1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/mpage.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/uio.h>
20 #include <cluster/masklog.h>
27 #include "extent_map.h"
34 #include "refcounttree.h"
35 #include "ocfs2_trace.h"
37 #include "buffer_head_io.h"
42 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
43 struct buffer_head
*bh_result
, int create
)
47 struct ocfs2_dinode
*fe
= NULL
;
48 struct buffer_head
*bh
= NULL
;
49 struct buffer_head
*buffer_cache_bh
= NULL
;
50 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
53 trace_ocfs2_symlink_get_block(
54 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
55 (unsigned long long)iblock
, bh_result
, create
);
57 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
59 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
60 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
61 (unsigned long long)iblock
);
65 status
= ocfs2_read_inode_block(inode
, &bh
);
70 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
72 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
73 le32_to_cpu(fe
->i_clusters
))) {
75 mlog(ML_ERROR
, "block offset is outside the allocated size: "
76 "%llu\n", (unsigned long long)iblock
);
80 /* We don't use the page cache to create symlink data, so if
81 * need be, copy it over from the buffer cache. */
82 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
83 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
85 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
86 if (!buffer_cache_bh
) {
88 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
92 /* we haven't locked out transactions, so a commit
93 * could've happened. Since we've got a reference on
94 * the bh, even if it commits while we're doing the
95 * copy, the data is still good. */
96 if (buffer_jbd(buffer_cache_bh
)
97 && ocfs2_inode_is_new(inode
)) {
98 kaddr
= kmap_atomic(bh_result
->b_page
);
100 mlog(ML_ERROR
, "couldn't kmap!\n");
103 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
104 buffer_cache_bh
->b_data
,
106 kunmap_atomic(kaddr
);
107 set_buffer_uptodate(bh_result
);
109 brelse(buffer_cache_bh
);
112 map_bh(bh_result
, inode
->i_sb
,
113 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
123 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
124 struct buffer_head
*bh_result
, int create
)
127 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
129 down_read(&oi
->ip_alloc_sem
);
130 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
131 up_read(&oi
->ip_alloc_sem
);
136 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
137 struct buffer_head
*bh_result
, int create
)
140 unsigned int ext_flags
;
141 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
142 u64 p_blkno
, count
, past_eof
;
143 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
146 (unsigned long long)iblock
, bh_result
, create
);
148 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
149 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
150 inode
, inode
->i_ino
);
152 if (S_ISLNK(inode
->i_mode
)) {
153 /* this always does I/O for some reason. */
154 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
158 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
161 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
163 (unsigned long long)p_blkno
);
167 if (max_blocks
< count
)
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
174 * allows __block_write_begin() to zero.
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
181 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
182 clear_buffer_dirty(bh_result
);
183 clear_buffer_uptodate(bh_result
);
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
189 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
191 bh_result
->b_size
= count
<< inode
->i_blkbits
;
193 if (!ocfs2_sparse_alloc(osb
)) {
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock
,
199 (unsigned long long)p_blkno
,
200 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
201 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
207 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
210 (unsigned long long)past_eof
);
211 if (create
&& (iblock
>= past_eof
))
212 set_buffer_new(bh_result
);
221 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
222 struct buffer_head
*di_bh
)
226 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
228 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
229 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
230 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
234 size
= i_size_read(inode
);
236 if (size
> PAGE_SIZE
||
237 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
238 ocfs2_error(inode
->i_sb
,
239 "Inode %llu has with inline data has bad size: %Lu\n",
240 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
241 (unsigned long long)size
);
245 kaddr
= kmap_atomic(page
);
247 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
248 /* Clear the remaining part of the page */
249 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
250 flush_dcache_page(page
);
251 kunmap_atomic(kaddr
);
253 SetPageUptodate(page
);
258 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
261 struct buffer_head
*di_bh
= NULL
;
263 BUG_ON(!PageLocked(page
));
264 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
266 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
272 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
280 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
282 struct inode
*inode
= page
->mapping
->host
;
283 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
284 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
287 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
288 (page
? page
->index
: 0));
290 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
292 if (ret
== AOP_TRUNCATED_PAGE
)
298 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
303 ret
= AOP_TRUNCATED_PAGE
;
306 down_read(&oi
->ip_alloc_sem
);
307 up_read(&oi
->ip_alloc_sem
);
308 goto out_inode_unlock
;
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 * and notice that the page they just read isn't needed.
319 * XXX sys_readahead() seems to get that wrong?
321 if (start
>= i_size_read(inode
)) {
322 zero_user(page
, 0, PAGE_SIZE
);
323 SetPageUptodate(page
);
328 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
329 ret
= ocfs2_readpage_inline(inode
, page
);
331 ret
= block_read_full_page(page
, ocfs2_get_block
);
335 up_read(&oi
->ip_alloc_sem
);
337 ocfs2_inode_unlock(inode
, 0);
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
353 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
354 struct list_head
*pages
, unsigned nr_pages
)
357 struct inode
*inode
= mapping
->host
;
358 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
366 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
370 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
371 ocfs2_inode_unlock(inode
, 0);
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
379 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
386 last
= lru_to_page(pages
);
387 start
= (loff_t
)last
->index
<< PAGE_SHIFT
;
388 if (start
>= i_size_read(inode
))
391 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
394 up_read(&oi
->ip_alloc_sem
);
395 ocfs2_inode_unlock(inode
, 0);
400 /* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
411 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
417 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
420 /* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
424 int walk_page_buffers( handle_t
*handle
,
425 struct buffer_head
*head
,
429 int (*fn
)( handle_t
*handle
,
430 struct buffer_head
*bh
))
432 struct buffer_head
*bh
;
433 unsigned block_start
, block_end
;
434 unsigned blocksize
= head
->b_size
;
436 struct buffer_head
*next
;
438 for ( bh
= head
, block_start
= 0;
439 ret
== 0 && (bh
!= head
|| !block_start
);
440 block_start
= block_end
, bh
= next
)
442 next
= bh
->b_this_page
;
443 block_end
= block_start
+ blocksize
;
444 if (block_end
<= from
|| block_start
>= to
) {
445 if (partial
&& !buffer_uptodate(bh
))
449 err
= (*fn
)(handle
, bh
);
456 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
461 struct inode
*inode
= mapping
->host
;
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
464 (unsigned long long)block
);
467 * The swap code (ab-)uses ->bmap to get a block mapping and then
468 * bypasseѕ the file system for actual I/O. We really can't allow
469 * that on refcounted inodes, so we have to skip out here. And yes,
470 * 0 is the magic code for a bmap error..
