1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 struct audit_nfcfgop_tab
{
134 enum audit_nfcfgop op
;
138 static const struct audit_nfcfgop_tab audit_nfcfgs
[] = {
139 { AUDIT_XT_OP_REGISTER
, "register" },
140 { AUDIT_XT_OP_REPLACE
, "replace" },
141 { AUDIT_XT_OP_UNREGISTER
, "unregister" },
144 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
151 switch (audit_classify_syscall(ctx
->arch
, n
)) {
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
163 case 1: /* 32bit on biarch */
164 if ((mask
& AUDIT_PERM_WRITE
) &&
165 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
167 if ((mask
& AUDIT_PERM_READ
) &&
168 audit_match_class(AUDIT_CLASS_READ_32
, n
))
170 if ((mask
& AUDIT_PERM_ATTR
) &&
171 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
175 return mask
& ACC_MODE(ctx
->argv
[1]);
177 return mask
& ACC_MODE(ctx
->argv
[2]);
178 case 4: /* socketcall */
179 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
181 return mask
& AUDIT_PERM_EXEC
;
187 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
189 struct audit_names
*n
;
190 umode_t mode
= (umode_t
)val
;
195 list_for_each_entry(n
, &ctx
->names_list
, list
) {
196 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
197 ((n
->mode
& S_IFMT
) == mode
))
205 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
206 * ->first_trees points to its beginning, ->trees - to the current end of data.
207 * ->tree_count is the number of free entries in array pointed to by ->trees.
208 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
209 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
210 * it's going to remain 1-element for almost any setup) until we free context itself.
211 * References in it _are_ dropped - at the same time we free/drop aux stuff.
214 static void audit_set_auditable(struct audit_context
*ctx
)
218 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
222 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
224 struct audit_tree_refs
*p
= ctx
->trees
;
225 int left
= ctx
->tree_count
;
227 p
->c
[--left
] = chunk
;
228 ctx
->tree_count
= left
;
237 ctx
->tree_count
= 30;
243 static int grow_tree_refs(struct audit_context
*ctx
)
245 struct audit_tree_refs
*p
= ctx
->trees
;
246 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
252 p
->next
= ctx
->trees
;
254 ctx
->first_trees
= ctx
->trees
;
255 ctx
->tree_count
= 31;
259 static void unroll_tree_refs(struct audit_context
*ctx
,
260 struct audit_tree_refs
*p
, int count
)
262 struct audit_tree_refs
*q
;
265 /* we started with empty chain */
266 p
= ctx
->first_trees
;
268 /* if the very first allocation has failed, nothing to do */
273 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
275 audit_put_chunk(q
->c
[n
]);
279 while (n
-- > ctx
->tree_count
) {
280 audit_put_chunk(q
->c
[n
]);
284 ctx
->tree_count
= count
;
287 static void free_tree_refs(struct audit_context
*ctx
)
289 struct audit_tree_refs
*p
, *q
;
290 for (p
= ctx
->first_trees
; p
; p
= q
) {
296 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
298 struct audit_tree_refs
*p
;
303 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
304 for (n
= 0; n
< 31; n
++)
305 if (audit_tree_match(p
->c
[n
], tree
))
310 for (n
= ctx
->tree_count
; n
< 31; n
++)
311 if (audit_tree_match(p
->c
[n
], tree
))
317 static int audit_compare_uid(kuid_t uid
,
318 struct audit_names
*name
,
319 struct audit_field
*f
,
320 struct audit_context
*ctx
)
322 struct audit_names
*n
;
326 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
332 list_for_each_entry(n
, &ctx
->names_list
, list
) {
333 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
341 static int audit_compare_gid(kgid_t gid
,
342 struct audit_names
*name
,
343 struct audit_field
*f
,
344 struct audit_context
*ctx
)
346 struct audit_names
*n
;
350 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
356 list_for_each_entry(n
, &ctx
->names_list
, list
) {
357 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
365 static int audit_field_compare(struct task_struct
*tsk
,
366 const struct cred
*cred
,
367 struct audit_field
*f
,
368 struct audit_context
*ctx
,
369 struct audit_names
*name
)
372 /* process to file object comparisons */
373 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
374 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
376 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
378 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
380 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
382 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
383 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
384 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
385 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
386 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
387 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
388 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
389 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
390 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
391 /* uid comparisons */
392 case AUDIT_COMPARE_UID_TO_AUID
:
393 return audit_uid_comparator(cred
->uid
, f
->op
,
394 audit_get_loginuid(tsk
));
395 case AUDIT_COMPARE_UID_TO_EUID
:
396 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
397 case AUDIT_COMPARE_UID_TO_SUID
:
398 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
399 case AUDIT_COMPARE_UID_TO_FSUID
:
400 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
401 /* auid comparisons */
402 case AUDIT_COMPARE_AUID_TO_EUID
:
403 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
405 case AUDIT_COMPARE_AUID_TO_SUID
:
406 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
408 case AUDIT_COMPARE_AUID_TO_FSUID
:
409 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
411 /* euid comparisons */
412 case AUDIT_COMPARE_EUID_TO_SUID
:
413 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
414 case AUDIT_COMPARE_EUID_TO_FSUID
:
415 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
416 /* suid comparisons */
417 case AUDIT_COMPARE_SUID_TO_FSUID
:
418 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
419 /* gid comparisons */
420 case AUDIT_COMPARE_GID_TO_EGID
:
421 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
422 case AUDIT_COMPARE_GID_TO_SGID
:
423 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
424 case AUDIT_COMPARE_GID_TO_FSGID
:
425 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
426 /* egid comparisons */
427 case AUDIT_COMPARE_EGID_TO_SGID
:
428 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
429 case AUDIT_COMPARE_EGID_TO_FSGID
:
430 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
431 /* sgid comparison */
432 case AUDIT_COMPARE_SGID_TO_FSGID
:
433 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
435 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
445 * If task_creation is true, this is an explicit indication that we are
446 * filtering a task rule at task creation time. This and tsk == current are
447 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 static int audit_filter_rules(struct task_struct
*tsk
,
450 struct audit_krule
*rule
,
451 struct audit_context
*ctx
,
452 struct audit_names
*name
,
453 enum audit_state
*state
,
456 const struct cred
*cred
;
459 unsigned int sessionid
