ARM: 8481/2: drivers: psci: replace psci firmware calls
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blob86015b393dd509801447d8445c6315ba2842fbe2
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <asm-generic/rtc.h>
51 struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
56 time64_t alarm_expires;
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
61 u8 enabled_wake;
62 u8 suspend_ctrl;
64 /* newer hardware extends the original register set */
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
70 /* both platform and pnp busses use negative numbers for invalid irqs */
71 #define is_valid_irq(n) ((n) > 0)
73 static const char driver_name[] = "rtc_cmos";
75 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
76 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
77 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
79 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
81 static inline int is_intr(u8 rtc_intr)
83 if (!(rtc_intr & RTC_IRQF))
84 return 0;
85 return rtc_intr & RTC_IRQMASK;
88 /*----------------------------------------------------------------*/
90 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
91 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
92 * used in a broken "legacy replacement" mode. The breakage includes
93 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
94 * other (better) use.
96 * When that broken mode is in use, platform glue provides a partial
97 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
98 * want to use HPET for anything except those IRQs though...
100 #ifdef CONFIG_HPET_EMULATE_RTC
101 #include <asm/hpet.h>
102 #else
104 static inline int is_hpet_enabled(void)
106 return 0;
109 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
111 return 0;
114 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
116 return 0;
119 static inline int
120 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
122 return 0;
125 static inline int hpet_set_periodic_freq(unsigned long freq)
127 return 0;
130 static inline int hpet_rtc_dropped_irq(void)
132 return 0;
135 static inline int hpet_rtc_timer_init(void)
137 return 0;
140 extern irq_handler_t hpet_rtc_interrupt;
142 static inline int hpet_register_irq_handler(irq_handler_t handler)
144 return 0;
147 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
149 return 0;
152 #endif
154 /*----------------------------------------------------------------*/
156 #ifdef RTC_PORT
158 /* Most newer x86 systems have two register banks, the first used
159 * for RTC and NVRAM and the second only for NVRAM. Caller must
160 * own rtc_lock ... and we won't worry about access during NMI.
162 #define can_bank2 true
164 static inline unsigned char cmos_read_bank2(unsigned char addr)
166 outb(addr, RTC_PORT(2));
167 return inb(RTC_PORT(3));
170 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
172 outb(addr, RTC_PORT(2));
173 outb(val, RTC_PORT(3));
176 #else
178 #define can_bank2 false
180 static inline unsigned char cmos_read_bank2(unsigned char addr)
182 return 0;
185 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
189 #endif
191 /*----------------------------------------------------------------*/
193 static int cmos_read_time(struct device *dev, struct rtc_time *t)
195 /* REVISIT: if the clock has a "century" register, use
196 * that instead of the heuristic in get_rtc_time().
197 * That'll make Y3K compatility (year > 2070) easy!
199 get_rtc_time(t);
200 return 0;
203 static int cmos_set_time(struct device *dev, struct rtc_time *t)
205 /* REVISIT: set the "century" register if available
207 * NOTE: this ignores the issue whereby updating the seconds
208 * takes effect exactly 500ms after we write the register.
209 * (Also queueing and other delays before we get this far.)
211 return set_rtc_time(t);
214 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
216 struct cmos_rtc *cmos = dev_get_drvdata(dev);
217 unsigned char rtc_control;
219 if (!is_valid_irq(cmos->irq))
220 return -EIO;
222 /* Basic alarms only support hour, minute, and seconds fields.
223 * Some also support day and month, for alarms up to a year in
224 * the future.
