KVM: PPC: Book3S HV: Implement dirty page logging for radix guests
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv.c
blob401e4cc8a91f9744bf36389b5c2d55a56a43129a
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpu.h>
31 #include <linux/cpumask.h>
32 #include <linux/spinlock.h>
33 #include <linux/page-flags.h>
34 #include <linux/srcu.h>
35 #include <linux/miscdevice.h>
36 #include <linux/debugfs.h>
38 #include <asm/reg.h>
39 #include <asm/cputable.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <linux/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <asm/hmi.h>
56 #include <asm/pnv-pci.h>
57 #include <asm/mmu.h>
58 #include <asm/opal.h>
59 #include <asm/xics.h>
60 #include <linux/gfp.h>
61 #include <linux/vmalloc.h>
62 #include <linux/highmem.h>
63 #include <linux/hugetlb.h>
64 #include <linux/kvm_irqfd.h>
65 #include <linux/irqbypass.h>
66 #include <linux/module.h>
67 #include <linux/compiler.h>
68 #include <linux/of.h>
70 #include "book3s.h"
72 #define CREATE_TRACE_POINTS
73 #include "trace_hv.h"
75 /* #define EXIT_DEBUG */
76 /* #define EXIT_DEBUG_SIMPLE */
77 /* #define EXIT_DEBUG_INT */
79 /* Used to indicate that a guest page fault needs to be handled */
80 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
81 /* Used to indicate that a guest passthrough interrupt needs to be handled */
82 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
84 /* Used as a "null" value for timebase values */
85 #define TB_NIL (~(u64)0)
87 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
89 static int dynamic_mt_modes = 6;
90 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
92 static int target_smt_mode;
93 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
96 #ifdef CONFIG_KVM_XICS
97 static struct kernel_param_ops module_param_ops = {
98 .set = param_set_int,
99 .get = param_get_int,
102 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
103 S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
106 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
107 S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
109 #endif
111 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
112 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
114 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
115 int *ip)
117 int i = *ip;
118 struct kvm_vcpu *vcpu;
120 while (++i < MAX_SMT_THREADS) {
121 vcpu = READ_ONCE(vc->runnable_threads[i]);
122 if (vcpu) {
123 *ip = i;
124 return vcpu;
127 return NULL;
130 /* Used to traverse the list of runnable threads for a given vcore */
131 #define for_each_runnable_thread(i, vcpu, vc) \
132 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
134 static bool kvmppc_ipi_thread(int cpu)
136 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
138 /* On POWER9 we can use msgsnd to IPI any cpu */
139 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
140 msg |= get_hard_smp_processor_id(cpu);
141 smp_mb();
142 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
143 return true;
146 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
147 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
148 preempt_disable();
149 if (cpu_first_thread_sibling(cpu) ==
150 cpu_first_thread_sibling(smp_processor_id())) {
151 msg |= cpu_thread_in_core(cpu);
152 smp_mb();
153 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 preempt_enable();
155 return true;
157 preempt_enable();
160 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
161 if (cpu >= 0 && cpu < nr_cpu_ids) {
162 if (paca[cpu].kvm_hstate.xics_phys) {
163 xics_wake_cpu(cpu);
164 return true;
166 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
167 return true;
169 #endif
171 return false;
174 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
176 int cpu;
177 struct swait_queue_head *wqp;
179 wqp = kvm_arch_vcpu_wq(vcpu);
180 if (swait_active(wqp)) {
181 swake_up(wqp);
182 ++vcpu->stat.halt_wakeup;
185 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
186 return;
188 /* CPU points to the first thread of the core */
189 cpu = vcpu->cpu;
190 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
191 smp_send_reschedule(cpu);
195 * We use the vcpu_load/put functions to measure stolen time.
196 * Stolen time is counted as time when either the vcpu is able to
197 * run as part of a virtual core, but the task running the vcore
198 * is preempted or sleeping, or when the vcpu needs something done
199 * in the kernel by the task running the vcpu, but that task is
200 * preempted or sleeping. Those two things have to be counted
201 * separately, since one of the vcpu tasks will take on the job
202 * of running the core, and the other vcpu tasks in the vcore will
203 * sleep waiting for it to do that, but that sleep shouldn't count
204 * as stolen time.
206 * Hence we accumulate stolen time when the vcpu can run as part of
207 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
208 * needs its task to do other things in the kernel (for example,
209 * service a page fault) in busy_stolen. We don't accumulate
210 * stolen time for a vcore when it is inactive, or for a vcpu
211 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
212 * a misnomer; it means that the vcpu task is not executing in
213 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
214 * the kernel. We don't have any way of dividing up that time
215 * between time that the vcpu is genuinely stopped, time that
216 * the task is actively working on behalf of the vcpu, and time
217 * that the task is preempted, so we don't count any of it as
218 * stolen.
220 * Updates to busy_stolen are protected by arch.tbacct_lock;
221 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
222 * lock. The stolen times are measured in units of timebase ticks.
223 * (Note that the != TB_NIL checks below are purely defensive;
224 * they should never fail.)
227 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
229 unsigned long flags;
231 spin_lock_irqsave(&vc->stoltb_lock, flags);
232 vc->preempt_tb = mftb();
233 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
236 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
238 unsigned long flags;
240 spin_lock_irqsave(&vc->stoltb_lock, flags);
241 if (vc->preempt_tb != TB_NIL) {
242 vc->stolen_tb += mftb() - vc->preempt_tb;
243 vc->preempt_tb = TB_NIL;
245 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
248 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
250 struct kvmppc_vcore *vc = vcpu->arch.vcore;
251 unsigned long flags;
254 * We can test vc->runner without taking the vcore lock,
255 * because only this task ever sets vc->runner to this
256 * vcpu, and once it is set to this vcpu, only this task
257 * ever sets it to NULL.
259 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
260 kvmppc_core_end_stolen(vc);
262 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
263 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
264 vcpu->arch.busy_preempt != TB_NIL) {
265 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
266 vcpu->arch.busy_preempt = TB_NIL;
268 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
271 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
273 struct kvmppc_vcore *vc = vcpu->arch.vcore;
274 unsigned long flags;
276 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
277 kvmppc_core_start_stolen(vc);
279 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
280 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
281 vcpu->arch.busy_preempt = mftb();
282 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
285 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
288 * Check for illegal transactional state bit combination
289 * and if we find it, force the TS field to a safe state.
