_HIBERNATION
1127 void mark_free_pages(struct zone *zone)
1129 unsigned long pfn, max_zone_pfn;
1130 unsigned long flags;
1131 int order, t;
1132 struct list_head *curr;
1134 if (!zone->spanned_pages)
1135 return;
1137 spin_lock_irqsave(&zone->lock, flags);
1139 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1140 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1141 if (pfn_valid(pfn)) {
1142 struct page *page = pfn_to_page(pfn);
1144 if (!swsusp_page_is_forbidden(page))
1145 swsusp_unset_page_free(page);
1148 for_each_migratetype_order(order, t) {
1149 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1150 unsigned long i;
1152 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1153 for (i = 0; i < (1UL << order); i++)
1154 swsusp_set_page_free(pfn_to_page(pfn + i));
1157 spin_unlock_irqrestore(&zone->lock, flags);
1159 #endif /* CONFIG_PM */
1162 * Free a 0-order page
1163 * cold == 1 ? free a cold page : free a hot page
1165 void free_hot_cold_page(struct page *page, int cold)
1167 struct zone *zone = page_zone(page);
1168 struct per_cpu_pages *pcp;
1169 unsigned long flags;
1170 int migratetype;
1171 int wasMlocked = __TestClearPageMlocked(page);
1173 if (!free_pages_prepare(page, 0))
1174 return;
1176 migratetype = get_pageblock_migratetype(page);
1177 set_page_private(page, migratetype);
1178 local_irq_save(flags);
1179 if (unlikely(wasMlocked))
1180 free_page_mlock(page);
1181 __count_vm_event(PGFREE);
1184 * We only track unmovable, reclaimable and movable on pcp lists.
1185 * Free ISOLATE pages back to the allocator because they are being
1186 * offlined but treat RESERVE as movable pages so we can get those
1187 * areas back if necessary. Otherwise, we may have to free
1188 * excessively into the page allocator
1190 if (migratetype >= MIGRATE_PCPTYPES) {
1191 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1192 free_one_page(zone, page, 0, migratetype);
1193 goto out;
1195 migratetype = MIGRATE_MOVABLE;
1198 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1199 if (cold)
1200 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1201 else
1202 list_add(&page->lru, &pcp->lists[migratetype]);
1203 pcp->count++;
1204 if (pcp->count >= pcp->high) {
1205 free_pcppages_bulk(zone, pcp->batch, pcp);
1206 pcp->count -= pcp->batch;
1209 out:
1210 local_irq_restore(flags);
1214 * split_page takes a non-compound higher-order page, and splits it into
1215 * n (1<<order) sub-pages: page[0..n]
1216 * Each sub-page must be freed individually.
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1221 void split_page(struct page *page, unsigned int order)
1223 int i;
1225 VM_BUG_ON(PageCompound(page));
1226 VM_BUG_ON(!page_count(page));
1228 #ifdef CONFIG_KMEMCHECK
1230 * Split shadow pages too, because free(page[0]) would
1231 * otherwise free the whole shadow.
1233 if (kmemcheck_page_is_tracked(page))
1234 split_page(virt_to_page(page[0].shadow), order);
1235 #endif
1237 for (i = 1; i < (1 << order); i++)
1238 set_page_refcounted(page + i);
1242 * Similar to split_page except the page is already free. As this is only
1243 * being used for migration, the migratetype of the block also changes.
1244 * As this is called with interrupts disabled, the caller is responsible
1245 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1246 * are enabled.
1248 * Note: this is probably too low level an operation for use in drivers.
1249 * Please consult with lkml before using this in your driver.
1251 int split_free_page(struct page *page)
1253 unsigned int order;
1254 unsigned long watermark;
1255 struct zone *zone;
1257 BUG_ON(!PageBuddy(page));
1259 zone = page_zone(page);
1260 order = page_order(page);
1262 /* Obey watermarks as if the page was being allocated */
1263 watermark = low_wmark_pages(zone) + (1 << order);
1264 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1265 return 0;
1267 /* Remove page from free list */
1268 list_del(&page->lru);
1269 zone->free_area[order].nr_free--;
1270 rmv_page_order(page);
1271 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1273 /* Split into individual pages */
1274 set_page_refcounted(page);
1275 split_page(page, order);
1277 if (order >= pageblock_order - 1) {
1278 struct page *endpage = page + (1 << order) - 1;
1279 for (; page < endpage; page += pageblock_nr_pages)
1280 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1283 return 1 << order;
1287 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1288 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1289 * or two.
1291 static inline
1292 struct page *buffered_rmqueue(struct zone *preferred_zone,
1293 struct zone *zone, int order, gfp_t gfp_flags,
1294 int migratetype)
1296 unsigned long flags;
1297 struct page *page;
1298 int cold = !!(gfp_flags & __GFP_COLD);
1300 again:
1301 if (likely(order == 0)) {
1302 struct per_cpu_pages *pcp;
1303 struct list_head *list;
1305 local_irq_save(flags);
1306 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1307 list = &pcp->lists[migratetype];
1308 if (list_empty(list)) {
1309 pcp->count += rmqueue_bulk(zone, 0,
1310 pcp->batch, list,
1311 migratetype, cold);
1312 if (unlikely(list_empty(list)))
1313 goto failed;
1316 if (cold)
1317 page = list_entry(list->prev, struct page, lru);
1318 else
1319 page = list_entry(list->next, struct page, lru);
1321 list_del(&page->lru);
1322 pcp->count--;
1323 } else {
1324 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1326 * __GFP_NOFAIL is not to be used in new code.
1328 * All __GFP_NOFAIL callers should be fixed so that they
1329 * properly detect and handle allocation failures.
1331 * We most definitely don't want callers attempting to
1332 * allocate greater than order-1 page units with
1333 * __GFP_NOFAIL.
1335 WARN_ON_ONCE(order > 1);
1337 spin_lock_irqsave(&zone->lock, flags);
1338 page = __rmqueue(zone, order, migratetype);
1339 spin_unlock(&zone->lock);
1340 if (!page)
1341 goto failed;
1342 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1345 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1346 zone_statistics(preferred_zone, zone, gfp_flags);
1347 local_irq_restore(flags);
1349 VM_BUG_ON(bad_range(zone, page));
1350 if (prep_new_page(page, order, gfp_flags))
1351 goto again;
1352 return page;
1354 failed:
1355 local_irq_restore(flags);
1356 return NULL;
1359 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1360 #define ALLOC_WMARK_MIN WMARK_MIN
1361 #define ALLOC_WMARK_LOW WMARK_LOW
1362 #define ALLOC_WMARK_HIGH WMARK_HIGH
1363 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1365 /* Mask to get the watermark bits */
1366 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1368 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1369 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1370 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1372 #ifdef CONFIG_FAIL_PAGE_ALLOC
1374 static struct {
1375 struct fault_attr attr;
1377 u32 ignore_gfp_highmem;
1378 u32 ignore_gfp_wait;
1379 u32 min_order;
1380 } fail_page_alloc = {
1381 .attr = FAULT_ATTR_INITIALIZER,
1382 .ignore_gfp_wait = 1,
1383 .ignore_gfp_highmem = 1,
1384 .min_order = 1,
1387 static int __init setup_fail_page_alloc(char *str)
1389 return setup_fault_attr(&fail_page_alloc.attr, str);
1391 __setup("fail_page_alloc=", setup_fail_page_alloc);
1393 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1395 if (order < fail_page_alloc.min_order)
1396 return 0;
1397 if (gfp_mask & __GFP_NOFAIL)
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1400 return 0;
1401 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1402 return 0;
1404 return should_fail(&fail_page_alloc.attr, 1 << order);
1407 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1409 static int __init fail_page_alloc_debugfs(void)
1411 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1412 struct dentry *dir;
1414 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1415 &fail_page_alloc.attr);
1416 if (IS_ERR(dir))
1417 return PTR_ERR(dir);
1419 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait))
1421 goto fail;
1422 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1423 &fail_page_alloc.ignore_gfp_highmem))
1424 goto fail;
1425 if (!debugfs_create_u32("min-order", mode, dir,
1426 &fail_page_alloc.min_order))
1427 goto fail;
1429 return 0;
1430 fail:
1431 debugfs_remove_recursive(dir);
1433 return -ENOMEM;
1436 late_initcall(fail_page_alloc_debugfs);
1438 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1440 #else /* CONFIG_FAIL_PAGE_ALLOC */
1442 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1444 return 0;
1447 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1450 * Return true if free pages are above 'mark'. This takes into account the order
1451 * of the allocation.
1453 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1454 int classzone_idx, int alloc_flags, long free_pages)
1456 /* free_pages my go negative - that's OK */
1457 long min = mark;
1458 int o;
1460 free_pages -= (1 << order) + 1;
1461 if (alloc_flags & ALLOC_HIGH)
1462 min -= min / 2;
1463 if (alloc_flags & ALLOC_HARDER)
1464 min -= min / 4;
1466 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1467 return false;
1468 for (o = 0; o < order; o++) {
1469 /* At the next order, this order's pages become unavailable */
1470 free_pages -= z->free_area[o].nr_free << o;
1472 /* Require fewer higher order pages to be free */
1473 min >>= 1;
1475 if (free_pages <= min)
1476 return false;
1478 return true;
1481 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1482 int classzone_idx, int alloc_flags)
1484 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1485 zone_page_state(z, NR_FREE_PAGES));
1488 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1489 int classzone_idx, int alloc_flags)
1491 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1493 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1494 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1496 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1497 free_pages);
1500 #ifdef CONFIG_NUMA
1502 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1503 * skip over zones that are not allowed by the cpuset, or that have
1504 * been recently (in last second) found to be nearly full. See further
1505 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1506 * that have to skip over a lot of full or unallowed zones.
1508 * If the zonelist cache is present in the passed in zonelist, then
1509 * returns a pointer to the allowed node mask (either the current
1510 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1512 * If the zonelist cache is not available for this zonelist, does
1513 * nothing and returns NULL.
1515 * If the fullzones BITMAP in the zonelist cache is stale (more than
1516 * a second since last zap'd) then we zap it out (clear its bits.)
1518 * We hold off even calling zlc_setup, until after we've checked the
1519 * first zone in the zonelist, on the theory that most allocations will
1520 * be satisfied from that first zone, so best to examine that zone as
1521 * quickly as we can.
1523 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1525 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1526 nodemask_t *allowednodes; /* zonelist_cache approximation */
1528 zlc = zonelist->zlcache_ptr;
1529 if (!zlc)
1530 return NULL;
1532 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1533 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1534 zlc->last_full_zap = jiffies;
1537 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1538 &cpuset_current_mems_allowed :
1539 &node_states[N_HIGH_MEMORY];
1540 return allowednodes;
1544 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1545 * if it is worth looking at further for free memory:
1546 * 1) Check that the zone isn't thought to be full (doesn't have its
1547 * bit set in the zonelist_cache fullzones BITMAP).
1548 * 2) Check that the zones node (obtained from the zonelist_cache
1549 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1550 * Return true (non-zero) if zone is worth looking at further, or
1551 * else return false (zero) if it is not.
1553 * This check -ignores- the distinction between various watermarks,
1554 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1555 * found to be full for any variation of these watermarks, it will
1556 * be considered full for up to one second by all requests, unless
1557 * we are so low on memory on all allowed nodes that we are forced
1558 * into the second scan of the zonelist.
1560 * In the second scan we ignore this zonelist cache and exactly
1561 * apply the watermarks to all zones, even it is slower to do so.
1562 * We are low on memory in the second scan, and should leave no stone
1563 * unturned looking for a free page.
1565 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1566 nodemask_t *allowednodes)
1568 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1569 int i; /* index of *z in zonelist zones */
1570 int n; /* node that zone *z is on */
1572 zlc = zonelist->zlcache_ptr;
1573 if (!zlc)
1574 return 1;
1576 i = z - zonelist->_zonerefs;
1577 n = zlc->z_to_n[i];
1579 /* This zone is worth trying if it is allowed but not full */
1580 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1584 * Given 'z' scanning a zonelist, set the corresponding bit in
1585 * zlc->fullzones, so that subsequent attempts to allocate a page
1586 * from that zone don't waste time re-examining it.
1588 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1590 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1591 int i; /* index of *z in zonelist zones */
1593 zlc = zonelist->zlcache_ptr;
1594 if (!zlc)
1595 return;
1597 i = z - zonelist->_zonerefs;
1599 set_bit(i, zlc->fullzones);
1603 * clear all zones full, called after direct reclaim makes progress so that
1604 * a zone that was recently full is not skipped over for up to a second
1606 static void zlc_clear_zones_full(struct zonelist *zonelist)
1608 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1610 zlc = zonelist->zlcache_ptr;
1611 if (!zlc)
1612 return;
1614 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1617 #else /* CONFIG_NUMA */
1619 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1621 return NULL;
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 nodemask_t *allowednodes)
1627 return 1;
1630 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1634 static void zlc_clear_zones_full(struct zonelist *zonelist)
1637 #endif /* CONFIG_NUMA */
1640 * get_page_from_freelist goes through the zonelist trying to allocate
1641 * a page.
1643 static struct page *
1644 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1645 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1646 struct zone *preferred_zone, int migratetype)
1648 struct zoneref *z;
1649 struct page *page = NULL;
1650 int classzone_idx;
1651 struct zone *zone;
1652 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1653 int zlc_active = 0; /* set if using zonelist_cache */
1654 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1656 classzone_idx = zone_idx(preferred_zone);
1657 zonelist_scan:
1659 * Scan zonelist, looking for a zone with enough free.
1660 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1662 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1663 high_zoneidx, nodemask) {
1664 if (NUMA_BUILD && zlc_active &&
1665 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1666 continue;
1667 if ((alloc_flags & ALLOC_CPUSET) &&
1668 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1669 continue;
1671 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1672 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1673 unsigned long mark;
1674 int ret;
1676 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1677 if (zone_watermark_ok(zone, order, mark,
1678 classzone_idx, alloc_flags))
1679 goto try_this_zone;
1681 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1683 * we do zlc_setup if there are multiple nodes
1684 * and before considering the first zone allowed
1685 * by the cpuset.
1687 allowednodes = zlc_setup(zonelist, alloc_flags);
1688 zlc_active = 1;
1689 did_zlc_setup = 1;
1692 if (zone_reclaim_mode == 0)
1693 goto this_zone_full;
1696 * As we may have just activated ZLC, check if the first
1697 * eligible zone has failed zone_reclaim recently.
1699 if (NUMA_BUILD && zlc_active &&
1700 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1701 continue;
1703 ret = zone_reclaim(zone, gfp_mask, order);
1704 switch (ret) {
1705 case ZONE_RECLAIM_NOSCAN:
1706 /* did not scan */
1707 continue;
1708 case ZONE_RECLAIM_FULL:
1709 /* scanned but unreclaimable */
1710 continue;
1711 default:
1712 /* did we reclaim enough */
1713 if (!zone_watermark_ok(zone, order, mark,
1714 classzone_idx, alloc_flags))
1715 goto this_zone_full;
1719 try_this_zone:
1720 page = buffered_rmqueue(preferred_zone, zone, order,
1721 gfp_mask, migratetype);
1722 if (page)
1723 break;
1724 this_zone_full:
1725 if (NUMA_BUILD)
1726 zlc_mark_zone_full(zonelist, z);
1729 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1730 /* Disable zlc cache for second zonelist scan */
1731 zlc_active = 0;
1732 goto zonelist_scan;
1734 return page;
1738 * Large machines with many possible nodes should not always dump per-node
1739 * meminfo in irq context.
1741 static inline bool should_suppress_show_mem(void)
1743 bool ret = false;
1745 #if NODES_SHIFT > 8
1746 ret = in_interrupt();
1747 #endif
1748 return ret;
1751 static DEFINE_RATELIMIT_STATE(nopage_rs,
1752 DEFAULT_RATELIMIT_INTERVAL,
1753 DEFAULT_RATELIMIT_BURST);
1755 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1757 unsigned int filter = SHOW_MEM_FILTER_NODES;
1759 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760 return;
1763 * Walking all memory to count page types is very expensive and should
1764 * be inhibited in non-blockable contexts.
1766 if (!(gfp_mask & __GFP_WAIT))
1767 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
1770 * This documents exceptions given to allocations in certain
1771 * contexts that are allowed to allocate outside current's set
1772 * of allowed nodes.