226 t->time.tm_mday = -1;
227 t->time.tm_mon = -1;
229 spin_lock_irq(&rtc_lock);
230 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
231 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
232 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
234 if (cmos->day_alrm) {
235 /* ignore upper bits on readback per ACPI spec */
236 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
237 if (!t->time.tm_mday)
238 t->time.tm_mday = -1;
240 if (cmos->mon_alrm) {
241 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
242 if (!t->time.tm_mon)
243 t->time.tm_mon = -1;
247 rtc_control = CMOS_READ(RTC_CONTROL);
248 spin_unlock_irq(&rtc_lock);
250 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
251 if (((unsigned)t->time.tm_sec) < 0x60)
252 t->time.tm_sec = bcd2bin(t->time.tm_sec);
253 else
254 t->time.tm_sec = -1;
255 if (((unsigned)t->time.tm_min) < 0x60)
256 t->time.tm_min = bcd2bin(t->time.tm_min);
257 else
258 t->time.tm_min = -1;
259 if (((unsigned)t->time.tm_hour) < 0x24)
260 t->time.tm_hour = bcd2bin(t->time.tm_hour);
261 else
262 t->time.tm_hour = -1;
264 if (cmos->day_alrm) {
265 if (((unsigned)t->time.tm_mday) <= 0x31)
266 t->time.tm_mday = bcd2bin(t->time.tm_mday);
267 else
268 t->time.tm_mday = -1;
270 if (cmos->mon_alrm) {
271 if (((unsigned)t->time.tm_mon) <= 0x12)
272 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
273 else
274 t->time.tm_mon = -1;
278 t->time.tm_year = -1;
280 t->enabled = !!(rtc_control & RTC_AIE);
281 t->pending = 0;
283 return 0;
286 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
288 unsigned char rtc_intr;
290 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
291 * allegedly some older rtcs need that to handle irqs properly
293 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
295 if (is_hpet_enabled())
296 return;
298 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
299 if (is_intr(rtc_intr))
300 rtc_update_irq(cmos->rtc, 1, rtc_intr);
303 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
305 unsigned char rtc_control;
307 /* flush any pending IRQ status, notably for update irqs,
308 * before we enable new IRQs
310 rtc_control = CMOS_READ(RTC_CONTROL);
311 cmos_checkintr(cmos, rtc_control);
313 rtc_control |= mask;
314 CMOS_WRITE(rtc_control, RTC_CONTROL);
315 hpet_set_rtc_irq_bit(mask);
317 cmos_checkintr(cmos, rtc_control);
320 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
322 unsigned char rtc_control;
324 rtc_control = CMOS_READ(RTC_CONTROL);
325 rtc_control &= ~mask;
326 CMOS_WRITE(rtc_control, RTC_CONTROL);
327 hpet_mask_rtc_irq_bit(mask);
329 cmos_checkintr(cmos, rtc_control);
332 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
334 struct cmos_rtc *cmos = dev_get_drvdata(dev);
335 unsigned char mon, mday, hrs, min, sec, rtc_control;
337 if (!is_valid_irq(cmos->irq))
338 return -EIO;
340 mon = t->time.tm_mon + 1;
341 mday = t->time.tm_mday;
342 hrs = t->time.tm_hour;
343 min = t->time.tm_min;
344 sec = t->time.tm_sec;
346 rtc_control = CMOS_READ(RTC_CONTROL);
347 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
348 /* Writing 0xff means "don't care" or "match all". */
349 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
350 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
351 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
352 min = (min < 60) ? bin2bcd(min) : 0xff;
353 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
356 spin_lock_irq(&rtc_lock);
358 /* next rtc irq must not be from previous alarm setting */
359 cmos_irq_disable(cmos, RTC_AIE);
361 /* update alarm */
362 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
363 CMOS_WRITE(min, RTC_MINUTES_ALARM);
364 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
366 /* the system may support an "enhanced" alarm */
367 if (cmos->day_alrm) {
368 CMOS_WRITE(mday, cmos->day_alrm);
369 if (cmos->mon_alrm)
370 CMOS_WRITE(mon, cmos->mon_alrm);
373 /* FIXME the HPET alarm glue currently ignores day_alrm
374 * and mon_alrm ...
