2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 #include <asm/i8259.h>
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <asm-generic/rtc.h>
52 struct rtc_device
*rtc
;
55 struct resource
*iomem
;
56 time64_t alarm_expires
;
58 void (*wake_on
)(struct device
*);
59 void (*wake_off
)(struct device
*);
64 /* newer hardware extends the original register set */
70 /* both platform and pnp busses use negative numbers for invalid irqs */
71 #define is_valid_irq(n) ((n) > 0)
73 static const char driver_name
[] = "rtc_cmos";
75 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
76 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
77 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
79 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
81 static inline int is_intr(u8 rtc_intr
)
83 if (!(rtc_intr
& RTC_IRQF
))
85 return rtc_intr
& RTC_IRQMASK
;
88 /*----------------------------------------------------------------*/
90 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
91 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
92 * used in a broken "legacy replacement" mode. The breakage includes
93 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96 * When that broken mode is in use, platform glue provides a partial
97 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
98 * want to use HPET for anything except those IRQs though...
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #include <asm/hpet.h>
104 static inline int is_hpet_enabled(void)
109 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
114 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
120 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
125 static inline int hpet_set_periodic_freq(unsigned long freq
)
130 static inline int hpet_rtc_dropped_irq(void)
135 static inline int hpet_rtc_timer_init(void)
140 extern irq_handler_t hpet_rtc_interrupt
;
142 static inline int hpet_register_irq_handler(irq_handler_t handler
)
147 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
154 /*----------------------------------------------------------------*/
158 /* Most newer x86 systems have two register banks, the first used
159 * for RTC and NVRAM and the second only for NVRAM. Caller must
160 * own rtc_lock ... and we won't worry about access during NMI.
162 #define can_bank2 true
164 static inline unsigned char cmos_read_bank2(unsigned char addr
)
166 outb(addr
, RTC_PORT(2));
167 return inb(RTC_PORT(3));
170 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
172 outb(addr
, RTC_PORT(2));
173 outb(val
, RTC_PORT(3));
178 #define can_bank2 false
180 static inline unsigned char cmos_read_bank2(unsigned char addr
)
185 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
191 /*----------------------------------------------------------------*/
193 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
195 /* REVISIT: if the clock has a "century" register, use
196 * that instead of the heuristic in get_rtc_time().
197 * That'll make Y3K compatility (year > 2070) easy!
203 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
205 /* REVISIT: set the "century" register if available
207 * NOTE: this ignores the issue whereby updating the seconds
208 * takes effect exactly 500ms after we write the register.
209 * (Also queueing and other delays before we get this far.)
211 return set_rtc_time(t
);
214 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
216 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
217 unsigned char rtc_control
;
219 if (!is_valid_irq(cmos
->irq
))
222 /* Basic alarms only support hour, minute, and seconds fields.
223 * Some also support day and month, for alarms up to a year in
226 t
->time
.tm_mday
= -1;
229 spin_lock_irq(&rtc_lock
);
230 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
231 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
232 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
234 if (cmos
->day_alrm
) {
235 /* ignore upper bits on readback per ACPI spec */
236 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
237 if (!t
->time
.tm_mday
)
238 t
->time
.tm_mday
= -1;
240 if (cmos
->mon_alrm
) {
241 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
247 rtc_control
= CMOS_READ(RTC_CONTROL
);
248 spin_unlock_irq(&rtc_lock
);
250 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
251 if (((unsigned)t
->time
.tm_sec
) < 0x60)
252 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
255 if (((unsigned)t
->time
.tm_min
) < 0x60)
256 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
259 if (((unsigned)t
->time
.tm_hour
) < 0x24)
260 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
262 t
->time
.tm_hour
= -1;
264 if (cmos
->day_alrm
) {
265 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
266 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
268 t
->time
.tm_mday
= -1;
270 if (cmos
->mon_alrm
) {
271 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
272 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
278 t
->time
.tm_year
= -1;
280 t
->enabled
= !!(rtc_control
& RTC_AIE
);
286 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
288 unsigned char rtc_intr
;
290 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