291 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
292 msr &= ~MSR_TS_MASK;
293 vcpu->arch.shregs.msr = msr;
294 kvmppc_end_cede(vcpu);
297 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
299 vcpu->arch.pvr = pvr;
302 /* Dummy value used in computing PCR value below */
303 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
305 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
307 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
308 struct kvmppc_vcore *vc = vcpu->arch.vcore;
310 /* We can (emulate) our own architecture version and anything older */
311 if (cpu_has_feature(CPU_FTR_ARCH_300))
312 host_pcr_bit = PCR_ARCH_300;
313 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
314 host_pcr_bit = PCR_ARCH_207;
315 else if (cpu_has_feature(CPU_FTR_ARCH_206))
316 host_pcr_bit = PCR_ARCH_206;
317 else
318 host_pcr_bit = PCR_ARCH_205;
320 /* Determine lowest PCR bit needed to run guest in given PVR level */
321 guest_pcr_bit = host_pcr_bit;
322 if (arch_compat) {
323 switch (arch_compat) {
324 case PVR_ARCH_205:
325 guest_pcr_bit = PCR_ARCH_205;
326 break;
327 case PVR_ARCH_206:
328 case PVR_ARCH_206p:
329 guest_pcr_bit = PCR_ARCH_206;
330 break;
331 case PVR_ARCH_207:
332 guest_pcr_bit = PCR_ARCH_207;
333 break;
334 case PVR_ARCH_300:
335 guest_pcr_bit = PCR_ARCH_300;
336 break;
337 default:
338 return -EINVAL;
342 /* Check requested PCR bits don't exceed our capabilities */
343 if (guest_pcr_bit > host_pcr_bit)
344 return -EINVAL;
346 spin_lock(&vc->lock);
347 vc->arch_compat = arch_compat;
348 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
349 vc->pcr = host_pcr_bit - guest_pcr_bit;
350 spin_unlock(&vc->lock);
352 return 0;
355 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
357 int r;
359 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
360 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
361 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
362 for (r = 0; r < 16; ++r)
363 pr_err("r%2d = %.16lx r%d = %.16lx\n",
364 r, kvmppc_get_gpr(vcpu, r),
365 r+16, kvmppc_get_gpr(vcpu, r+16));
366 pr_err("ctr = %.16lx lr = %.16lx\n",
367 vcpu->arch.ctr, vcpu->arch.lr);
368 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
369 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
370 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
371 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
372 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
373 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
374 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
375 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
376 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
377 pr_err("fault dar = %.16lx dsisr = %.8x\n",
378 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
379 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
380 for (r = 0; r < vcpu->arch.slb_max; ++r)
381 pr_err(" ESID = %.16llx VSID = %.16llx\n",
382 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
383 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
384 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
385 vcpu->arch.last_inst);
388 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
390 struct kvm_vcpu *ret;
392 mutex_lock(&kvm->lock);
393 ret = kvm_get_vcpu_by_id(kvm, id);
394 mutex_unlock(&kvm->lock);
395 return ret;
398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
400 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401 vpa->yield_count = cpu_to_be32(1);
404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405 unsigned long addr, unsigned long len)
407 /* check address is cacheline aligned */
408 if (addr & (L1_CACHE_BYTES - 1))
409 return -EINVAL;
410 spin_lock(&vcpu->arch.vpa_update_lock);
411 if (v->next_gpa != addr || v->len != len) {
412 v->next_gpa = addr;
413 v->len = addr ? len : 0;
414 v->update_pending = 1;
416 spin_unlock(&vcpu->arch.vpa_update_lock);
417 return 0;
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
421 struct reg_vpa {
422 u32 dummy;
423 union {
424 __be16 hword;
425 __be32 word;
426 } length;
429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
431 if (vpap->update_pending)
432 return vpap->next_gpa != 0;
433 return vpap->pinned_addr != NULL;
436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
437 unsigned long flags,
438 unsigned long vcpuid, unsigned long vpa)
440 struct kvm *kvm = vcpu->kvm;
441 unsigned long len, nb;
442 void *va;
443 struct kvm_vcpu *tvcpu;
444 int err;
445 int subfunc;
446 struct kvmppc_vpa *vpap;
448 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
449 if (!tvcpu)
450 return H_PARAMETER;
452 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454 subfunc == H_VPA_REG_SLB) {
455 /* Registering new area - address must be cache-line aligned */
456 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
457 return H_PARAMETER;
459 /* convert logical addr to kernel addr and read length */
460 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
461 if (va == NULL)
462 return H_PARAMETER;
463 if (subfunc == H_VPA_REG_VPA)
464 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
465 else
466 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467 kvmppc_unpin_guest_page(kvm, va, vpa, false);
469 /* Check length */
470 if (len > nb || len < sizeof(struct reg_vpa))
471 return H_PARAMETER;
472 } else {
473 vpa = 0;
474 len = 0;
477 err = H_PARAMETER;
478 vpap = NULL;
479 spin_lock(&tvcpu->arch.vpa_update_lock);
481 switch (subfunc) {
482 case H_VPA_REG_VPA: /* register VPA */
483 if (len < sizeof(struct lppaca))
484 break;
485 vpap = &tvcpu->arch.vpa;
486 err = 0;
487 break;
489 case H_VPA_REG_DTL: /* register DTL */
490 if (len < sizeof(struct dtl_entry))
491 break;
492 len -= len % sizeof(struct dtl_entry);
494 /* Check that they have previously registered a VPA */
495 err = H_RESOURCE;
496 if (!vpa_is_registered(&tvcpu->arch.vpa))
497 break;
499 vpap = &tvcpu->arch.dtl;
500 err = 0;
501 break;
503 case H_VPA_REG_SLB: /* register SLB shadow buffer */
504 /* Check that they have previously registered a VPA */
505 err = H_RESOURCE;
506 if (!vpa_is_registered(&tvcpu->arch.vpa))
507 break;
509 vpap = &tvcpu->arch.slb_shadow;
510 err = 0;
511 break;
513 case H_VPA_DEREG_VPA: /* deregister VPA */
514 /* Check they don't still have a DTL or SLB buf registered */
515 err = H_RESOURCE;
516 if (vpa_is_registered(&tvcpu->arch.dtl) ||
517 vpa_is_registered(&tvcpu->arch.slb_shadow))
518 break;
520 vpap = &tvcpu->arch.vpa;
521 err = 0;
522 break;
524 case H_VPA_DEREG_DTL: /* deregister DTL */
525 vpap = &tvcpu->arch.dtl;
526 err = 0;
527 break;
529 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
530 vpap = &tvcpu->arch.slb_shadow;
531 err = 0;
532 break;
535 if (vpap) {
536 vpap->next_gpa = vpa;
537 vpap->len = len;
538 vpap->update_pending = 1;
541 spin_unlock(&tvcpu->arch.vpa_update_lock);
543 return err;
546 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
548 struct kvm *kvm = vcpu->kvm;
549 void *va;
550 unsigned long nb;
551 unsigned long gpa;
554 * We need to pin the page pointed to by vpap->next_gpa,
555 * but we can't call kvmppc_pin_guest_page under the lock
556 * as it does get_user_pages() and down_read(). So we
557 * have to drop the lock, pin the page, then get the lock
558 * again and check that a new area didn't get registered
559 * in the meantime.