472 if (ocfs2_is_refcount_inode(inode
))
475 /* We don't need to lock journal system files, since they aren't
476 * accessed concurrently from multiple nodes.
478 if (!INODE_JOURNAL(inode
)) {
479 err
= ocfs2_inode_lock(inode
, NULL
, 0);
485 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
488 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
489 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
492 if (!INODE_JOURNAL(inode
)) {
493 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
494 ocfs2_inode_unlock(inode
, 0);
498 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
499 (unsigned long long)block
);
505 status
= err
? 0 : p_blkno
;
510 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
512 if (!page_has_buffers(page
))
514 return try_to_free_buffers(page
);
517 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
522 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
524 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
527 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
529 cluster_start
= cpos
% cpp
;
530 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
532 cluster_end
= cluster_start
+ osb
->s_clustersize
;
535 BUG_ON(cluster_start
> PAGE_SIZE
);
536 BUG_ON(cluster_end
> PAGE_SIZE
);
539 *start
= cluster_start
;
545 * 'from' and 'to' are the region in the page to avoid zeroing.
547 * If pagesize > clustersize, this function will avoid zeroing outside
548 * of the cluster boundary.
550 * from == to == 0 is code for "zero the entire cluster region"
552 static void ocfs2_clear_page_regions(struct page
*page
,
553 struct ocfs2_super
*osb
, u32 cpos
,
554 unsigned from
, unsigned to
)
557 unsigned int cluster_start
, cluster_end
;
559 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
561 kaddr
= kmap_atomic(page
);
564 if (from
> cluster_start
)
565 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
566 if (to
< cluster_end
)
567 memset(kaddr
+ to
, 0, cluster_end
- to
);
569 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
572 kunmap_atomic(kaddr
);
576 * Nonsparse file systems fully allocate before we get to the write
577 * code. This prevents ocfs2_write() from tagging the write as an
578 * allocating one, which means ocfs2_map_page_blocks() might try to
579 * read-in the blocks at the tail of our file. Avoid reading them by
580 * testing i_size against each block offset.
582 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
583 unsigned int block_start
)
585 u64 offset
= page_offset(page
) + block_start
;
587 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
590 if (i_size_read(inode
) > offset
)
597 * Some of this taken from __block_write_begin(). We already have our
598 * mapping by now though, and the entire write will be allocating or
599 * it won't, so not much need to use BH_New.
601 * This will also skip zeroing, which is handled externally.
603 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
604 struct inode
*inode
, unsigned int from
,
605 unsigned int to
, int new)
608 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
609 unsigned int block_end
, block_start
;
610 unsigned int bsize
= i_blocksize(inode
);
612 if (!page_has_buffers(page
))
613 create_empty_buffers(page
, bsize
, 0);
615 head
= page_buffers(page
);
616 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
617 bh
= bh
->b_this_page
, block_start
+= bsize
) {
618 block_end
= block_start
+ bsize
;
620 clear_buffer_new(bh
);
623 * Ignore blocks outside of our i/o range -
624 * they may belong to unallocated clusters.
626 if (block_start
>= to
|| block_end
<= from
) {
627 if (PageUptodate(page
))
628 set_buffer_uptodate(bh
);
633 * For an allocating write with cluster size >= page
634 * size, we always write the entire page.
639 if (!buffer_mapped(bh
)) {
640 map_bh(bh
, inode
->i_sb
, *p_blkno
);
641 clean_bdev_bh_alias(bh
);
644 if (PageUptodate(page
)) {
645 if (!buffer_uptodate(bh
))
646 set_buffer_uptodate(bh
);
647 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
649 ocfs2_should_read_blk(inode
, page
, block_start
) &&
650 (block_start
< from
|| block_end
> to
)) {
651 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
655 *p_blkno
= *p_blkno
+ 1;
659 * If we issued read requests - let them complete.
661 while(wait_bh
> wait
) {
662 wait_on_buffer(*--wait_bh
);
663 if (!buffer_uptodate(*wait_bh
))
667 if (ret
== 0 || !new)
671 * If we get -EIO above, zero out any newly allocated blocks
672 * to avoid exposing stale data.
677 block_end
= block_start
+ bsize
;
678 if (block_end
<= from
)
680 if (block_start
>= to
)
683 zero_user(page
, block_start
, bh
->b_size
);
684 set_buffer_uptodate(bh
);
685 mark_buffer_dirty(bh
);
688 block_start
= block_end
;
689 bh
= bh
->b_this_page
;
690 } while (bh
!= head
);
695 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
696 #define OCFS2_MAX_CTXT_PAGES 1
698 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
701 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703 struct ocfs2_unwritten_extent
{
704 struct list_head ue_node
;
705 struct list_head ue_ip_node
;
711 * Describe the state of a single cluster to be written to.