291 * allegedly some older rtcs need that to handle irqs properly
293 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
295 if (is_hpet_enabled())
298 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
299 if (is_intr(rtc_intr
))
300 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
303 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
305 unsigned char rtc_control
;
307 /* flush any pending IRQ status, notably for update irqs,
308 * before we enable new IRQs
310 rtc_control
= CMOS_READ(RTC_CONTROL
);
311 cmos_checkintr(cmos
, rtc_control
);
314 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
315 hpet_set_rtc_irq_bit(mask
);
317 cmos_checkintr(cmos
, rtc_control
);
320 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
322 unsigned char rtc_control
;
324 rtc_control
= CMOS_READ(RTC_CONTROL
);
325 rtc_control
&= ~mask
;
326 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
327 hpet_mask_rtc_irq_bit(mask
);
329 cmos_checkintr(cmos
, rtc_control
);
332 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
334 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
335 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
337 if (!is_valid_irq(cmos
->irq
))
340 mon
= t
->time
.tm_mon
+ 1;
341 mday
= t
->time
.tm_mday
;
342 hrs
= t
->time
.tm_hour
;
343 min
= t
->time
.tm_min
;
344 sec
= t
->time
.tm_sec
;
346 rtc_control
= CMOS_READ(RTC_CONTROL
);
347 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
348 /* Writing 0xff means "don't care" or "match all". */
349 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
350 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
351 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
352 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
353 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
356 spin_lock_irq(&rtc_lock
);
358 /* next rtc irq must not be from previous alarm setting */
359 cmos_irq_disable(cmos
, RTC_AIE
);
362 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
363 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
364 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
366 /* the system may support an "enhanced" alarm */
367 if (cmos
->day_alrm
) {
368 CMOS_WRITE(mday
, cmos
->day_alrm
);
370 CMOS_WRITE(mon
, cmos
->mon_alrm
);
373 /* FIXME the HPET alarm glue currently ignores day_alrm
376 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
379 cmos_irq_enable(cmos
, RTC_AIE
);
381 spin_unlock_irq(&rtc_lock
);
383 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
388 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
390 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
393 if (!is_valid_irq(cmos
->irq
))
396 spin_lock_irqsave(&rtc_lock
, flags
);
399 cmos_irq_enable(cmos
, RTC_AIE
);
401 cmos_irq_disable(cmos
, RTC_AIE
);
403 spin_unlock_irqrestore(&rtc_lock
, flags
);
407 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
409 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
411 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
412 unsigned char rtc_control
, valid
;
414 spin_lock_irq(&rtc_lock
);
415 rtc_control
= CMOS_READ(RTC_CONTROL
);
416 valid
= CMOS_READ(RTC_VALID
);
417 spin_unlock_irq(&rtc_lock
);
419 /* NOTE: at least ICH6 reports battery status using a different
420 * (non-RTC) bit; and SQWE is ignored on many current systems.
423 "periodic_IRQ\t: %s\n"
425 "HPET_emulated\t: %s\n"
426 // "square_wave\t: %s\n"
429 "periodic_freq\t: %d\n"
430 "batt_status\t: %s\n",
431 (rtc_control
& RTC_PIE
) ? "yes" : "no",
432 (rtc_control
& RTC_UIE
) ? "yes" : "no",
433 is_hpet_enabled() ? "yes" : "no",
434 // (rtc_control & RTC_SQWE) ? "yes" : "no",
435 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
436 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
438 (valid
& RTC_VRT
) ? "okay" : "dead");
444 #define cmos_procfs NULL
447 static const struct rtc_class_ops cmos_rtc_ops
= {
448 .read_time
= cmos_read_time
,
449 .set_time
= cmos_set_time
,
450 .read_alarm
= cmos_read_alarm
,
451 .set_alarm
= cmos_set_alarm
,
453 .alarm_irq_enable
= cmos_alarm_irq_enable
,
456 /*----------------------------------------------------------------*/
459 * All these chips have at least 64 bytes of address space, shared by
460 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
461 * by boot firmware. Modern chips have 128 or 256 bytes.
464 #define NVRAM_OFFSET (RTC_REG_D + 1)
467 cmos_nvram_read(struct file
*filp
, struct kobject
*kobj
,
468 struct bin_attribute
*attr
,
469 char *buf
, loff_t off
, size_t count
)
474 spin_lock_irq(&rtc_lock
);
475 for (retval
= 0; count
; count
--, off
++, retval
++) {
477 *buf
++ = CMOS_READ(off
);
479 *buf
++ = cmos_read_bank2(off
);
483 spin_unlock_irq(&rtc_lock
);
489 cmos_nvram_write(struct file
*filp
, struct kobject
*kobj
,
490 struct bin_attribute
*attr
,
491 char *buf
, loff_t off
, size_t count
)
493 struct cmos_rtc
*cmos
;
496 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
498 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
499 * checksum on part of the NVRAM data. That's currently ignored
500 * here. If userspace is smart enough to know what fields of
501 * NVRAM to update, updating checksums is also part of its job.