561 for (;;) {
562 gpa = vpap->next_gpa;
563 spin_unlock(&vcpu->arch.vpa_update_lock);
564 va = NULL;
565 nb = 0;
566 if (gpa)
567 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
568 spin_lock(&vcpu->arch.vpa_update_lock);
569 if (gpa == vpap->next_gpa)
570 break;
571 /* sigh... unpin that one and try again */
572 if (va)
573 kvmppc_unpin_guest_page(kvm, va, gpa, false);
576 vpap->update_pending = 0;
577 if (va && nb < vpap->len) {
579 * If it's now too short, it must be that userspace
580 * has changed the mappings underlying guest memory,
581 * so unregister the region.
583 kvmppc_unpin_guest_page(kvm, va, gpa, false);
584 va = NULL;
586 if (vpap->pinned_addr)
587 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
588 vpap->dirty);
589 vpap->gpa = gpa;
590 vpap->pinned_addr = va;
591 vpap->dirty = false;
592 if (va)
593 vpap->pinned_end = va + vpap->len;
596 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
598 if (!(vcpu->arch.vpa.update_pending ||
599 vcpu->arch.slb_shadow.update_pending ||
600 vcpu->arch.dtl.update_pending))
601 return;
603 spin_lock(&vcpu->arch.vpa_update_lock);
604 if (vcpu->arch.vpa.update_pending) {
605 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
606 if (vcpu->arch.vpa.pinned_addr)
607 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
609 if (vcpu->arch.dtl.update_pending) {
610 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
611 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
612 vcpu->arch.dtl_index = 0;
614 if (vcpu->arch.slb_shadow.update_pending)
615 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
616 spin_unlock(&vcpu->arch.vpa_update_lock);
620 * Return the accumulated stolen time for the vcore up until `now'.
621 * The caller should hold the vcore lock.
623 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
625 u64 p;
626 unsigned long flags;
628 spin_lock_irqsave(&vc->stoltb_lock, flags);
629 p = vc->stolen_tb;
630 if (vc->vcore_state != VCORE_INACTIVE &&
631 vc->preempt_tb != TB_NIL)
632 p += now - vc->preempt_tb;
633 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
634 return p;
637 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
638 struct kvmppc_vcore *vc)
640 struct dtl_entry *dt;
641 struct lppaca *vpa;
642 unsigned long stolen;
643 unsigned long core_stolen;
644 u64 now;
646 dt = vcpu->arch.dtl_ptr;
647 vpa = vcpu->arch.vpa.pinned_addr;
648 now = mftb();
649 core_stolen = vcore_stolen_time(vc, now);
650 stolen = core_stolen - vcpu->arch.stolen_logged;
651 vcpu->arch.stolen_logged = core_stolen;
652 spin_lock_irq(&vcpu->arch.tbacct_lock);
653 stolen += vcpu->arch.busy_stolen;
654 vcpu->arch.busy_stolen = 0;
655 spin_unlock_irq(&vcpu->arch.tbacct_lock);
656 if (!dt || !vpa)
657 return;
658 memset(dt, 0, sizeof(struct dtl_entry));
659 dt->dispatch_reason = 7;
660 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
661 dt->timebase = cpu_to_be64(now + vc->tb_offset);
662 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
663 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
664 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
665 ++dt;
666 if (dt == vcpu->arch.dtl.pinned_end)
667 dt = vcpu->arch.dtl.pinned_addr;
668 vcpu->arch.dtl_ptr = dt;
669 /* order writing *dt vs. writing vpa->dtl_idx */
670 smp_wmb();
671 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
672 vcpu->arch.dtl.dirty = true;
675 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
677 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
678 return true;
679 if ((!vcpu->arch.vcore->arch_compat) &&
680 cpu_has_feature(CPU_FTR_ARCH_207S))
681 return true;
682 return false;
685 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
686 unsigned long resource, unsigned long value1,
687 unsigned long value2)
689 switch (resource) {
690 case H_SET_MODE_RESOURCE_SET_CIABR:
691 if (!kvmppc_power8_compatible(vcpu))
692 return H_P2;
693 if (value2)
694 return H_P4;
695 if (mflags)
696 return H_UNSUPPORTED_FLAG_START;
697 /* Guests can't breakpoint the hypervisor */
698 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
699 return H_P3;
700 vcpu->arch.ciabr = value1;
701 return H_SUCCESS;
702 case H_SET_MODE_RESOURCE_SET_DAWR:
703 if (!kvmppc_power8_compatible(vcpu))
704 return H_P2;
705 if (mflags)
706 return H_UNSUPPORTED_FLAG_START;
707 if (value2 & DABRX_HYP)
708 return H_P4;
709 vcpu->arch.dawr = value1;
710 vcpu->arch.dawrx = value2;
711 return H_SUCCESS;
712 default:
713 return H_TOO_HARD;
717 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
719 struct kvmppc_vcore *vcore = target->arch.vcore;
722 * We expect to have been called by the real mode handler
723 * (kvmppc_rm_h_confer()) which would have directly returned
724 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
725 * have useful work to do and should not confer) so we don't
726 * recheck that here.