713 struct ocfs2_write_cluster_desc
{
717 * Give this a unique field because c_phys eventually gets
721 unsigned c_clear_unwritten
;
722 unsigned c_needs_zero
;
725 struct ocfs2_write_ctxt
{
726 /* Logical cluster position / len of write */
730 /* First cluster allocated in a nonsparse extend */
731 u32 w_first_new_cpos
;
733 /* Type of caller. Must be one of buffer, mmap, direct. */
734 ocfs2_write_type_t w_type
;
736 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
739 * This is true if page_size > cluster_size.
741 * It triggers a set of special cases during write which might
742 * have to deal with allocating writes to partial pages.
744 unsigned int w_large_pages
;
747 * Pages involved in this write.
749 * w_target_page is the page being written to by the user.
751 * w_pages is an array of pages which always contains
752 * w_target_page, and in the case of an allocating write with
753 * page_size < cluster size, it will contain zero'd and mapped
754 * pages adjacent to w_target_page which need to be written
755 * out in so that future reads from that region will get
758 unsigned int w_num_pages
;
759 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
760 struct page
*w_target_page
;
763 * w_target_locked is used for page_mkwrite path indicating no unlocking
764 * against w_target_page in ocfs2_write_end_nolock.
766 unsigned int w_target_locked
:1;
769 * ocfs2_write_end() uses this to know what the real range to
770 * write in the target should be.
772 unsigned int w_target_from
;
773 unsigned int w_target_to
;
776 * We could use journal_current_handle() but this is cleaner,
781 struct buffer_head
*w_di_bh
;
783 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
785 struct list_head w_unwritten_list
;
786 unsigned int w_unwritten_count
;
789 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
793 for(i
= 0; i
< num_pages
; i
++) {
795 unlock_page(pages
[i
]);
796 mark_page_accessed(pages
[i
]);
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
807 * w_target_locked is only set to true in the page_mkwrite() case.
808 * The intent is to allow us to lock the target page from write_begin()
809 * to write_end(). The caller must hold a ref on w_target_page.
811 if (wc
->w_target_locked
) {
812 BUG_ON(!wc
->w_target_page
);
813 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
814 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
815 wc
->w_pages
[i
] = NULL
;
819 mark_page_accessed(wc
->w_target_page
);
820 put_page(wc
->w_target_page
);
822 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
825 static void ocfs2_free_unwritten_list(struct inode
*inode
,
826 struct list_head
*head
)
828 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
829 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
831 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
832 list_del(&ue
->ue_node
);
833 spin_lock(&oi
->ip_lock
);
834 list_del(&ue
->ue_ip_node
);
835 spin_unlock(&oi
->ip_lock
);
840 static void ocfs2_free_write_ctxt(struct inode
*inode
,
841 struct ocfs2_write_ctxt
*wc
)
843 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
844 ocfs2_unlock_pages(wc
);
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
850 struct ocfs2_super
*osb
, loff_t pos
,
851 unsigned len
, ocfs2_write_type_t type
,
852 struct buffer_head
*di_bh
)
855 struct ocfs2_write_ctxt
*wc
;
857 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
861 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
862 wc
->w_first_new_cpos
= UINT_MAX
;
863 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
864 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
869 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
870 wc
->w_large_pages
= 1;
872 wc
->w_large_pages
= 0;
874 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
875 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
883 * If a page has any new buffers, zero them out here, and mark them uptodate
884 * and dirty so they'll be written out (in order to prevent uninitialised
885 * block data from leaking). And clear the new bit.
887 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
889 unsigned int block_start
, block_end
;
890 struct buffer_head
*head
, *bh
;
892 BUG_ON(!PageLocked(page
));
893 if (!page_has_buffers(page
))
896 bh
= head
= page_buffers(page
);
899 block_end
= block_start
+ bh
->b_size
;
901 if (buffer_new(bh
)) {
902 if (block_end
> from
&& block_start
< to
) {
903 if (!PageUptodate(page
)) {
906 start
= max(from
, block_start
);
907 end
= min(to
, block_end
);
909 zero_user_segment(page
, start
, end
);
910 set_buffer_uptodate(bh
);
913 clear_buffer_new(bh
);
914 mark_buffer_dirty(bh
);
918 block_start
= block_end
;
919 bh
= bh
->b_this_page
;
920 } while (bh
!= head
);
924 * Only called when we have a failure during allocating write to write
925 * zero's to the newly allocated region.
927 static void ocfs2_write_failure(struct inode
*inode
,
928 struct ocfs2_write_ctxt
*wc
,
929 loff_t user_pos
, unsigned user_len
)
932 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
933 to
= user_pos
+ user_len
;
934 struct page
*tmppage
;
936 if (wc
->w_target_page
)
937 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
939 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
940 tmppage
= wc
->w_pages
[i
];
942 if (tmppage
&& page_has_buffers(tmppage
)) {
943 if (ocfs2_should_order_data(inode
))
944 ocfs2_jbd2_inode_add_write(wc
->w_handle
, inode
,
947 block_commit_write(tmppage
, from
, to
);
952 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
953 struct ocfs2_write_ctxt
*wc
,
954 struct page
*page
, u32 cpos
,
955 loff_t user_pos
, unsigned user_len
,
959 unsigned int map_from
= 0, map_to
= 0;
960 unsigned int cluster_start
, cluster_end
;
961 unsigned int user_data_from
= 0, user_data_to
= 0;
963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
964 &cluster_start
, &cluster_end
);
966 /* treat the write as new if the a hole/lseek spanned across
969 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
970 (page_offset(page
) <= user_pos
));
972 if (page
== wc
->w_target_page
) {
973 map_from
= user_pos
& (PAGE_SIZE
- 1);
974 map_to
= map_from
+ user_len
;
977 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
978 cluster_start
, cluster_end
,
981 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
982 map_from
, map_to
, new);
988 user_data_from
= map_from
;
989 user_data_to
= map_to
;
991 map_from
= cluster_start
;
992 map_to
= cluster_end
;
996 * If we haven't allocated the new page yet, we
997 * shouldn't be writing it out without copying user
998 * data. This is likely a math error from the caller.