;
461 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
463 for (i
= 0; i
< rule
->field_count
; i
++) {
464 struct audit_field
*f
= &rule
->fields
[i
];
465 struct audit_names
*n
;
471 pid
= task_tgid_nr(tsk
);
472 result
= audit_comparator(pid
, f
->op
, f
->val
);
477 ctx
->ppid
= task_ppid_nr(tsk
);
478 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
482 result
= audit_exe_compare(tsk
, rule
->exe
);
483 if (f
->op
== Audit_not_equal
)
487 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
490 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
493 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
496 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
499 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
500 if (f
->op
== Audit_equal
) {
502 result
= groups_search(cred
->group_info
, f
->gid
);
503 } else if (f
->op
== Audit_not_equal
) {
505 result
= !groups_search(cred
->group_info
, f
->gid
);
509 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
510 if (f
->op
== Audit_equal
) {
512 result
= groups_search(cred
->group_info
, f
->gid
);
513 } else if (f
->op
== Audit_not_equal
) {
515 result
= !groups_search(cred
->group_info
, f
->gid
);
519 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
522 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
524 case AUDIT_SESSIONID
:
525 sessionid
= audit_get_sessionid(tsk
);
526 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
529 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
533 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
537 if (ctx
&& ctx
->return_valid
)
538 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
541 if (ctx
&& ctx
->return_valid
) {
543 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
545 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
550 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
551 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
554 list_for_each_entry(n
, &ctx
->names_list
, list
) {
555 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
556 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
565 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
566 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
569 list_for_each_entry(n
, &ctx
->names_list
, list
) {
570 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
571 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
580 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
582 list_for_each_entry(n
, &ctx
->names_list
, list
) {
583 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
592 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
594 list_for_each_entry(n
, &ctx
->names_list
, list
) {
595 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
604 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
606 list_for_each_entry(n
, &ctx
->names_list
, list
) {
607 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
616 result
= audit_watch_compare(rule
->watch
,
619 if (f
->op
== Audit_not_equal
)
625 result
= match_tree_refs(ctx
, rule
->tree
);
626 if (f
->op
== Audit_not_equal
)
631 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
634 case AUDIT_LOGINUID_SET
:
635 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
637 case AUDIT_SADDR_FAM
:
639 result
= audit_comparator(ctx
->sockaddr
->ss_family
,
642 case AUDIT_SUBJ_USER
:
643 case AUDIT_SUBJ_ROLE
:
644 case AUDIT_SUBJ_TYPE
:
647 /* NOTE: this may return negative values indicating
648 a temporary error. We simply treat this as a
649 match for now to avoid losing information that
650 may be wanted. An error message will also be
654 security_task_getsecid(tsk
, &sid
);
657 result
= security_audit_rule_match(sid
, f
->type
,
665 case AUDIT_OBJ_LEV_LOW
:
666 case AUDIT_OBJ_LEV_HIGH
:
667 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
670 /* Find files that match */
672 result
= security_audit_rule_match(
678 list_for_each_entry(n
, &ctx
->names_list
, list
) {
679 if (security_audit_rule_match(
689 /* Find ipc objects that match */
690 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
692 if (security_audit_rule_match(ctx
->ipc
.osid
,
703 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
705 case AUDIT_FILTERKEY
:
706 /* ignore this field for filtering */
710 result
= audit_match_perm(ctx
, f
->val
);
711 if (f
->op
== Audit_not_equal
)
715 result
= audit_match_filetype(ctx
, f
->val
);
716 if (f
->op
== Audit_not_equal
)
719 case AUDIT_FIELD_COMPARE
:
720 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
728 if (rule
->prio
<= ctx
->prio
)
730 if (rule
->filterkey
) {
731 kfree(ctx
->filterkey
);
732 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
734 ctx
->prio
= rule
->prio
;
736 switch (rule
->action
) {
738 *state
= AUDIT_DISABLED
;
741 *state
= AUDIT_RECORD_CONTEXT
;
747 /* At process creation time, we can determine if system-call auditing is
748 * completely disabled for this task. Since we only have the task
749 * structure at this point, we can only check uid and gid.
751 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
753 struct audit_entry
*e
;
754 enum audit_state state
;
757 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
758 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
760 if (state
== AUDIT_RECORD_CONTEXT
)
761 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
767 return AUDIT_BUILD_CONTEXT
;
770 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
774 if (val
> 0xffffffff)
777 word
= AUDIT_WORD(val
);
778 if (word
>= AUDIT_BITMASK_SIZE
)
781 bit
= AUDIT_BIT(val
);
783 return rule
->mask
[word
] & bit
;
786 /* At syscall entry and exit time, this filter is called if the
787 * audit_state is not low enough that auditing cannot take place, but is
788 * also not high enough that we already know we have to write an audit
789 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
791 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
792 struct audit_context
*ctx
,
793 struct list_head
*list
)
795 struct audit_entry
*e
;
796 enum audit_state state
;
798 if (auditd_test_task(tsk
))
799 return AUDIT_DISABLED
;
802 list_for_each_entry_rcu(e
, list
, list
) {
803 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
804 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
807 ctx
->current_state
= state
;
812 return AUDIT_BUILD_CONTEXT
;
816 * Given an audit_name check the inode hash table to see if they match.
817 * Called holding the rcu read lock to protect the use of audit_inode_hash
819 static int audit_filter_inode_name(struct task_struct
*tsk
,
820 struct audit_names
*n
,
821 struct audit_context
*ctx
) {
822 int h
= audit_hash_ino((u32
)n
->ino
);
823 struct list_head
*list
= &audit_inode_hash
[h
];
824 struct audit_entry
*e
;
825 enum audit_state state
;
827 list_for_each_entry_rcu(e
, list
, list
) {
828 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
829 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
830 ctx
->current_state
= state
;
837 /* At syscall exit time, this filter is called if any audit_names have been
838 * collected during syscall processing. We only check rules in sublists at hash
839 * buckets applicable to the inode numbers in audit_names.
840 * Regarding audit_state, same rules apply as for audit_filter_syscall().