729 spin_lock(&vcore->lock);
730 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
731 vcore->vcore_state != VCORE_INACTIVE &&
732 vcore->runner)
733 target = vcore->runner;
734 spin_unlock(&vcore->lock);
736 return kvm_vcpu_yield_to(target);
739 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
741 int yield_count = 0;
742 struct lppaca *lppaca;
744 spin_lock(&vcpu->arch.vpa_update_lock);
745 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
746 if (lppaca)
747 yield_count = be32_to_cpu(lppaca->yield_count);
748 spin_unlock(&vcpu->arch.vpa_update_lock);
749 return yield_count;
752 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
754 unsigned long req = kvmppc_get_gpr(vcpu, 3);
755 unsigned long target, ret = H_SUCCESS;
756 int yield_count;
757 struct kvm_vcpu *tvcpu;
758 int idx, rc;
760 if (req <= MAX_HCALL_OPCODE &&
761 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
762 return RESUME_HOST;
764 switch (req) {
765 case H_CEDE:
766 break;
767 case H_PROD:
768 target = kvmppc_get_gpr(vcpu, 4);
769 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
770 if (!tvcpu) {
771 ret = H_PARAMETER;
772 break;
774 tvcpu->arch.prodded = 1;
775 smp_mb();
776 if (vcpu->arch.ceded) {
777 if (swait_active(&vcpu->wq)) {
778 swake_up(&vcpu->wq);
779 vcpu->stat.halt_wakeup++;
782 break;
783 case H_CONFER:
784 target = kvmppc_get_gpr(vcpu, 4);
785 if (target == -1)
786 break;
787 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
788 if (!tvcpu) {
789 ret = H_PARAMETER;
790 break;
792 yield_count = kvmppc_get_gpr(vcpu, 5);
793 if (kvmppc_get_yield_count(tvcpu) != yield_count)
794 break;
795 kvm_arch_vcpu_yield_to(tvcpu);
796 break;
797 case H_REGISTER_VPA:
798 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
799 kvmppc_get_gpr(vcpu, 5),
800 kvmppc_get_gpr(vcpu, 6));
801 break;
802 case H_RTAS:
803 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
804 return RESUME_HOST;
806 idx = srcu_read_lock(&vcpu->kvm->srcu);
807 rc = kvmppc_rtas_hcall(vcpu);
808 srcu_read_unlock(&vcpu->kvm->srcu, idx);
810 if (rc == -ENOENT)
811 return RESUME_HOST;
812 else if (rc == 0)
813 break;
815 /* Send the error out to userspace via KVM_RUN */
816 return rc;
817 case H_LOGICAL_CI_LOAD:
818 ret = kvmppc_h_logical_ci_load(vcpu);
819 if (ret == H_TOO_HARD)
820 return RESUME_HOST;
821 break;
822 case H_LOGICAL_CI_STORE:
823 ret = kvmppc_h_logical_ci_store(vcpu);
824 if (ret == H_TOO_HARD)
825 return RESUME_HOST;
826 break;
827 case H_SET_MODE:
828 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
829 kvmppc_get_gpr(vcpu, 5),
830 kvmppc_get_gpr(vcpu, 6),
831 kvmppc_get_gpr(vcpu, 7));
832 if (ret == H_TOO_HARD)
833 return RESUME_HOST;
834 break;
835 case H_XIRR:
836 case H_CPPR:
837 case H_EOI:
838 case H_IPI:
839 case H_IPOLL:
840 case H_XIRR_X:
841 if (kvmppc_xics_enabled(vcpu)) {
842 ret = kvmppc_xics_hcall(vcpu, req);
843 break;
845 return RESUME_HOST;
846 case H_PUT_TCE:
847 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
848 kvmppc_get_gpr(vcpu, 5),
849 kvmppc_get_gpr(vcpu, 6));
850 if (ret == H_TOO_HARD)
851 return RESUME_HOST;
852 break;
853 case H_PUT_TCE_INDIRECT:
854 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
855 kvmppc_get_gpr(vcpu, 5),
856 kvmppc_get_gpr(vcpu, 6),
857 kvmppc_get_gpr(vcpu, 7));
858 if (ret == H_TOO_HARD)
859 return RESUME_HOST;
860 break;
861 case H_STUFF_TCE:
862 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
863 kvmppc_get_gpr(vcpu, 5),
864 kvmppc_get_gpr(vcpu, 6),
865 kvmppc_get_gpr(vcpu, 7));
866 if (ret == H_TOO_HARD)
867 return RESUME_HOST;
868 break;
869 default:
870 return RESUME_HOST;
872 kvmppc_set_gpr(vcpu, 3, ret);
873 vcpu->arch.hcall_needed = 0;
874 return RESUME_GUEST;
877 static int kvmppc_hcall_impl_hv(unsigned long cmd)
879 switch (cmd) {
880 case H_CEDE:
881 case H_PROD:
882 case H_CONFER:
883 case H_REGISTER_VPA:
884 case H_SET_MODE:
885 case H_LOGICAL_CI_LOAD:
886 case H_LOGICAL_CI_STORE:
887 #ifdef CONFIG_KVM_XICS
888 case H_XIRR:
889 case H_CPPR:
890 case H_EOI:
891 case H_IPI:
892 case H_IPOLL:
893 case H_XIRR_X:
894 #endif
895 return 1;
898 /* See if it's in the real-mode table */
899 return kvmppc_hcall_impl_hv_realmode(cmd);
902 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
903 struct kvm_vcpu *vcpu)
905 u32 last_inst;
907 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
908 EMULATE_DONE) {
910 * Fetch failed, so return to guest and
911 * try executing it again.
913 return RESUME_GUEST;
916 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
917 run->exit_reason = KVM_EXIT_DEBUG;
918 run->debug.arch.address = kvmppc_get_pc(vcpu);
919 return RESUME_HOST;
920 } else {
921 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
922 return RESUME_GUEST;
926 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
927 struct task_struct *tsk)
929 int r = RESUME_HOST;
931 vcpu->stat.sum_exits++;
934 * This can happen if an interrupt occurs in the last stages
935 * of guest entry or the first stages of guest exit (i.e. after
936 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
937 * and before setting it to KVM_GUEST_MODE_HOST_HV).
938 * That can happen due to a bug, or due to a machine check
939 * occurring at just the wrong time.
941 if (vcpu->arch.shregs.msr & MSR_HV) {
942 printk(KERN_EMERG "KVM trap in HV mode!\n");
943 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
944 vcpu->arch.trap, kvmppc_get_pc(vcpu),
945 vcpu->arch.shregs.msr);
946 kvmppc_dump_regs(vcpu);
947 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
948 run->hw.hardware_exit_reason = vcpu->arch.trap;
949 return RESUME_HOST;
951 run->exit_reason = KVM_EXIT_UNKNOWN;
952 run->ready_for_interrupt_injection = 1;
953 switch (vcpu->arch.trap) {
954 /* We're good on these - the host merely wanted to get our attention */
955 case BOOK3S_INTERRUPT_HV_DECREMENTER:
956 vcpu->stat.dec_exits++;
957 r = RESUME_GUEST;
958 break;
959 case BOOK3S_INTERRUPT_EXTERNAL:
960 case BOOK3S_INTERRUPT_H_DOORBELL:
961 case BOOK3S_INTERRUPT_H_VIRT:
962 vcpu->stat.ext_intr_exits++;
963 r = RESUME_GUEST;
964 break;
965 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
966 case BOOK3S_INTERRUPT_HMI:
967 case BOOK3S_INTERRUPT_PERFMON:
968 r = RESUME_GUEST;
969 break;
970 case BOOK3S_INTERRUPT_MACHINE_CHECK:
972 * Deliver a machine check interrupt to the guest.
973 * We have to do this, even if the host has handled the
974 * machine check, because machine checks use SRR0/1 and
975 * the interrupt might have trashed guest state in them.
977 kvmppc_book3s_queue_irqprio(vcpu,
978 BOOK3S_INTERRUPT_MACHINE_CHECK);
979 r = RESUME_GUEST;
980 break;
981 case BOOK3S_INTERRUPT_PROGRAM:
983 ulong flags;
985 * Normally program interrupts are delivered directly
986 * to the guest by the hardware, but we can get here
987 * as a result of a hypervisor emulation interrupt
988 * (e40) getting turned into a 700 by BML RTAS.