1002 map_from
= cluster_start
;
1003 map_to
= cluster_end
;
1005 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1006 cluster_start
, cluster_end
, new);
1014 * Parts of newly allocated pages need to be zero'd.
1016 * Above, we have also rewritten 'to' and 'from' - as far as
1017 * the rest of the function is concerned, the entire cluster
1018 * range inside of a page needs to be written.
1020 * We can skip this if the page is up to date - it's already
1021 * been zero'd from being read in as a hole.
1023 if (new && !PageUptodate(page
))
1024 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1025 cpos
, user_data_from
, user_data_to
);
1027 flush_dcache_page(page
);
1034 * This function will only grab one clusters worth of pages.
1036 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1037 struct ocfs2_write_ctxt
*wc
,
1038 u32 cpos
, loff_t user_pos
,
1039 unsigned user_len
, int new,
1040 struct page
*mmap_page
)
1043 unsigned long start
, target_index
, end_index
, index
;
1044 struct inode
*inode
= mapping
->host
;
1047 target_index
= user_pos
>> PAGE_SHIFT
;
1050 * Figure out how many pages we'll be manipulating here. For
1051 * non allocating write, we just change the one
1052 * page. Otherwise, we'll need a whole clusters worth. If we're
1053 * writing past i_size, we only need enough pages to cover the
1054 * last page of the write.
1057 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1058 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1060 * We need the index *past* the last page we could possibly
1061 * touch. This is the page past the end of the write or
1062 * i_size, whichever is greater.
1064 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1065 BUG_ON(last_byte
< 1);
1066 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1067 if ((start
+ wc
->w_num_pages
) > end_index
)
1068 wc
->w_num_pages
= end_index
- start
;
1070 wc
->w_num_pages
= 1;
1071 start
= target_index
;
1073 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1075 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1078 if (index
>= target_index
&& index
<= end_index
&&
1079 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1081 * ocfs2_pagemkwrite() is a little different
1082 * and wants us to directly use the page
1085 lock_page(mmap_page
);
1087 /* Exit and let the caller retry */
1088 if (mmap_page
->mapping
!= mapping
) {
1089 WARN_ON(mmap_page
->mapping
);
1090 unlock_page(mmap_page
);
1095 get_page(mmap_page
);
1096 wc
->w_pages
[i
] = mmap_page
;
1097 wc
->w_target_locked
= true;
1098 } else if (index
>= target_index
&& index
<= end_index
&&
1099 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1100 /* Direct write has no mapping page. */
1101 wc
->w_pages
[i
] = NULL
;
1104 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1106 if (!wc
->w_pages
[i
]) {
1112 wait_for_stable_page(wc
->w_pages
[i
]);
1114 if (index
== target_index
)
1115 wc
->w_target_page
= wc
->w_pages
[i
];
1119 wc
->w_target_locked
= false;
1124 * Prepare a single cluster for write one cluster into the file.
1126 static int ocfs2_write_cluster(struct address_space
*mapping
,
1127 u32
*phys
, unsigned int new,
1128 unsigned int clear_unwritten
,
1129 unsigned int should_zero
,
1130 struct ocfs2_alloc_context
*data_ac
,
1131 struct ocfs2_alloc_context
*meta_ac
,
1132 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1133 loff_t user_pos
, unsigned user_len
)
1137 struct inode
*inode
= mapping
->host
;
1138 struct ocfs2_extent_tree et
;
1139 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1145 * This is safe to call with the page locks - it won't take
1146 * any additional semaphores or cluster locks.
1149 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1150 &tmp_pos
, 1, !clear_unwritten
,
1151 wc
->w_di_bh
, wc
->w_handle
,
1152 data_ac
, meta_ac
, NULL
);
1154 * This shouldn't happen because we must have already
1155 * calculated the correct meta data allocation required. The
1156 * internal tree allocation code should know how to increase
1157 * transaction credits itself.
1159 * If need be, we could handle -EAGAIN for a
1160 * RESTART_TRANS here.
1162 mlog_bug_on_msg(ret
== -EAGAIN
,
1163 "Inode %llu: EAGAIN return during allocation.\n",
1164 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1169 } else if (clear_unwritten
) {
1170 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1172 ret
= ocfs2_mark_extent_written(inode
, &et
,
1173 wc
->w_handle
, cpos
, 1, *phys
,
1174 meta_ac
, &wc
->w_dealloc
);
1182 * The only reason this should fail is due to an inability to
1183 * find the extent added.
1185 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1187 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1188 "at logical cluster %u",
1189 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1195 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1197 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1199 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1202 /* This is the direct io target page. */
1203 if (wc
->w_pages
[i
] == NULL
) {
1208 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1209 wc
->w_pages
[i
], cpos
,
1220 * We only have cleanup to do in case of allocating write.
1223 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1230 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1231 struct ocfs2_alloc_context
*data_ac
,
1232 struct ocfs2_alloc_context
*meta_ac
,
1233 struct ocfs2_write_ctxt
*wc
,
1234 loff_t pos
, unsigned len
)
1238 unsigned int local_len
= len
;
1239 struct ocfs2_write_cluster_desc
*desc
;
1240 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1242 for (i
= 0; i
< wc
->w_clen
; i
++) {
1243 desc
= &wc
->w_desc
[i
];
1246 * We have to make sure that the total write passed in
1247 * doesn't extend past a single cluster.
1250 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1251 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1252 local_len
= osb
->s_clustersize
- cluster_off
;
1254 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1256 desc
->c_clear_unwritten
,
1259 wc
, desc
->c_cpos
, pos
, local_len
);
1275 * ocfs2_write_end() wants to know which parts of the target page it
1276 * should complete the write on. It's easiest to compute them ahead of
1277 * time when a more complete view of the write is available.