376 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
378 if (t->enabled)
379 cmos_irq_enable(cmos, RTC_AIE);
381 spin_unlock_irq(&rtc_lock);
383 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
385 return 0;
388 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
390 struct cmos_rtc *cmos = dev_get_drvdata(dev);
391 unsigned long flags;
393 if (!is_valid_irq(cmos->irq))
394 return -EINVAL;
396 spin_lock_irqsave(&rtc_lock, flags);
398 if (enabled)
399 cmos_irq_enable(cmos, RTC_AIE);
400 else
401 cmos_irq_disable(cmos, RTC_AIE);
403 spin_unlock_irqrestore(&rtc_lock, flags);
404 return 0;
407 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
409 static int cmos_procfs(struct device *dev, struct seq_file *seq)
411 struct cmos_rtc *cmos = dev_get_drvdata(dev);
412 unsigned char rtc_control, valid;
414 spin_lock_irq(&rtc_lock);
415 rtc_control = CMOS_READ(RTC_CONTROL);
416 valid = CMOS_READ(RTC_VALID);
417 spin_unlock_irq(&rtc_lock);
419 /* NOTE: at least ICH6 reports battery status using a different
420 * (non-RTC) bit; and SQWE is ignored on many current systems.
422 seq_printf(seq,
423 "periodic_IRQ\t: %s\n"
424 "update_IRQ\t: %s\n"
425 "HPET_emulated\t: %s\n"
426 // "square_wave\t: %s\n"
427 "BCD\t\t: %s\n"
428 "DST_enable\t: %s\n"
429 "periodic_freq\t: %d\n"
430 "batt_status\t: %s\n",
431 (rtc_control & RTC_PIE) ? "yes" : "no",
432 (rtc_control & RTC_UIE) ? "yes" : "no",
433 is_hpet_enabled() ? "yes" : "no",
434 // (rtc_control & RTC_SQWE) ? "yes" : "no",
435 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
436 (rtc_control & RTC_DST_EN) ? "yes" : "no",
437 cmos->rtc->irq_freq,
438 (valid & RTC_VRT) ? "okay" : "dead");
440 return 0;
443 #else
444 #define cmos_procfs NULL
445 #endif
447 static const struct rtc_class_ops cmos_rtc_ops = {
448 .read_time = cmos_read_time,
449 .set_time = cmos_set_time,
450 .read_alarm = cmos_read_alarm,
451 .set_alarm = cmos_set_alarm,
452 .proc = cmos_procfs,
453 .alarm_irq_enable = cmos_alarm_irq_enable,
456 /*----------------------------------------------------------------*/
459 * All these chips have at least 64 bytes of address space, shared by
460 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
461 * by boot firmware. Modern chips have 128 or 256 bytes.
464 #define NVRAM_OFFSET (RTC_REG_D + 1)
466 static ssize_t
467 cmos_nvram_read(struct file *filp, struct kobject *kobj,
468 struct bin_attribute *attr,
469 char *buf, loff_t off, size_t count)
471 int retval;
473 off += NVRAM_OFFSET;
474 spin_lock_irq(&rtc_lock);
475 for (retval = 0; count; count--, off++, retval++) {
476 if (off < 128)
477 *buf++ = CMOS_READ(off);
478 else if (can_bank2)
479 *buf++ = cmos_read_bank2(off);
480 else
481 break;
483 spin_unlock_irq(&rtc_lock);
485 return retval;
488 static ssize_t
489 cmos_nvram_write(struct file *filp, struct kobject *kobj,
490 struct bin_attribute *attr,
491 char *buf, loff_t off, size_t count)
493 struct cmos_rtc *cmos;
494 int retval;
496 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
498 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
499 * checksum on part of the NVRAM data. That's currently ignored
500 * here. If userspace is smart enough to know what fields of
501 * NVRAM to update, updating checksums is also part of its job.
503 off += NVRAM_OFFSET;
504 spin_lock_irq(&rtc_lock);
505 for (retval = 0; count; count--, off++, retval++) {
506 /* don't trash RTC registers */
507 if (off == cmos->day_alrm
508 || off == cmos->mon_alrm
509 || off == cmos->century)
510 buf++;
511 else if (off < 128)
512 CMOS_WRITE(*buf++, off);
513 else if (can_bank2)
514 cmos_write_bank2(*buf++, off);
515 else
516 break;
518 spin_unlock_irq(&rtc_lock);
520 return retval;
523 static struct bin_attribute nvram = {
524 .attr = {
525 .name = "nvram",
526 .mode = S_IRUGO | S_IWUSR,
529 .read = cmos_nvram_read,
530 .write = cmos_nvram_write,
531 /* size gets set up later */
534 /*----------------------------------------------------------------*/
536 static struct cmos_rtc cmos_rtc;
538 static irqreturn_t cmos_interrupt(int irq, void *p)
540 u8 irqstat;
541 u8 rtc_control;
543 spin_lock(&rtc_lock);
545 /* When the HPET interrupt handler calls us, the interrupt
546 * status is passed as arg1 instead of the irq number. But
547 * always clear irq status, even when HPET is in the way.