504 spin_lock_irq(&rtc_lock
);
505 for (retval
= 0; count
; count
--, off
++, retval
++) {
506 /* don't trash RTC registers */
507 if (off
== cmos
->day_alrm
508 || off
== cmos
->mon_alrm
509 || off
== cmos
->century
)
512 CMOS_WRITE(*buf
++, off
);
514 cmos_write_bank2(*buf
++, off
);
518 spin_unlock_irq(&rtc_lock
);
523 static struct bin_attribute nvram
= {
526 .mode
= S_IRUGO
| S_IWUSR
,
529 .read
= cmos_nvram_read
,
530 .write
= cmos_nvram_write
,
531 /* size gets set up later */
534 /*----------------------------------------------------------------*/
536 static struct cmos_rtc cmos_rtc
;
538 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
543 spin_lock(&rtc_lock
);
545 /* When the HPET interrupt handler calls us, the interrupt
546 * status is passed as arg1 instead of the irq number. But
547 * always clear irq status, even when HPET is in the way.
549 * Note that HPET and RTC are almost certainly out of phase,
550 * giving different IRQ status ...
552 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
553 rtc_control
= CMOS_READ(RTC_CONTROL
);
554 if (is_hpet_enabled())
555 irqstat
= (unsigned long)irq
& 0xF0;
557 /* If we were suspended, RTC_CONTROL may not be accurate since the
558 * bios may have cleared it.
560 if (!cmos_rtc
.suspend_ctrl
)
561 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
563 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
565 /* All Linux RTC alarms should be treated as if they were oneshot.
566 * Similar code may be needed in system wakeup paths, in case the
567 * alarm woke the system.
569 if (irqstat
& RTC_AIE
) {
570 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
571 rtc_control
&= ~RTC_AIE
;
572 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
573 hpet_mask_rtc_irq_bit(RTC_AIE
);
574 CMOS_READ(RTC_INTR_FLAGS
);
576 spin_unlock(&rtc_lock
);
578 if (is_intr(irqstat
)) {
579 rtc_update_irq(p
, 1, irqstat
);
589 #define INITSECTION __init
592 static int INITSECTION
593 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
595 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
597 unsigned char rtc_control
;
598 unsigned address_space
;
601 /* there can be only one ... */
608 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
610 * REVISIT non-x86 systems may instead use memory space resources
611 * (needing ioremap etc), not i/o space resources like this ...
614 ports
= request_region(ports
->start
, resource_size(ports
),
617 ports
= request_mem_region(ports
->start
, resource_size(ports
),
620 dev_dbg(dev
, "i/o registers already in use\n");
624 cmos_rtc
.irq
= rtc_irq
;
625 cmos_rtc
.iomem
= ports
;
627 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
628 * driver did, but don't reject unknown configs. Old hardware
629 * won't address 128 bytes. Newer chips have multiple banks,
630 * though they may not be listed in one I/O resource.
632 #if defined(CONFIG_ATARI)
634 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
635 || defined(__sparc__) || defined(__mips__) \
636 || defined(__powerpc__)
639 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
642 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
645 /* For ACPI systems extension info comes from the FADT. On others,
646 * board specific setup provides it as appropriate. Systems where
647 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
648 * some almost-clones) can provide hooks to make that behave.
650 * Note that ACPI doesn't preclude putting these registers into
651 * "extended" areas of the chip, including some that we won't yet
652 * expect CMOS_READ and friends to handle.
657 if (info
->address_space
)
658 address_space
= info
->address_space
;
660 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
661 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
662 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
663 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
664 if (info
->rtc_century
&& info
->rtc_century
< 128)
665 cmos_rtc
.century
= info
->rtc_century
;
667 if (info
->wake_on
&& info
->wake_off
) {
668 cmos_rtc
.wake_on
= info
->wake_on
;
669 cmos_rtc
.wake_off
= info
->wake_off
;
674 dev_set_drvdata(dev
, &cmos_rtc
);
676 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
677 &cmos_rtc_ops
, THIS_MODULE
);
678 if (IS_ERR(cmos_rtc
.rtc
)) {
679 retval
= PTR_ERR(cmos_rtc
.rtc
);
683 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
685 spin_lock_irq(&rtc_lock
);
687 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
688 /* force periodic irq to CMOS reset default of 1024Hz;
690 * REVISIT it's been reported that at least one x86_64 ALI
691 * mobo doesn't use 32KHz here ... for portability we might
692 * need to do something about other clock frequencies.