1774 if (!(gfp_mask & __GFP_NOMEMALLOC))
1775 if (test_thread_flag(TIF_MEMDIE) ||
1776 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1777 filter &= ~SHOW_MEM_FILTER_NODES;
1778 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1779 filter &= ~SHOW_MEM_FILTER_NODES;
1781 if (fmt) {
1782 struct va_format vaf;
1783 va_list args;
1785 va_start(args, fmt);
1787 vaf.fmt = fmt;
1788 vaf.va = &args;
1790 pr_warn("%pV", &vaf);
1792 va_end(args);
1795 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1796 current->comm, order, gfp_mask);
1798 dump_stack();
1799 if (!should_suppress_show_mem())
1800 show_mem(filter);
1803 static inline int
1804 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1805 unsigned long pages_reclaimed)
1807 /* Do not loop if specifically requested */
1808 if (gfp_mask & __GFP_NORETRY)
1809 return 0;
1812 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1813 * means __GFP_NOFAIL, but that may not be true in other
1814 * implementations.
1816 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1817 return 1;
1820 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1821 * specified, then we retry until we no longer reclaim any pages
1822 * (above), or we've reclaimed an order of pages at least as
1823 * large as the allocation's order. In both cases, if the
1824 * allocation still fails, we stop retrying.
1826 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1827 return 1;
1830 * Don't let big-order allocations loop unless the caller
1831 * explicitly requests that.
1833 if (gfp_mask & __GFP_NOFAIL)
1834 return 1;
1836 return 0;
1839 static inline struct page *
1840 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1841 struct zonelist *zonelist, enum zone_type high_zoneidx,
1842 nodemask_t *nodemask, struct zone *preferred_zone,
1843 int migratetype)
1845 struct page *page;
1847 /* Acquire the OOM killer lock for the zones in zonelist */
1848 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1849 schedule_timeout_uninterruptible(1);
1850 return NULL;
1854 * Go through the zonelist yet one more time, keep very high watermark
1855 * here, this is only to catch a parallel oom killing, we must fail if
1856 * we're still under heavy pressure.
1858 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1859 order, zonelist, high_zoneidx,
1860 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1861 preferred_zone, migratetype);
1862 if (page)
1863 goto out;
1865 if (!(gfp_mask & __GFP_NOFAIL)) {
1866 /* The OOM killer will not help higher order allocs */
1867 if (order > PAGE_ALLOC_COSTLY_ORDER)
1868 goto out;
1869 /* The OOM killer does not needlessly kill tasks for lowmem */
1870 if (high_zoneidx < ZONE_NORMAL)
1871 goto out;
1873 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1874 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1875 * The caller should handle page allocation failure by itself if
1876 * it specifies __GFP_THISNODE.
1877 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1879 if (gfp_mask & __GFP_THISNODE)
1880 goto out;
1882 /* Exhausted what can be done so it's blamo time */
1883 out_of_memory(zonelist, gfp_mask, order, nodemask);
1885 out:
1886 clear_zonelist_oom(zonelist, gfp_mask);
1887 return page;
1890 #ifdef CONFIG_COMPACTION
1891 /* Try memory compaction for high-order allocations before reclaim */
1892 static struct page *
1893 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1894 struct zonelist *zonelist, enum zone_type high_zoneidx,
1895 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1896 int migratetype, bool sync_migration,
1897 bool *deferred_compaction,
1898 unsigned long *did_some_progress)
1900 struct page *page;
1902 if (!order)
1903 return NULL;
1905 if (compaction_deferred(preferred_zone)) {
1906 *deferred_compaction = true;
1907 return NULL;
1910 current->flags |= PF_MEMALLOC;
1911 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1912 nodemask, sync_migration);
1913 current->flags &= ~PF_MEMALLOC;
1914 if (*did_some_progress != COMPACT_SKIPPED) {
1916 /* Page migration frees to the PCP lists but we want merging */
1917 drain_pages(get_cpu());
1918 put_cpu();
1920 page = get_page_from_freelist(gfp_mask, nodemask,
1921 order, zonelist, high_zoneidx,
1922 alloc_flags, preferred_zone,
1923 migratetype);
1924 if (page) {
1925 preferred_zone->compact_considered = 0;
1926 preferred_zone->compact_defer_shift = 0;
1927 count_vm_event(COMPACTSUCCESS);
1928 return page;
1932 * It's bad if compaction run occurs and fails.
1933 * The most likely reason is that pages exist,
1934 * but not enough to satisfy watermarks.
1936 count_vm_event(COMPACTFAIL);
1939 * As async compaction considers a subset of pageblocks, only
1940 * defer if the failure was a sync compaction failure.
1942 if (sync_migration)
1943 defer_compaction(preferred_zone);
1945 cond_resched();
1948 return NULL;
1950 #else
1951 static inline struct page *
1952 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1953 struct zonelist *zonelist, enum zone_type high_zoneidx,
1954 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1955 int migratetype, bool sync_migration,
1956 bool *deferred_compaction,
1957 unsigned long *did_some_progress)
1959 return NULL;
1961 #endif /* CONFIG_COMPACTION */
1963 /* The really slow allocator path where we enter direct reclaim */
1964 static inline struct page *
1965 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1966 struct zonelist *zonelist, enum zone_type high_zoneidx,
1967 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1968 int migratetype, unsigned long *did_some_progress)
1970 struct page *page = NULL;
1971 struct reclaim_state reclaim_state;
1972 bool drained = false;
1974 cond_resched();
1976 /* We now go into synchronous reclaim */
1977 cpuset_memory_pressure_bump();
1978 current->flags |= PF_MEMALLOC;
1979 lockdep_set_current_reclaim_state(gfp_mask);
1980 reclaim_state.reclaimed_slab = 0;
1981 current->reclaim_state = &reclaim_state;
1983 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1985 current->reclaim_state = NULL;
1986 lockdep_clear_current_reclaim_state();
1987 current->flags &= ~PF_MEMALLOC;
1989 cond_resched();
1991 if (unlikely(!(*did_some_progress)))
1992 return NULL;
1994 /* After successful reclaim, reconsider all zones for allocation */
1995 if (NUMA_BUILD)
1996 zlc_clear_zones_full(zonelist);
1998 retry:
1999 page = get_page_from_freelist(gfp_mask, nodemask, order,
2000 zonelist, high_zoneidx,
2001 alloc_flags, preferred_zone,
2002 migratetype);
2005 * If an allocation failed after direct reclaim, it could be because
2006 * pages are pinned on the per-cpu lists. Drain them and try again
2008 if (!page && !drained) {
2009 drain_all_pages();
2010 drained = true;
2011 goto retry;
2014 return page;
2018 * This is called in the allocator slow-path if the allocation request is of
2019 * sufficient urgency to ignore watermarks and take other desperate measures
2021 static inline struct page *
2022 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2023 struct zonelist *zonelist, enum zone_type high_zoneidx,
2024 nodemask_t *nodemask, struct zone *preferred_zone,
2025 int migratetype)
2027 struct page *page;
2029 do {
2030 page = get_page_from_freelist(gfp_mask, nodemask, order,
2031 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2032 preferred_zone, migratetype);
2034 if (!page && gfp_mask & __GFP_NOFAIL)
2035 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2036 } while (!page && (gfp_mask & __GFP_NOFAIL));
2038 return page;
2041 static inline
2042 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2043 enum zone_type high_zoneidx,
2044 enum zone_type classzone_idx)
2046 struct zoneref *z;
2047 struct zone *zone;
2049 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2050 wakeup_kswapd(zone, order, classzone_idx);
2053 static inline int
2054 gfp_to_alloc_flags(gfp_t gfp_mask)
2056 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2057 const gfp_t wait = gfp_mask & __GFP_WAIT;
2059 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2060 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2063 * The caller may dip into page reserves a bit more if the caller
2064 * cannot run direct reclaim, or if the caller has realtime scheduling
2065 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2066 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2068 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2070 if (!wait) {
2072 * Not worth trying to allocate harder for
2073 * __GFP_NOMEMALLOC even if it can't schedule.
2075 if (!(gfp_mask & __GFP_NOMEMALLOC))
2076 alloc_flags |= ALLOC_HARDER;
2078 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2079 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2081 alloc_flags &= ~ALLOC_CPUSET;
2082 } else if (unlikely(rt_task(current)) && !in_interrupt())
2083 alloc_flags |= ALLOC_HARDER;
2085 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2086 if (!in_interrupt() &&
2087 ((current->flags & PF_MEMALLOC) ||
2088 unlikely(test_thread_flag(TIF_MEMDIE))))
2089 alloc_flags |= ALLOC_NO_WATERMARKS;
2092 return alloc_flags;
2095 static inline struct page *
2096 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2097 struct zonelist *zonelist, enum zone_type high_zoneidx,
2098 nodemask_t *nodemask, struct zone *preferred_zone,
2099 int migratetype)
2101 const gfp_t wait = gfp_mask & __GFP_WAIT;
2102 struct page *page = NULL;
2103 int alloc_flags;
2104 unsigned long pages_reclaimed = 0;
2105 unsigned long did_some_progress;
2106 bool sync_migration = false;
2107 bool deferred_compaction = false;
2110 * In the slowpath, we sanity check order to avoid ever trying to
2111 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2112 * be using allocators in order of preference for an area that is
2113 * too large.
2115 if (order >= MAX_ORDER) {
2116 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2117 return NULL;
2121 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2122 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2123 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2124 * using a larger set of nodes after it has established that the
2125 * allowed per node queues are empty and that nodes are
2126 * over allocated.
2128 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2129 goto nopage;
2131 restart:
2132 if (!(gfp_mask & __GFP_NO_KSWAPD))
2133 wake_all_kswapd(order, zonelist, high_zoneidx,
2134 zone_idx(preferred_zone));
2137 * OK, we're below the kswapd watermark and have kicked background
2138 * reclaim. Now things get more complex, so set up alloc_flags according
2139 * to how we want to proceed.
2141 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2144 * Find the true preferred zone if the allocation is unconstrained by
2145 * cpusets.
2147 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2148 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2149 &preferred_zone);
2151 rebalance:
2152 /* This is the last chance, in general, before the goto nopage. */
2153 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2154 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 preferred_zone, migratetype);
2156 if (page)
2157 goto got_pg;
2159 /* Allocate without watermarks if the context allows */
2160 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2161 page = __alloc_pages_high_priority(gfp_mask, order,
2162 zonelist, high_zoneidx, nodemask,
2163 preferred_zone, migratetype);
2164 if (page)
2165 goto got_pg;
2168 /* Atomic allocations - we can't balance anything */
2169 if (!wait)
2170 goto nopage;
2172 /* Avoid recursion of direct reclaim */
2173 if (current->flags & PF_MEMALLOC)
2174 goto nopage;
2176 /* Avoid allocations with no watermarks from looping endlessly */
2177 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2178 goto nopage;
2181 * Try direct compaction. The first pass is asynchronous. Subsequent
2182 * attempts after direct reclaim are synchronous
2184 page = __alloc_pages_direct_compact(gfp_mask, order,
2185 zonelist, high_zoneidx,
2186 nodemask,
2187 alloc_flags, preferred_zone,
2188 migratetype, sync_migration,
2189 &deferred_compaction,
2190 &did_some_progress);
2191 if (page)
2192 goto got_pg;
2193 sync_migration = true;
2196 * If compaction is deferred for high-order allocations, it is because
2197 * sync compaction recently failed. In this is the case and the caller
2198 * has requested the system not be heavily disrupted, fail the
2199 * allocation now instead of entering direct reclaim
2201 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2202 goto nopage;
2204 /* Try direct reclaim and then allocating */
2205 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2206 zonelist, high_zoneidx,
2207 nodemask,
2208 alloc_flags, preferred_zone,
2209 migratetype, &did_some_progress);
2210 if (page)
2211 goto got_pg;
2214 * If we failed to make any progress reclaiming, then we are
2215 * running out of options and have to consider going OOM
2217 if (!did_some_progress) {
2218 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2219 if (oom_killer_disabled)
2220 goto nopage;
2221 page = __alloc_pages_may_oom(gfp_mask, order,
2222 zonelist, high_zoneidx,
2223 nodemask, preferred_zone,
2224 migratetype);
2225 if (page)
2226 goto got_pg;
2228 if (!(gfp_mask & __GFP_NOFAIL)) {
2230 * The oom killer is not called for high-order
2231 * allocations that may fail, so if no progress
2232 * is being made, there are no other options and
2233 * retrying is unlikely to help.
2235 if (order > PAGE_ALLOC_COSTLY_ORDER)
2236 goto nopage;
2238 * The oom killer is not called for lowmem
2239 * allocations to prevent needlessly killing
2240 * innocent tasks.
2242 if (high_zoneidx < ZONE_NORMAL)
2243 goto nopage;
2246 goto restart;
2250 /* Check if we should retry the allocation */
2251 pages_reclaimed += did_some_progress;
2252 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2253 /* Wait for some write requests to complete then retry */
2254 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2255 goto rebalance;
2256 } else {
2258 * High-order allocations do not necessarily loop after
2259 * direct reclaim and reclaim/compaction depends on compaction
2260 * being called after reclaim so call directly if necessary
2262 page = __alloc_pages_direct_compact(gfp_mask, order,
2263 zonelist, high_zoneidx,
2264 nodemask,
2265 alloc_flags, preferred_zone,
2266 migratetype, sync_migration,
2267 &deferred_compaction,
2268 &did_some_progress);
2269 if (page)
2270 goto got_pg;
2273 nopage:
2274 warn_alloc_failed(gfp_mask, order, NULL);
2275 return page;
2276 got_pg:
2277 if (kmemcheck_enabled)
2278 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2279 return page;
2284 * This is the 'heart' of the zoned buddy allocator.
2286 struct page *
2287 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2288 struct zonelist *zonelist, nodemask_t *nodemask)
2290 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2291 struct zone *preferred_zone;
2292 struct page *page = NULL;
2293 int migratetype = allocflags_to_migratetype(gfp_mask);
2294 unsigned int cpuset_mems_cookie;
2296 gfp_mask &= gfp_allowed_mask;
2298 lockdep_trace_alloc(gfp_mask);
2300 might_sleep_if(gfp_mask & __GFP_WAIT);
2302 if (should_fail_alloc_page(gfp_mask, order))
2303 return NULL;
2306 * Check the zones suitable for the gfp_mask contain at least one
2307 * valid zone. It's possible to have an empty zonelist as a result
2308 * of GFP_THISNODE and a memoryless node
2310 if (unlikely(!zonelist->_zonerefs->zone))
2311 return NULL;
2313 retry_cpuset:
2314 cpuset_mems_cookie = get_mems_allowed();
2316 /* The preferred zone is used for statistics later */
2317 first_zones_zonelist(zonelist, high_zoneidx,
2318 nodemask ? : &cpuset_current_mems_allowed,
2319 &preferred_zone);
2320 if (!preferred_zone)
2321 goto out;
2323 /* First allocation attempt */
2324 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2325 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2326 preferred_zone, migratetype);
2327 if (unlikely(!page))
2328 page = __alloc_pages_slowpath(gfp_mask, order,
2329 zonelist, high_zoneidx, nodemask,
2330 preferred_zone, migratetype);
2332 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2334 out:
2336 * When updating a task's mems_allowed, it is possible to race with
2337 * parallel threads in such a way that an allocation can fail while
2338 * the mask is being updated. If a page allocation is about to fail,
2339 * check if the cpuset changed during allocation and if so, retry.
2341 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2342 goto retry_cpuset;
2344 return page;
2346 EXPORT_SYMBOL(__alloc_pages_nodemask);
2349 * Common helper functions.
2351 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2353 struct page *page;
2356 * __get_free_pages() returns a 32-bit address, which cannot represent
2357 * a highmem page
2359 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2361 page = alloc_pages(gfp_mask, order);
2362 if (!page)
2363 return 0;
2364 return (unsigned long) page_address(page);
2366 EXPORT_SYMBOL(__get_free_pages);
2368 unsigned long get_zeroed_page(gfp_t gfp_mask)
2370 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2372 EXPORT_SYMBOL(get_zeroed_page);
2374 void __pagevec_free(struct pagevec *pvec)
2376 int i = pagevec_count(pvec);
2378 while (--i >= 0) {
2379 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2380 free_hot_cold_page(pvec->pages[i], pvec->cold);
2384 void __free_pages(struct page *page, unsigned int order)
2386 if (put_page_testzero(page)) {
2387 if (order == 0)
2388 free_hot_cold_page(page, 0);
2389 else
2390 __free_pages_ok(page, order);
2394 EXPORT_SYMBOL(__free_pages);
2396 void free_pages(unsigned long addr, unsigned int order)
2398 if (addr != 0) {
2399 VM_BUG_ON(!virt_addr_valid((void *)addr));
2400 __free_pages(virt_to_page((void *)addr), order);
2404 EXPORT_SYMBOL(free_pages);
2406 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2408 if (addr) {
2409 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2410 unsigned long used = addr + PAGE_ALIGN(size);
2412 split_page(virt_to_page((void *)addr), order);
2413 while (used < alloc_end) {
2414 free_page(used);
2415 used += PAGE_SIZE;
2418 return (void *)addr;
2422 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2423 * @size: the number of bytes to allocate
2424 * @gfp_mask: GFP flags for the allocation
2426 * This function is similar to alloc_pages(), except that it allocates the
2427 * minimum number of pages to satisfy the request. alloc_pages() can only
2428 * allocate memory in power-of-two pages.