549 * Note that HPET and RTC are almost certainly out of phase,
550 * giving different IRQ status ...
552 irqstat = CMOS_READ(RTC_INTR_FLAGS);
553 rtc_control = CMOS_READ(RTC_CONTROL);
554 if (is_hpet_enabled())
555 irqstat = (unsigned long)irq & 0xF0;
557 /* If we were suspended, RTC_CONTROL may not be accurate since the
558 * bios may have cleared it.
560 if (!cmos_rtc.suspend_ctrl)
561 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
562 else
563 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
565 /* All Linux RTC alarms should be treated as if they were oneshot.
566 * Similar code may be needed in system wakeup paths, in case the
567 * alarm woke the system.
569 if (irqstat & RTC_AIE) {
570 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
571 rtc_control &= ~RTC_AIE;
572 CMOS_WRITE(rtc_control, RTC_CONTROL);
573 hpet_mask_rtc_irq_bit(RTC_AIE);
574 CMOS_READ(RTC_INTR_FLAGS);
576 spin_unlock(&rtc_lock);
578 if (is_intr(irqstat)) {
579 rtc_update_irq(p, 1, irqstat);
580 return IRQ_HANDLED;
581 } else
582 return IRQ_NONE;
585 #ifdef CONFIG_PNP
586 #define INITSECTION
588 #else
589 #define INITSECTION __init
590 #endif
592 static int INITSECTION
593 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
595 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
596 int retval = 0;
597 unsigned char rtc_control;
598 unsigned address_space;
599 u32 flags = 0;
601 /* there can be only one ... */
602 if (cmos_rtc.dev)
603 return -EBUSY;
605 if (!ports)
606 return -ENODEV;
608 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
610 * REVISIT non-x86 systems may instead use memory space resources
611 * (needing ioremap etc), not i/o space resources like this ...
613 if (RTC_IOMAPPED)
614 ports = request_region(ports->start, resource_size(ports),
615 driver_name);
616 else
617 ports = request_mem_region(ports->start, resource_size(ports),
618 driver_name);
619 if (!ports) {
620 dev_dbg(dev, "i/o registers already in use\n");
621 return -EBUSY;
624 cmos_rtc.irq = rtc_irq;
625 cmos_rtc.iomem = ports;
627 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
628 * driver did, but don't reject unknown configs. Old hardware
629 * won't address 128 bytes. Newer chips have multiple banks,
630 * though they may not be listed in one I/O resource.
632 #if defined(CONFIG_ATARI)
633 address_space = 64;
634 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
635 || defined(__sparc__) || defined(__mips__) \
636 || defined(__powerpc__)
637 address_space = 128;
638 #else
639 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
640 address_space = 128;
641 #endif
642 if (can_bank2 && ports->end > (ports->start + 1))
643 address_space = 256;
645 /* For ACPI systems extension info comes from the FADT. On others,
646 * board specific setup provides it as appropriate. Systems where
647 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
648 * some almost-clones) can provide hooks to make that behave.
650 * Note that ACPI doesn't preclude putting these registers into
651 * "extended" areas of the chip, including some that we won't yet
652 * expect CMOS_READ and friends to handle.
654 if (info) {
655 if (info->flags)
656 flags = info->flags;
657 if (info->address_space)
658 address_space = info->address_space;
660 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
661 cmos_rtc.day_alrm = info->rtc_day_alarm;
662 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
663 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
664 if (info->rtc_century && info->rtc_century < 128)
665 cmos_rtc.century = info->rtc_century;
667 if (info->wake_on && info->wake_off) {
668 cmos_rtc.wake_on = info->wake_on;
669 cmos_rtc.wake_off = info->wake_off;
673 cmos_rtc.dev = dev;
674 dev_set_drvdata(dev, &cmos_rtc);
676 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
677 &cmos_rtc_ops, THIS_MODULE);
678 if (IS_ERR(cmos_rtc.rtc)) {
679 retval = PTR_ERR(cmos_rtc.rtc);
680 goto cleanup0;
683 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
685 spin_lock_irq(&rtc_lock);
687 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
688 /* force periodic irq to CMOS reset default of 1024Hz;
690 * REVISIT it's been reported that at least one x86_64 ALI
691 * mobo doesn't use 32KHz here ... for portability we might
692 * need to do something about other clock frequencies.