694 cmos_rtc
.rtc
->irq_freq
= 1024;
695 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
696 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
700 if (is_valid_irq(rtc_irq
))
701 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
703 rtc_control
= CMOS_READ(RTC_CONTROL
);
705 spin_unlock_irq(&rtc_lock
);
708 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
710 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
711 dev_warn(dev
, "only 24-hr supported\n");
716 if (is_valid_irq(rtc_irq
)) {
717 irq_handler_t rtc_cmos_int_handler
;
719 if (is_hpet_enabled()) {
720 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
721 retval
= hpet_register_irq_handler(cmos_interrupt
);
723 dev_warn(dev
, "hpet_register_irq_handler "
724 " failed in rtc_init().");
728 rtc_cmos_int_handler
= cmos_interrupt
;
730 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
731 0, dev_name(&cmos_rtc
.rtc
->dev
),
734 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
738 hpet_rtc_timer_init();
740 /* export at least the first block of NVRAM */
741 nvram
.size
= address_space
- NVRAM_OFFSET
;
742 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
744 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
748 dev_info(dev
, "%s%s, %zd bytes nvram%s\n",
749 !is_valid_irq(rtc_irq
) ? "no alarms" :
750 cmos_rtc
.mon_alrm
? "alarms up to one year" :
751 cmos_rtc
.day_alrm
? "alarms up to one month" :
752 "alarms up to one day",
753 cmos_rtc
.century
? ", y3k" : "",
755 is_hpet_enabled() ? ", hpet irqs" : "");
760 if (is_valid_irq(rtc_irq
))
761 free_irq(rtc_irq
, cmos_rtc
.rtc
);
764 rtc_device_unregister(cmos_rtc
.rtc
);
767 release_region(ports
->start
, resource_size(ports
));
769 release_mem_region(ports
->start
, resource_size(ports
));
773 static void cmos_do_shutdown(int rtc_irq
)
775 spin_lock_irq(&rtc_lock
);
776 if (is_valid_irq(rtc_irq
))
777 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
778 spin_unlock_irq(&rtc_lock
);
781 static void __exit
cmos_do_remove(struct device
*dev
)
783 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
784 struct resource
*ports
;
786 cmos_do_shutdown(cmos
->irq
);
788 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
790 if (is_valid_irq(cmos
->irq
)) {
791 free_irq(cmos
->irq
, cmos
->rtc
);
792 hpet_unregister_irq_handler(cmos_interrupt
);
795 rtc_device_unregister(cmos
->rtc
);
800 release_region(ports
->start
, resource_size(ports
));
802 release_mem_region(ports
->start
, resource_size(ports
));
808 static int cmos_aie_poweroff(struct device
*dev
)
810 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
814 unsigned char rtc_control
;
816 if (!cmos
->alarm_expires
)
819 spin_lock_irq(&rtc_lock
);
820 rtc_control
= CMOS_READ(RTC_CONTROL
);
821 spin_unlock_irq(&rtc_lock
);
823 /* We only care about the situation where AIE is disabled. */
824 if (rtc_control
& RTC_AIE
)
827 cmos_read_time(dev
, &now
);
828 t_now
= rtc_tm_to_time64(&now
);
831 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
832 * automatically right after shutdown on some buggy boxes.
833 * This automatic rebooting issue won't happen when the alarm
834 * time is larger than now+1 seconds.
836 * If the alarm time is equal to now+1 seconds, the issue can be
837 * prevented by cancelling the alarm.