1279 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1280 struct ocfs2_write_ctxt
*wc
,
1281 loff_t pos
, unsigned len
, int alloc
)
1283 struct ocfs2_write_cluster_desc
*desc
;
1285 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1286 wc
->w_target_to
= wc
->w_target_from
+ len
;
1292 * Allocating write - we may have different boundaries based
1293 * on page size and cluster size.
1295 * NOTE: We can no longer compute one value from the other as
1296 * the actual write length and user provided length may be
1300 if (wc
->w_large_pages
) {
1302 * We only care about the 1st and last cluster within
1303 * our range and whether they should be zero'd or not. Either
1304 * value may be extended out to the start/end of a
1305 * newly allocated cluster.
1307 desc
= &wc
->w_desc
[0];
1308 if (desc
->c_needs_zero
)
1309 ocfs2_figure_cluster_boundaries(osb
,
1314 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1315 if (desc
->c_needs_zero
)
1316 ocfs2_figure_cluster_boundaries(osb
,
1321 wc
->w_target_from
= 0;
1322 wc
->w_target_to
= PAGE_SIZE
;
1327 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1328 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1329 * by the direct io procedure.
1330 * If this is a new extent that allocated by direct io, we should mark it in
1331 * the ip_unwritten_list.
1333 static int ocfs2_unwritten_check(struct inode
*inode
,
1334 struct ocfs2_write_ctxt
*wc
,
1335 struct ocfs2_write_cluster_desc
*desc
)
1337 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1338 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1341 if (!desc
->c_needs_zero
)
1345 spin_lock(&oi
->ip_lock
);
1346 /* Needs not to zero no metter buffer or direct. The one who is zero
1347 * the cluster is doing zero. And he will clear unwritten after all
1348 * cluster io finished. */
1349 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1350 if (desc
->c_cpos
== ue
->ue_cpos
) {
1351 BUG_ON(desc
->c_new
);
1352 desc
->c_needs_zero
= 0;
1353 desc
->c_clear_unwritten
= 0;
1358 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1362 spin_unlock(&oi
->ip_lock
);
1363 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1371 /* This direct write will doing zero. */
1372 new->ue_cpos
= desc
->c_cpos
;
1373 new->ue_phys
= desc
->c_phys
;
1374 desc
->c_clear_unwritten
= 0;
1375 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1376 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1377 wc
->w_unwritten_count
++;
1380 spin_unlock(&oi
->ip_lock
);
1387 * Populate each single-cluster write descriptor in the write context
1388 * with information about the i/o to be done.
1390 * Returns the number of clusters that will have to be allocated, as
1391 * well as a worst case estimate of the number of extent records that
1392 * would have to be created during a write to an unwritten region.
1394 static int ocfs2_populate_write_desc(struct inode
*inode
,
1395 struct ocfs2_write_ctxt
*wc
,
1396 unsigned int *clusters_to_alloc
,
1397 unsigned int *extents_to_split
)
1400 struct ocfs2_write_cluster_desc
*desc
;
1401 unsigned int num_clusters
= 0;
1402 unsigned int ext_flags
= 0;
1406 *clusters_to_alloc
= 0;
1407 *extents_to_split
= 0;
1409 for (i
= 0; i
< wc
->w_clen
; i
++) {
1410 desc
= &wc
->w_desc
[i
];
1411 desc
->c_cpos
= wc
->w_cpos
+ i
;
1413 if (num_clusters
== 0) {
1415 * Need to look up the next extent record.
1417 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1418 &num_clusters
, &ext_flags
);
1424 /* We should already CoW the refcountd extent. */
1425 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1428 * Assume worst case - that we're writing in
1429 * the middle of the extent.
1431 * We can assume that the write proceeds from
1432 * left to right, in which case the extent
1433 * insert code is smart enough to coalesce the
1434 * next splits into the previous records created.
1436 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1437 *extents_to_split
= *extents_to_split
+ 2;
1440 * Only increment phys if it doesn't describe
1447 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1448 * file that got extended. w_first_new_cpos tells us
1449 * where the newly allocated clusters are so we can
1452 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1454 desc
->c_needs_zero
= 1;
1457 desc
->c_phys
= phys
;
1460 desc
->c_needs_zero
= 1;
1461 desc
->c_clear_unwritten
= 1;
1462 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1465 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1466 desc
->c_clear_unwritten
= 1;
1467 desc
->c_needs_zero
= 1;
1470 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1484 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1485 struct inode
*inode
,
1486 struct ocfs2_write_ctxt
*wc
)
1489 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1492 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1494 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1495 if (IS_ERR(handle
)) {
1496 ret
= PTR_ERR(handle
);
1501 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1503 ocfs2_commit_trans(osb
, handle
);
1509 * If we don't set w_num_pages then this page won't get unlocked
1510 * and freed on cleanup of the write context.
1512 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1513 wc
->w_num_pages
= 1;
1515 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1516 OCFS2_JOURNAL_ACCESS_WRITE
);
1518 ocfs2_commit_trans(osb
, handle
);
1524 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1525 ocfs2_set_inode_data_inline(inode
, di
);
1527 if (!PageUptodate(page
)) {
1528 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1530 ocfs2_commit_trans(osb
, handle
);
1536 wc
->w_handle
= handle
;
1541 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1543 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1545 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1550 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1551 struct inode
*inode
, loff_t pos
,
1552 unsigned len
, struct page
*mmap_page
,
1553 struct ocfs2_write_ctxt
*wc
)
1555 int ret
, written
= 0;
1556 loff_t end
= pos
+ len
;
1557 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1558 struct ocfs2_dinode
*di
= NULL
;
1560 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1561 len
, (unsigned long long)pos
,
1562 oi
->ip_dyn_features
);
1565 * Handle inodes which already have inline data 1st.