694 cmos_rtc.rtc->irq_freq = 1024;
695 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
696 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
699 /* disable irqs */
700 if (is_valid_irq(rtc_irq))
701 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
703 rtc_control = CMOS_READ(RTC_CONTROL);
705 spin_unlock_irq(&rtc_lock);
707 /* FIXME:
708 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
710 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
711 dev_warn(dev, "only 24-hr supported\n");
712 retval = -ENXIO;
713 goto cleanup1;
716 if (is_valid_irq(rtc_irq)) {
717 irq_handler_t rtc_cmos_int_handler;
719 if (is_hpet_enabled()) {
720 rtc_cmos_int_handler = hpet_rtc_interrupt;
721 retval = hpet_register_irq_handler(cmos_interrupt);
722 if (retval) {
723 dev_warn(dev, "hpet_register_irq_handler "
724 " failed in rtc_init().");
725 goto cleanup1;
727 } else
728 rtc_cmos_int_handler = cmos_interrupt;
730 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
731 0, dev_name(&cmos_rtc.rtc->dev),
732 cmos_rtc.rtc);
733 if (retval < 0) {
734 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
735 goto cleanup1;
738 hpet_rtc_timer_init();
740 /* export at least the first block of NVRAM */
741 nvram.size = address_space - NVRAM_OFFSET;
742 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
743 if (retval < 0) {
744 dev_dbg(dev, "can't create nvram file? %d\n", retval);
745 goto cleanup2;
748 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
749 !is_valid_irq(rtc_irq) ? "no alarms" :
750 cmos_rtc.mon_alrm ? "alarms up to one year" :
751 cmos_rtc.day_alrm ? "alarms up to one month" :
752 "alarms up to one day",
753 cmos_rtc.century ? ", y3k" : "",
754 nvram.size,
755 is_hpet_enabled() ? ", hpet irqs" : "");
757 return 0;
759 cleanup2:
760 if (is_valid_irq(rtc_irq))
761 free_irq(rtc_irq, cmos_rtc.rtc);
762 cleanup1:
763 cmos_rtc.dev = NULL;
764 rtc_device_unregister(cmos_rtc.rtc);
765 cleanup0:
766 if (RTC_IOMAPPED)
767 release_region(ports->start, resource_size(ports));
768 else
769 release_mem_region(ports->start, resource_size(ports));
770 return retval;
773 static void cmos_do_shutdown(int rtc_irq)
775 spin_lock_irq(&rtc_lock);
776 if (is_valid_irq(rtc_irq))
777 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
778 spin_unlock_irq(&rtc_lock);
781 static void __exit cmos_do_remove(struct device *dev)
783 struct cmos_rtc *cmos = dev_get_drvdata(dev);
784 struct resource *ports;
786 cmos_do_shutdown(cmos->irq);
788 sysfs_remove_bin_file(&dev->kobj, &nvram);
790 if (is_valid_irq(cmos->irq)) {
791 free_irq(cmos->irq, cmos->rtc);
792 hpet_unregister_irq_handler(cmos_interrupt);
795 rtc_device_unregister(cmos->rtc);
796 cmos->rtc = NULL;
798 ports = cmos->iomem;
799 if (RTC_IOMAPPED)
800 release_region(ports->start, resource_size(ports));
801 else
802 release_mem_region(ports->start, resource_size(ports));
803 cmos->iomem = NULL;
805 cmos->dev = NULL;
808 static int cmos_aie_poweroff(struct device *dev)
810 struct cmos_rtc *cmos = dev_get_drvdata(dev);
811 struct rtc_time now;
812 time64_t t_now;
813 int retval = 0;
814 unsigned char rtc_control;
816 if (!cmos->alarm_expires)
817 return -EINVAL;
819 spin_lock_irq(&rtc_lock);
820 rtc_control = CMOS_READ(RTC_CONTROL);
821 spin_unlock_irq(&rtc_lock);
823 /* We only care about the situation where AIE is disabled. */
824 if (rtc_control & RTC_AIE)
825 return -EBUSY;
827 cmos_read_time(dev, &now);
828 t_now = rtc_tm_to_time64(&now);
831 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
832 * automatically right after shutdown on some buggy boxes.