2430 * This function is also limited by MAX_ORDER.
2432 * Memory allocated by this function must be released by free_pages_exact().
2434 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2436 unsigned int order = get_order(size);
2437 unsigned long addr;
2439 addr = __get_free_pages(gfp_mask, order);
2440 return make_alloc_exact(addr, order, size);
2442 EXPORT_SYMBOL(alloc_pages_exact);
2445 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2446 * pages on a node.
2447 * @nid: the preferred node ID where memory should be allocated
2448 * @size: the number of bytes to allocate
2449 * @gfp_mask: GFP flags for the allocation
2451 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2452 * back.
2453 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2454 * but is not exact.
2456 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2458 unsigned order = get_order(size);
2459 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2460 if (!p)
2461 return NULL;
2462 return make_alloc_exact((unsigned long)page_address(p), order, size);
2464 EXPORT_SYMBOL(alloc_pages_exact_nid);
2467 * free_pages_exact - release memory allocated via alloc_pages_exact()
2468 * @virt: the value returned by alloc_pages_exact.
2469 * @size: size of allocation, same value as passed to alloc_pages_exact().
2471 * Release the memory allocated by a previous call to alloc_pages_exact.
2473 void free_pages_exact(void *virt, size_t size)
2475 unsigned long addr = (unsigned long)virt;
2476 unsigned long end = addr + PAGE_ALIGN(size);
2478 while (addr < end) {
2479 free_page(addr);
2480 addr += PAGE_SIZE;
2483 EXPORT_SYMBOL(free_pages_exact);
2485 static unsigned int nr_free_zone_pages(int offset)
2487 struct zoneref *z;
2488 struct zone *zone;
2490 /* Just pick one node, since fallback list is circular */
2491 unsigned int sum = 0;
2493 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2495 for_each_zone_zonelist(zone, z, zonelist, offset) {
2496 unsigned long size = zone->present_pages;
2497 unsigned long high = high_wmark_pages(zone);
2498 if (size > high)
2499 sum += size - high;
2502 return sum;
2506 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2508 unsigned int nr_free_buffer_pages(void)
2510 return nr_free_zone_pages(gfp_zone(GFP_USER));
2512 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2515 * Amount of free RAM allocatable within all zones
2517 unsigned int nr_free_pagecache_pages(void)
2519 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2522 static inline void show_node(struct zone *zone)
2524 if (NUMA_BUILD)
2525 printk("Node %d ", zone_to_nid(zone));
2528 void si_meminfo(struct sysinfo *val)
2530 val->totalram = totalram_pages;
2531 val->sharedram = 0;
2532 val->freeram = global_page_state(NR_FREE_PAGES);
2533 val->bufferram = nr_blockdev_pages();
2534 val->totalhigh = totalhigh_pages;
2535 val->freehigh = nr_free_highpages();
2536 val->mem_unit = PAGE_SIZE;
2539 EXPORT_SYMBOL(si_meminfo);
2541 #ifdef CONFIG_NUMA
2542 void si_meminfo_node(struct sysinfo *val, int nid)
2544 pg_data_t *pgdat = NODE_DATA(nid);
2546 val->totalram = pgdat->node_present_pages;
2547 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2548 #ifdef CONFIG_HIGHMEM
2549 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2550 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2551 NR_FREE_PAGES);
2552 #else
2553 val->totalhigh = 0;
2554 val->freehigh = 0;
2555 #endif
2556 val->mem_unit = PAGE_SIZE;
2558 #endif
2561 * Determine whether the node should be displayed or not, depending on whether
2562 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2564 bool skip_free_areas_node(unsigned int flags, int nid)
2566 bool ret = false;
2567 unsigned int cpuset_mems_cookie;
2569 if (!(flags & SHOW_MEM_FILTER_NODES))
2570 goto out;
2572 do {
2573 cpuset_mems_cookie = get_mems_allowed();
2574 ret = !node_isset(nid, cpuset_current_mems_allowed);
2575 } while (!put_mems_allowed(cpuset_mems_cookie));
2576 out:
2577 return ret;
2580 #define K(x) ((x) << (PAGE_SHIFT-10))
2583 * Show free area list (used inside shift_scroll-lock stuff)
2584 * We also calculate the percentage fragmentation. We do this by counting the
2585 * memory on each free list with the exception of the first item on the list.
2586 * Suppresses nodes that are not allowed by current's cpuset if
2587 * SHOW_MEM_FILTER_NODES is passed.
2589 void show_free_areas(unsigned int filter)
2591 int cpu;
2592 struct zone *zone;
2594 for_each_populated_zone(zone) {
2595 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2596 continue;
2597 show_node(zone);
2598 printk("%s per-cpu:\n", zone->name);
2600 for_each_online_cpu(cpu) {
2601 struct per_cpu_pageset *pageset;
2603 pageset = per_cpu_ptr(zone->pageset, cpu);
2605 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2606 cpu, pageset->pcp.high,
2607 pageset->pcp.batch, pageset->pcp.count);
2611 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2612 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2613 " unevictable:%lu"
2614 " dirty:%lu writeback:%lu unstable:%lu\n"
2615 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2616 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2617 global_page_state(NR_ACTIVE_ANON),
2618 global_page_state(NR_INACTIVE_ANON),
2619 global_page_state(NR_ISOLATED_ANON),
2620 global_page_state(NR_ACTIVE_FILE),
2621 global_page_state(NR_INACTIVE_FILE),
2622 global_page_state(NR_ISOLATED_FILE),
2623 global_page_state(NR_UNEVICTABLE),
2624 global_page_state(NR_FILE_DIRTY),
2625 global_page_state(NR_WRITEBACK),
2626 global_page_state(NR_UNSTABLE_NFS),
2627 global_page_state(NR_FREE_PAGES),
2628 global_page_state(NR_SLAB_RECLAIMABLE),
2629 global_page_state(NR_SLAB_UNRECLAIMABLE),
2630 global_page_state(NR_FILE_MAPPED),
2631 global_page_state(NR_SHMEM),
2632 global_page_state(NR_PAGETABLE),
2633 global_page_state(NR_BOUNCE));
2635 for_each_populated_zone(zone) {
2636 int i;
2638 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2639 continue;
2640 show_node(zone);
2641 printk("%s"
2642 " free:%lukB"
2643 " min:%lukB"
2644 " low:%lukB"
2645 " high:%lukB"
2646 " active_anon:%lukB"
2647 " inactive_anon:%lukB"
2648 " active_file:%lukB"
2649 " inactive_file:%lukB"
2650 " unevictable:%lukB"
2651 " isolated(anon):%lukB"
2652 " isolated(file):%lukB"
2653 " present:%lukB"
2654 " mlocked:%lukB"
2655 " dirty:%lukB"
2656 " writeback:%lukB"
2657 " mapped:%lukB"
2658 " shmem:%lukB"
2659 " slab_reclaimable:%lukB"
2660 " slab_unreclaimable:%lukB"
2661 " kernel_stack:%lukB"
2662 " pagetables:%lukB"
2663 " unstable:%lukB"
2664 " bounce:%lukB"
2665 " writeback_tmp:%lukB"
2666 " pages_scanned:%lu"
2667 " all_unreclaimable? %s"
2668 "\n",
2669 zone->name,
2670 K(zone_page_state(zone, NR_FREE_PAGES)),
2671 K(min_wmark_pages(zone)),
2672 K(low_wmark_pages(zone)),
2673 K(high_wmark_pages(zone)),
2674 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2675 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2676 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2677 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2678 K(zone_page_state(zone, NR_UNEVICTABLE)),
2679 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2680 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2681 K(zone->present_pages),
2682 K(zone_page_state(zone, NR_MLOCK)),
2683 K(zone_page_state(zone, NR_FILE_DIRTY)),
2684 K(zone_page_state(zone, NR_WRITEBACK)),
2685 K(zone_page_state(zone, NR_FILE_MAPPED)),
2686 K(zone_page_state(zone, NR_SHMEM)),
2687 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2688 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2689 zone_page_state(zone, NR_KERNEL_STACK) *
2690 THREAD_SIZE / 1024,
2691 K(zone_page_state(zone, NR_PAGETABLE)),
2692 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2693 K(zone_page_state(zone, NR_BOUNCE)),
2694 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2695 zone->pages_scanned,
2696 (zone->all_unreclaimable ? "yes" : "no")
2698 printk("lowmem_reserve[]:");
2699 for (i = 0; i < MAX_NR_ZONES; i++)
2700 printk(" %lu", zone->lowmem_reserve[i]);
2701 printk("\n");
2704 for_each_populated_zone(zone) {
2705 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2707 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2708 continue;
2709 show_node(zone);
2710 printk("%s: ", zone->name);
2712 spin_lock_irqsave(&zone->lock, flags);
2713 for (order = 0; order < MAX_ORDER; order++) {
2714 nr[order] = zone->free_area[order].nr_free;
2715 total += nr[order] << order;
2717 spin_unlock_irqrestore(&zone->lock, flags);
2718 for (order = 0; order < MAX_ORDER; order++)
2719 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2720 printk("= %lukB\n", K(total));
2723 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2725 show_swap_cache_info();
2728 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2730 zoneref->zone = zone;
2731 zoneref->zone_idx = zone_idx(zone);
2735 * Builds allocation fallback zone lists.
2737 * Add all populated zones of a node to the zonelist.
2739 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2740 int nr_zones, enum zone_type zone_type)
2742 struct zone *zone;
2744 BUG_ON(zone_type >= MAX_NR_ZONES);
2745 zone_type++;
2747 do {
2748 zone_type--;
2749 zone = pgdat->node_zones + zone_type;
2750 if (populated_zone(zone)) {
2751 zoneref_set_zone(zone,
2752 &zonelist->_zonerefs[nr_zones++]);
2753 check_highest_zone(zone_type);
2756 } while (zone_type);
2757 return nr_zones;
2762 * zonelist_order:
2763 * 0 = automatic detection of better ordering.
2764 * 1 = order by ([node] distance, -zonetype)
2765 * 2 = order by (-zonetype, [node] distance)
2767 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2768 * the same zonelist. So only NUMA can configure this param.
2770 #define ZONELIST_ORDER_DEFAULT 0
2771 #define ZONELIST_ORDER_NODE 1
2772 #define ZONELIST_ORDER_ZONE 2
2774 /* zonelist order in the kernel.
2775 * set_zonelist_order() will set this to NODE or ZONE.
2777 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2778 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2781 #ifdef CONFIG_NUMA
2782 /* The value user specified ....changed by config */
2783 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2784 /* string for sysctl */
2785 #define NUMA_ZONELIST_ORDER_LEN 16
2786 char numa_zonelist_order[16] = "default";
2789 * interface for configure zonelist ordering.
2790 * command line option "numa_zonelist_order"
2791 * = "[dD]efault - default, automatic configuration.
2792 * = "[nN]ode - order by node locality, then by zone within node
2793 * = "[zZ]one - order by zone, then by locality within zone
2796 static int __parse_numa_zonelist_order(char *s)
2798 if (*s == 'd' || *s == 'D') {
2799 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2800 } else if (*s == 'n' || *s == 'N') {
2801 user_zonelist_order = ZONELIST_ORDER_NODE;
2802 } else if (*s == 'z' || *s == 'Z') {
2803 user_zonelist_order = ZONELIST_ORDER_ZONE;
2804 } else {
2805 printk(KERN_WARNING
2806 "Ignoring invalid numa_zonelist_order value: "
2807 "%s\n", s);
2808 return -EINVAL;
2810 return 0;
2813 static __init int setup_numa_zonelist_order(char *s)
2815 int ret;
2817 if (!s)
2818 return 0;
2820 ret = __parse_numa_zonelist_order(s);
2821 if (ret == 0)
2822 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2824 return ret;
2826 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2829 * sysctl handler for numa_zonelist_order
2831 int numa_zonelist_order_handler(ctl_table *table, int write,
2832 void __user *buffer, size_t *length,
2833 loff_t *ppos)
2835 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2836 int ret;
2837 static DEFINE_MUTEX(zl_order_mutex);
2839 mutex_lock(&zl_order_mutex);
2840 if (write)
2841 strcpy(saved_string, (char*)table->data);
2842 ret = proc_dostring(table, write, buffer, length, ppos);
2843 if (ret)
2844 goto out;
2845 if (write) {
2846 int oldval = user_zonelist_order;
2847 if (__parse_numa_zonelist_order((char*)table->data)) {
2849 * bogus value. restore saved string
2851 strncpy((char*)table->data, saved_string,
2852 NUMA_ZONELIST_ORDER_LEN);
2853 user_zonelist_order = oldval;
2854 } else if (oldval != user_zonelist_order) {
2855 mutex_lock(&zonelists_mutex);
2856 build_all_zonelists(NULL);
2857 mutex_unlock(&zonelists_mutex);
2860 out:
2861 mutex_unlock(&zl_order_mutex);
2862 return ret;
2866 #define MAX_NODE_LOAD (nr_online_nodes)
2867 static int node_load[MAX_NUMNODES];
2870 * find_next_best_node - find the next node that should appear in a given node's fallback list
2871 * @node: node whose fallback list we're appending
2872 * @used_node_mask: nodemask_t of already used nodes
2874 * We use a number of factors to determine which is the next node that should
2875 * appear on a given node's fallback list. The node should not have appeared
2876 * already in @node's fallback list, and it should be the next closest node
2877 * according to the distance array (which contains arbitrary distance values
2878 * from each node to each node in the system), and should also prefer nodes
2879 * with no CPUs, since presumably they'll have very little allocation pressure
2880 * on them otherwise.
2881 * It returns -1 if no node is found.
2883 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2885 int n, val;
2886 int min_val = INT_MAX;
2887 int best_node = -1;
2888 const struct cpumask *tmp = cpumask_of_node(0);
2890 /* Use the local node if we haven't already */
2891 if (!node_isset(node, *used_node_mask)) {
2892 node_set(node, *used_node_mask);
2893 return node;
2896 for_each_node_state(n, N_HIGH_MEMORY) {
2898 /* Don't want a node to appear more than once */
2899 if (node_isset(n, *used_node_mask))
2900 continue;
2902 /* Use the distance array to find the distance */
2903 val = node_distance(node, n);
2905 /* Penalize nodes under us ("prefer the next node") */
2906 val += (n < node);
2908 /* Give preference to headless and unused nodes */
2909 tmp = cpumask_of_node(n);
2910 if (!cpumask_empty(tmp))
2911 val += PENALTY_FOR_NODE_WITH_CPUS;
2913 /* Slight preference for less loaded node */
2914 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2915 val += node_load[n];
2917 if (val < min_val) {
2918 min_val = val;
2919 best_node = n;
2923 if (best_node >= 0)
2924 node_set(best_node, *used_node_mask);
2926 return best_node;
2931 * Build zonelists ordered by node and zones within node.
2932 * This results in maximum locality--normal zone overflows into local
2933 * DMA zone, if any--but risks exhausting DMA zone.
2935 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2937 int j;
2938 struct zonelist *zonelist;
2940 zonelist = &pgdat->node_zonelists[0];
2941 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2943 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2944 MAX_NR_ZONES - 1);
2945 zonelist->_zonerefs[j].zone = NULL;
2946 zonelist->_zonerefs[j].zone_idx = 0;
2950 * Build gfp_thisnode zonelists
2952 static void build_thisnode_zonelists(pg_data_t *pgdat)
2954 int j;
2955 struct zonelist *zonelist;
2957 zonelist = &pgdat->node_zonelists[1];
2958 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2959 zonelist->_zonerefs[j].zone = NULL;
2960 zonelist->_zonerefs[j].zone_idx = 0;
2964 * Build zonelists ordered by zone and nodes within zones.
2965 * This results in conserving DMA zone[s] until all Normal memory is
2966 * exhausted, but results in overflowing to remote node while memory
2967 * may still exist in local DMA zone.