1567 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1568 if (mmap_page
== NULL
&&
1569 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1570 goto do_inline_write
;
1573 * The write won't fit - we have to give this inode an
1574 * inline extent list now.
1576 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1583 * Check whether the inode can accept inline data.
1585 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1589 * Check whether the write can fit.
1591 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1593 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1597 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1604 * This signals to the caller that the data can be written
1609 return written
? written
: ret
;
1613 * This function only does anything for file systems which can't
1614 * handle sparse files.
1616 * What we want to do here is fill in any hole between the current end
1617 * of allocation and the end of our write. That way the rest of the
1618 * write path can treat it as an non-allocating write, which has no
1619 * special case code for sparse/nonsparse files.
1621 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1622 struct buffer_head
*di_bh
,
1623 loff_t pos
, unsigned len
,
1624 struct ocfs2_write_ctxt
*wc
)
1627 loff_t newsize
= pos
+ len
;
1629 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1631 if (newsize
<= i_size_read(inode
))
1634 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1638 /* There is no wc if this is call from direct. */
1640 wc
->w_first_new_cpos
=
1641 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1646 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1651 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1652 if (pos
> i_size_read(inode
))
1653 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1658 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1659 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1660 struct page
**pagep
, void **fsdata
,
1661 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1663 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1664 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1665 struct ocfs2_write_ctxt
*wc
;
1666 struct inode
*inode
= mapping
->host
;
1667 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1668 struct ocfs2_dinode
*di
;
1669 struct ocfs2_alloc_context
*data_ac
= NULL
;
1670 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1672 struct ocfs2_extent_tree et
;
1673 int try_free
= 1, ret1
;
1676 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1682 if (ocfs2_supports_inline_data(osb
)) {
1683 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1695 /* Direct io change i_size late, should not zero tail here. */
1696 if (type
!= OCFS2_WRITE_DIRECT
) {
1697 if (ocfs2_sparse_alloc(osb
))
1698 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1700 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1708 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1712 } else if (ret
== 1) {
1713 clusters_need
= wc
->w_clen
;
1714 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1715 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1722 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1728 clusters_need
+= clusters_to_alloc
;
1730 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1732 trace_ocfs2_write_begin_nolock(
1733 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1734 (long long)i_size_read(inode
),
1735 le32_to_cpu(di
->i_clusters
),
1736 pos
, len
, type
, mmap_page
,
1737 clusters_to_alloc
, extents_to_split
);
1740 * We set w_target_from, w_target_to here so that
1741 * ocfs2_write_end() knows which range in the target page to
1742 * write out. An allocation requires that we write the entire
1745 if (clusters_to_alloc
|| extents_to_split
) {
1747 * XXX: We are stretching the limits of
1748 * ocfs2_lock_allocators(). It greatly over-estimates
1749 * the work to be done.
1751 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1753 ret
= ocfs2_lock_allocators(inode
, &et
,
1754 clusters_to_alloc
, extents_to_split
,
1755 &data_ac
, &meta_ac
);
1762 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1764 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1766 } else if (type
== OCFS2_WRITE_DIRECT
)
1767 /* direct write needs not to start trans if no extents alloc. */
1771 * We have to zero sparse allocated clusters, unwritten extent clusters,
1772 * and non-sparse clusters we just extended. For non-sparse writes,
1773 * we know zeros will only be needed in the first and/or last cluster.
1775 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1776 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1777 cluster_of_pages
= 1;
1779 cluster_of_pages
= 0;
1781 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1783 handle
= ocfs2_start_trans(osb
, credits
);
1784 if (IS_ERR(handle
)) {
1785 ret
= PTR_ERR(handle
);
1790 wc
->w_handle
= handle
;
1792 if (clusters_to_alloc
) {
1793 ret
= dquot_alloc_space_nodirty(inode
,
1794 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1799 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1800 OCFS2_JOURNAL_ACCESS_WRITE
);
1807 * Fill our page array first. That way we've grabbed enough so
1808 * that we can zero and flush if we error after adding the
1811 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1812 cluster_of_pages
, mmap_page
);
1813 if (ret
&& ret
!= -EAGAIN
) {
1819 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1820 * the target page. In this case, we exit with no error and no target
1821 * page. This will trigger the caller, page_mkwrite(), to re-try
1824 if (ret
== -EAGAIN
) {
1825 BUG_ON(wc
->w_target_page
);
1830 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1838 ocfs2_free_alloc_context(data_ac
);
1840 ocfs2_free_alloc_context(meta_ac
);
1844 *pagep
= wc
->w_target_page
;
1848 if (clusters_to_alloc
)
1849 dquot_free_space(inode
,
1850 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1852 ocfs2_commit_trans(osb
, handle
);
1856 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1857 * even in case of error here like ENOSPC and ENOMEM. So, we need
1858 * to unlock the target page manually to prevent deadlocks when
1859 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1862 if (wc
->w_target_locked
)
1863 unlock_page(mmap_page
);
1865 ocfs2_free_write_ctxt(inode
, wc
);
1868 ocfs2_free_alloc_context(data_ac
);
1872 ocfs2_free_alloc_context(meta_ac
);
1876 if (ret
== -ENOSPC
&& try_free
) {
1878 * Try to free some truncate log so that we can have enough
1879 * clusters to allocate.