842 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
844 struct audit_names
*n
;
846 if (auditd_test_task(tsk
))
851 list_for_each_entry(n
, &ctx
->names_list
, list
) {
852 if (audit_filter_inode_name(tsk
, n
, ctx
))
858 static inline void audit_proctitle_free(struct audit_context
*context
)
860 kfree(context
->proctitle
.value
);
861 context
->proctitle
.value
= NULL
;
862 context
->proctitle
.len
= 0;
865 static inline void audit_free_module(struct audit_context
*context
)
867 if (context
->type
== AUDIT_KERN_MODULE
) {
868 kfree(context
->module
.name
);
869 context
->module
.name
= NULL
;
872 static inline void audit_free_names(struct audit_context
*context
)
874 struct audit_names
*n
, *next
;
876 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
883 context
->name_count
= 0;
884 path_put(&context
->pwd
);
885 context
->pwd
.dentry
= NULL
;
886 context
->pwd
.mnt
= NULL
;
889 static inline void audit_free_aux(struct audit_context
*context
)
891 struct audit_aux_data
*aux
;
893 while ((aux
= context
->aux
)) {
894 context
->aux
= aux
->next
;
897 while ((aux
= context
->aux_pids
)) {
898 context
->aux_pids
= aux
->next
;
903 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
905 struct audit_context
*context
;
907 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
910 context
->state
= state
;
911 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
912 INIT_LIST_HEAD(&context
->killed_trees
);
913 INIT_LIST_HEAD(&context
->names_list
);
918 * audit_alloc - allocate an audit context block for a task
921 * Filter on the task information and allocate a per-task audit context
922 * if necessary. Doing so turns on system call auditing for the
923 * specified task. This is called from copy_process, so no lock is
926 int audit_alloc(struct task_struct
*tsk
)
928 struct audit_context
*context
;
929 enum audit_state state
;
932 if (likely(!audit_ever_enabled
))
933 return 0; /* Return if not auditing. */
935 state
= audit_filter_task(tsk
, &key
);
936 if (state
== AUDIT_DISABLED
) {
937 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
941 if (!(context
= audit_alloc_context(state
))) {
943 audit_log_lost("out of memory in audit_alloc");
946 context
->filterkey
= key
;
948 audit_set_context(tsk
, context
);
949 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
953 static inline void audit_free_context(struct audit_context
*context
)
955 audit_free_module(context
);
956 audit_free_names(context
);
957 unroll_tree_refs(context
, NULL
, 0);
958 free_tree_refs(context
);
959 audit_free_aux(context
);
960 kfree(context
->filterkey
);
961 kfree(context
->sockaddr
);
962 audit_proctitle_free(context
);
966 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
967 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
970 struct audit_buffer
*ab
;
975 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
979 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
980 from_kuid(&init_user_ns
, auid
),
981 from_kuid(&init_user_ns
, uid
), sessionid
);
983 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
984 audit_log_format(ab
, " obj=(none)");
987 audit_log_format(ab
, " obj=%s", ctx
);
988 security_release_secctx(ctx
, len
);
991 audit_log_format(ab
, " ocomm=");
992 audit_log_untrustedstring(ab
, comm
);
998 static void audit_log_execve_info(struct audit_context
*context
,
999 struct audit_buffer
**ab
)
1013 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1015 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1016 * data we put in the audit record for this argument (see the
1017 * code below) ... at this point in time 96 is plenty */
1020 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1021 * current value of 7500 is not as important as the fact that it
1022 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1023 * room if we go over a little bit in the logging below */
1024 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1025 len_max
= MAX_EXECVE_AUDIT_LEN
;
1027 /* scratch buffer to hold the userspace args */
1028 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1030 audit_panic("out of memory for argv string");
1035 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1040 require_data
= true;
1045 /* NOTE: we don't ever want to trust this value for anything
1046 * serious, but the audit record format insists we
1047 * provide an argument length for really long arguments,
1048 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1049 * to use strncpy_from_user() to obtain this value for
1050 * recording in the log, although we don't use it
1051 * anywhere here to avoid a double-fetch problem */
1053 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1055 /* read more data from userspace */
1057 /* can we make more room in the buffer? */
1058 if (buf
!= buf_head
) {
1059 memmove(buf_head
, buf
, len_buf
);
1063 /* fetch as much as we can of the argument */
1064 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1066 if (len_tmp
== -EFAULT
) {
1067 /* unable to copy from userspace */
1068 send_sig(SIGKILL
, current
, 0);
1070 } else if (len_tmp
== (len_max
- len_buf
)) {
1071 /* buffer is not large enough */
1072 require_data
= true;
1073 /* NOTE: if we are going to span multiple
1074 * buffers force the encoding so we stand
1075 * a chance at a sane len_full value and
1076 * consistent record encoding */
1078 len_full
= len_full
* 2;
1081 require_data
= false;
1083 encode
= audit_string_contains_control(
1085 /* try to use a trusted value for len_full */
1086 if (len_full
< len_max
)
1087 len_full
= (encode
?
1088 len_tmp
* 2 : len_tmp
);
1092 buf_head
[len_buf
] = '\0';
1094 /* length of the buffer in the audit record? */
1095 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1098 /* write as much as we can to the audit log */
1100 /* NOTE: some magic numbers here - basically if we
1101 * can't fit a reasonable amount of data into the
1102 * existing audit buffer, flush it and start with
1104 if ((sizeof(abuf
) + 8) > len_rem
) {
1107 *ab
= audit_log_start(context
,
1108 GFP_KERNEL
, AUDIT_EXECVE
);
1113 /* create the non-arg portion of the arg record */
1115 if (require_data
|| (iter
> 0) ||
1116 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1118 len_tmp
+= snprintf(&abuf
[len_tmp
],
1119 sizeof(abuf
) - len_tmp
,
1123 len_tmp
+= snprintf(&abuf
[len_tmp
],
1124 sizeof(abuf
) - len_tmp
,
1125 " a%d[%d]=", arg
, iter
++);
1127 len_tmp
+= snprintf(&abuf
[len_tmp
],
1128 sizeof(abuf
) - len_tmp
,
1130 WARN_ON(len_tmp
>= sizeof(abuf
));
1131 abuf
[sizeof(abuf
) - 1] = '\0';
1133 /* log the arg in the audit record */
1134 audit_log_format(*ab
, "%s", abuf
);
1138 if (len_abuf
> len_rem
)
1139 len_tmp
= len_rem
/ 2; /* encoding */
1140 audit_log_n_hex(*ab
, buf
, len_tmp
);
1141 len_rem
-= len_tmp
* 2;
1142 len_abuf
-= len_tmp
* 2;
1144 if (len_abuf
> len_rem
)
1145 len_tmp
= len_rem
- 2; /* quotes */
1146 audit_log_n_string(*ab
, buf
, len_tmp
);
1147 len_rem
-= len_tmp
+ 2;
1148 /* don't subtract the "2" because we still need
1149 * to add quotes to the remaining string */
1150 len_abuf
-= len_tmp
;
1156 /* ready to move to the next argument? */
1157 if ((len_buf
== 0) && !require_data
) {
1161 require_data
= true;
1164 } while (arg
< context
->execve
.argc
);
1166 /* NOTE: the caller handles the final audit_log_end() call */
1172 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
,
1177 if (cap_isclear(*cap
)) {
1178 audit_log_format(ab
, " %s=0", prefix
);
1181 audit_log_format(ab
, " %s=", prefix
);
1183 audit_log_format(ab
, "%08x", cap
->cap
[CAP_LAST_U32
- i
]);
1186 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1188 if (name
->fcap_ver
== -1) {
1189 audit_log_format(ab
, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1192 audit_log_cap(ab
, "cap_fp", &name
->fcap
.permitted
);
1193 audit_log_cap(ab
, "cap_fi", &name
->fcap
.inheritable
);
1194 audit_log_format(ab
, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1195 name
->fcap
.fE
, name
->fcap_ver
,
1196 from_kuid(&init_user_ns
, name
->fcap
.rootid
));
1199 static void show_special(struct audit_context
*context
, int *call_panic
)
1201 struct audit_buffer
*ab
;
1204 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1208 switch (context
->type
) {
1209 case AUDIT_SOCKETCALL
: {
1210 int nargs
= context
->socketcall
.nargs
;
1211 audit_log_format(ab
, "nargs=%d", nargs
);
1212 for (i
= 0; i
< nargs
; i
++)
1213 audit_log_format(ab
, " a%d=%lx", i
,
1214 context
->socketcall
.args
[i
]);
1217 u32 osid
= context
->ipc
.osid
;
1219 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1220 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1221 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1226 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1227 audit_log_format(ab
, " osid=%u", osid
);
1230 audit_log_format(ab
, " obj=%s", ctx
);
1231 security_release_secctx(ctx
, len
);
1234 if (context
->ipc
.has_perm
) {
1236 ab
= audit_log_start(context
, GFP_KERNEL
,
1237 AUDIT_IPC_SET_PERM
);
1240 audit_log_format(ab
,
1241 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242 context
->ipc
.qbytes
,
1243 context
->ipc
.perm_uid
,