833 * This automatic rebooting issue won't happen when the alarm
834 * time is larger than now+1 seconds.
836 * If the alarm time is equal to now+1 seconds, the issue can be
837 * prevented by cancelling the alarm.
839 if (cmos->alarm_expires == t_now + 1) {
840 struct rtc_wkalrm alarm;
842 /* Cancel the AIE timer by configuring the past time. */
843 rtc_time64_to_tm(t_now - 1, &alarm.time);
844 alarm.enabled = 0;
845 retval = cmos_set_alarm(dev, &alarm);
846 } else if (cmos->alarm_expires > t_now + 1) {
847 retval = -EBUSY;
850 return retval;
853 #ifdef CONFIG_PM
855 static int cmos_suspend(struct device *dev)
857 struct cmos_rtc *cmos = dev_get_drvdata(dev);
858 unsigned char tmp;
860 /* only the alarm might be a wakeup event source */
861 spin_lock_irq(&rtc_lock);
862 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
863 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
864 unsigned char mask;
866 if (device_may_wakeup(dev))
867 mask = RTC_IRQMASK & ~RTC_AIE;
868 else
869 mask = RTC_IRQMASK;
870 tmp &= ~mask;
871 CMOS_WRITE(tmp, RTC_CONTROL);
872 hpet_mask_rtc_irq_bit(mask);
874 cmos_checkintr(cmos, tmp);
876 spin_unlock_irq(&rtc_lock);
878 if (tmp & RTC_AIE) {
879 cmos->enabled_wake = 1;
880 if (cmos->wake_on)
881 cmos->wake_on(dev);
882 else
883 enable_irq_wake(cmos->irq);
886 dev_dbg(dev, "suspend%s, ctrl %02x\n",
887 (tmp & RTC_AIE) ? ", alarm may wake" : "",
888 tmp);
890 return 0;
893 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
894 * after a detour through G3 "mechanical off", although the ACPI spec
895 * says wakeup should only work from G1/S4 "hibernate". To most users,
896 * distinctions between S4 and S5 are pointless. So when the hardware
897 * allows, don't draw that distinction.
899 static inline int cmos_poweroff(struct device *dev)
901 return cmos_suspend(dev);
904 #ifdef CONFIG_PM_SLEEP
906 static int cmos_resume(struct device *dev)
908 struct cmos_rtc *cmos = dev_get_drvdata(dev);
909 unsigned char tmp;
911 if (cmos->enabled_wake) {
912 if (cmos->wake_off)
913 cmos->wake_off(dev);
914 else
915 disable_irq_wake(cmos->irq);
916 cmos->enabled_wake = 0;
919 spin_lock_irq(&rtc_lock);
920 tmp = cmos->suspend_ctrl;
921 cmos->suspend_ctrl = 0;
922 /* re-enable any irqs previously active */
923 if (tmp & RTC_IRQMASK) {
924 unsigned char mask;
926 if (device_may_wakeup(dev))
927 hpet_rtc_timer_init();
929 do {
930 CMOS_WRITE(tmp, RTC_CONTROL);
931 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
933 mask = CMOS_READ(RTC_INTR_FLAGS);
934 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
935 if (!is_hpet_enabled() || !is_intr(mask))
936 break;
938 /* force one-shot behavior if HPET blocked
939 * the wake alarm's irq
941 rtc_update_irq(cmos->rtc, 1, mask);
942 tmp &= ~RTC_AIE;
943 hpet_mask_rtc_irq_bit(RTC_AIE);
944 } while (mask & RTC_AIE);
946 spin_unlock_irq(&rtc_lock);
948 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
950 return 0;
953 #endif
954 #else
956 static inline int cmos_poweroff(struct device *dev)
958 return -ENOSYS;
961 #endif
963 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
965 /*----------------------------------------------------------------*/
967 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
968 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
969 * probably list them in similar PNPBIOS tables; so PNP is more common.