990 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
991 kvmppc_core_queue_program(vcpu, flags);
992 r = RESUME_GUEST;
993 break;
995 case BOOK3S_INTERRUPT_SYSCALL:
997 /* hcall - punt to userspace */
998 int i;
1000 /* hypercall with MSR_PR has already been handled in rmode,
1001 * and never reaches here.
1004 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1005 for (i = 0; i < 9; ++i)
1006 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1007 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1008 vcpu->arch.hcall_needed = 1;
1009 r = RESUME_HOST;
1010 break;
1013 * We get these next two if the guest accesses a page which it thinks
1014 * it has mapped but which is not actually present, either because
1015 * it is for an emulated I/O device or because the corresonding
1016 * host page has been paged out. Any other HDSI/HISI interrupts
1017 * have been handled already.
1019 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1020 r = RESUME_PAGE_FAULT;
1021 break;
1022 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1023 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1024 vcpu->arch.fault_dsisr = 0;
1025 r = RESUME_PAGE_FAULT;
1026 break;
1028 * This occurs if the guest executes an illegal instruction.
1029 * If the guest debug is disabled, generate a program interrupt
1030 * to the guest. If guest debug is enabled, we need to check
1031 * whether the instruction is a software breakpoint instruction.
1032 * Accordingly return to Guest or Host.
1034 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1035 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1036 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1037 swab32(vcpu->arch.emul_inst) :
1038 vcpu->arch.emul_inst;
1039 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1040 r = kvmppc_emulate_debug_inst(run, vcpu);
1041 } else {
1042 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1043 r = RESUME_GUEST;
1045 break;
1047 * This occurs if the guest (kernel or userspace), does something that
1048 * is prohibited by HFSCR. We just generate a program interrupt to
1049 * the guest.
1051 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1052 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1053 r = RESUME_GUEST;
1054 break;
1055 case BOOK3S_INTERRUPT_HV_RM_HARD:
1056 r = RESUME_PASSTHROUGH;
1057 break;
1058 default:
1059 kvmppc_dump_regs(vcpu);
1060 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1061 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1062 vcpu->arch.shregs.msr);
1063 run->hw.hardware_exit_reason = vcpu->arch.trap;
1064 r = RESUME_HOST;
1065 break;
1068 return r;
1071 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1072 struct kvm_sregs *sregs)
1074 int i;
1076 memset(sregs, 0, sizeof(struct kvm_sregs));
1077 sregs->pvr = vcpu->arch.pvr;
1078 for (i = 0; i < vcpu->arch.slb_max; i++) {
1079 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1080 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1083 return 0;
1086 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1087 struct kvm_sregs *sregs)
1089 int i, j;
1091 /* Only accept the same PVR as the host's, since we can't spoof it */
1092 if (sregs->pvr != vcpu->arch.pvr)
1093 return -EINVAL;
1095 j = 0;
1096 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1097 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1098 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1099 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1100 ++j;
1103 vcpu->arch.slb_max = j;
1105 return 0;
1108 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1109 bool preserve_top32)
1111 struct kvm *kvm = vcpu->kvm;
1112 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1113 u64 mask;
1115 mutex_lock(&kvm->lock);
1116 spin_lock(&vc->lock);
1118 * If ILE (interrupt little-endian) has changed, update the
1119 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1121 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1122 struct kvm_vcpu *vcpu;
1123 int i;
1125 kvm_for_each_vcpu(i, vcpu, kvm) {
1126 if (vcpu->arch.vcore != vc)
1127 continue;
1128 if (new_lpcr & LPCR_ILE)
1129 vcpu->arch.intr_msr |= MSR_LE;
1130 else
1131 vcpu->arch.intr_msr &= ~MSR_LE;
1136 * Userspace can only modify DPFD (default prefetch depth),
1137 * ILE (interrupt little-endian) and TC (translation control).
1138 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1140 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1141 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1142 mask |= LPCR_AIL;
1144 /* Broken 32-bit version of LPCR must not clear top bits */
1145 if (preserve_top32)
1146 mask &= 0xFFFFFFFF;
1147 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1148 spin_unlock(&vc->lock);
1149 mutex_unlock(&kvm->lock);
1152 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1153 union kvmppc_one_reg *val)
1155 int r = 0;
1156 long int i;
1158 switch (id) {
1159 case KVM_REG_PPC_DEBUG_INST:
1160 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1161 break;
1162 case KVM_REG_PPC_HIOR:
1163 *val = get_reg_val(id, 0);
1164 break;
1165 case KVM_REG_PPC_DABR:
1166 *val = get_reg_val(id, vcpu->arch.dabr);
1167 break;
1168 case KVM_REG_PPC_DABRX:
1169 *val = get_reg_val(id, vcpu->arch.dabrx);
1170 break;
1171 case KVM_REG_PPC_DSCR:
1172 *val = get_reg_val(id, vcpu->arch.dscr);
1173 break;
1174 case KVM_REG_PPC_PURR:
1175 *val = get_reg_val(id, vcpu->arch.purr);
1176 break;
1177 case KVM_REG_PPC_SPURR:
1178 *val = get_reg_val(id, vcpu->arch.spurr);
1179 break;
1180 case KVM_REG_PPC_AMR:
1181 *val = get_reg_val(id, vcpu->arch.amr);
1182 break;
1183 case KVM_REG_PPC_UAMOR:
1184 *val = get_reg_val(id, vcpu->arch.uamor);
1185 break;
1186 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1187 i = id - KVM_REG_PPC_MMCR0;
1188 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1189 break;
1190 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1191 i = id - KVM_REG_PPC_PMC1;