1244 context
->ipc
.perm_gid
,
1245 context
->ipc
.perm_mode
);
1249 audit_log_format(ab
,
1250 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251 "mq_msgsize=%ld mq_curmsgs=%ld",
1252 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1253 context
->mq_open
.attr
.mq_flags
,
1254 context
->mq_open
.attr
.mq_maxmsg
,
1255 context
->mq_open
.attr
.mq_msgsize
,
1256 context
->mq_open
.attr
.mq_curmsgs
);
1258 case AUDIT_MQ_SENDRECV
:
1259 audit_log_format(ab
,
1260 "mqdes=%d msg_len=%zd msg_prio=%u "
1261 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1262 context
->mq_sendrecv
.mqdes
,
1263 context
->mq_sendrecv
.msg_len
,
1264 context
->mq_sendrecv
.msg_prio
,
1265 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1266 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1268 case AUDIT_MQ_NOTIFY
:
1269 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1270 context
->mq_notify
.mqdes
,
1271 context
->mq_notify
.sigev_signo
);
1273 case AUDIT_MQ_GETSETATTR
: {
1274 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1275 audit_log_format(ab
,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 context
->mq_getsetattr
.mqdes
,
1279 attr
->mq_flags
, attr
->mq_maxmsg
,
1280 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1283 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1284 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1285 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1286 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1287 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1290 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1291 context
->mmap
.flags
);
1294 audit_log_execve_info(context
, &ab
);
1296 case AUDIT_KERN_MODULE
:
1297 audit_log_format(ab
, "name=");
1298 if (context
->module
.name
) {
1299 audit_log_untrustedstring(ab
, context
->module
.name
);
1301 audit_log_format(ab
, "(null)");
1308 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1310 char *end
= proctitle
+ len
- 1;
1311 while (end
> proctitle
&& !isprint(*end
))
1314 /* catch the case where proctitle is only 1 non-print character */
1315 len
= end
- proctitle
+ 1;
1316 len
-= isprint(proctitle
[len
-1]) == 0;
1321 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1322 * @context: audit_context for the task
1323 * @n: audit_names structure with reportable details
1324 * @path: optional path to report instead of audit_names->name
1325 * @record_num: record number to report when handling a list of names
1326 * @call_panic: optional pointer to int that will be updated if secid fails
1328 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1329 const struct path
*path
, int record_num
, int *call_panic
)
1331 struct audit_buffer
*ab
;
1333 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1337 audit_log_format(ab
, "item=%d", record_num
);
1340 audit_log_d_path(ab
, " name=", path
);
1342 switch (n
->name_len
) {
1343 case AUDIT_NAME_FULL
:
1344 /* log the full path */
1345 audit_log_format(ab
, " name=");
1346 audit_log_untrustedstring(ab
, n
->name
->name
);
1349 /* name was specified as a relative path and the
1350 * directory component is the cwd
1352 audit_log_d_path(ab
, " name=", &context
->pwd
);
1355 /* log the name's directory component */
1356 audit_log_format(ab
, " name=");
1357 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1361 audit_log_format(ab
, " name=(null)");
1363 if (n
->ino
!= AUDIT_INO_UNSET
)
1364 audit_log_format(ab
, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1369 from_kuid(&init_user_ns
, n
->uid
),
1370 from_kgid(&init_user_ns
, n
->gid
),
1377 if (security_secid_to_secctx(
1378 n
->osid
, &ctx
, &len
)) {
1379 audit_log_format(ab
, " osid=%u", n
->osid
);
1383 audit_log_format(ab
, " obj=%s", ctx
);
1384 security_release_secctx(ctx
, len
);
1388 /* log the audit_names record type */
1390 case AUDIT_TYPE_NORMAL
:
1391 audit_log_format(ab
, " nametype=NORMAL");
1393 case AUDIT_TYPE_PARENT
:
1394 audit_log_format(ab
, " nametype=PARENT");
1396 case AUDIT_TYPE_CHILD_DELETE
:
1397 audit_log_format(ab
, " nametype=DELETE");
1399 case AUDIT_TYPE_CHILD_CREATE
:
1400 audit_log_format(ab
, " nametype=CREATE");
1403 audit_log_format(ab
, " nametype=UNKNOWN");
1407 audit_log_fcaps(ab
, n
);
1411 static void audit_log_proctitle(void)
1415 char *msg
= "(null)";
1416 int len
= strlen(msg
);
1417 struct audit_context
*context
= audit_context();
1418 struct audit_buffer
*ab
;
1420 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1422 return; /* audit_panic or being filtered */
1424 audit_log_format(ab
, "proctitle=");
1427 if (!context
->proctitle
.value
) {
1428 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1431 /* Historically called this from procfs naming */
1432 res
= get_cmdline(current
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1437 res
= audit_proctitle_rtrim(buf
, res
);
1442 context
->proctitle
.value
= buf
;
1443 context
->proctitle
.len
= res
;
1445 msg
= context
->proctitle
.value
;
1446 len
= context
->proctitle
.len
;
1448 audit_log_n_untrustedstring(ab
, msg
, len
);
1452 static void audit_log_exit(void)
1454 int i
, call_panic
= 0;
1455 struct audit_context
*context
= audit_context();
1456 struct audit_buffer
*ab
;
1457 struct audit_aux_data
*aux
;
1458 struct audit_names
*n
;
1460 context
->personality
= current
->personality
;
1462 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1464 return; /* audit_panic has been called */
1465 audit_log_format(ab
, "arch=%x syscall=%d",
1466 context
->arch
, context
->major
);
1467 if (context
->personality
!= PER_LINUX
)
1468 audit_log_format(ab
, " per=%lx", context
->personality
);
1469 if (context
->return_valid
)
1470 audit_log_format(ab
, " success=%s exit=%ld",
1471 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1472 context
->return_code
);
1474 audit_log_format(ab
,
1475 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1480 context
->name_count
);
1482 audit_log_task_info(ab
);
1483 audit_log_key(ab
, context
->filterkey
);
1486 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1488 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1490 continue; /* audit_panic has been called */
1492 switch (aux
->type
) {
1494 case AUDIT_BPRM_FCAPS
: {
1495 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1496 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1497 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1498 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1499 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1500 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1501 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1502 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1503 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1504 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1505 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1506 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1507 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1508 audit_log_format(ab
, " frootid=%d",
1509 from_kuid(&init_user_ns
,
1518 show_special(context
, &call_panic
);
1520 if (context
->fds
[0] >= 0) {
1521 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1523 audit_log_format(ab
, "fd0=%d fd1=%d",
1524 context
->fds
[0], context
->fds
[1]);
1529 if (context
->sockaddr_len
) {
1530 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1532 audit_log_format(ab
, "saddr=");
1533 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1534 context
->sockaddr_len
);
1539 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1540 struct audit_aux_data_pids
*axs
= (void *)aux
;
1542 for (i
= 0; i
< axs
->pid_count
; i
++)
1543 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1544 axs
->target_auid
[i
],
1546 axs
->target_sessionid
[i
],
1548 axs
->target_comm
[i
]))
1552 if (context
->target_pid
&&
1553 audit_log_pid_context(context
, context
->target_pid
,
1554 context
->target_auid
, context
->target_uid
,
1555 context
->target_sessionid
,
1556 context
->target_sid
, context
->target_comm
))
1559 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1560 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1562 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1568 list_for_each_entry(n
, &context
->names_list
, list
) {
1571 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1574 audit_log_proctitle();
1576 /* Send end of event record to help user space know we are finished */
1577 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1581 audit_panic("error converting sid to string");
1585 * __audit_free - free a per-task audit context
1586 * @tsk: task whose audit context block to free
1588 * Called from copy_process and do_exit
1590 void __audit_free(struct task_struct
*tsk
)
1592 struct audit_context
*context
= tsk
->audit_context
;
1597 if (!list_empty(&context
->killed_trees
))
1598 audit_kill_trees(context
);
1600 /* We are called either by do_exit() or the fork() error handling code;
1601 * in the former case tsk == current and in the latter tsk is a
1602 * random task_struct that doesn't doesn't have any meaningful data we
1603 * need to log via audit_log_exit().