839 if (cmos
->alarm_expires
== t_now
+ 1) {
840 struct rtc_wkalrm alarm
;
842 /* Cancel the AIE timer by configuring the past time. */
843 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
845 retval
= cmos_set_alarm(dev
, &alarm
);
846 } else if (cmos
->alarm_expires
> t_now
+ 1) {
855 static int cmos_suspend(struct device
*dev
)
857 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
860 /* only the alarm might be a wakeup event source */
861 spin_lock_irq(&rtc_lock
);
862 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
863 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
866 if (device_may_wakeup(dev
))
867 mask
= RTC_IRQMASK
& ~RTC_AIE
;
871 CMOS_WRITE(tmp
, RTC_CONTROL
);
872 hpet_mask_rtc_irq_bit(mask
);
874 cmos_checkintr(cmos
, tmp
);
876 spin_unlock_irq(&rtc_lock
);
879 cmos
->enabled_wake
= 1;
883 enable_irq_wake(cmos
->irq
);
886 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
887 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
893 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
894 * after a detour through G3 "mechanical off", although the ACPI spec
895 * says wakeup should only work from G1/S4 "hibernate". To most users,
896 * distinctions between S4 and S5 are pointless. So when the hardware
897 * allows, don't draw that distinction.
899 static inline int cmos_poweroff(struct device
*dev
)
901 return cmos_suspend(dev
);
904 #ifdef CONFIG_PM_SLEEP
906 static int cmos_resume(struct device
*dev
)
908 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
911 if (cmos
->enabled_wake
) {
915 disable_irq_wake(cmos
->irq
);
916 cmos
->enabled_wake
= 0;
919 spin_lock_irq(&rtc_lock
);
920 tmp
= cmos
->suspend_ctrl
;
921 cmos
->suspend_ctrl
= 0;
922 /* re-enable any irqs previously active */
923 if (tmp
& RTC_IRQMASK
) {
926 if (device_may_wakeup(dev
))
927 hpet_rtc_timer_init();
930 CMOS_WRITE(tmp
, RTC_CONTROL
);
931 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
933 mask
= CMOS_READ(RTC_INTR_FLAGS
);
934 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
935 if (!is_hpet_enabled() || !is_intr(mask
))
938 /* force one-shot behavior if HPET blocked
939 * the wake alarm's irq
941 rtc_update_irq(cmos
->rtc
, 1, mask
);
943 hpet_mask_rtc_irq_bit(RTC_AIE
);
944 } while (mask
& RTC_AIE
);
946 spin_unlock_irq(&rtc_lock
);
948 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
956 static inline int cmos_poweroff(struct device
*dev
)
963 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
965 /*----------------------------------------------------------------*/
967 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
968 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
969 * probably list them in similar PNPBIOS tables; so PNP is more common.
971 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
972 * predate even PNPBIOS should set up platform_bus devices.
977 #include <linux/acpi.h>
979 static u32
rtc_handler(void *context
)
981 struct device
*dev
= context
;
983 pm_wakeup_event(dev
, 0);
984 acpi_clear_event(ACPI_EVENT_RTC
);
985 acpi_disable_event(ACPI_EVENT_RTC
, 0);
986 return ACPI_INTERRUPT_HANDLED
;
989 static inline void rtc_wake_setup(struct device
*dev
)
991 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
993 * After the RTC handler is installed, the Fixed_RTC event should
994 * be disabled. Only when the RTC alarm is set will it be enabled.
996 acpi_clear_event(ACPI_EVENT_RTC
);
997 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1000 static void rtc_wake_on(struct device
*dev
)
1002 acpi_clear_event(ACPI_EVENT_RTC
);
1003 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1006 static void rtc_wake_off(struct device
*dev
)
1008 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1011 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1012 * its device node and pass extra config data. This helps its driver use
1013 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1014 * that this board's RTC is wakeup-capable (per ACPI spec).
1016 static struct cmos_rtc_board_info acpi_rtc_info
;
1018 static void cmos_wake_setup(struct device
*dev
)
1023 rtc_wake_setup(dev
);
1024 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1025 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1027 /* workaround bug in some ACPI tables */
1028 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1029 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1030 acpi_gbl_FADT
.month_alarm
);
1031 acpi_gbl_FADT
.month_alarm
= 0;
1034 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1035 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1036 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1038 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1039 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1040 dev_info(dev
, "RTC can wake from S4\n");
1042 dev
->platform_data
= &acpi_rtc_info
;
1044 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 device_init_wakeup(dev
, 1);
1050 static void cmos_wake_setup(struct device
*dev
)
1058 #include <linux/pnp.h>
1060 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1062 cmos_wake_setup(&pnp
->dev
);
1064 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0)) {
1065 unsigned int irq
= 0;
1067 /* Some machines contain a PNP entry for the RTC, but
1068 * don't define the IRQ. It should always be safe to
1069 * hardcode it on systems with a legacy PIC.