1883 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1894 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1895 loff_t pos
, unsigned len
, unsigned flags
,
1896 struct page
**pagep
, void **fsdata
)
1899 struct buffer_head
*di_bh
= NULL
;
1900 struct inode
*inode
= mapping
->host
;
1902 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1909 * Take alloc sem here to prevent concurrent lookups. That way
1910 * the mapping, zeroing and tree manipulation within
1911 * ocfs2_write() will be safe against ->readpage(). This
1912 * should also serve to lock out allocation from a shared
1915 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1917 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1918 pagep
, fsdata
, di_bh
, NULL
);
1929 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1932 ocfs2_inode_unlock(inode
, 1);
1937 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1938 unsigned len
, unsigned *copied
,
1939 struct ocfs2_dinode
*di
,
1940 struct ocfs2_write_ctxt
*wc
)
1944 if (unlikely(*copied
< len
)) {
1945 if (!PageUptodate(wc
->w_target_page
)) {
1951 kaddr
= kmap_atomic(wc
->w_target_page
);
1952 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1953 kunmap_atomic(kaddr
);
1955 trace_ocfs2_write_end_inline(
1956 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1957 (unsigned long long)pos
, *copied
,
1958 le16_to_cpu(di
->id2
.i_data
.id_count
),
1959 le16_to_cpu(di
->i_dyn_features
));
1962 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1963 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1966 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1967 struct inode
*inode
= mapping
->host
;
1968 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1969 struct ocfs2_write_ctxt
*wc
= fsdata
;
1970 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1971 handle_t
*handle
= wc
->w_handle
;
1972 struct page
*tmppage
;
1974 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1977 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1978 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1986 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1987 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1988 goto out_write_size
;
1991 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1992 if (!PageUptodate(wc
->w_target_page
))
1995 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1998 if (wc
->w_target_page
)
1999 flush_dcache_page(wc
->w_target_page
);
2001 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
2002 tmppage
= wc
->w_pages
[i
];
2004 /* This is the direct io target page. */
2005 if (tmppage
== NULL
)
2008 if (tmppage
== wc
->w_target_page
) {
2009 from
= wc
->w_target_from
;
2010 to
= wc
->w_target_to
;
2012 BUG_ON(from
> PAGE_SIZE
||
2017 * Pages adjacent to the target (if any) imply
2018 * a hole-filling write in which case we want
2019 * to flush their entire range.
2025 if (page_has_buffers(tmppage
)) {
2026 if (handle
&& ocfs2_should_order_data(inode
)) {
2028 ((loff_t
)tmppage
->index
<< PAGE_SHIFT
) +
2030 loff_t length
= to
- from
;
2031 ocfs2_jbd2_inode_add_write(handle
, inode
,
2032 start_byte
, length
);
2034 block_commit_write(tmppage
, from
, to
);
2039 /* Direct io do not update i_size here. */
2040 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2042 if (pos
> i_size_read(inode
)) {
2043 i_size_write(inode
, pos
);
2044 mark_inode_dirty(inode
);
2046 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2047 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2048 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2049 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2050 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2052 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2055 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2058 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059 * lock, or it will cause a deadlock since journal commit threads holds
2060 * this lock and will ask for the page lock when flushing the data.
2061 * put it here to preserve the unlock order.
2063 ocfs2_unlock_pages(wc
);
2066 ocfs2_commit_trans(osb
, handle
);
2068 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2070 brelse(wc
->w_di_bh
);
2076 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2077 loff_t pos
, unsigned len
, unsigned copied
,
2078 struct page
*page
, void *fsdata
)
2081 struct inode
*inode
= mapping
->host
;
2083 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2085 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2086 ocfs2_inode_unlock(inode
, 1);
2091 struct ocfs2_dio_write_ctxt
{
2092 struct list_head dw_zero_list
;
2093 unsigned dw_zero_count
;
2095 pid_t dw_writer_pid
;
2098 static struct ocfs2_dio_write_ctxt
*
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2101 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2104 return bh
->b_private
;
2106 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2109 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2110 dwc
->dw_zero_count
= 0;
2111 dwc
->dw_orphaned
= 0;
2112 dwc
->dw_writer_pid
= task_pid_nr(current
);
2113 bh
->b_private
= dwc
;
2119 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2120 struct ocfs2_dio_write_ctxt
*dwc
)
2122 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2127 * TODO: Make this into a generic get_blocks function.
2129 * From do_direct_io in direct-io.c:
2130 * "So what we do is to permit the ->get_blocks function to populate
2131 * bh.b_size with the size of IO which is permitted at this offset and
2134 * This function is called directly from get_more_blocks in direct-io.c.
2136 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137 * fs_count, map_bh, dio->rw == WRITE);
2139 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2140 struct buffer_head
*bh_result
, int create
)
2142 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2143 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2144 struct ocfs2_write_ctxt
*wc
;
2145 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2146 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2147 struct buffer_head
*di_bh
= NULL
;
2149 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2150 loff_t pos
= iblock
<< i_blkbits
;
2151 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2152 unsigned len
, total_len
= bh_result
->b_size
;
2153 int ret
= 0, first_get_block
= 0;
2155 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2156 len
= min(total_len
, len
);
2159 * bh_result->b_size is count in get_more_blocks according to write
2160 * "pos" and "end", we need map twice to return different buffer state:
2161 * 1. area in file size, not set NEW;
2162 * 2. area out file size, set NEW.
2165 * |--------|---------|---------|---------
2166 * |<-------area in file------->|
2169 if ((iblock
<= endblk
) &&
2170 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2171 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2173 mlog(0, "get block of %lu at %llu:%u req %u\n",
2174 inode
->i_ino
, pos
, len
, total_len
);
2177 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178 * we may need to add it to orphan dir. So can not fall to fast path
2179 * while file size will be changed.
2181 if (pos
+ total_len
<= i_size_read(inode
)) {
2183 /* This is the fast path for re-write. */
2184 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2185 if (buffer_mapped(bh_result
) &&
2186 !buffer_new(bh_result
) &&
2190 /* Clear state set by ocfs2_get_block. */
2191 bh_result
->b_state
= 0;
2194 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2195 if (unlikely(dwc
== NULL
)) {
2201 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2202 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2203 !dwc
->dw_orphaned
) {
2205 * when we are going to alloc extents beyond file size, add the
2206 * inode to orphan dir, so we can recall those spaces when
2207 * system crashed during write.