1192 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1193 break;
1194 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1195 i = id - KVM_REG_PPC_SPMC1;
1196 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1197 break;
1198 case KVM_REG_PPC_SIAR:
1199 *val = get_reg_val(id, vcpu->arch.siar);
1200 break;
1201 case KVM_REG_PPC_SDAR:
1202 *val = get_reg_val(id, vcpu->arch.sdar);
1203 break;
1204 case KVM_REG_PPC_SIER:
1205 *val = get_reg_val(id, vcpu->arch.sier);
1206 break;
1207 case KVM_REG_PPC_IAMR:
1208 *val = get_reg_val(id, vcpu->arch.iamr);
1209 break;
1210 case KVM_REG_PPC_PSPB:
1211 *val = get_reg_val(id, vcpu->arch.pspb);
1212 break;
1213 case KVM_REG_PPC_DPDES:
1214 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1215 break;
1216 case KVM_REG_PPC_VTB:
1217 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1218 break;
1219 case KVM_REG_PPC_DAWR:
1220 *val = get_reg_val(id, vcpu->arch.dawr);
1221 break;
1222 case KVM_REG_PPC_DAWRX:
1223 *val = get_reg_val(id, vcpu->arch.dawrx);
1224 break;
1225 case KVM_REG_PPC_CIABR:
1226 *val = get_reg_val(id, vcpu->arch.ciabr);
1227 break;
1228 case KVM_REG_PPC_CSIGR:
1229 *val = get_reg_val(id, vcpu->arch.csigr);
1230 break;
1231 case KVM_REG_PPC_TACR:
1232 *val = get_reg_val(id, vcpu->arch.tacr);
1233 break;
1234 case KVM_REG_PPC_TCSCR:
1235 *val = get_reg_val(id, vcpu->arch.tcscr);
1236 break;
1237 case KVM_REG_PPC_PID:
1238 *val = get_reg_val(id, vcpu->arch.pid);
1239 break;
1240 case KVM_REG_PPC_ACOP:
1241 *val = get_reg_val(id, vcpu->arch.acop);
1242 break;
1243 case KVM_REG_PPC_WORT:
1244 *val = get_reg_val(id, vcpu->arch.wort);
1245 break;
1246 case KVM_REG_PPC_TIDR:
1247 *val = get_reg_val(id, vcpu->arch.tid);
1248 break;
1249 case KVM_REG_PPC_PSSCR:
1250 *val = get_reg_val(id, vcpu->arch.psscr);
1251 break;
1252 case KVM_REG_PPC_VPA_ADDR:
1253 spin_lock(&vcpu->arch.vpa_update_lock);
1254 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1255 spin_unlock(&vcpu->arch.vpa_update_lock);
1256 break;
1257 case KVM_REG_PPC_VPA_SLB:
1258 spin_lock(&vcpu->arch.vpa_update_lock);
1259 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1260 val->vpaval.length = vcpu->arch.slb_shadow.len;
1261 spin_unlock(&vcpu->arch.vpa_update_lock);
1262 break;
1263 case KVM_REG_PPC_VPA_DTL:
1264 spin_lock(&vcpu->arch.vpa_update_lock);
1265 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1266 val->vpaval.length = vcpu->arch.dtl.len;
1267 spin_unlock(&vcpu->arch.vpa_update_lock);
1268 break;
1269 case KVM_REG_PPC_TB_OFFSET:
1270 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1271 break;
1272 case KVM_REG_PPC_LPCR:
1273 case KVM_REG_PPC_LPCR_64:
1274 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1275 break;
1276 case KVM_REG_PPC_PPR:
1277 *val = get_reg_val(id, vcpu->arch.ppr);
1278 break;
1279 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1280 case KVM_REG_PPC_TFHAR:
1281 *val = get_reg_val(id, vcpu->arch.tfhar);
1282 break;
1283 case KVM_REG_PPC_TFIAR:
1284 *val = get_reg_val(id, vcpu->arch.tfiar);
1285 break;
1286 case KVM_REG_PPC_TEXASR:
1287 *val = get_reg_val(id, vcpu->arch.texasr);
1288 break;
1289 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1290 i = id - KVM_REG_PPC_TM_GPR0;
1291 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1292 break;
1293 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1295 int j;
1296 i = id - KVM_REG_PPC_TM_VSR0;
1297 if (i < 32)
1298 for (j = 0; j < TS_FPRWIDTH; j++)
1299 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1300 else {
1301 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1302 val->vval = vcpu->arch.vr_tm.vr[i-32];
1303 else
1304 r = -ENXIO;
1306 break;
1308 case KVM_REG_PPC_TM_CR:
1309 *val = get_reg_val(id, vcpu->arch.cr_tm);
1310 break;
1311 case KVM_REG_PPC_TM_XER:
1312 *val = get_reg_val(id, vcpu->arch.xer_tm);
1313 break;
1314 case KVM_REG_PPC_TM_LR:
1315 *val = get_reg_val(id, vcpu->arch.lr_tm);
1316 break;
1317 case KVM_REG_PPC_TM_CTR:
1318 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1319 break;
1320 case KVM_REG_PPC_TM_FPSCR:
1321 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1322 break;
1323 case KVM_REG_PPC_TM_AMR:
1324 *val = get_reg_val(id, vcpu->arch.amr_tm);
1325 break;
1326 case KVM_REG_PPC_TM_PPR:
1327 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1328 break;
1329 case KVM_REG_PPC_TM_VRSAVE:
1330 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1331 break;
1332 case KVM_REG_PPC_TM_VSCR:
1333 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1334 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1335 else
1336 r = -ENXIO;
1337 break;
1338 case KVM_REG_PPC_TM_DSCR:
1339 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1340 break;
1341 case KVM_REG_PPC_TM_TAR:
1342 *val = get_reg_val(id, vcpu->arch.tar_tm);
1343 break;
1344 #endif
1345 case KVM_REG_PPC_ARCH_COMPAT:
1346 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1347 break;
1348 default:
1349 r = -EINVAL;
1350 break;
1353 return r;
1356 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1357 union kvmppc_one_reg *val)
1359 int r = 0;
1360 long int i;
1361 unsigned long addr, len;
1363 switch (id) {
1364 case KVM_REG_PPC_HIOR:
1365 /* Only allow this to be set to zero */
1366 if (set_reg_val(id, *val))
1367 r = -EINVAL;
1368 break;
1369 case KVM_REG_PPC_DABR:
1370 vcpu->arch.dabr = set_reg_val(id, *val);
1371 break;
1372 case KVM_REG_PPC_DABRX:
1373 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1374 break;
1375 case KVM_REG_PPC_DSCR:
1376 vcpu->arch.dscr = set_reg_val(id, *val);
1377 break;
1378 case KVM_REG_PPC_PURR:
1379 vcpu->arch.purr = set_reg_val(id, *val);
1380 break;
1381 case KVM_REG_PPC_SPURR:
1382 vcpu->arch.spurr = set_reg_val(id, *val);
1383 break;
1384 case KVM_REG_PPC_AMR:
1385 vcpu->arch.amr = set_reg_val(id, *val);
1386 break;
1387 case KVM_REG_PPC_UAMOR:
1388 vcpu->arch.uamor = set_reg_val(id, *val);
1389 break;
1390 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1391 i = id - KVM_REG_PPC_MMCR0;