971 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
972 * predate even PNPBIOS should set up platform_bus devices.
975 #ifdef CONFIG_ACPI
977 #include <linux/acpi.h>
979 static u32 rtc_handler(void *context)
981 struct device *dev = context;
983 pm_wakeup_event(dev, 0);
984 acpi_clear_event(ACPI_EVENT_RTC);
985 acpi_disable_event(ACPI_EVENT_RTC, 0);
986 return ACPI_INTERRUPT_HANDLED;
989 static inline void rtc_wake_setup(struct device *dev)
991 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
993 * After the RTC handler is installed, the Fixed_RTC event should
994 * be disabled. Only when the RTC alarm is set will it be enabled.
996 acpi_clear_event(ACPI_EVENT_RTC);
997 acpi_disable_event(ACPI_EVENT_RTC, 0);
1000 static void rtc_wake_on(struct device *dev)
1002 acpi_clear_event(ACPI_EVENT_RTC);
1003 acpi_enable_event(ACPI_EVENT_RTC, 0);
1006 static void rtc_wake_off(struct device *dev)
1008 acpi_disable_event(ACPI_EVENT_RTC, 0);
1011 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1012 * its device node and pass extra config data. This helps its driver use
1013 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1014 * that this board's RTC is wakeup-capable (per ACPI spec).
1016 static struct cmos_rtc_board_info acpi_rtc_info;
1018 static void cmos_wake_setup(struct device *dev)
1020 if (acpi_disabled)
1021 return;
1023 rtc_wake_setup(dev);
1024 acpi_rtc_info.wake_on = rtc_wake_on;
1025 acpi_rtc_info.wake_off = rtc_wake_off;
1027 /* workaround bug in some ACPI tables */
1028 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1029 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1030 acpi_gbl_FADT.month_alarm);
1031 acpi_gbl_FADT.month_alarm = 0;
1034 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1035 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1036 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1038 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1039 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1040 dev_info(dev, "RTC can wake from S4\n");
1042 dev->platform_data = &acpi_rtc_info;
1044 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 device_init_wakeup(dev, 1);
1048 #else
1050 static void cmos_wake_setup(struct device *dev)
1054 #endif
1056 #ifdef CONFIG_PNP
1058 #include <linux/pnp.h>
1060 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1062 cmos_wake_setup(&pnp->dev);
1064 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1065 unsigned int irq = 0;
1066 #ifdef CONFIG_X86
1067 /* Some machines contain a PNP entry for the RTC, but
1068 * don't define the IRQ. It should always be safe to
1069 * hardcode it on systems with a legacy PIC.
1071 if (nr_legacy_irqs())
1072 irq = 8;
1073 #endif
1074 return cmos_do_probe(&pnp->dev,
1075 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1076 } else {
1077 return cmos_do_probe(&pnp->dev,
1078 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1079 pnp_irq(pnp, 0));
1083 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1085 cmos_do_remove(&pnp->dev);
1088 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1090 struct device *dev = &pnp->dev;
1091 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1093 if (system_state == SYSTEM_POWER_OFF) {
1094 int retval = cmos_poweroff(dev);
1096 if (cmos_aie_poweroff(dev) < 0 && !retval)
1097 return;
1100 cmos_do_shutdown(cmos->irq);
1103 static const struct pnp_device_id rtc_ids[] = {
1104 { .id = "PNP0b00", },
1105 { .id = "PNP0b01", },
1106 { .id = "PNP0b02", },
1107 { },
1109 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1111 static struct pnp_driver cmos_pnp_driver = {
1112 .name = (char *) driver_name,
1113 .id_table = rtc_ids,
1114 .probe = cmos_pnp_probe,
1115 .remove = __exit_p(cmos_pnp_remove),