2969 static int node_order[MAX_NUMNODES];
2971 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2973 int pos, j, node;
2974 int zone_type; /* needs to be signed */
2975 struct zone *z;
2976 struct zonelist *zonelist;
2978 zonelist = &pgdat->node_zonelists[0];
2979 pos = 0;
2980 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2981 for (j = 0; j < nr_nodes; j++) {
2982 node = node_order[j];
2983 z = &NODE_DATA(node)->node_zones[zone_type];
2984 if (populated_zone(z)) {
2985 zoneref_set_zone(z,
2986 &zonelist->_zonerefs[pos++]);
2987 check_highest_zone(zone_type);
2991 zonelist->_zonerefs[pos].zone = NULL;
2992 zonelist->_zonerefs[pos].zone_idx = 0;
2995 static int default_zonelist_order(void)
2997 int nid, zone_type;
2998 unsigned long low_kmem_size,total_size;
2999 struct zone *z;
3000 int average_size;
3002 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3003 * If they are really small and used heavily, the system can fall
3004 * into OOM very easily.
3005 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3007 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3008 low_kmem_size = 0;
3009 total_size = 0;
3010 for_each_online_node(nid) {
3011 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3012 z = &NODE_DATA(nid)->node_zones[zone_type];
3013 if (populated_zone(z)) {
3014 if (zone_type < ZONE_NORMAL)
3015 low_kmem_size += z->present_pages;
3016 total_size += z->present_pages;
3017 } else if (zone_type == ZONE_NORMAL) {
3019 * If any node has only lowmem, then node order
3020 * is preferred to allow kernel allocations
3021 * locally; otherwise, they can easily infringe
3022 * on other nodes when there is an abundance of
3023 * lowmem available to allocate from.
3025 return ZONELIST_ORDER_NODE;
3029 if (!low_kmem_size || /* there are no DMA area. */
3030 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3031 return ZONELIST_ORDER_NODE;
3033 * look into each node's config.
3034 * If there is a node whose DMA/DMA32 memory is very big area on
3035 * local memory, NODE_ORDER may be suitable.
3037 average_size = total_size /
3038 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3039 for_each_online_node(nid) {
3040 low_kmem_size = 0;
3041 total_size = 0;
3042 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3043 z = &NODE_DATA(nid)->node_zones[zone_type];
3044 if (populated_zone(z)) {
3045 if (zone_type < ZONE_NORMAL)
3046 low_kmem_size += z->present_pages;
3047 total_size += z->present_pages;
3050 if (low_kmem_size &&
3051 total_size > average_size && /* ignore small node */
3052 low_kmem_size > total_size * 70/100)
3053 return ZONELIST_ORDER_NODE;
3055 return ZONELIST_ORDER_ZONE;
3058 static void set_zonelist_order(void)
3060 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3061 current_zonelist_order = default_zonelist_order();
3062 else
3063 current_zonelist_order = user_zonelist_order;
3066 static void build_zonelists(pg_data_t *pgdat)
3068 int j, node, load;
3069 enum zone_type i;
3070 nodemask_t used_mask;
3071 int local_node, prev_node;
3072 struct zonelist *zonelist;
3073 int order = current_zonelist_order;
3075 /* initialize zonelists */
3076 for (i = 0; i < MAX_ZONELISTS; i++) {
3077 zonelist = pgdat->node_zonelists + i;
3078 zonelist->_zonerefs[0].zone = NULL;
3079 zonelist->_zonerefs[0].zone_idx = 0;
3082 /* NUMA-aware ordering of nodes */
3083 local_node = pgdat->node_id;
3084 load = nr_online_nodes;
3085 prev_node = local_node;
3086 nodes_clear(used_mask);
3088 memset(node_order, 0, sizeof(node_order));
3089 j = 0;
3091 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3092 int distance = node_distance(local_node, node);
3095 * If another node is sufficiently far away then it is better
3096 * to reclaim pages in a zone before going off node.
3098 if (distance > RECLAIM_DISTANCE)
3099 zone_reclaim_mode = 1;
3102 * We don't want to pressure a particular node.
3103 * So adding penalty to the first node in same
3104 * distance group to make it round-robin.
3106 if (distance != node_distance(local_node, prev_node))
3107 node_load[node] = load;
3109 prev_node = node;
3110 load--;
3111 if (order == ZONELIST_ORDER_NODE)
3112 build_zonelists_in_node_order(pgdat, node);
3113 else
3114 node_order[j++] = node; /* remember order */
3117 if (order == ZONELIST_ORDER_ZONE) {
3118 /* calculate node order -- i.e., DMA last! */
3119 build_zonelists_in_zone_order(pgdat, j);
3122 build_thisnode_zonelists(pgdat);
3125 /* Construct the zonelist performance cache - see further mmzone.h */
3126 static void build_zonelist_cache(pg_data_t *pgdat)
3128 struct zonelist *zonelist;
3129 struct zonelist_cache *zlc;
3130 struct zoneref *z;
3132 zonelist = &pgdat->node_zonelists[0];
3133 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3134 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3135 for (z = zonelist->_zonerefs; z->zone; z++)
3136 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3141 * Return node id of node used for "local" allocations.
3142 * I.e., first node id of first zone in arg node's generic zonelist.
3143 * Used for initializing percpu 'numa_mem', which is used primarily
3144 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3146 int local_memory_node(int node)
3148 struct zone *zone;
3150 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3151 gfp_zone(GFP_KERNEL),
3152 NULL,
3153 &zone);
3154 return zone->node;
3156 #endif
3158 #else /* CONFIG_NUMA */
3160 static void set_zonelist_order(void)
3162 current_zonelist_order = ZONELIST_ORDER_ZONE;
3165 static void build_zonelists(pg_data_t *pgdat)
3167 int node, local_node;
3168 enum zone_type j;
3169 struct zonelist *zonelist;
3171 local_node = pgdat->node_id;
3173 zonelist = &pgdat->node_zonelists[0];
3174 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3177 * Now we build the zonelist so that it contains the zones
3178 * of all the other nodes.
3179 * We don't want to pressure a particular node, so when
3180 * building the zones for node N, we make sure that the
3181 * zones coming right after the local ones are those from
3182 * node N+1 (modulo N)
3184 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3185 if (!node_online(node))
3186 continue;
3187 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3188 MAX_NR_ZONES - 1);
3190 for (node = 0; node < local_node; node++) {
3191 if (!node_online(node))
3192 continue;
3193 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3194 MAX_NR_ZONES - 1);
3197 zonelist->_zonerefs[j].zone = NULL;
3198 zonelist->_zonerefs[j].zone_idx = 0;
3201 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3202 static void build_zonelist_cache(pg_data_t *pgdat)
3204 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3207 #endif /* CONFIG_NUMA */
3210 * Boot pageset table. One per cpu which is going to be used for all
3211 * zones and all nodes. The parameters will be set in such a way
3212 * that an item put on a list will immediately be handed over to
3213 * the buddy list. This is safe since pageset manipulation is done
3214 * with interrupts disabled.
3216 * The boot_pagesets must be kept even after bootup is complete for
3217 * unused processors and/or zones. They do play a role for bootstrapping
3218 * hotplugged processors.
3220 * zoneinfo_show() and maybe other functions do
3221 * not check if the processor is online before following the pageset pointer.
3222 * Other parts of the kernel may not check if the zone is available.
3224 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3225 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3226 static void setup_zone_pageset(struct zone *zone);
3229 * Global mutex to protect against size modification of zonelists
3230 * as well as to serialize pageset setup for the new populated zone.
3232 DEFINE_MUTEX(zonelists_mutex);
3234 /* return values int ....just for stop_machine() */
3235 static __init_refok int __build_all_zonelists(void *data)
3237 int nid;
3238 int cpu;
3240 #ifdef CONFIG_NUMA
3241 memset(node_load, 0, sizeof(node_load));
3242 #endif
3243 for_each_online_node(nid) {
3244 pg_data_t *pgdat = NODE_DATA(nid);
3246 build_zonelists(pgdat);
3247 build_zonelist_cache(pgdat);
3251 * Initialize the boot_pagesets that are going to be used
3252 * for bootstrapping processors. The real pagesets for
3253 * each zone will be allocated later when the per cpu
3254 * allocator is available.
3256 * boot_pagesets are used also for bootstrapping offline
3257 * cpus if the system is already booted because the pagesets
3258 * are needed to initialize allocators on a specific cpu too.
3259 * F.e. the percpu allocator needs the page allocator which
3260 * needs the percpu allocator in order to allocate its pagesets
3261 * (a chicken-egg dilemma).
3263 for_each_possible_cpu(cpu) {
3264 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3268 * We now know the "local memory node" for each node--
3269 * i.e., the node of the first zone in the generic zonelist.
3270 * Set up numa_mem percpu variable for on-line cpus. During
3271 * boot, only the boot cpu should be on-line; we'll init the
3272 * secondary cpus' numa_mem as they come on-line. During
3273 * node/memory hotplug, we'll fixup all on-line cpus.
3275 if (cpu_online(cpu))
3276 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3277 #endif
3280 return 0;
3284 * Called with zonelists_mutex held always
3285 * unless system_state == SYSTEM_BOOTING.
3287 void __ref build_all_zonelists(void *data)
3289 set_zonelist_order();
3291 if (system_state == SYSTEM_BOOTING) {
3292 __build_all_zonelists(NULL);
3293 mminit_verify_zonelist();
3294 cpuset_init_current_mems_allowed();
3295 } else {
3296 /* we have to stop all cpus to guarantee there is no user
3297 of zonelist */
3298 #ifdef CONFIG_MEMORY_HOTPLUG
3299 if (data)
3300 setup_zone_pageset((struct zone *)data);
3301 #endif
3302 stop_machine(__build_all_zonelists, NULL, NULL);
3303 /* cpuset refresh routine should be here */
3305 vm_total_pages = nr_free_pagecache_pages();
3307 * Disable grouping by mobility if the number of pages in the
3308 * system is too low to allow the mechanism to work. It would be
3309 * more accurate, but expensive to check per-zone. This check is
3310 * made on memory-hotadd so a system can start with mobility
3311 * disabled and enable it later
3313 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3314 page_group_by_mobility_disabled = 1;
3315 else
3316 page_group_by_mobility_disabled = 0;
3318 printk("Built %i zonelists in %s order, mobility grouping %s. "
3319 "Total pages: %ld\n",
3320 nr_online_nodes,
3321 zonelist_order_name[current_zonelist_order],
3322 page_group_by_mobility_disabled ? "off" : "on",
3323 vm_total_pages);
3324 #ifdef CONFIG_NUMA
3325 printk("Policy zone: %s\n", zone_names[policy_zone]);
3326 #endif
3330 * Helper functions to size the waitqueue hash table.
3331 * Essentially these want to choose hash table sizes sufficiently
3332 * large so that collisions trying to wait on pages are rare.
3333 * But in fact, the number of active page waitqueues on typical
3334 * systems is ridiculously low, less than 200. So this is even
3335 * conservative, even though it seems large.
3337 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3338 * waitqueues, i.e. the size of the waitq table given the number of pages.
3340 #define PAGES_PER_WAITQUEUE 256
3342 #ifndef CONFIG_MEMORY_HOTPLUG
3343 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3345 unsigned long size = 1;
3347 pages /= PAGES_PER_WAITQUEUE;
3349 while (size < pages)
3350 size <<= 1;
3353 * Once we have dozens or even hundreds of threads sleeping
3354 * on IO we've got bigger problems than wait queue collision.
3355 * Limit the size of the wait table to a reasonable size.
3357 size = min(size, 4096UL);
3359 return max(size, 4UL);
3361 #else
3363 * A zone's size might be changed by hot-add, so it is not possible to determine
3364 * a suitable size for its wait_table. So we use the maximum size now.
3366 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3368 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3369 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3370 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3372 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3373 * or more by the traditional way. (See above). It equals:
3375 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3376 * ia64(16K page size) : = ( 8G + 4M)byte.
3377 * powerpc (64K page size) : = (32G +16M)byte.
3379 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3381 return 4096UL;
3383 #endif
3386 * This is an integer logarithm so that shifts can be used later
3387 * to extract the more random high bits from the multiplicative
3388 * hash function before the remainder is taken.
3390 static inline unsigned long wait_table_bits(unsigned long size)
3392 return ffz(~size);
3395 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3398 * Check if a pageblock contains reserved pages
3400 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3402 unsigned long pfn;
3404 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3405 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3406 return 1;
3408 return 0;
3412 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3413 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3414 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3415 * higher will lead to a bigger reserve which will get freed as contiguous
3416 * blocks as reclaim kicks in
3418 static void setup_zone_migrate_reserve(struct zone *zone)
3420 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3421 struct page *page;
3422 unsigned long block_migratetype;
3423 int reserve;
3426 * Get the start pfn, end pfn and the number of blocks to reserve
3427 * We have to be careful to be aligned to pageblock_nr_pages to
3428 * make sure that we always check pfn_valid for the first page in
3429 * the block.
3431 start_pfn = zone->zone_start_pfn;
3432 end_pfn = start_pfn + zone->spanned_pages;
3433 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3434 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3435 pageblock_order;
3438 * Reserve blocks are generally in place to help high-order atomic
3439 * allocations that are short-lived. A min_free_kbytes value that
3440 * would result in more than 2 reserve blocks for atomic allocations
3441 * is assumed to be in place to help anti-fragmentation for the
3442 * future allocation of hugepages at runtime.
3444 reserve = min(2, reserve);
3446 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3447 if (!pfn_valid(pfn))
3448 continue;
3449 page = pfn_to_page(pfn);
3451 /* Watch out for overlapping nodes */
3452 if (page_to_nid(page) != zone_to_nid(zone))
3453 continue;
3455 block_migratetype = get_pageblock_migratetype(page);
3457 /* Only test what is necessary when the reserves are not met */
3458 if (reserve > 0) {
3460 * Blocks with reserved pages will never free, skip
3461 * them.
3463 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3464 if (pageblock_is_reserved(pfn, block_end_pfn))
3465 continue;
3467 /* If this block is reserved, account for it */
3468 if (block_migratetype == MIGRATE_RESERVE) {
3469 reserve--;
3470 continue;
3473 /* Suitable for reserving if this block is movable */
3474 if (block_migratetype == MIGRATE_MOVABLE) {
3475 set_pageblock_migratetype(page,
3476 MIGRATE_RESERVE);
3477 move_freepages_block(zone, page,
3478 MIGRATE_RESERVE);
3479 reserve--;
3480 continue;
3485 * If the reserve is met and this is a previous reserved block,
3486 * take it back
3488 if (block_migratetype == MIGRATE_RESERVE) {
3489 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3490 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3496 * Initially all pages are reserved - free ones are freed
3497 * up by free_all_bootmem() once the early boot process is
3498 * done. Non-atomic initialization, single-pass.
3500 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3501 unsigned long start_pfn, enum memmap_context context)
3503 struct page *page;
3504 unsigned long end_pfn = start_pfn + size;
3505 unsigned long pfn;
3506 struct zone *z;
3508 if (highest_memmap_pfn < end_pfn - 1)
3509 highest_memmap_pfn = end_pfn - 1;
3511 z = &NODE_DATA(nid)->node_zones[zone];
3512 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3514 * There can be holes in boot-time mem_map[]s
3515 * handed to this function. They do not
3516 * exist on hotplugged memory.
3518 if (context == MEMMAP_EARLY) {
3519 if (!early_pfn_valid(pfn))
3520 continue;
3521 if (!early_pfn_in_nid(pfn, nid))
3522 continue;
3524 page = pfn_to_page(pfn);
3525 set_page_links(page, zone, nid, pfn);
3526 mminit_verify_page_links(page, zone, nid, pfn);
3527 init_page_count(page);
3528 reset_page_mapcount(page);
3529 SetPageReserved(page);
3531 * Mark the block movable so that blocks are reserved for
3532 * movable at startup. This will force kernel allocations
3533 * to reserve their blocks rather than leaking throughout
3534 * the address space during boot when many long-lived
3535 * kernel allocations are made. Later some blocks near
3536 * the start are marked MIGRATE_RESERVE by
3537 * setup_zone_migrate_reserve()
3539 * bitmap is created for zone's valid pfn range. but memmap
3540 * can be created for invalid pages (for alignment)
3541 * check here not to call set_pageblock_migratetype() against
3542 * pfn out of zone.