1392 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1393 break;
1394 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1395 i = id - KVM_REG_PPC_PMC1;
1396 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1397 break;
1398 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1399 i = id - KVM_REG_PPC_SPMC1;
1400 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1401 break;
1402 case KVM_REG_PPC_SIAR:
1403 vcpu->arch.siar = set_reg_val(id, *val);
1404 break;
1405 case KVM_REG_PPC_SDAR:
1406 vcpu->arch.sdar = set_reg_val(id, *val);
1407 break;
1408 case KVM_REG_PPC_SIER:
1409 vcpu->arch.sier = set_reg_val(id, *val);
1410 break;
1411 case KVM_REG_PPC_IAMR:
1412 vcpu->arch.iamr = set_reg_val(id, *val);
1413 break;
1414 case KVM_REG_PPC_PSPB:
1415 vcpu->arch.pspb = set_reg_val(id, *val);
1416 break;
1417 case KVM_REG_PPC_DPDES:
1418 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1419 break;
1420 case KVM_REG_PPC_VTB:
1421 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1422 break;
1423 case KVM_REG_PPC_DAWR:
1424 vcpu->arch.dawr = set_reg_val(id, *val);
1425 break;
1426 case KVM_REG_PPC_DAWRX:
1427 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1428 break;
1429 case KVM_REG_PPC_CIABR:
1430 vcpu->arch.ciabr = set_reg_val(id, *val);
1431 /* Don't allow setting breakpoints in hypervisor code */
1432 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1433 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1434 break;
1435 case KVM_REG_PPC_CSIGR:
1436 vcpu->arch.csigr = set_reg_val(id, *val);
1437 break;
1438 case KVM_REG_PPC_TACR:
1439 vcpu->arch.tacr = set_reg_val(id, *val);
1440 break;
1441 case KVM_REG_PPC_TCSCR:
1442 vcpu->arch.tcscr = set_reg_val(id, *val);
1443 break;
1444 case KVM_REG_PPC_PID:
1445 vcpu->arch.pid = set_reg_val(id, *val);
1446 break;
1447 case KVM_REG_PPC_ACOP:
1448 vcpu->arch.acop = set_reg_val(id, *val);
1449 break;
1450 case KVM_REG_PPC_WORT:
1451 vcpu->arch.wort = set_reg_val(id, *val);
1452 break;
1453 case KVM_REG_PPC_TIDR:
1454 vcpu->arch.tid = set_reg_val(id, *val);
1455 break;
1456 case KVM_REG_PPC_PSSCR:
1457 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1458 break;
1459 case KVM_REG_PPC_VPA_ADDR:
1460 addr = set_reg_val(id, *val);
1461 r = -EINVAL;
1462 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1463 vcpu->arch.dtl.next_gpa))
1464 break;
1465 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1466 break;
1467 case KVM_REG_PPC_VPA_SLB:
1468 addr = val->vpaval.addr;
1469 len = val->vpaval.length;
1470 r = -EINVAL;
1471 if (addr && !vcpu->arch.vpa.next_gpa)
1472 break;
1473 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1474 break;
1475 case KVM_REG_PPC_VPA_DTL:
1476 addr = val->vpaval.addr;
1477 len = val->vpaval.length;
1478 r = -EINVAL;
1479 if (addr && (len < sizeof(struct dtl_entry) ||
1480 !vcpu->arch.vpa.next_gpa))
1481 break;
1482 len -= len % sizeof(struct dtl_entry);
1483 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1484 break;
1485 case KVM_REG_PPC_TB_OFFSET:
1486 /* round up to multiple of 2^24 */
1487 vcpu->arch.vcore->tb_offset =
1488 ALIGN(set_reg_val(id, *val), 1UL << 24);
1489 break;
1490 case KVM_REG_PPC_LPCR:
1491 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1492 break;
1493 case KVM_REG_PPC_LPCR_64:
1494 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1495 break;
1496 case KVM_REG_PPC_PPR:
1497 vcpu->arch.ppr = set_reg_val(id, *val);
1498 break;
1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1500 case KVM_REG_PPC_TFHAR:
1501 vcpu->arch.tfhar = set_reg_val(id, *val);
1502 break;
1503 case KVM_REG_PPC_TFIAR:
1504 vcpu->arch.tfiar = set_reg_val(id, *val);
1505 break;
1506 case KVM_REG_PPC_TEXASR:
1507 vcpu->arch.texasr = set_reg_val(id, *val);
1508 break;
1509 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1510 i = id - KVM_REG_PPC_TM_GPR0;
1511 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1512 break;
1513 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1515 int j;
1516 i = id - KVM_REG_PPC_TM_VSR0;
1517 if (i < 32)
1518 for (j = 0; j < TS_FPRWIDTH; j++)
1519 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1520 else
1521 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1522 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1523 else
1524 r = -ENXIO;
1525 break;
1527 case KVM_REG_PPC_TM_CR:
1528 vcpu->arch.cr_tm = set_reg_val(id, *val);
1529 break;
1530 case KVM_REG_PPC_TM_XER:
1531 vcpu->arch.xer_tm = set_reg_val(id, *val);
1532 break;
1533 case KVM_REG_PPC_TM_LR:
1534 vcpu->arch.lr_tm = set_reg_val(id, *val);
1535 break;
1536 case KVM_REG_PPC_TM_CTR:
1537 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1538 break;
1539 case KVM_REG_PPC_TM_FPSCR:
1540 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1541 break;
1542 case KVM_REG_PPC_TM_AMR:
1543 vcpu->arch.amr_tm = set_reg_val(id, *val);
1544 break;
1545 case KVM_REG_PPC_TM_PPR:
1546 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1547 break;
1548 case KVM_REG_PPC_TM_VRSAVE:
1549 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1550 break;
1551 case KVM_REG_PPC_TM_VSCR:
1552 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1553 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1554 else
1555 r = - ENXIO;
1556 break;
1557 case KVM_REG_PPC_TM_DSCR:
1558 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1559 break;
1560 case KVM_REG_PPC_TM_TAR:
1561 vcpu->arch.tar_tm = set_reg_val(id, *val);
1562 break;
1563 #endif
1564 case KVM_REG_PPC_ARCH_COMPAT:
1565 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1566 break;
1567 default:
1568 r = -EINVAL;
1569 break;
1572 return r;
1576 * On POWER9, threads are independent and can be in different partitions.
1577 * Therefore we consider each thread to be a subcore.
1578 * There is a restriction that all threads have to be in the same
1579 * MMU mode (radix or HPT), unfortunately, but since we only support
1580 * HPT guests on a HPT host so far, that isn't an impediment yet.