1116 .shutdown = cmos_pnp_shutdown,
1118 /* flag ensures resume() gets called, and stops syslog spam */
1119 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1120 .driver = {
1121 .pm = &cmos_pm_ops,
1125 #endif /* CONFIG_PNP */
1127 #ifdef CONFIG_OF
1128 static const struct of_device_id of_cmos_match[] = {
1130 .compatible = "motorola,mc146818",
1132 { },
1134 MODULE_DEVICE_TABLE(of, of_cmos_match);
1136 static __init void cmos_of_init(struct platform_device *pdev)
1138 struct device_node *node = pdev->dev.of_node;
1139 struct rtc_time time;
1140 int ret;
1141 const __be32 *val;
1143 if (!node)
1144 return;
1146 val = of_get_property(node, "ctrl-reg", NULL);
1147 if (val)
1148 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1150 val = of_get_property(node, "freq-reg", NULL);
1151 if (val)
1152 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1154 get_rtc_time(&time);
1155 ret = rtc_valid_tm(&time);
1156 if (ret) {
1157 struct rtc_time def_time = {
1158 .tm_year = 1,
1159 .tm_mday = 1,
1161 set_rtc_time(&def_time);
1164 #else
1165 static inline void cmos_of_init(struct platform_device *pdev) {}
1166 #endif
1167 /*----------------------------------------------------------------*/
1169 /* Platform setup should have set up an RTC device, when PNP is
1170 * unavailable ... this could happen even on (older) PCs.
1173 static int __init cmos_platform_probe(struct platform_device *pdev)
1175 struct resource *resource;
1176 int irq;
1178 cmos_of_init(pdev);
1179 cmos_wake_setup(&pdev->dev);
1181 if (RTC_IOMAPPED)
1182 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1183 else
1184 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1185 irq = platform_get_irq(pdev, 0);
1186 if (irq < 0)
1187 irq = -1;
1189 return cmos_do_probe(&pdev->dev, resource, irq);
1192 static int __exit cmos_platform_remove(struct platform_device *pdev)
1194 cmos_do_remove(&pdev->dev);
1195 return 0;
1198 static void cmos_platform_shutdown(struct platform_device *pdev)
1200 struct device *dev = &pdev->dev;
1201 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1203 if (system_state == SYSTEM_POWER_OFF) {
1204 int retval = cmos_poweroff(dev);
1206 if (cmos_aie_poweroff(dev) < 0 && !retval)
1207 return;
1210 cmos_do_shutdown(cmos->irq);
1213 /* work with hotplug and coldplug */
1214 MODULE_ALIAS("platform:rtc_cmos");
1216 static struct platform_driver cmos_platform_driver = {
1217 .remove = __exit_p(cmos_platform_remove),
1218 .shutdown = cmos_platform_shutdown,
1219 .driver = {
1220 .name = driver_name,
1221 #ifdef CONFIG_PM
1222 .pm = &cmos_pm_ops,
1223 #endif
1224 .of_match_table = of_match_ptr(of_cmos_match),
1228 #ifdef CONFIG_PNP
1229 static bool pnp_driver_registered;
1230 #endif
1231 static bool platform_driver_registered;
1233 static int __init cmos_init(void)
1235 int retval = 0;
1237 #ifdef CONFIG_PNP
1238 retval = pnp_register_driver(&cmos_pnp_driver);
1239 if (retval == 0)
1240 pnp_driver_registered = true;
1241 #endif
1243 if (!cmos_rtc.dev) {
1244 retval = platform_driver_probe(&cmos_platform_driver,
1245 cmos_platform_probe);
1246 if (retval == 0)
1247 platform_driver_registered = true;
1250 if (retval == 0)
1251 return 0;
1253 #ifdef CONFIG_PNP
1254 if (pnp_driver_registered)
1255 pnp_unregister_driver(&cmos_pnp_driver);
1256 #endif
1257 return retval;
1259 module_init(cmos_init);
1261 static void __exit cmos_exit(void)
1263 #ifdef CONFIG_PNP
1264 if (pnp_driver_registered)
1265 pnp_unregister_driver(&cmos_pnp_driver);
1266 #endif
1267 if (platform_driver_registered)
1268 platform_driver_unregister(&cmos_platform_driver);
1270 module_exit(cmos_exit);
1273 MODULE_AUTHOR("David Brownell");
1274 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1275 MODULE_LICENSE("GPL");