1605 if (tsk
== current
&& !context
->dummy
&& context
->in_syscall
) {
1606 context
->return_valid
= 0;
1607 context
->return_code
= 0;
1609 audit_filter_syscall(tsk
, context
,
1610 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1611 audit_filter_inodes(tsk
, context
);
1612 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1616 audit_set_context(tsk
, NULL
);
1617 audit_free_context(context
);
1621 * __audit_syscall_entry - fill in an audit record at syscall entry
1622 * @major: major syscall type (function)
1623 * @a1: additional syscall register 1
1624 * @a2: additional syscall register 2
1625 * @a3: additional syscall register 3
1626 * @a4: additional syscall register 4
1628 * Fill in audit context at syscall entry. This only happens if the
1629 * audit context was created when the task was created and the state or
1630 * filters demand the audit context be built. If the state from the
1631 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1632 * then the record will be written at syscall exit time (otherwise, it
1633 * will only be written if another part of the kernel requests that it
1636 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1637 unsigned long a3
, unsigned long a4
)
1639 struct audit_context
*context
= audit_context();
1640 enum audit_state state
;
1642 if (!audit_enabled
|| !context
)
1645 BUG_ON(context
->in_syscall
|| context
->name_count
);
1647 state
= context
->state
;
1648 if (state
== AUDIT_DISABLED
)
1651 context
->dummy
= !audit_n_rules
;
1652 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1654 if (auditd_test_task(current
))
1658 context
->arch
= syscall_get_arch(current
);
1659 context
->major
= major
;
1660 context
->argv
[0] = a1
;
1661 context
->argv
[1] = a2
;
1662 context
->argv
[2] = a3
;
1663 context
->argv
[3] = a4
;
1664 context
->serial
= 0;
1665 context
->in_syscall
= 1;
1666 context
->current_state
= state
;
1668 ktime_get_coarse_real_ts64(&context
->ctime
);
1672 * __audit_syscall_exit - deallocate audit context after a system call
1673 * @success: success value of the syscall
1674 * @return_code: return value of the syscall
1676 * Tear down after system call. If the audit context has been marked as
1677 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1678 * filtering, or because some other part of the kernel wrote an audit
1679 * message), then write out the syscall information. In call cases,
1680 * free the names stored from getname().
1682 void __audit_syscall_exit(int success
, long return_code
)
1684 struct audit_context
*context
;
1686 context
= audit_context();
1690 if (!list_empty(&context
->killed_trees
))
1691 audit_kill_trees(context
);
1693 if (!context
->dummy
&& context
->in_syscall
) {
1695 context
->return_valid
= AUDITSC_SUCCESS
;
1697 context
->return_valid
= AUDITSC_FAILURE
;
1700 * we need to fix up the return code in the audit logs if the
1701 * actual return codes are later going to be fixed up by the
1702 * arch specific signal handlers
1704 * This is actually a test for:
1705 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1706 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1708 * but is faster than a bunch of ||
1710 if (unlikely(return_code
<= -ERESTARTSYS
) &&
1711 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
1712 (return_code
!= -ENOIOCTLCMD
))
1713 context
->return_code
= -EINTR
;
1715 context
->return_code
= return_code
;
1717 audit_filter_syscall(current
, context
,
1718 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1719 audit_filter_inodes(current
, context
);
1720 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1724 context
->in_syscall
= 0;
1725 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1727 audit_free_module(context
);
1728 audit_free_names(context
);
1729 unroll_tree_refs(context
, NULL
, 0);
1730 audit_free_aux(context
);
1731 context
->aux
= NULL
;
1732 context
->aux_pids
= NULL
;
1733 context
->target_pid
= 0;
1734 context
->target_sid
= 0;
1735 context
->sockaddr_len
= 0;
1737 context
->fds
[0] = -1;
1738 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1739 kfree(context
->filterkey
);
1740 context
->filterkey
= NULL
;
1744 static inline void handle_one(const struct inode
*inode
)
1746 struct audit_context
*context
;
1747 struct audit_tree_refs
*p
;
1748 struct audit_chunk
*chunk
;
1750 if (likely(!inode
->i_fsnotify_marks
))
1752 context
= audit_context();
1754 count
= context
->tree_count
;
1756 chunk
= audit_tree_lookup(inode
);
1760 if (likely(put_tree_ref(context
, chunk
)))
1762 if (unlikely(!grow_tree_refs(context
))) {
1763 pr_warn("out of memory, audit has lost a tree reference\n");
1764 audit_set_auditable(context
);
1765 audit_put_chunk(chunk
);
1766 unroll_tree_refs(context
, p
, count
);
1769 put_tree_ref(context
, chunk
);
1772 static void handle_path(const struct dentry
*dentry
)
1774 struct audit_context
*context
;
1775 struct audit_tree_refs
*p
;
1776 const struct dentry
*d
, *parent
;
1777 struct audit_chunk
*drop
;
1781 context
= audit_context();
1783 count
= context
->tree_count
;
1788 seq
= read_seqbegin(&rename_lock
);
1790 struct inode
*inode
= d_backing_inode(d
);
1791 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
1792 struct audit_chunk
*chunk
;
1793 chunk
= audit_tree_lookup(inode
);
1795 if (unlikely(!put_tree_ref(context
, chunk
))) {
1801 parent
= d
->d_parent
;
1806 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1809 /* just a race with rename */
1810 unroll_tree_refs(context
, p
, count
);
1813 audit_put_chunk(drop
);
1814 if (grow_tree_refs(context
)) {
1815 /* OK, got more space */
1816 unroll_tree_refs(context
, p
, count
);
1820 pr_warn("out of memory, audit has lost a tree reference\n");
1821 unroll_tree_refs(context
, p
, count
);
1822 audit_set_auditable(context
);
1828 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1831 struct audit_names
*aname
;
1833 if (context
->name_count
< AUDIT_NAMES
) {
1834 aname
= &context
->preallocated_names
[context
->name_count
];
1835 memset(aname
, 0, sizeof(*aname
));
1837 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1840 aname
->should_free
= true;
1843 aname
->ino
= AUDIT_INO_UNSET
;
1845 list_add_tail(&aname
->list
, &context
->names_list
);
1847 context
->name_count
++;
1852 * __audit_reusename - fill out filename with info from existing entry
1853 * @uptr: userland ptr to pathname
1855 * Search the audit_names list for the current audit context. If there is an
1856 * existing entry with a matching "uptr" then return the filename
1857 * associated with that audit_name. If not, return NULL.