2209 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2214 dwc
->dw_orphaned
= 1;
2217 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2223 down_write(&oi
->ip_alloc_sem
);
2225 if (first_get_block
) {
2226 if (ocfs2_sparse_alloc(osb
))
2227 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2229 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2237 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2238 OCFS2_WRITE_DIRECT
, NULL
,
2239 (void **)&wc
, di_bh
, NULL
);
2245 desc
= &wc
->w_desc
[0];
2247 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2248 BUG_ON(p_blkno
== 0);
2249 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2251 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2252 bh_result
->b_size
= len
;
2253 if (desc
->c_needs_zero
)
2254 set_buffer_new(bh_result
);
2256 if (iblock
> endblk
)
2257 set_buffer_new(bh_result
);
2259 /* May sleep in end_io. It should not happen in a irq context. So defer
2260 * it to dio work queue. */
2261 set_buffer_defer_completion(bh_result
);
2263 if (!list_empty(&wc
->w_unwritten_list
)) {
2264 struct ocfs2_unwritten_extent
*ue
= NULL
;
2266 ue
= list_first_entry(&wc
->w_unwritten_list
,
2267 struct ocfs2_unwritten_extent
,
2269 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2270 /* The physical address may be 0, fill it. */
2271 ue
->ue_phys
= desc
->c_phys
;
2273 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2274 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2277 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2281 up_write(&oi
->ip_alloc_sem
);
2282 ocfs2_inode_unlock(inode
, 1);
2290 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2291 struct ocfs2_dio_write_ctxt
*dwc
,
2295 struct ocfs2_cached_dealloc_ctxt dealloc
;
2296 struct ocfs2_extent_tree et
;
2297 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2298 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2299 struct ocfs2_unwritten_extent
*ue
= NULL
;
2300 struct buffer_head
*di_bh
= NULL
;
2301 struct ocfs2_dinode
*di
;
2302 struct ocfs2_alloc_context
*data_ac
= NULL
;
2303 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2304 handle_t
*handle
= NULL
;
2305 loff_t end
= offset
+ bytes
;
2306 int ret
= 0, credits
= 0, locked
= 0;
2308 ocfs2_init_dealloc_ctxt(&dealloc
);
2310 /* We do clear unwritten, delete orphan, change i_size here. If neither
2311 * of these happen, we can skip all this. */
2312 if (list_empty(&dwc
->dw_zero_list
) &&
2313 end
<= i_size_read(inode
) &&
2317 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2318 * are in that context. */
2319 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2324 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2330 down_write(&oi
->ip_alloc_sem
);
2332 /* Delete orphan before acquire i_mutex. */
2333 if (dwc
->dw_orphaned
) {
2334 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2336 end
= end
> i_size_read(inode
) ? end
: 0;
2338 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2344 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2346 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2348 /* Attach dealloc with extent tree in case that we may reuse extents
2349 * which are already unlinked from current extent tree due to extent
2350 * rotation and merging.
2352 et
.et_dealloc
= &dealloc
;
2354 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2355 &data_ac
, &meta_ac
);
2361 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2363 handle
= ocfs2_start_trans(osb
, credits
);
2364 if (IS_ERR(handle
)) {
2365 ret
= PTR_ERR(handle
);
2369 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2370 OCFS2_JOURNAL_ACCESS_WRITE
);
2376 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2377 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2387 if (end
> i_size_read(inode
)) {
2388 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2393 ocfs2_commit_trans(osb
, handle
);
2395 up_write(&oi
->ip_alloc_sem
);
2396 ocfs2_inode_unlock(inode
, 1);
2400 ocfs2_free_alloc_context(data_ac
);
2402 ocfs2_free_alloc_context(meta_ac
);
2403 ocfs2_run_deallocs(osb
, &dealloc
);
2405 inode_unlock(inode
);
2406 ocfs2_dio_free_write_ctx(inode
, dwc
);
2412 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2413 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2414 * to protect io on one node from truncation on another.
2416 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2421 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2425 /* this io's submitter should not have unlocked this before we could */
2426 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2429 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2433 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2436 ocfs2_dio_free_write_ctx(inode
, private);
2439 ocfs2_iocb_clear_rw_locked(iocb
);
2441 level
= ocfs2_iocb_rw_locked_level(iocb
);
2442 ocfs2_rw_unlock(inode
, level
);
2446 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2448 struct file
*file
= iocb
->ki_filp
;
2449 struct inode
*inode
= file
->f_mapping
->host
;
2450 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2451 get_block_t
*get_block
;
2454 * Fallback to buffered I/O if we see an inode without
2457 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2460 /* Fallback to buffered I/O if we do not support append dio. */
2461 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2462 !ocfs2_supports_append_dio(osb
))
2465 if (iov_iter_rw(iter
) == READ
)
2466 get_block
= ocfs2_lock_get_block
;
2468 get_block
= ocfs2_dio_wr_get_block
;
2470 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2472 ocfs2_dio_end_io
, NULL
, 0);
2475 const struct address_space_operations ocfs2_aops
= {
2476 .readpage
= ocfs2_readpage
,
2477 .readpages
= ocfs2_readpages
,
2478 .writepage
= ocfs2_writepage
,
2479 .write_begin
= ocfs2_write_begin
,
2480 .write_end
= ocfs2_write_end
,
2482 .direct_IO
= ocfs2_direct_IO
,
2483 .invalidatepage
= block_invalidatepage
,
2484 .releasepage
= ocfs2_releasepage
,
2485 .migratepage
= buffer_migrate_page
,
2486 .is_partially_uptodate
= block_is_partially_uptodate
,
2487 .error_remove_page
= generic_error_remove_page
,