3544 if ((z->zone_start_pfn <= pfn)
3545 && (pfn < z->zone_start_pfn + z->spanned_pages)
3546 && !(pfn & (pageblock_nr_pages - 1)))
3547 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3549 INIT_LIST_HEAD(&page->lru);
3550 #ifdef WANT_PAGE_VIRTUAL
3551 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3552 if (!is_highmem_idx(zone))
3553 set_page_address(page, __va(pfn << PAGE_SHIFT));
3554 #endif
3558 static void __meminit zone_init_free_lists(struct zone *zone)
3560 int order, t;
3561 for_each_migratetype_order(order, t) {
3562 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3563 zone->free_area[order].nr_free = 0;
3567 #ifndef __HAVE_ARCH_MEMMAP_INIT
3568 #define memmap_init(size, nid, zone, start_pfn) \
3569 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3570 #endif
3572 static int zone_batchsize(struct zone *zone)
3574 #ifdef CONFIG_MMU
3575 int batch;
3578 * The per-cpu-pages pools are set to around 1000th of the
3579 * size of the zone. But no more than 1/2 of a meg.
3581 * OK, so we don't know how big the cache is. So guess.
3583 batch = zone->present_pages / 1024;
3584 if (batch * PAGE_SIZE > 512 * 1024)
3585 batch = (512 * 1024) / PAGE_SIZE;
3586 batch /= 4; /* We effectively *= 4 below */
3587 if (batch < 1)
3588 batch = 1;
3591 * Clamp the batch to a 2^n - 1 value. Having a power
3592 * of 2 value was found to be more likely to have
3593 * suboptimal cache aliasing properties in some cases.
3595 * For example if 2 tasks are alternately allocating
3596 * batches of pages, one task can end up with a lot
3597 * of pages of one half of the possible page colors
3598 * and the other with pages of the other colors.
3600 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3602 return batch;
3604 #else
3605 /* The deferral and batching of frees should be suppressed under NOMMU
3606 * conditions.
3608 * The problem is that NOMMU needs to be able to allocate large chunks
3609 * of contiguous memory as there's no hardware page translation to
3610 * assemble apparent contiguous memory from discontiguous pages.
3612 * Queueing large contiguous runs of pages for batching, however,
3613 * causes the pages to actually be freed in smaller chunks. As there
3614 * can be a significant delay between the individual batches being
3615 * recycled, this leads to the once large chunks of space being
3616 * fragmented and becoming unavailable for high-order allocations.
3618 return 0;
3619 #endif
3622 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3624 struct per_cpu_pages *pcp;
3625 int migratetype;
3627 memset(p, 0, sizeof(*p));
3629 pcp = &p->pcp;
3630 pcp->count = 0;
3631 pcp->high = 6 * batch;
3632 pcp->batch = max(1UL, 1 * batch);
3633 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3634 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3638 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3639 * to the value high for the pageset p.
3642 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3643 unsigned long high)
3645 struct per_cpu_pages *pcp;
3647 pcp = &p->pcp;
3648 pcp->high = high;
3649 pcp->batch = max(1UL, high/4);
3650 if ((high/4) > (PAGE_SHIFT * 8))
3651 pcp->batch = PAGE_SHIFT * 8;
3654 static void setup_zone_pageset(struct zone *zone)
3656 int cpu;
3658 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3660 for_each_possible_cpu(cpu) {
3661 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3663 setup_pageset(pcp, zone_batchsize(zone));
3665 if (percpu_pagelist_fraction)
3666 setup_pagelist_highmark(pcp,
3667 (zone->present_pages /
3668 percpu_pagelist_fraction));
3673 * Allocate per cpu pagesets and initialize them.
3674 * Before this call only boot pagesets were available.
3676 void __init setup_per_cpu_pageset(void)
3678 struct zone *zone;
3680 for_each_populated_zone(zone)
3681 setup_zone_pageset(zone);
3684 static noinline __init_refok
3685 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3687 int i;
3688 struct pglist_data *pgdat = zone->zone_pgdat;
3689 size_t alloc_size;
3692 * The per-page waitqueue mechanism uses hashed waitqueues
3693 * per zone.
3695 zone->wait_table_hash_nr_entries =
3696 wait_table_hash_nr_entries(zone_size_pages);
3697 zone->wait_table_bits =
3698 wait_table_bits(zone->wait_table_hash_nr_entries);
3699 alloc_size = zone->wait_table_hash_nr_entries
3700 * sizeof(wait_queue_head_t);
3702 if (!slab_is_available()) {
3703 zone->wait_table = (wait_queue_head_t *)
3704 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3705 } else {
3707 * This case means that a zone whose size was 0 gets new memory
3708 * via memory hot-add.
3709 * But it may be the case that a new node was hot-added. In
3710 * this case vmalloc() will not be able to use this new node's
3711 * memory - this wait_table must be initialized to use this new
3712 * node itself as well.
3713 * To use this new node's memory, further consideration will be
3714 * necessary.
3716 zone->wait_table = vmalloc(alloc_size);
3718 if (!zone->wait_table)
3719 return -ENOMEM;
3721 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3722 init_waitqueue_head(zone->wait_table + i);
3724 return 0;
3727 static int __zone_pcp_update(void *data)
3729 struct zone *zone = data;
3730 int cpu;
3731 unsigned long batch = zone_batchsize(zone), flags;
3733 for_each_possible_cpu(cpu) {
3734 struct per_cpu_pageset *pset;
3735 struct per_cpu_pages *pcp;
3737 pset = per_cpu_ptr(zone->pageset, cpu);
3738 pcp = &pset->pcp;
3740 local_irq_save(flags);
3741 free_pcppages_bulk(zone, pcp->count, pcp);
3742 setup_pageset(pset, batch);
3743 local_irq_restore(flags);
3745 return 0;
3748 void zone_pcp_update(struct zone *zone)
3750 stop_machine(__zone_pcp_update, zone, NULL);
3753 static __meminit void zone_pcp_init(struct zone *zone)
3756 * per cpu subsystem is not up at this point. The following code
3757 * relies on the ability of the linker to provide the
3758 * offset of a (static) per cpu variable into the per cpu area.
3760 zone->pageset = &boot_pageset;
3762 if (zone->present_pages)
3763 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3764 zone->name, zone->present_pages,
3765 zone_batchsize(zone));
3768 __meminit int init_currently_empty_zone(struct zone *zone,
3769 unsigned long zone_start_pfn,
3770 unsigned long size,
3771 enum memmap_context context)
3773 struct pglist_data *pgdat = zone->zone_pgdat;
3774 int ret;
3775 ret = zone_wait_table_init(zone, size);
3776 if (ret)
3777 return ret;
3778 pgdat->nr_zones = zone_idx(zone) + 1;
3780 zone->zone_start_pfn = zone_start_pfn;
3782 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3783 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3784 pgdat->node_id,
3785 (unsigned long)zone_idx(zone),
3786 zone_start_pfn, (zone_start_pfn + size));
3788 zone_init_free_lists(zone);
3790 return 0;
3793 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3795 * Basic iterator support. Return the first range of PFNs for a node
3796 * Note: nid == MAX_NUMNODES returns first region regardless of node
3798 static int __meminit first_active_region_index_in_nid(int nid)
3800 int i;
3802 for (i = 0; i < nr_nodemap_entries; i++)
3803 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3804 return i;
3806 return -1;
3810 * Basic iterator support. Return the next active range of PFNs for a node
3811 * Note: nid == MAX_NUMNODES returns next region regardless of node
3813 static int __meminit next_active_region_index_in_nid(int index, int nid)
3815 for (index = index + 1; index < nr_nodemap_entries; index++)
3816 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3817 return index;
3819 return -1;
3822 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3824 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3825 * Architectures may implement their own version but if add_active_range()
3826 * was used and there are no special requirements, this is a convenient
3827 * alternative
3829 int __meminit __early_pfn_to_nid(unsigned long pfn)
3831 int i;
3833 for (i = 0; i < nr_nodemap_entries; i++) {
3834 unsigned long start_pfn = early_node_map[i].start_pfn;
3835 unsigned long end_pfn = early_node_map[i].end_pfn;
3837 if (start_pfn <= pfn && pfn < end_pfn)
3838 return early_node_map[i].nid;
3840 /* This is a memory hole */
3841 return -1;
3843 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3845 int __meminit early_pfn_to_nid(unsigned long pfn)
3847 int nid;
3849 nid = __early_pfn_to_nid(pfn);
3850 if (nid >= 0)
3851 return nid;
3852 /* just returns 0 */
3853 return 0;
3856 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3857 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3859 int nid;
3861 nid = __early_pfn_to_nid(pfn);
3862 if (nid >= 0 && nid != node)
3863 return false;
3864 return true;
3866 #endif
3868 /* Basic iterator support to walk early_node_map[] */
3869 #define for_each_active_range_index_in_nid(i, nid) \
3870 for (i = first_active_region_index_in_nid(nid); i != -1; \
3871 i = next_active_region_index_in_nid(i, nid))
3874 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3875 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3876 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3878 * If an architecture guarantees that all ranges registered with
3879 * add_active_ranges() contain no holes and may be freed, this
3880 * this function may be used instead of calling free_bootmem() manually.
3882 void __init free_bootmem_with_active_regions(int nid,
3883 unsigned long max_low_pfn)
3885 int i;
3887 for_each_active_range_index_in_nid(i, nid) {
3888 unsigned long size_pages = 0;
3889 unsigned long end_pfn = early_node_map[i].end_pfn;
3891 if (early_node_map[i].start_pfn >= max_low_pfn)
3892 continue;
3894 if (end_pfn > max_low_pfn)
3895 end_pfn = max_low_pfn;
3897 size_pages = end_pfn - early_node_map[i].start_pfn;
3898 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3899 PFN_PHYS(early_node_map[i].start_pfn),
3900 size_pages << PAGE_SHIFT);
3904 #ifdef CONFIG_HAVE_MEMBLOCK
3906 * Basic iterator support. Return the last range of PFNs for a node
3907 * Note: nid == MAX_NUMNODES returns last region regardless of node
3909 static int __meminit last_active_region_index_in_nid(int nid)
3911 int i;
3913 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3914 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3915 return i;
3917 return -1;
3921 * Basic iterator support. Return the previous active range of PFNs for a node
3922 * Note: nid == MAX_NUMNODES returns next region regardless of node
3924 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3926 for (index = index - 1; index >= 0; index--)
3927 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3928 return index;
3930 return -1;
3933 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3934 for (i = last_active_region_index_in_nid(nid); i != -1; \
3935 i = previous_active_region_index_in_nid(i, nid))
3937 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3938 u64 goal, u64 limit)
3940 int i;
3942 /* Need to go over early_node_map to find out good range for node */
3943 for_each_active_range_index_in_nid_reverse(i, nid) {
3944 u64 addr;
3945 u64 ei_start, ei_last;
3946 u64 final_start, final_end;
3948 ei_last = early_node_map[i].end_pfn;
3949 ei_last <<= PAGE_SHIFT;
3950 ei_start = early_node_map[i].start_pfn;
3951 ei_start <<= PAGE_SHIFT;
3953 final_start = max(ei_start, goal);
3954 final_end = min(ei_last, limit);
3956 if (final_start >= final_end)
3957 continue;
3959 addr = memblock_find_in_range(final_start, final_end, size, align);
3961 if (addr == MEMBLOCK_ERROR)
3962 continue;
3964 return addr;
3967 return MEMBLOCK_ERROR;
3969 #endif
3971 int __init add_from_early_node_map(struct range *range, int az,
3972 int nr_range, int nid)
3974 int i;
3975 u64 start, end;
3977 /* need to go over early_node_map to find out good range for node */
3978 for_each_active_range_index_in_nid(i, nid) {
3979 start = early_node_map[i].start_pfn;
3980 end = early_node_map[i].end_pfn;
3981 nr_range = add_range(range, az, nr_range, start, end);
3983 return nr_range;
3986 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3988 int i;
3989 int ret;
3991 for_each_active_range_index_in_nid(i, nid) {
3992 ret = work_fn(early_node_map[i].start_pfn,
3993 early_node_map[i].end_pfn, data);
3994 if (ret)
3995 break;
3999 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4000 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4002 * If an architecture guarantees that all ranges registered with
4003 * add_active_ranges() contain no holes and may be freed, this
4004 * function may be used instead of calling memory_present() manually.
4006 void __init sparse_memory_present_with_active_regions(int nid)
4008 int i;
4010 for_each_active_range_index_in_nid(i, nid)
4011 memory_present(early_node_map[i].nid,
4012 early_node_map[i].start_pfn,
4013 early_node_map[i].end_pfn);
4017 * get_pfn_range_for_nid - Return the start and end page frames for a node
4018 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4019 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4020 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4022 * It returns the start and end page frame of a node based on information
4023 * provided by an arch calling add_active_range(). If called for a node
4024 * with no available memory, a warning is printed and the start and end
4025 * PFNs will be 0.
4027 void __meminit get_pfn_range_for_nid(unsigned int nid,
4028 unsigned long *start_pfn, unsigned long *end_pfn)
4030 int i;
4031 *start_pfn = -1UL;
4032 *end_pfn = 0;
4034 for_each_active_range_index_in_nid(i, nid) {
4035 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
4036 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
4039 if (*start_pfn == -1UL)
4040 *start_pfn = 0;
4044 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4045 * assumption is made that zones within a node are ordered in monotonic
4046 * increasing memory addresses so that the "highest" populated zone is used
4048 static void __init find_usable_zone_for_movable(void)
4050 int zone_index;
4051 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4052 if (zone_index == ZONE_MOVABLE)
4053 continue;
4055 if (arch_zone_highest_possible_pfn[zone_index] >
4056 arch_zone_lowest_possible_pfn[zone_index])
4057 break;
4060 VM_BUG_ON(zone_index == -1);
4061 movable_zone = zone_index;
4065 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4066 * because it is sized independent of architecture. Unlike the other zones,
4067 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4068 * in each node depending on the size of each node and how evenly kernelcore
4069 * is distributed. This helper function adjusts the zone ranges
4070 * provided by the architecture for a given node by using the end of the
4071 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4072 * zones within a node are in order of monotonic increases memory addresses
4074 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4075 unsigned long zone_type,
4076 unsigned long node_start_pfn,
4077 unsigned long node_end_pfn,
4078 unsigned long *zone_start_pfn,
4079 unsigned long *zone_end_pfn)
4081 /* Only adjust if ZONE_MOVABLE is on this node */
4082 if (zone_movable_pfn[nid]) {
4083 /* Size ZONE_MOVABLE */
4084 if (zone_type == ZONE_MOVABLE) {
4085 *zone_start_pfn = zone_movable_pfn[nid];
4086 *zone_end_pfn = min(node_end_pfn,
4087 arch_zone_highest_possible_pfn[movable_zone]);
4089 /* Adjust for ZONE_MOVABLE starting within this range */
4090 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4091 *zone_end_pfn > zone_movable_pfn[nid]) {
4092 *zone_end_pfn = zone_movable_pfn[nid];
4094 /* Check if this whole range is within ZONE_MOVABLE */
4095 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4096 *zone_start_pfn = *zone_end_pfn;
4101 * Return the number of pages a zone spans in a node, including holes
4102 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4104 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4105 unsigned long zone_type,
4106 unsigned long *ignored)
4108 unsigned long node_start_pfn, node_end_pfn;
4109 unsigned long zone_start_pfn, zone_end_pfn;
4111 /* Get the start and end of the node and zone */
4112 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4113 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4114 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4115 adjust_zone_range_for_zone_movable(nid, zone_type,
4116 node_start_pfn, node_end_pfn,
4117 &zone_start_pfn, &zone_end_pfn);
4119 /* Check that this node has pages within the zone's required range */
4120 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4121 return 0;
4123 /* Move the zone boundaries inside the node if necessary */
4124 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4125 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4127 /* Return the spanned pages */
4128 return zone_end_pfn - zone_start_pfn;
4132 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4133 * then all holes in the requested range will be accounted for.
4135 unsigned long __meminit __absent_pages_in_range(int nid,
4136 unsigned long range_start_pfn,
4137 unsigned long range_end_pfn)
4139 int i = 0;
4140 unsigned long prev_end_pfn = 0, hole_pages = 0;
4141 unsigned long start_pfn;
4143 /* Find the end_pfn of the first active range of pfns in the node */
4144 i = first_active_region_index_in_nid(nid);
4145 if (i == -1)
4146 return 0;
4148 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4150 /* Account for ranges before physical memory on this node */
4151 if (early_node_map[i].start_pfn > range_start_pfn)
4152 hole_pages = prev_end_pfn - range_start_pfn;
4154 /* Find all holes for the zone within the node */
4155 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4157 /* No need to continue if prev_end_pfn is outside the zone */
4158 if (prev_end_pfn >= range_end_pfn)
4159 break;
4161 /* Make sure the end of the zone is not within the hole */
4162 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4163 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4165 /* Update the hole size cound and move on */
4166 if (start_pfn > range_start_pfn) {
4167 BUG_ON(prev_end_pfn > start_pfn);
4168 hole_pages += start_pfn - prev_end_pfn;
4170 prev_end_pfn = early_node_map[i].end_pfn;
4173 /* Account for ranges past physical memory on this node */
4174 if (range_end_pfn > prev_end_pfn)
4175 hole_pages += range_end_pfn -
4176 max(range_start_pfn, prev_end_pfn);
4178 return hole_pages;
4182 * absent_pages_in_range - Return number of page frames in holes within a range
4183 * @start_pfn: The start PFN to start searching for holes
4184 * @end_pfn: The end PFN to stop searching for holes
4186 * It returns the number of pages frames in memory holes within a range.