1860 __audit_reusename(const __user
char *uptr
)
1862 struct audit_context
*context
= audit_context();
1863 struct audit_names
*n
;
1865 list_for_each_entry(n
, &context
->names_list
, list
) {
1868 if (n
->name
->uptr
== uptr
) {
1877 * __audit_getname - add a name to the list
1878 * @name: name to add
1880 * Add a name to the list of audit names for this context.
1881 * Called from fs/namei.c:getname().
1883 void __audit_getname(struct filename
*name
)
1885 struct audit_context
*context
= audit_context();
1886 struct audit_names
*n
;
1888 if (!context
->in_syscall
)
1891 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1896 n
->name_len
= AUDIT_NAME_FULL
;
1900 if (!context
->pwd
.dentry
)
1901 get_fs_pwd(current
->fs
, &context
->pwd
);
1904 static inline int audit_copy_fcaps(struct audit_names
*name
,
1905 const struct dentry
*dentry
)
1907 struct cpu_vfs_cap_data caps
;
1913 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1917 name
->fcap
.permitted
= caps
.permitted
;
1918 name
->fcap
.inheritable
= caps
.inheritable
;
1919 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1920 name
->fcap
.rootid
= caps
.rootid
;
1921 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >>
1922 VFS_CAP_REVISION_SHIFT
;
1927 /* Copy inode data into an audit_names. */
1928 static void audit_copy_inode(struct audit_names
*name
,
1929 const struct dentry
*dentry
,
1930 struct inode
*inode
, unsigned int flags
)
1932 name
->ino
= inode
->i_ino
;
1933 name
->dev
= inode
->i_sb
->s_dev
;
1934 name
->mode
= inode
->i_mode
;
1935 name
->uid
= inode
->i_uid
;
1936 name
->gid
= inode
->i_gid
;
1937 name
->rdev
= inode
->i_rdev
;
1938 security_inode_getsecid(inode
, &name
->osid
);
1939 if (flags
& AUDIT_INODE_NOEVAL
) {
1940 name
->fcap_ver
= -1;
1943 audit_copy_fcaps(name
, dentry
);
1947 * __audit_inode - store the inode and device from a lookup
1948 * @name: name being audited
1949 * @dentry: dentry being audited
1950 * @flags: attributes for this particular entry
1952 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1955 struct audit_context
*context
= audit_context();
1956 struct inode
*inode
= d_backing_inode(dentry
);
1957 struct audit_names
*n
;
1958 bool parent
= flags
& AUDIT_INODE_PARENT
;
1959 struct audit_entry
*e
;
1960 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
1963 if (!context
->in_syscall
)
1967 list_for_each_entry_rcu(e
, list
, list
) {
1968 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
1969 struct audit_field
*f
= &e
->rule
.fields
[i
];
1971 if (f
->type
== AUDIT_FSTYPE
1972 && audit_comparator(inode
->i_sb
->s_magic
,
1974 && e
->rule
.action
== AUDIT_NEVER
) {
1986 * If we have a pointer to an audit_names entry already, then we can
1987 * just use it directly if the type is correct.
1992 if (n
->type
== AUDIT_TYPE_PARENT
||
1993 n
->type
== AUDIT_TYPE_UNKNOWN
)
1996 if (n
->type
!= AUDIT_TYPE_PARENT
)
2001 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2003 /* valid inode number, use that for the comparison */
2004 if (n
->ino
!= inode
->i_ino
||
2005 n
->dev
!= inode
->i_sb
->s_dev
)
2007 } else if (n
->name
) {
2008 /* inode number has not been set, check the name */
2009 if (strcmp(n
->name
->name
, name
->name
))
2012 /* no inode and no name (?!) ... this is odd ... */
2015 /* match the correct record type */
2017 if (n
->type
== AUDIT_TYPE_PARENT
||
2018 n
->type
== AUDIT_TYPE_UNKNOWN
)
2021 if (n
->type
!= AUDIT_TYPE_PARENT
)
2027 /* unable to find an entry with both a matching name and type */
2028 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2038 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2039 n
->type
= AUDIT_TYPE_PARENT
;
2040 if (flags
& AUDIT_INODE_HIDDEN
)
2043 n
->name_len
= AUDIT_NAME_FULL
;
2044 n
->type
= AUDIT_TYPE_NORMAL
;
2046 handle_path(dentry
);
2047 audit_copy_inode(n
, dentry
, inode
, flags
& AUDIT_INODE_NOEVAL
);
2050 void __audit_file(const struct file
*file
)
2052 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
2056 * __audit_inode_child - collect inode info for created/removed objects
2057 * @parent: inode of dentry parent
2058 * @dentry: dentry being audited
2059 * @type: AUDIT_TYPE_* value that we're looking for
2061 * For syscalls that create or remove filesystem objects, audit_inode
2062 * can only collect information for the filesystem object's parent.
2063 * This call updates the audit context with the child's information.
2064 * Syscalls that create a new filesystem object must be hooked after
2065 * the object is created. Syscalls that remove a filesystem object
2066 * must be hooked prior, in order to capture the target inode during
2067 * unsuccessful attempts.
2069 void __audit_inode_child(struct inode
*parent
,
2070 const struct dentry
*dentry
,
2071 const unsigned char type
)
2073 struct audit_context
*context
= audit_context();
2074 struct inode
*inode
= d_backing_inode(dentry
);
2075 const struct qstr
*dname
= &dentry
->d_name
;
2076 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2077 struct audit_entry
*e
;
2078 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
2081 if (!context
->in_syscall
)
2085 list_for_each_entry_rcu(e
, list
, list
) {
2086 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
2087 struct audit_field
*f
= &e
->rule
.fields
[i
];
2089 if (f
->type
== AUDIT_FSTYPE
2090 && audit_comparator(parent
->i_sb
->s_magic
,
2092 && e
->rule
.action
== AUDIT_NEVER
) {
2103 /* look for a parent entry first */
2104 list_for_each_entry(n
, &context
->names_list
, list
) {
2106 (n
->type
!= AUDIT_TYPE_PARENT
&&
2107 n
->type
!= AUDIT_TYPE_UNKNOWN
))
2110 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
2111 !audit_compare_dname_path(dname
,
2112 n
->name
->name
, n
->name_len
)) {
2113 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2114 n
->type
= AUDIT_TYPE_PARENT
;
2120 /* is there a matching child entry? */
2121 list_for_each_entry(n
, &context
->names_list
, list
) {
2122 /* can only match entries that have a name */
2124 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
2127 if (!strcmp(dname
->name
, n
->name
->name
) ||
2128 !audit_compare_dname_path(dname
, n
->name
->name
,
2130 found_parent
->name_len
:
2132 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2139 if (!found_parent
) {
2140 /* create a new, "anonymous" parent record */
2141 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2144 audit_copy_inode(n
, NULL
, parent
, 0);
2148 found_child
= audit_alloc_name(context
, type
);
2152 /* Re-use the name belonging to the slot for a matching parent
2153 * directory. All names for this context are relinquished in
2154 * audit_free_names() */
2156 found_child
->name
= found_parent
->name
;
2157 found_child
->name_len
= AUDIT_NAME_FULL
;
2158 found_child
->name
->refcnt
++;
2163 audit_copy_inode(found_child
, dentry
, inode
, 0);
2165 found_child
->ino
= AUDIT_INO_UNSET
;
2167 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2170 * auditsc_get_stamp - get local copies of audit_context values
2171 * @ctx: audit_context for the task
2172 * @t: timespec64 to store time recorded in the audit_context
2173 * @serial: serial value that is recorded in the audit_context
2175 * Also sets the context as auditable.