1071 if (nr_legacy_irqs())
1074 return cmos_do_probe(&pnp
->dev
,
1075 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), irq
);
1077 return cmos_do_probe(&pnp
->dev
,
1078 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1083 static void __exit
cmos_pnp_remove(struct pnp_dev
*pnp
)
1085 cmos_do_remove(&pnp
->dev
);
1088 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1090 struct device
*dev
= &pnp
->dev
;
1091 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1093 if (system_state
== SYSTEM_POWER_OFF
) {
1094 int retval
= cmos_poweroff(dev
);
1096 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1100 cmos_do_shutdown(cmos
->irq
);
1103 static const struct pnp_device_id rtc_ids
[] = {
1104 { .id
= "PNP0b00", },
1105 { .id
= "PNP0b01", },
1106 { .id
= "PNP0b02", },
1109 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1111 static struct pnp_driver cmos_pnp_driver
= {
1112 .name
= (char *) driver_name
,
1113 .id_table
= rtc_ids
,
1114 .probe
= cmos_pnp_probe
,
1115 .remove
= __exit_p(cmos_pnp_remove
),
1116 .shutdown
= cmos_pnp_shutdown
,
1118 /* flag ensures resume() gets called, and stops syslog spam */
1119 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1125 #endif /* CONFIG_PNP */
1128 static const struct of_device_id of_cmos_match
[] = {
1130 .compatible
= "motorola,mc146818",
1134 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1136 static __init
void cmos_of_init(struct platform_device
*pdev
)
1138 struct device_node
*node
= pdev
->dev
.of_node
;
1139 struct rtc_time time
;
1146 val
= of_get_property(node
, "ctrl-reg", NULL
);
1148 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1150 val
= of_get_property(node
, "freq-reg", NULL
);
1152 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1154 get_rtc_time(&time
);
1155 ret
= rtc_valid_tm(&time
);
1157 struct rtc_time def_time
= {
1161 set_rtc_time(&def_time
);
1165 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1167 /*----------------------------------------------------------------*/
1169 /* Platform setup should have set up an RTC device, when PNP is
1170 * unavailable ... this could happen even on (older) PCs.
1173 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1175 struct resource
*resource
;
1179 cmos_wake_setup(&pdev
->dev
);
1182 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1184 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1185 irq
= platform_get_irq(pdev
, 0);
1189 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1192 static int __exit
cmos_platform_remove(struct platform_device
*pdev
)
1194 cmos_do_remove(&pdev
->dev
);
1198 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1200 struct device
*dev
= &pdev
->dev
;
1201 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1203 if (system_state
== SYSTEM_POWER_OFF
) {
1204 int retval
= cmos_poweroff(dev
);
1206 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1210 cmos_do_shutdown(cmos
->irq
);
1213 /* work with hotplug and coldplug */
1214 MODULE_ALIAS("platform:rtc_cmos");
1216 static struct platform_driver cmos_platform_driver
= {
1217 .remove
= __exit_p(cmos_platform_remove
),
1218 .shutdown
= cmos_platform_shutdown
,
1220 .name
= driver_name
,
1224 .of_match_table
= of_match_ptr(of_cmos_match
),
1229 static bool pnp_driver_registered
;
1231 static bool platform_driver_registered
;
1233 static int __init
cmos_init(void)
1238 retval
= pnp_register_driver(&cmos_pnp_driver
);
1240 pnp_driver_registered
= true;
1243 if (!cmos_rtc
.dev
) {
1244 retval
= platform_driver_probe(&cmos_platform_driver
,
1245 cmos_platform_probe
);
1247 platform_driver_registered
= true;
1254 if (pnp_driver_registered
)
1255 pnp_unregister_driver(&cmos_pnp_driver
);
1259 module_init(cmos_init
);
1261 static void __exit
cmos_exit(void)
1264 if (pnp_driver_registered
)
1265 pnp_unregister_driver(&cmos_pnp_driver
);
1267 if (platform_driver_registered
)
1268 platform_driver_unregister(&cmos_platform_driver
);
1270 module_exit(cmos_exit
);
1273 MODULE_AUTHOR("David Brownell");
1274 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1275 MODULE_LICENSE("GPL");