4188 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4189 unsigned long end_pfn)
4191 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4194 /* Return the number of page frames in holes in a zone on a node */
4195 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4196 unsigned long zone_type,
4197 unsigned long *ignored)
4199 unsigned long node_start_pfn, node_end_pfn;
4200 unsigned long zone_start_pfn, zone_end_pfn;
4202 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4203 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4204 node_start_pfn);
4205 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4206 node_end_pfn);
4208 adjust_zone_range_for_zone_movable(nid, zone_type,
4209 node_start_pfn, node_end_pfn,
4210 &zone_start_pfn, &zone_end_pfn);
4211 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4214 #else
4215 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4216 unsigned long zone_type,
4217 unsigned long *zones_size)
4219 return zones_size[zone_type];
4222 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4223 unsigned long zone_type,
4224 unsigned long *zholes_size)
4226 if (!zholes_size)
4227 return 0;
4229 return zholes_size[zone_type];
4232 #endif
4234 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4235 unsigned long *zones_size, unsigned long *zholes_size)
4237 unsigned long realtotalpages, totalpages = 0;
4238 enum zone_type i;
4240 for (i = 0; i < MAX_NR_ZONES; i++)
4241 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4242 zones_size);
4243 pgdat->node_spanned_pages = totalpages;
4245 realtotalpages = totalpages;
4246 for (i = 0; i < MAX_NR_ZONES; i++)
4247 realtotalpages -=
4248 zone_absent_pages_in_node(pgdat->node_id, i,
4249 zholes_size);
4250 pgdat->node_present_pages = realtotalpages;
4251 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4252 realtotalpages);
4255 #ifndef CONFIG_SPARSEMEM
4257 * Calculate the size of the zone->blockflags rounded to an unsigned long
4258 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4259 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4260 * round what is now in bits to nearest long in bits, then return it in
4261 * bytes.
4263 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4265 unsigned long usemapsize;
4267 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4268 usemapsize = roundup(zonesize, pageblock_nr_pages);
4269 usemapsize = usemapsize >> pageblock_order;
4270 usemapsize *= NR_PAGEBLOCK_BITS;
4271 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4273 return usemapsize / 8;
4276 static void __init setup_usemap(struct pglist_data *pgdat,
4277 struct zone *zone,
4278 unsigned long zone_start_pfn,
4279 unsigned long zonesize)
4281 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4282 zone->pageblock_flags = NULL;
4283 if (usemapsize)
4284 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4285 usemapsize);
4287 #else
4288 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4289 unsigned long zone_start_pfn, unsigned long zonesize) {}
4290 #endif /* CONFIG_SPARSEMEM */
4292 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4294 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4295 void __init set_pageblock_order(void)
4297 unsigned int order;
4299 /* Check that pageblock_nr_pages has not already been setup */
4300 if (pageblock_order)
4301 return;
4303 if (HPAGE_SHIFT > PAGE_SHIFT)
4304 order = HUGETLB_PAGE_ORDER;
4305 else
4306 order = MAX_ORDER - 1;
4309 * Assume the largest contiguous order of interest is a huge page.
4310 * This value may be variable depending on boot parameters on IA64 and
4311 * powerpc.
4313 pageblock_order = order;
4315 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4319 * is unused as pageblock_order is set at compile-time. See
4320 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4321 * the kernel config
4323 void __init set_pageblock_order(void)
4327 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4330 * Set up the zone data structures:
4331 * - mark all pages reserved
4332 * - mark all memory queues empty
4333 * - clear the memory bitmaps
4335 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4336 unsigned long *zones_size, unsigned long *zholes_size)
4338 enum zone_type j;
4339 int nid = pgdat->node_id;
4340 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4341 int ret;
4343 pgdat_resize_init(pgdat);
4344 pgdat->nr_zones = 0;
4345 init_waitqueue_head(&pgdat->kswapd_wait);
4346 pgdat->kswapd_max_order = 0;
4347 pgdat_page_cgroup_init(pgdat);
4349 for (j = 0; j < MAX_NR_ZONES; j++) {
4350 struct zone *zone = pgdat->node_zones + j;
4351 unsigned long size, realsize, memmap_pages;
4352 enum lru_list l;
4354 size = zone_spanned_pages_in_node(nid, j, zones_size);
4355 realsize = size - zone_absent_pages_in_node(nid, j,
4356 zholes_size);
4359 * Adjust realsize so that it accounts for how much memory
4360 * is used by this zone for memmap. This affects the watermark
4361 * and per-cpu initialisations
4363 memmap_pages =
4364 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4365 if (realsize >= memmap_pages) {
4366 realsize -= memmap_pages;
4367 if (memmap_pages)
4368 printk(KERN_DEBUG
4369 " %s zone: %lu pages used for memmap\n",
4370 zone_names[j], memmap_pages);
4371 } else
4372 printk(KERN_WARNING
4373 " %s zone: %lu pages exceeds realsize %lu\n",
4374 zone_names[j], memmap_pages, realsize);
4376 /* Account for reserved pages */
4377 if (j == 0 && realsize > dma_reserve) {
4378 realsize -= dma_reserve;
4379 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4380 zone_names[0], dma_reserve);
4383 if (!is_highmem_idx(j))
4384 nr_kernel_pages += realsize;
4385 nr_all_pages += realsize;
4387 zone->spanned_pages = size;
4388 zone->present_pages = realsize;
4389 #ifdef CONFIG_NUMA
4390 zone->node = nid;
4391 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4392 / 100;
4393 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4394 #endif
4395 zone->name = zone_names[j];
4396 spin_lock_init(&zone->lock);
4397 spin_lock_init(&zone->lru_lock);
4398 zone_seqlock_init(zone);
4399 zone->zone_pgdat = pgdat;
4401 zone_pcp_init(zone);
4402 for_each_lru(l)
4403 INIT_LIST_HEAD(&zone->lru[l].list);
4404 zone->reclaim_stat.recent_rotated[0] = 0;
4405 zone->reclaim_stat.recent_rotated[1] = 0;
4406 zone->reclaim_stat.recent_scanned[0] = 0;
4407 zone->reclaim_stat.recent_scanned[1] = 0;
4408 zap_zone_vm_stats(zone);
4409 zone->flags = 0;
4410 if (!size)
4411 continue;
4413 set_pageblock_order();
4414 setup_usemap(pgdat, zone, zone_start_pfn, size);
4415 ret = init_currently_empty_zone(zone, zone_start_pfn,
4416 size, MEMMAP_EARLY);
4417 BUG_ON(ret);
4418 memmap_init(size, nid, j, zone_start_pfn);
4419 zone_start_pfn += size;
4423 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4425 /* Skip empty nodes */
4426 if (!pgdat->node_spanned_pages)
4427 return;
4429 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4430 /* ia64 gets its own node_mem_map, before this, without bootmem */
4431 if (!pgdat->node_mem_map) {
4432 unsigned long size, start, end;
4433 struct page *map;
4436 * The zone's endpoints aren't required to be MAX_ORDER
4437 * aligned but the node_mem_map endpoints must be in order
4438 * for the buddy allocator to function correctly.
4440 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4441 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4442 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4443 size = (end - start) * sizeof(struct page);
4444 map = alloc_remap(pgdat->node_id, size);
4445 if (!map)
4446 map = alloc_bootmem_node_nopanic(pgdat, size);
4447 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4449 #ifndef CONFIG_NEED_MULTIPLE_NODES
4451 * With no DISCONTIG, the global mem_map is just set as node 0's
4453 if (pgdat == NODE_DATA(0)) {
4454 mem_map = NODE_DATA(0)->node_mem_map;
4455 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4456 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4457 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4458 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4460 #endif
4461 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4464 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4465 unsigned long node_start_pfn, unsigned long *zholes_size)
4467 pg_data_t *pgdat = NODE_DATA(nid);
4469 pgdat->node_id = nid;
4470 pgdat->node_start_pfn = node_start_pfn;
4471 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4473 alloc_node_mem_map(pgdat);
4474 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4475 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4476 nid, (unsigned long)pgdat,
4477 (unsigned long)pgdat->node_mem_map);
4478 #endif
4480 free_area_init_core(pgdat, zones_size, zholes_size);
4483 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4485 #if MAX_NUMNODES > 1
4487 * Figure out the number of possible node ids.
4489 static void __init setup_nr_node_ids(void)
4491 unsigned int node;
4492 unsigned int highest = 0;
4494 for_each_node_mask(node, node_possible_map)
4495 highest = node;
4496 nr_node_ids = highest + 1;
4498 #else
4499 static inline void setup_nr_node_ids(void)
4502 #endif
4505 * add_active_range - Register a range of PFNs backed by physical memory
4506 * @nid: The node ID the range resides on
4507 * @start_pfn: The start PFN of the available physical memory
4508 * @end_pfn: The end PFN of the available physical memory
4510 * These ranges are stored in an early_node_map[] and later used by
4511 * free_area_init_nodes() to calculate zone sizes and holes. If the
4512 * range spans a memory hole, it is up to the architecture to ensure
4513 * the memory is not freed by the bootmem allocator. If possible
4514 * the range being registered will be merged with existing ranges.
4516 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4517 unsigned long end_pfn)
4519 int i;
4521 mminit_dprintk(MMINIT_TRACE, "memory_register",
4522 "Entering add_active_range(%d, %#lx, %#lx) "
4523 "%d entries of %d used\n",
4524 nid, start_pfn, end_pfn,
4525 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4527 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4529 /* Merge with existing active regions if possible */
4530 for (i = 0; i < nr_nodemap_entries; i++) {
4531 if (early_node_map[i].nid != nid)
4532 continue;
4534 /* Skip if an existing region covers this new one */
4535 if (start_pfn >= early_node_map[i].start_pfn &&
4536 end_pfn <= early_node_map[i].end_pfn)
4537 return;
4539 /* Merge forward if suitable */
4540 if (start_pfn <= early_node_map[i].end_pfn &&
4541 end_pfn > early_node_map[i].end_pfn) {
4542 early_node_map[i].end_pfn = end_pfn;
4543 return;
4546 /* Merge backward if suitable */
4547 if (start_pfn < early_node_map[i].start_pfn &&
4548 end_pfn >= early_node_map[i].start_pfn) {
4549 early_node_map[i].start_pfn = start_pfn;
4550 return;
4554 /* Check that early_node_map is large enough */
4555 if (i >= MAX_ACTIVE_REGIONS) {
4556 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4557 MAX_ACTIVE_REGIONS);
4558 return;
4561 early_node_map[i].nid = nid;
4562 early_node_map[i].start_pfn = start_pfn;
4563 early_node_map[i].end_pfn = end_pfn;
4564 nr_nodemap_entries = i + 1;
4568 * remove_active_range - Shrink an existing registered range of PFNs
4569 * @nid: The node id the range is on that should be shrunk
4570 * @start_pfn: The new PFN of the range
4571 * @end_pfn: The new PFN of the range
4573 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4574 * The map is kept near the end physical page range that has already been
4575 * registered. This function allows an arch to shrink an existing registered
4576 * range.
4578 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4579 unsigned long end_pfn)
4581 int i, j;
4582 int removed = 0;
4584 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4585 nid, start_pfn, end_pfn);
4587 /* Find the old active region end and shrink */
4588 for_each_active_range_index_in_nid(i, nid) {
4589 if (early_node_map[i].start_pfn >= start_pfn &&
4590 early_node_map[i].end_pfn <= end_pfn) {
4591 /* clear it */
4592 early_node_map[i].start_pfn = 0;
4593 early_node_map[i].end_pfn = 0;
4594 removed = 1;
4595 continue;
4597 if (early_node_map[i].start_pfn < start_pfn &&
4598 early_node_map[i].end_pfn > start_pfn) {
4599 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4600 early_node_map[i].end_pfn = start_pfn;
4601 if (temp_end_pfn > end_pfn)
4602 add_active_range(nid, end_pfn, temp_end_pfn);
4603 continue;
4605 if (early_node_map[i].start_pfn >= start_pfn &&
4606 early_node_map[i].end_pfn > end_pfn &&
4607 early_node_map[i].start_pfn < end_pfn) {
4608 early_node_map[i].start_pfn = end_pfn;
4609 continue;
4613 if (!removed)
4614 return;
4616 /* remove the blank ones */
4617 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4618 if (early_node_map[i].nid != nid)
4619 continue;
4620 if (early_node_map[i].end_pfn)
4621 continue;
4622 /* we found it, get rid of it */
4623 for (j = i; j < nr_nodemap_entries - 1; j++)
4624 memcpy(&early_node_map[j], &early_node_map[j+1],
4625 sizeof(early_node_map[j]));
4626 j = nr_nodemap_entries - 1;
4627 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4628 nr_nodemap_entries--;
4633 * remove_all_active_ranges - Remove all currently registered regions
4635 * During discovery, it may be found that a table like SRAT is invalid
4636 * and an alternative discovery method must be used. This function removes
4637 * all currently registered regions.
4639 void __init remove_all_active_ranges(void)
4641 memset(early_node_map, 0, sizeof(early_node_map));
4642 nr_nodemap_entries = 0;
4645 /* Compare two active node_active_regions */
4646 static int __init cmp_node_active_region(const void *a, const void *b)
4648 struct node_active_region *arange = (struct node_active_region *)a;
4649 struct node_active_region *brange = (struct node_active_region *)b;
4651 /* Done this way to avoid overflows */
4652 if (arange->start_pfn > brange->start_pfn)
4653 return 1;
4654 if (arange->start_pfn < brange->start_pfn)
4655 return -1;
4657 return 0;
4660 /* sort the node_map by start_pfn */
4661 void __init sort_node_map(void)
4663 sort(early_node_map, (size_t)nr_nodemap_entries,
4664 sizeof(struct node_active_region),
4665 cmp_node_active_region, NULL);
4669 * node_map_pfn_alignment - determine the maximum internode alignment
4671 * This function should be called after node map is populated and sorted.
4672 * It calculates the maximum power of two alignment which can distinguish
4673 * all the nodes.
4675 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4676 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4677 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4678 * shifted, 1GiB is enough and this function will indicate so.
4680 * This is used to test whether pfn -> nid mapping of the chosen memory
4681 * model has fine enough granularity to avoid incorrect mapping for the
4682 * populated node map.
4684 * Returns the determined alignment in pfn's. 0 if there is no alignment
4685 * requirement (single node).
4687 unsigned long __init node_map_pfn_alignment(void)
4689 unsigned long accl_mask = 0, last_end = 0;
4690 int last_nid = -1;
4691 int i;
4693 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4694 int nid = early_node_map[i].nid;
4695 unsigned long start = early_node_map[i].start_pfn;
4696 unsigned long end = early_node_map[i].end_pfn;
4697 unsigned long mask;
4699 if (!start || last_nid < 0 || last_nid == nid) {
4700 last_nid = nid;
4701 last_end = end;
4702 continue;
4706 * Start with a mask granular enough to pin-point to the
4707 * start pfn and tick off bits one-by-one until it becomes
4708 * too coarse to separate the current node from the last.
4710 mask = ~((1 << __ffs(start)) - 1);
4711 while (mask && last_end <= (start & (mask << 1)))
4712 mask <<= 1;
4714 /* accumulate all internode masks */
4715 accl_mask |= mask;
4718 /* convert mask to number of pages */
4719 return ~accl_mask + 1;
4722 /* Find the lowest pfn for a node */
4723 static unsigned long __init find_min_pfn_for_node(int nid)
4725 int i;
4726 unsigned long min_pfn = ULONG_MAX;
4728 /* Assuming a sorted map, the first range found has the starting pfn */
4729 for_each_active_range_index_in_nid(i, nid)
4730 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4732 if (min_pfn == ULONG_MAX) {
4733 printk(KERN_WARNING
4734 "Could not find start_pfn for node %d\n", nid);
4735 return 0;
4738 return min_pfn;
4742 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4744 * It returns the minimum PFN based on information provided via
4745 * add_active_range().