2177 int auditsc_get_stamp(struct audit_context
*ctx
,
2178 struct timespec64
*t
, unsigned int *serial
)
2180 if (!ctx
->in_syscall
)
2183 ctx
->serial
= audit_serial();
2184 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2185 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2186 *serial
= ctx
->serial
;
2189 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2195 * __audit_mq_open - record audit data for a POSIX MQ open
2198 * @attr: queue attributes
2201 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2203 struct audit_context
*context
= audit_context();
2206 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2208 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2210 context
->mq_open
.oflag
= oflag
;
2211 context
->mq_open
.mode
= mode
;
2213 context
->type
= AUDIT_MQ_OPEN
;
2217 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2218 * @mqdes: MQ descriptor
2219 * @msg_len: Message length
2220 * @msg_prio: Message priority
2221 * @abs_timeout: Message timeout in absolute time
2224 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2225 const struct timespec64
*abs_timeout
)
2227 struct audit_context
*context
= audit_context();
2228 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2231 memcpy(p
, abs_timeout
, sizeof(*p
));
2233 memset(p
, 0, sizeof(*p
));
2235 context
->mq_sendrecv
.mqdes
= mqdes
;
2236 context
->mq_sendrecv
.msg_len
= msg_len
;
2237 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2239 context
->type
= AUDIT_MQ_SENDRECV
;
2243 * __audit_mq_notify - record audit data for a POSIX MQ notify
2244 * @mqdes: MQ descriptor
2245 * @notification: Notification event
2249 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2251 struct audit_context
*context
= audit_context();
2254 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2256 context
->mq_notify
.sigev_signo
= 0;
2258 context
->mq_notify
.mqdes
= mqdes
;
2259 context
->type
= AUDIT_MQ_NOTIFY
;
2263 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2264 * @mqdes: MQ descriptor
2268 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2270 struct audit_context
*context
= audit_context();
2271 context
->mq_getsetattr
.mqdes
= mqdes
;
2272 context
->mq_getsetattr
.mqstat
= *mqstat
;
2273 context
->type
= AUDIT_MQ_GETSETATTR
;
2277 * __audit_ipc_obj - record audit data for ipc object
2278 * @ipcp: ipc permissions
2281 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2283 struct audit_context
*context
= audit_context();
2284 context
->ipc
.uid
= ipcp
->uid
;
2285 context
->ipc
.gid
= ipcp
->gid
;
2286 context
->ipc
.mode
= ipcp
->mode
;
2287 context
->ipc
.has_perm
= 0;
2288 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2289 context
->type
= AUDIT_IPC
;
2293 * __audit_ipc_set_perm - record audit data for new ipc permissions
2294 * @qbytes: msgq bytes
2295 * @uid: msgq user id
2296 * @gid: msgq group id
2297 * @mode: msgq mode (permissions)
2299 * Called only after audit_ipc_obj().
2301 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2303 struct audit_context
*context
= audit_context();
2305 context
->ipc
.qbytes
= qbytes
;
2306 context
->ipc
.perm_uid
= uid
;
2307 context
->ipc
.perm_gid
= gid
;
2308 context
->ipc
.perm_mode
= mode
;
2309 context
->ipc
.has_perm
= 1;
2312 void __audit_bprm(struct linux_binprm
*bprm
)
2314 struct audit_context
*context
= audit_context();
2316 context
->type
= AUDIT_EXECVE
;
2317 context
->execve
.argc
= bprm
->argc
;
2322 * __audit_socketcall - record audit data for sys_socketcall
2323 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2327 int __audit_socketcall(int nargs
, unsigned long *args
)
2329 struct audit_context
*context
= audit_context();
2331 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2333 context
->type
= AUDIT_SOCKETCALL
;
2334 context
->socketcall
.nargs
= nargs
;
2335 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2340 * __audit_fd_pair - record audit data for pipe and socketpair
2341 * @fd1: the first file descriptor
2342 * @fd2: the second file descriptor
2345 void __audit_fd_pair(int fd1
, int fd2
)
2347 struct audit_context
*context
= audit_context();
2348 context
->fds
[0] = fd1
;
2349 context
->fds
[1] = fd2
;
2353 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2354 * @len: data length in user space
2355 * @a: data address in kernel space
2357 * Returns 0 for success or NULL context or < 0 on error.
2359 int __audit_sockaddr(int len
, void *a
)
2361 struct audit_context
*context
= audit_context();
2363 if (!context
->sockaddr
) {
2364 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2367 context
->sockaddr
= p
;
2370 context
->sockaddr_len
= len
;
2371 memcpy(context
->sockaddr
, a
, len
);
2375 void __audit_ptrace(struct task_struct
*t
)
2377 struct audit_context
*context
= audit_context();
2379 context
->target_pid
= task_tgid_nr(t
);
2380 context
->target_auid
= audit_get_loginuid(t
);
2381 context
->target_uid
= task_uid(t
);
2382 context
->target_sessionid
= audit_get_sessionid(t
);
2383 security_task_getsecid(t
, &context
->target_sid
);
2384 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2388 * audit_signal_info_syscall - record signal info for syscalls
2389 * @t: task being signaled
2391 * If the audit subsystem is being terminated, record the task (pid)
2392 * and uid that is doing that.