4747 unsigned long __init find_min_pfn_with_active_regions(void)
4749 return find_min_pfn_for_node(MAX_NUMNODES);
4753 * early_calculate_totalpages()
4754 * Sum pages in active regions for movable zone.
4755 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4757 static unsigned long __init early_calculate_totalpages(void)
4759 int i;
4760 unsigned long totalpages = 0;
4762 for (i = 0; i < nr_nodemap_entries; i++) {
4763 unsigned long pages = early_node_map[i].end_pfn -
4764 early_node_map[i].start_pfn;
4765 totalpages += pages;
4766 if (pages)
4767 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4769 return totalpages;
4773 * Find the PFN the Movable zone begins in each node. Kernel memory
4774 * is spread evenly between nodes as long as the nodes have enough
4775 * memory. When they don't, some nodes will have more kernelcore than
4776 * others
4778 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4780 int i, nid;
4781 unsigned long usable_startpfn;
4782 unsigned long kernelcore_node, kernelcore_remaining;
4783 /* save the state before borrow the nodemask */
4784 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4785 unsigned long totalpages = early_calculate_totalpages();
4786 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4789 * If movablecore was specified, calculate what size of
4790 * kernelcore that corresponds so that memory usable for
4791 * any allocation type is evenly spread. If both kernelcore
4792 * and movablecore are specified, then the value of kernelcore
4793 * will be used for required_kernelcore if it's greater than
4794 * what movablecore would have allowed.
4796 if (required_movablecore) {
4797 unsigned long corepages;
4800 * Round-up so that ZONE_MOVABLE is at least as large as what
4801 * was requested by the user
4803 required_movablecore =
4804 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4805 corepages = totalpages - required_movablecore;
4807 required_kernelcore = max(required_kernelcore, corepages);
4810 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4811 if (!required_kernelcore)
4812 goto out;
4814 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4815 find_usable_zone_for_movable();
4816 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4818 restart:
4819 /* Spread kernelcore memory as evenly as possible throughout nodes */
4820 kernelcore_node = required_kernelcore / usable_nodes;
4821 for_each_node_state(nid, N_HIGH_MEMORY) {
4823 * Recalculate kernelcore_node if the division per node
4824 * now exceeds what is necessary to satisfy the requested
4825 * amount of memory for the kernel
4827 if (required_kernelcore < kernelcore_node)
4828 kernelcore_node = required_kernelcore / usable_nodes;
4831 * As the map is walked, we track how much memory is usable
4832 * by the kernel using kernelcore_remaining. When it is
4833 * 0, the rest of the node is usable by ZONE_MOVABLE
4835 kernelcore_remaining = kernelcore_node;
4837 /* Go through each range of PFNs within this node */
4838 for_each_active_range_index_in_nid(i, nid) {
4839 unsigned long start_pfn, end_pfn;
4840 unsigned long size_pages;
4842 start_pfn = max(early_node_map[i].start_pfn,
4843 zone_movable_pfn[nid]);
4844 end_pfn = early_node_map[i].end_pfn;
4845 if (start_pfn >= end_pfn)
4846 continue;
4848 /* Account for what is only usable for kernelcore */
4849 if (start_pfn < usable_startpfn) {
4850 unsigned long kernel_pages;
4851 kernel_pages = min(end_pfn, usable_startpfn)
4852 - start_pfn;
4854 kernelcore_remaining -= min(kernel_pages,
4855 kernelcore_remaining);
4856 required_kernelcore -= min(kernel_pages,
4857 required_kernelcore);
4859 /* Continue if range is now fully accounted */
4860 if (end_pfn <= usable_startpfn) {
4863 * Push zone_movable_pfn to the end so
4864 * that if we have to rebalance
4865 * kernelcore across nodes, we will
4866 * not double account here
4868 zone_movable_pfn[nid] = end_pfn;
4869 continue;
4871 start_pfn = usable_startpfn;
4875 * The usable PFN range for ZONE_MOVABLE is from
4876 * start_pfn->end_pfn. Calculate size_pages as the
4877 * number of pages used as kernelcore
4879 size_pages = end_pfn - start_pfn;
4880 if (size_pages > kernelcore_remaining)
4881 size_pages = kernelcore_remaining;
4882 zone_movable_pfn[nid] = start_pfn + size_pages;
4885 * Some kernelcore has been met, update counts and
4886 * break if the kernelcore for this node has been
4887 * satisified
4889 required_kernelcore -= min(required_kernelcore,
4890 size_pages);
4891 kernelcore_remaining -= size_pages;
4892 if (!kernelcore_remaining)
4893 break;
4898 * If there is still required_kernelcore, we do another pass with one
4899 * less node in the count. This will push zone_movable_pfn[nid] further
4900 * along on the nodes that still have memory until kernelcore is
4901 * satisified
4903 usable_nodes--;
4904 if (usable_nodes && required_kernelcore > usable_nodes)
4905 goto restart;
4907 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4908 for (nid = 0; nid < MAX_NUMNODES; nid++)
4909 zone_movable_pfn[nid] =
4910 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4912 out:
4913 /* restore the node_state */
4914 node_states[N_HIGH_MEMORY] = saved_node_state;
4917 /* Any regular memory on that node ? */
4918 static void check_for_regular_memory(pg_data_t *pgdat)
4920 #ifdef CONFIG_HIGHMEM
4921 enum zone_type zone_type;
4923 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4924 struct zone *zone = &pgdat->node_zones[zone_type];
4925 if (zone->present_pages)
4926 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4928 #endif
4932 * free_area_init_nodes - Initialise all pg_data_t and zone data
4933 * @max_zone_pfn: an array of max PFNs for each zone
4935 * This will call free_area_init_node() for each active node in the system.
4936 * Using the page ranges provided by add_active_range(), the size of each
4937 * zone in each node and their holes is calculated. If the maximum PFN
4938 * between two adjacent zones match, it is assumed that the zone is empty.
4939 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4940 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4941 * starts where the previous one ended. For example, ZONE_DMA32 starts
4942 * at arch_max_dma_pfn.
4944 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4946 unsigned long nid;
4947 int i;
4949 /* Sort early_node_map as initialisation assumes it is sorted */
4950 sort_node_map();
4952 /* Record where the zone boundaries are */
4953 memset(arch_zone_lowest_possible_pfn, 0,
4954 sizeof(arch_zone_lowest_possible_pfn));
4955 memset(arch_zone_highest_possible_pfn, 0,
4956 sizeof(arch_zone_highest_possible_pfn));
4957 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4958 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4959 for (i = 1; i < MAX_NR_ZONES; i++) {
4960 if (i == ZONE_MOVABLE)
4961 continue;
4962 arch_zone_lowest_possible_pfn[i] =
4963 arch_zone_highest_possible_pfn[i-1];
4964 arch_zone_highest_possible_pfn[i] =
4965 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4967 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4968 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4970 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4971 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4972 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4974 /* Print out the zone ranges */
4975 printk("Zone PFN ranges:\n");
4976 for (i = 0; i < MAX_NR_ZONES; i++) {
4977 if (i == ZONE_MOVABLE)
4978 continue;
4979 printk(" %-8s ", zone_names[i]);
4980 if (arch_zone_lowest_possible_pfn[i] ==
4981 arch_zone_highest_possible_pfn[i])
4982 printk("empty\n");
4983 else
4984 printk("%0#10lx -> %0#10lx\n",
4985 arch_zone_lowest_possible_pfn[i],
4986 arch_zone_highest_possible_pfn[i]);
4989 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4990 printk("Movable zone start PFN for each node\n");
4991 for (i = 0; i < MAX_NUMNODES; i++) {
4992 if (zone_movable_pfn[i])
4993 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4996 /* Print out the early_node_map[] */
4997 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4998 for (i = 0; i < nr_nodemap_entries; i++)
4999 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
5000 early_node_map[i].start_pfn,
5001 early_node_map[i].end_pfn);
5003 /* Initialise every node */
5004 mminit_verify_pageflags_layout();
5005 setup_nr_node_ids();
5006 for_each_online_node(nid) {
5007 pg_data_t *pgdat = NODE_DATA(nid);
5008 free_area_init_node(nid, NULL,
5009 find_min_pfn_for_node(nid), NULL);
5011 /* Any memory on that node */
5012 if (pgdat->node_present_pages)
5013 node_set_state(nid, N_HIGH_MEMORY);
5014 check_for_regular_memory(pgdat);
5018 static int __init cmdline_parse_core(char *p, unsigned long *core)
5020 unsigned long long coremem;
5021 if (!p)
5022 return -EINVAL;
5024 coremem = memparse(p, &p);
5025 *core = coremem >> PAGE_SHIFT;
5027 /* Paranoid check that UL is enough for the coremem value */
5028 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5030 return 0;
5034 * kernelcore=size sets the amount of memory for use for allocations that
5035 * cannot be reclaimed or migrated.
5037 static int __init cmdline_parse_kernelcore(char *p)
5039 return cmdline_parse_core(p, &required_kernelcore);
5043 * movablecore=size sets the amount of memory for use for allocations that
5044 * can be reclaimed or migrated.
5046 static int __init cmdline_parse_movablecore(char *p)
5048 return cmdline_parse_core(p, &required_movablecore);
5051 early_param("kernelcore", cmdline_parse_kernelcore);
5052 early_param("movablecore", cmdline_parse_movablecore);
5054 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
5057 * set_dma_reserve - set the specified number of pages reserved in the first zone
5058 * @new_dma_reserve: The number of pages to mark reserved
5060 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5061 * In the DMA zone, a significant percentage may be consumed by kernel image
5062 * and other unfreeable allocations which can skew the watermarks badly. This
5063 * function may optionally be used to account for unfreeable pages in the
5064 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5065 * smaller per-cpu batchsize.
5067 void __init set_dma_reserve(unsigned long new_dma_reserve)
5069 dma_reserve = new_dma_reserve;
5072 void __init free_area_init(unsigned long *zones_size)
5074 free_area_init_node(0, zones_size,
5075 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5078 static int page_alloc_cpu_notify(struct notifier_block *self,
5079 unsigned long action, void *hcpu)
5081 int cpu = (unsigned long)hcpu;
5083 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5084 drain_pages(cpu);
5087 * Spill the event counters of the dead processor
5088 * into the current processors event counters.
5089 * This artificially elevates the count of the current
5090 * processor.
5092 vm_events_fold_cpu(cpu);
5095 * Zero the differential counters of the dead processor
5096 * so that the vm statistics are consistent.
5098 * This is only okay since the processor is dead and cannot
5099 * race with what we are doing.
5101 refresh_cpu_vm_stats(cpu);
5103 return NOTIFY_OK;
5106 void __init page_alloc_init(void)
5108 hotcpu_notifier(page_alloc_cpu_notify, 0);
5112 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5113 * or min_free_kbytes changes.
5115 static void calculate_totalreserve_pages(void)
5117 struct pglist_data *pgdat;
5118 unsigned long reserve_pages = 0;
5119 enum zone_type i, j;
5121 for_each_online_pgdat(pgdat) {
5122 for (i = 0; i < MAX_NR_ZONES; i++) {
5123 struct zone *zone = pgdat->node_zones + i;
5124 unsigned long max = 0;
5126 /* Find valid and maximum lowmem_reserve in the zone */
5127 for (j = i; j < MAX_NR_ZONES; j++) {
5128 if (zone->lowmem_reserve[j] > max)
5129 max = zone->lowmem_reserve[j];
5132 /* we treat the high watermark as reserved pages. */
5133 max += high_wmark_pages(zone);
5135 if (max > zone->present_pages)
5136 max = zone->present_pages;
5137 reserve_pages += max;
5140 totalreserve_pages = reserve_pages;
5144 * setup_per_zone_lowmem_reserve - called whenever
5145 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5146 * has a correct pages reserved value, so an adequate number of
5147 * pages are left in the zone after a successful __alloc_pages().
5149 static void setup_per_zone_lowmem_reserve(void)
5151 struct pglist_data *pgdat;
5152 enum zone_type j, idx;
5154 for_each_online_pgdat(pgdat) {
5155 for (j = 0; j < MAX_NR_ZONES; j++) {
5156 struct zone *zone = pgdat->node_zones + j;
5157 unsigned long present_pages = zone->present_pages;
5159 zone->lowmem_reserve[j] = 0;
5161 idx = j;
5162 while (idx) {
5163 struct zone *lower_zone;
5165 idx--;
5167 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5168 sysctl_lowmem_reserve_ratio[idx] = 1;
5170 lower_zone = pgdat->node_zones + idx;
5171 lower_zone->lowmem_reserve[j] = present_pages /
5172 sysctl_lowmem_reserve_ratio[idx];
5173 present_pages += lower_zone->present_pages;
5178 /* update totalreserve_pages */
5179 calculate_totalreserve_pages();
5183 * setup_per_zone_wmarks - called when min_free_kbytes changes
5184 * or when memory is hot-{added|removed}
5186 * Ensures that the watermark[min,low,high] values for each zone are set
5187 * correctly with respect to min_free_kbytes.
5189 void setup_per_zone_wmarks(void)
5191 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5192 unsigned long lowmem_pages = 0;
5193 struct zone *zone;
5194 unsigned long flags;
5196 /* Calculate total number of !ZONE_HIGHMEM pages */
5197 for_each_zone(zone) {
5198 if (!is_highmem(zone))
5199 lowmem_pages += zone->present_pages;
5202 for_each_zone(zone) {
5203 u64 tmp;
5205 spin_lock_irqsave(&zone->lock, flags);
5206 tmp = (u64)pages_min * zone->present_pages;
5207 do_div(tmp, lowmem_pages);
5208 if (is_highmem(zone)) {
5210 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5211 * need highmem pages, so cap pages_min to a small
5212 * value here.
5214 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5215 * deltas controls asynch page reclaim, and so should
5216 * not be capped for highmem.
5218 int min_pages;
5220 min_pages = zone->present_pages / 1024;
5221 if (min_pages < SWAP_CLUSTER_MAX)
5222 min_pages = SWAP_CLUSTER_MAX;
5223 if (min_pages > 128)
5224 min_pages = 128;
5225 zone->watermark[WMARK_MIN] = min_pages;
5226 } else {
5228 * If it's a lowmem zone, reserve a number of pages
5229 * proportionate to the zone's size.
5231 zone->watermark[WMARK_MIN] = tmp;
5234 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5235 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5236 setup_zone_migrate_reserve(zone);
5237 spin_unlock_irqrestore(&zone->lock, flags);
5240 /* update totalreserve_pages */
5241 calculate_totalreserve_pages();
5245 * The inactive anon list should be small enough that the VM never has to
5246 * do too much work, but large enough that each inactive page has a chance
5247 * to be referenced again before it is swapped out.
5249 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5250 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5251 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5252 * the anonymous pages are kept on the inactive list.
5254 * total target max
5255 * memory ratio inactive anon
5256 * -------------------------------------
5257 * 10MB 1 5MB
5258 * 100MB 1 50MB
5259 * 1GB 3 250MB
5260 * 10GB 10 0.9GB
5261 * 100GB 31 3GB
5262 * 1TB 101 10GB
5263 * 10TB 320 32GB
5265 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5267 unsigned int gb, ratio;
5269 /* Zone size in gigabytes */
5270 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5271 if (gb)
5272 ratio = int_sqrt(10 * gb);
5273 else
5274 ratio = 1;
5276 zone->inactive_ratio = ratio;
5279 static void __meminit setup_per_zone_inactive_ratio(void)
5281 struct zone *zone;
5283 for_each_zone(zone)
5284 calculate_zone_inactive_ratio(zone);
5288 * Initialise min_free_kbytes.
5290 * For small machines we want it small (128k min). For large machines
5291 * we want it large (64MB max). But it is not linear, because network
5292 * bandwidth does not increase linearly with machine size. We use
5294 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5295 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5297 * which yields
5299 * 16MB: 512k
5300 * 32MB: 724k
5301 * 64MB: 1024k
5302 * 128MB: 1448k
5303 * 256MB: 2048k
5304 * 512MB: 2896k
5305 * 1024MB: 4096k
5306 * 2048MB: 5792k
5307 * 4096MB: 8192k
5308 * 8192MB: 11584k
5309 * 16384MB: 16384k
5311 int __meminit init_per_zone_wmark_min(void)
5313 unsigned long lowmem_kbytes;
5315 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5317 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5318 if (min_free_kbytes < 128)
5319 min_free_kbytes = 128;
5320 if (min_free_kbytes > 65536)
5321 min_free_kbytes = 65536;
5322 setup_per_zone_wmarks();
5323 refresh_zone_stat_thresholds();
5324 setup_per_zone_lowmem_reserve();
5325 setup_per_zone_inactive_ratio();
5326 return 0;
5328 module_init(init_per_zone_wmark_min)
5331 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5332 * that we can call two helper functions whenever min_free_kbytes
5333 * changes.
5335 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5336 void __user *buffer, size_t *length, loff_t *ppos)
5338 proc_dointvec(table, write, buffer, length, ppos);
5339 if (write)
5340 setup_per_zone_wmarks();
5341 return 0;
5344 #ifdef CONFIG_NUMA
5345 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5346 void __user *buffer, size_t *length, loff_t *ppos)
5348 struct zone *zone;
5349 int rc;
5351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5352 if (rc)
5353 return rc;
5355 for_each_zone(zone)
5356 zone->min_unmapped_pages = (zone->present_pages *
5357 sysctl_min_unmapped_ratio) / 100;
5358 return 0;
5361 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5362 void __user *buffer, size_t *length, loff_t *ppos)
5364 struct zone *zone;
5365 int rc;
5367 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5368 if (rc)
5369 return rc;
5371 for_each_zone(zone)
5372 zone->min_slab_pages = (zone->present_pages *
5373 sysctl_min_slab_ratio) / 100;
5374 return 0;
5376 #endif
5379 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5380 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5381 * whenever sysctl_lowmem_reserve_ratio changes.
5383 * The reserve ratio obviously has absolutely no relation with the
5384 * minimum watermarks. The lowmem reserve ratio can only make sense
5385 * if in function of the boot time zone sizes.
5387 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5388 void __user *buffer, size_t *length, loff_t *ppos)
5390 proc_dointvec_minmax(table, write, buffer, length, ppos);
5391 setup_per_zone_lowmem_reserve();
5392 return 0;
5396 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5397 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5398 * can have before it gets flushed back to buddy allocator.
5401 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5402 void __user *buffer, size_t *length, loff_t *ppos)
5404 struct zone *zone;
5405 unsigned int cpu;
5406 int ret;
5408 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5409 if (!write || (ret == -EINVAL))
5410 return ret;
5411 for_each_populated_zone(zone) {
5412 for_each_possible_cpu(cpu) {
5413 unsigned long high;
5414 high = zone->present_pages / percpu_pagelist_fraction;
5415 setup_pagelist_highmark(
5416 per_cpu_ptr(zone->pageset, cpu), high);
5419 return 0;
5422 int hashdist = HASHDIST_DEFAULT;
5424 #ifdef CONFIG_NUMA
5425 static int __init set_hashdist(char *str)
5427 if (!str)
5428 return 0;
5429 hashdist = simple_strtoul(str, &str, 0);
5430 return 1;
5432 __setup("hashdist=", set_hashdist);
5433 #endif
5436 * allocate a large system hash table from bootmem
5437 * - it is assumed that the hash table must contain an exact power-of-2
5438 * quantity of entries
5439 * - limit is the number of hash buckets, not the total allocation size
5441 void *__init alloc_large_system_hash(const char *tablename,
5442 unsigned long bucketsize,
5443 unsigned long numentries,
5444 int scale,
5445 int flags,
5446 unsigned int *_hash_shift,
5447 unsigned int *_hash_mask,
5448 unsigned long limit)
5450 unsigned long long max = limit;
5451 unsigned long log2qty, size;
5452 void *table = NULL;
5454 /* allow the kernel cmdline to have a say */
5455 if (!numentries) {
5456 /* round applicable memory size up to nearest megabyte */
5457 numentries = nr_kernel_pages;
5458 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5459 numentries >>= 20 - PAGE_SHIFT;
5460 numentries <<= 20 - PAGE_SHIFT;
5462 /* limit to 1 bucket per 2^scale bytes of low memory */
5463 if (scale > PAGE_SHIFT)
5464 numentries >>= (scale - PAGE_SHIFT);
5465 else
5466 numentries <<= (PAGE_SHIFT - scale);
5468 /* Make sure we've got at least a 0-order allocation.. */
5469 if (unlikely(flags & HASH_SMALL)) {
5470 /* Makes no sense without HASH_EARLY */
5471 WARN_ON(!(flags & HASH_EARLY));
5472 if (!(numentries >> *_hash_shift)) {
5473 numentries = 1UL << *_hash_shift;
5474 BUG_ON(!numentries);
5476 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5477 numentries = PAGE_SIZE / bucketsize;
5479 numentries = roundup_pow_of_two(numentries);
5481 /* limit allocation size to 1/16 total memory by default */
5482 if (max == 0) {
5483 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5484 do_div(max, bucketsize);
5487 if (numentries > max)
5488 numentries = max;
5490 log2qty = ilog2(numentries);
5492 do {
5493 size = bucketsize << log2qty;
5494 if (flags & HASH_EARLY)
5495 table = alloc_bootmem_nopanic(size);
5496 else if (hashdist)
5497 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5498 else {
5500 * If bucketsize is not a power-of-two, we may free
5501 * some pages at the end of hash table which
5502 * alloc_pages_exact() automatically does
5504 if (get_order(size) < MAX_ORDER) {
5505 table = alloc_pages_exact(size, GFP_ATOMIC);
5506 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5509 } while (!table && size > PAGE_SIZE && --log2qty);
5511 if (!table)
5512 panic("Failed to allocate %s hash table\n", tablename);
5514 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5515 tablename,
5516 (1UL << log2qty),
5517 ilog2(size) - PAGE_SHIFT,
5518 size);
5520 if (_hash_shift)
5521 *_hash_shift = log2qty;
5522 if (_hash_mask)
5523 *_hash_mask = (1 << log2qty) - 1;
5525 return table;
5528 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5529 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5530 unsigned long pfn)
5532 #ifdef CONFIG_SPARSEMEM
5533 return __pfn_to_section(pfn)->pageblock_flags;
5534 #else
5535 return zone->pageblock_flags;
5536 #endif /* CONFIG_SPARSEMEM */
5539 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5541 #ifdef CONFIG_SPARSEMEM
5542 pfn &= (PAGES_PER_SECTION-1);
5543 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5544 #else
5545 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5546 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5547 #endif /* CONFIG_SPARSEMEM */
5551 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5552 * @page: The page within the block of interest
5553 * @start_bitidx: The first bit of interest to retrieve
5554 * @end_bitidx: The last bit of interest
5555 * returns pageblock_bits flags
5557 unsigned long get_pageblock_flags_group(struct page *page,
5558 int start_bitidx, int end_bitidx)
5560 struct zone *zone;
5561 unsigned long *bitmap;
5562 unsigned long pfn, bitidx;
5563 unsigned long flags = 0;
5564 unsigned long value = 1;
5566 zone = page_zone(page);
5567 pfn = page_to_pfn(page);
5568 bitmap = get_pageblock_bitmap(zone, pfn);
5569 bitidx = pfn_to_bitidx(zone, pfn);
5571 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5572 if (test_bit(bitidx + start_bitidx, bitmap))
5573 flags |= value;
5575 return flags;
5579 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5580 * @page: The page within the block of interest
5581 * @start_bitidx: The first bit of interest
5582 * @end_bitidx: The last bit of interest
5583 * @flags: The flags to set
5585 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5586 int start_bitidx, int end_bitidx)
5588 struct zone *zone;
5589 unsigned long *bitmap;
5590 unsigned long pfn, bitidx;
5591 unsigned long value = 1;
5593 zone = page_zone(page);
5594 pfn = page_to_pfn(page);
5595 bitmap = get_pageblock_bitmap(zone, pfn);
5596 bitidx = pfn_to_bitidx(zone, pfn);
5597 VM_BUG_ON(pfn < zone->zone_start_pfn);
5598 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5600 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5601 if (flags & value)
5602 __set_bit(bitidx + start_bitidx, bitmap);
5603 else
5604 __clear_bit(bitidx + start_bitidx, bitmap);
5608 * This is designed as sub function...plz see page_isolation.c also.
5609 * set/clear page block's type to be ISOLATE.
5610 * page allocater never alloc memory from ISOLATE block.
5613 static int
5614 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5616 unsigned long pfn, iter, found;
5618 * For avoiding noise data, lru_add_drain_all() should be called
5619 * If ZONE_MOVABLE, the zone never contains immobile pages
5621 if (zone_idx(zone) == ZONE_MOVABLE)
5622 return true;
5624 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5625 return true;
5627 pfn = page_to_pfn(page);
5628 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5629 unsigned long check = pfn + iter;
5631 if (!pfn_valid_within(check))
5632 continue;
5634 page = pfn_to_page(check);
5635 if (!page_count(page)) {
5636 if (PageBuddy(page))
5637 iter += (1 << page_order(page)) - 1;
5638 continue;
5640 if (!PageLRU(page))
5641 found++;
5643 * If there are RECLAIMABLE pages, we need to check it.
5644 * But now, memory offline itself doesn't call shrink_slab()
5645 * and it still to be fixed.
5648 * If the page is not RAM, page_count()should be 0.
5649 * we don't need more check. This is an _used_ not-movable page.
5651 * The problematic thing here is PG_reserved pages. PG_reserved
5652 * is set to both of a memory hole page and a _used_ kernel
5653 * page at boot.
5655 if (found > count)
5656 return false;
5658 return true;
5661 bool is_pageblock_removable_nolock(struct page *page)
5663 struct zone *zone = page_zone(page);
5664 unsigned long pfn = page_to_pfn(page);
5667 * We have to be careful here because we are iterating over memory
5668 * sections which are not zone aware so we might end up outside of
5669 * the zone but still within the section.
5671 if (!zone || zone->zone_start_pfn > pfn ||
5672 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5673 return false;
5675 return __count_immobile_pages(zone, page, 0);
5678 int set_migratetype_isolate(struct page *page)
5680 struct zone *zone;
5681 unsigned long flags, pfn;
5682 struct memory_isolate_notify arg;
5683 int notifier_ret;
5684 int ret = -EBUSY;
5686 zone = page_zone(page);
5688 spin_lock_irqsave(&zone->lock, flags);
5690 pfn = page_to_pfn(page);
5691 arg.start_pfn = pfn;
5692 arg.nr_pages = pageblock_nr_pages;
5693 arg.pages_found = 0;
5696 * It may be possible to isolate a pageblock even if the
5697 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5698 * notifier chain is used by balloon drivers to return the
5699 * number of pages in a range that are held by the balloon
5700 * driver to shrink memory. If all the pages are accounted for
5701 * by balloons, are free, or on the LRU, isolation can continue.
5702 * Later, for example, when memory hotplug notifier runs, these
5703 * pages reported as "can be isolated" should be isolated(freed)
5704 * by the balloon driver through the memory notifier chain.
5706 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5707 notifier_ret = notifier_to_errno(notifier_ret);
5708 if (notifier_ret)
5709 goto out;
5711 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5712 * We just check MOVABLE pages.
5714 if (__count_immobile_pages(zone, page, arg.pages_found))
5715 ret = 0;
5718 * immobile means "not-on-lru" paes. If immobile is larger than
5719 * removable-by-driver pages reported by notifier, we'll fail.
5722 out:
5723 if (!ret) {
5724 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5725 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5728 spin_unlock_irqrestore(&zone->lock, flags);
5729 if (!ret)
5730 drain_all_pages();
5731 return ret;
5734 void unset_migratetype_isolate(struct page *page)
5736 struct zone *zone;
5737 unsigned long flags;
5738 zone = page_zone(page);
5739 spin_lock_irqsave(&zone->lock, flags);
5740 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5741 goto out;
5742 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5743 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5744 out:
5745 spin_unlock_irqrestore(&zone->lock, flags);
5748 #ifdef CONFIG_MEMORY_HOTREMOVE
5750 * All pages in the range must be isolated before calling this.
5752 void
5753 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5755 struct page *page;
5756 struct zone *zone;
5757 int order, i;
5758 unsigned long pfn;
5759 unsigned long flags;
5760 /* find the first valid pfn */
5761 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5762 if (pfn_valid(pfn))
5763 break;
5764 if (pfn == end_pfn)
5765 return;
5766 zone = page_zone(pfn_to_page(pfn));
5767 spin_lock_irqsave(&zone->lock, flags);
5768 pfn = start_pfn;
5769 while (pfn < end_pfn) {
5770 if (!pfn_valid(pfn)) {
5771 pfn++;
5772 continue;
5774 page = pfn_to_page(pfn);
5775 BUG_ON(page_count(page));
5776 BUG_ON(!PageBuddy(page));
5777 order = page_order(page);
5778 #ifdef CONFIG_DEBUG_VM
5779 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5780 pfn, 1 << order, end_pfn);
5781 #endif
5782 list_del(&page->lru);
5783 rmv_page_order(page);
5784 zone->free_area[order].nr_free--;
5785 __mod_zone_page_state(zone, NR_FREE_PAGES,
5786 - (1UL << order));
5787 #ifdef CONFIG_HIGHMEM
5788 if (PageHighMem(page))
5789 totalhigh_pages -= 1 << order;
5790 #endif
5791 for (i = 0; i < (1 << order); i++)
5792 SetPageReserved((page+i));
5793 pfn += (1 << order);
5795 spin_unlock_irqrestore(&zone->lock, flags);
5797 #endif
5799 #ifdef CONFIG_MEMORY_FAILURE
5800 bool is_free_buddy_page(struct page *page)
5802 struct zone *zone = page_zone(page);
5803 unsigned long pfn = page_to_pfn(page);
5804 unsigned long flags;
5805 int order;
5807 spin_lock_irqsave(&zone->lock, flags);
5808 for (order = 0; order < MAX_ORDER; order++) {
5809 struct page *page_head = page - (pfn & ((1 << order) - 1));
5811 if (PageBuddy(page_head) && page_order(page_head) >= order)
5812 break;
5814 spin_unlock_irqrestore(&zone->lock, flags);
5816 return order < MAX_ORDER;
5818 #endif
5820 static struct trace_print_flags pageflag_names[] = {
5821 {1UL << PG_locked, "locked" },
5822 {1UL << PG_error, "error" },
5823 {1UL << PG_referenced, "referenced" },
5824 {1UL << PG_uptodate, "uptodate" },
5825 {1UL << PG_dirty, "dirty" },
5826 {1UL << PG_lru, "lru" },
5827 {1UL << PG_active, "active" },
5828 {1UL << PG_slab, "slab" },
5829 {1UL << PG_owner_priv_1, "owner_priv_1" },
5830 {1UL << PG_arch_1, "arch_1" },
5831 {1UL << PG_reserved, "reserved" },
5832 {1UL << PG_private, "private" },
5833 {1UL << PG_private_2, "private_2" },
5834 {1UL << PG_writeback, "writeback" },
5835 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5836 {1UL << PG_head, "head" },
5837 {1UL << PG_tail, "tail" },
5838 #else
5839 {1UL << PG_compound, "compound" },
5840 #endif
5841 {1UL << PG_swapcache, "swapcache" },
5842 {1UL << PG_mappedtodisk, "mappedtodisk" },
5843 {1UL << PG_reclaim, "reclaim" },
5844 {1UL << PG_swapbacked, "swapbacked" },
5845 {1UL << PG_unevictable, "unevictable" },
5846 #ifdef CONFIG_MMU
5847 {1UL << PG_mlocked, "mlocked" },
5848 #endif
5849 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5850 {1UL << PG_uncached, "uncached" },
5851 #endif
5852 #ifdef CONFIG_MEMORY_FAILURE
5853 {1UL << PG_hwpoison, "hwpoison" },
5854 #endif
5855 {-1UL, NULL },
5858 static void dump_page_flags(unsigned long flags)
5860 const char *delim = "";
5861 unsigned long mask;
5862 int i;
5864 printk(KERN_ALERT "page flags: %#lx(", flags);
5866 /* remove zone id */
5867 flags &= (1UL << NR_PAGEFLAGS) - 1;
5869 for (i = 0; pageflag_names[i].name && flags; i++) {
5871 mask = pageflag_names[i].mask;
5872 if ((flags & mask) != mask)
5873 continue;
5875 flags &= ~mask;
5876 printk("%s%s", delim, pageflag_names[i].name);
5877 delim = "|";
5880 /* check for left over flags */
5881 if (flags)
5882 printk("%s%#lx", delim, flags);
5884 printk(")\n");
5887 void dump_page(struct page *page)
5889 printk(KERN_ALERT
5890 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5891 page, atomic_read(&page->_count), page_mapcount(page),
5892 page->mapping, page->index);
5893 dump_page_flags(page->flags);
5894 mem_cgroup_print_bad_page(page);