2394 int audit_signal_info_syscall(struct task_struct
*t
)
2396 struct audit_aux_data_pids
*axp
;
2397 struct audit_context
*ctx
= audit_context();
2398 kuid_t t_uid
= task_uid(t
);
2400 if (!audit_signals
|| audit_dummy_context())
2403 /* optimize the common case by putting first signal recipient directly
2404 * in audit_context */
2405 if (!ctx
->target_pid
) {
2406 ctx
->target_pid
= task_tgid_nr(t
);
2407 ctx
->target_auid
= audit_get_loginuid(t
);
2408 ctx
->target_uid
= t_uid
;
2409 ctx
->target_sessionid
= audit_get_sessionid(t
);
2410 security_task_getsecid(t
, &ctx
->target_sid
);
2411 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2415 axp
= (void *)ctx
->aux_pids
;
2416 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2417 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2421 axp
->d
.type
= AUDIT_OBJ_PID
;
2422 axp
->d
.next
= ctx
->aux_pids
;
2423 ctx
->aux_pids
= (void *)axp
;
2425 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2427 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2428 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2429 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2430 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2431 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2432 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2439 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2440 * @bprm: pointer to the bprm being processed
2441 * @new: the proposed new credentials
2442 * @old: the old credentials
2444 * Simply check if the proc already has the caps given by the file and if not
2445 * store the priv escalation info for later auditing at the end of the syscall
2449 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2450 const struct cred
*new, const struct cred
*old
)
2452 struct audit_aux_data_bprm_fcaps
*ax
;
2453 struct audit_context
*context
= audit_context();
2454 struct cpu_vfs_cap_data vcaps
;
2456 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2460 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2461 ax
->d
.next
= context
->aux
;
2462 context
->aux
= (void *)ax
;
2464 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2466 ax
->fcap
.permitted
= vcaps
.permitted
;
2467 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2468 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2469 ax
->fcap
.rootid
= vcaps
.rootid
;
2470 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2472 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2473 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2474 ax
->old_pcap
.effective
= old
->cap_effective
;
2475 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2477 ax
->new_pcap
.permitted
= new->cap_permitted
;
2478 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2479 ax
->new_pcap
.effective
= new->cap_effective
;
2480 ax
->new_pcap
.ambient
= new->cap_ambient
;
2485 * __audit_log_capset - store information about the arguments to the capset syscall
2486 * @new: the new credentials
2487 * @old: the old (current) credentials
2489 * Record the arguments userspace sent to sys_capset for later printing by the
2490 * audit system if applicable
2492 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2494 struct audit_context
*context
= audit_context();
2495 context
->capset
.pid
= task_tgid_nr(current
);
2496 context
->capset
.cap
.effective
= new->cap_effective
;
2497 context
->capset
.cap
.inheritable
= new->cap_effective
;
2498 context
->capset
.cap
.permitted
= new->cap_permitted
;
2499 context
->capset
.cap
.ambient
= new->cap_ambient
;
2500 context
->type
= AUDIT_CAPSET
;
2503 void __audit_mmap_fd(int fd
, int flags
)
2505 struct audit_context
*context
= audit_context();
2506 context
->mmap
.fd
= fd
;
2507 context
->mmap
.flags
= flags
;
2508 context
->type
= AUDIT_MMAP
;
2511 void __audit_log_kern_module(char *name
)
2513 struct audit_context
*context
= audit_context();
2515 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2516 if (!context
->module
.name
)
2517 audit_log_lost("out of memory in __audit_log_kern_module");
2518 context
->type
= AUDIT_KERN_MODULE
;
2521 void __audit_fanotify(unsigned int response
)
2523 audit_log(audit_context(), GFP_KERNEL
,
2524 AUDIT_FANOTIFY
, "resp=%u", response
);
2527 void __audit_tk_injoffset(struct timespec64 offset
)
2529 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_INJOFFSET
,
2530 "sec=%lli nsec=%li",
2531 (long long)offset
.tv_sec
, offset
.tv_nsec
);
2534 static void audit_log_ntp_val(const struct audit_ntp_data
*ad
,
2535 const char *op
, enum audit_ntp_type type
)
2537 const struct audit_ntp_val
*val
= &ad
->vals
[type
];
2539 if (val
->newval
== val
->oldval
)
2542 audit_log(audit_context(), GFP_KERNEL
, AUDIT_TIME_ADJNTPVAL
,
2543 "op=%s old=%lli new=%lli", op
, val
->oldval
, val
->newval
);
2546 void __audit_ntp_log(const struct audit_ntp_data
*ad
)
2548 audit_log_ntp_val(ad
, "offset", AUDIT_NTP_OFFSET
);
2549 audit_log_ntp_val(ad
, "freq", AUDIT_NTP_FREQ
);
2550 audit_log_ntp_val(ad
, "status", AUDIT_NTP_STATUS
);
2551 audit_log_ntp_val(ad
, "tai", AUDIT_NTP_TAI
);
2552 audit_log_ntp_val(ad
, "tick", AUDIT_NTP_TICK
);
2553 audit_log_ntp_val(ad
, "adjust", AUDIT_NTP_ADJUST
);
2556 void __audit_log_nfcfg(const char *name
, u8 af
, unsigned int nentries
,
2557 enum audit_nfcfgop op
)
2559 struct audit_buffer
*ab
;
2560 char comm
[sizeof(current
->comm
)];
2562 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_NETFILTER_CFG
);
2565 audit_log_format(ab
, "table=%s family=%u entries=%u op=%s",
2566 name
, af
, nentries
, audit_nfcfgs
[op
].s
);
2568 audit_log_format(ab
, " pid=%u", task_pid_nr(current
));
2569 audit_log_task_context(ab
); /* subj= */
2570 audit_log_format(ab
, " comm=");
2571 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2574 EXPORT_SYMBOL_GPL(__audit_log_nfcfg
);
2576 static void audit_log_task(struct audit_buffer
*ab
)
2580 unsigned int sessionid
;
2581 char comm
[sizeof(current
->comm
)];
2583 auid
= audit_get_loginuid(current
);
2584 sessionid
= audit_get_sessionid(current
);
2585 current_uid_gid(&uid
, &gid
);
2587 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2588 from_kuid(&init_user_ns
, auid
),
2589 from_kuid(&init_user_ns
, uid
),
2590 from_kgid(&init_user_ns
, gid
),
2592 audit_log_task_context(ab
);
2593 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2594 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2595 audit_log_d_path_exe(ab
, current
->mm
);
2599 * audit_core_dumps - record information about processes that end abnormally
2600 * @signr: signal value
2602 * If a process ends with a core dump, something fishy is going on and we
2603 * should record the event for investigation.
2605 void audit_core_dumps(long signr
)
2607 struct audit_buffer
*ab
;
2612 if (signr
== SIGQUIT
) /* don't care for those */
2615 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2619 audit_log_format(ab
, " sig=%ld res=1", signr
);
2624 * audit_seccomp - record information about a seccomp action
2625 * @syscall: syscall number
2626 * @signr: signal value
2627 * @code: the seccomp action
2629 * Record the information associated with a seccomp action. Event filtering for
2630 * seccomp actions that are not to be logged is done in seccomp_log().
2631 * Therefore, this function forces auditing independent of the audit_enabled
2632 * and dummy context state because seccomp actions should be logged even when
2633 * audit is not in use.
2635 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
2637 struct audit_buffer
*ab
;
2639 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
2643 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2644 signr
, syscall_get_arch(current
), syscall
,
2645 in_compat_syscall(), KSTK_EIP(current
), code
);
2649 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
2652 struct audit_buffer
*ab
;
2657 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
2658 AUDIT_CONFIG_CHANGE
);
2662 audit_log_format(ab
,
2663 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2664 names
, old_names
, res
);
2668 struct list_head
*audit_killed_trees(void)
2670 struct audit_context
*ctx
= audit_context();
2671 if (likely(!ctx
|| !ctx
->in_syscall
))
2673 return &ctx
->killed_trees
;