1582 static int threads_per_vcore(void)
1584 if (cpu_has_feature(CPU_FTR_ARCH_300))
1585 return 1;
1586 return threads_per_subcore;
1589 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1591 struct kvmppc_vcore *vcore;
1593 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1595 if (vcore == NULL)
1596 return NULL;
1598 spin_lock_init(&vcore->lock);
1599 spin_lock_init(&vcore->stoltb_lock);
1600 init_swait_queue_head(&vcore->wq);
1601 vcore->preempt_tb = TB_NIL;
1602 vcore->lpcr = kvm->arch.lpcr;
1603 vcore->first_vcpuid = core * threads_per_vcore();
1604 vcore->kvm = kvm;
1605 INIT_LIST_HEAD(&vcore->preempt_list);
1607 return vcore;
1610 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1611 static struct debugfs_timings_element {
1612 const char *name;
1613 size_t offset;
1614 } timings[] = {
1615 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1616 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1617 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1618 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1619 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1622 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1624 struct debugfs_timings_state {
1625 struct kvm_vcpu *vcpu;
1626 unsigned int buflen;
1627 char buf[N_TIMINGS * 100];
1630 static int debugfs_timings_open(struct inode *inode, struct file *file)
1632 struct kvm_vcpu *vcpu = inode->i_private;
1633 struct debugfs_timings_state *p;
1635 p = kzalloc(sizeof(*p), GFP_KERNEL);
1636 if (!p)
1637 return -ENOMEM;
1639 kvm_get_kvm(vcpu->kvm);
1640 p->vcpu = vcpu;
1641 file->private_data = p;
1643 return nonseekable_open(inode, file);
1646 static int debugfs_timings_release(struct inode *inode, struct file *file)
1648 struct debugfs_timings_state *p = file->private_data;
1650 kvm_put_kvm(p->vcpu->kvm);
1651 kfree(p);
1652 return 0;
1655 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1656 size_t len, loff_t *ppos)
1658 struct debugfs_timings_state *p = file->private_data;
1659 struct kvm_vcpu *vcpu = p->vcpu;
1660 char *s, *buf_end;
1661 struct kvmhv_tb_accumulator tb;
1662 u64 count;
1663 loff_t pos;
1664 ssize_t n;
1665 int i, loops;
1666 bool ok;
1668 if (!p->buflen) {
1669 s = p->buf;
1670 buf_end = s + sizeof(p->buf);
1671 for (i = 0; i < N_TIMINGS; ++i) {
1672 struct kvmhv_tb_accumulator *acc;
1674 acc = (struct kvmhv_tb_accumulator *)
1675 ((unsigned long)vcpu + timings[i].offset);
1676 ok = false;
1677 for (loops = 0; loops < 1000; ++loops) {
1678 count = acc->seqcount;
1679 if (!(count & 1)) {
1680 smp_rmb();
1681 tb = *acc;
1682 smp_rmb();
1683 if (count == acc->seqcount) {
1684 ok = true;
1685 break;
1688 udelay(1);
1690 if (!ok)
1691 snprintf(s, buf_end - s, "%s: stuck\n",
1692 timings[i].name);
1693 else
1694 snprintf(s, buf_end - s,
1695 "%s: %llu %llu %llu %llu\n",
1696 timings[i].name, count / 2,
1697 tb_to_ns(tb.tb_total),
1698 tb_to_ns(tb.tb_min),
1699 tb_to_ns(tb.tb_max));
1700 s += strlen(s);
1702 p->buflen = s - p->buf;
1705 pos = *ppos;
1706 if (pos >= p->buflen)
1707 return 0;
1708 if (len > p->buflen - pos)
1709 len = p->buflen - pos;
1710 n = copy_to_user(buf, p->buf + pos, len);
1711 if (n) {
1712 if (n == len)
1713 return -EFAULT;
1714 len -= n;
1716 *ppos = pos + len;
1717 return len;
1720 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1721 size_t len, loff_t *ppos)
1723 return -EACCES;
1726 static const struct file_operations debugfs_timings_ops = {
1727 .owner = THIS_MODULE,
1728 .open = debugfs_timings_open,
1729 .release = debugfs_timings_release,
1730 .read = debugfs_timings_read,
1731 .write = debugfs_timings_write,
1732 .llseek = generic_file_llseek,
1735 /* Create a debugfs directory for the vcpu */
1736 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1738 char buf[16];
1739 struct kvm *kvm = vcpu->kvm;
1741 snprintf(buf, sizeof(buf), "vcpu%u", id);
1742 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1743 return;
1744 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1745 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1746 return;
1747 vcpu->arch.debugfs_timings =
1748 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1749 vcpu, &debugfs_timings_ops);
1752 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1753 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1756 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1758 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1759 unsigned int id)
1761 struct kvm_vcpu *vcpu;
1762 int err = -EINVAL;
1763 int core;
1764 struct kvmppc_vcore *vcore;
1766 core = id / threads_per_vcore();
1767 if (core >= KVM_MAX_VCORES)
1768 goto out;
1770 err = -ENOMEM;
1771 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1772 if (!vcpu)
1773 goto out;
1775 err = kvm_vcpu_init(vcpu, kvm, id);
1776 if (err)
1777 goto free_vcpu;
1779 vcpu->arch.shared = &vcpu->arch.shregs;
1780 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1782 * The shared struct is never shared on HV,
1783 * so we can always use host endianness
1785 #ifdef __BIG_ENDIAN__
1786 vcpu->arch.shared_big_endian = true;
1787 #else
1788 vcpu->arch.shared_big_endian = false;
1789 #endif
1790 #endif
1791 vcpu->arch.mmcr[0] = MMCR0_FC;
1792 vcpu->arch.ctrl = CTRL_RUNLATCH;
1793 /* default to host PVR, since we can't spoof it */
1794 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1795 spin_lock_init(&vcpu->arch.vpa_update_lock);
1796 spin_lock_init(&vcpu->arch.tbacct_lock);
1797 vcpu->arch.busy_preempt = TB_NIL;
1798 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1800 kvmppc_mmu_book3s_hv_init(vcpu);
1802 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1804 init_waitqueue_head(&vcpu->arch.cpu_run);
1806 mutex_lock(&kvm->lock);
1807 vcore = kvm->arch.vcores[core];
1808 if (!vcore) {
1809 vcore = kvmppc_vcore_create(kvm, core);
1810 kvm->arch.vcores[core] = vcore;
1811 kvm->arch.online_vcores++;
1813 mutex_unlock(&kvm->lock);
1815 if (!vcore)
1816 goto free_vcpu;
1818 spin_lock(&vcore->lock);
1819 ++vcore->num_threads;
1820 spin_unlock(&vcore->lock);
1821 vcpu->arch.vcore = vcore;
1822 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1823 vcpu->arch.thread_cpu = -1;
1825 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1826 kvmppc_sanity_check(vcpu);
1828 debugfs_vcpu_init(vcpu, id);
1830 return vcpu;
1832 free_vcpu:
1833 kmem_cache_free(kvm_vcpu_cache, vcpu);
1834 out:
1835 return ERR_PTR(err);
1838 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1840 if (vpa->pinned_addr)
1841 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1842 vpa->dirty);
1845 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1847 spin_lock(&vcpu->arch.vpa_update_lock);
1848 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1849 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1850 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1851 spin_unlock(&vcpu->arch.vpa_update_lock);
1852 kvm_vcpu_uninit(vcpu);
1853 kmem_cache_free(kvm_vcpu_cache, vcpu);
1856 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1858 /* Indicate we want to get back into the guest */
1859 return 1;
1862 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1864 unsigned long dec_nsec, now;
1866 now = get_tb();
1867 if (now > vcpu->arch.dec_expires) {
1868 /* decrementer has already gone negative */
1869 kvmppc_core_queue_dec(vcpu);
1870 kvmppc_core_prepare_to_enter(vcpu);
1871 return;
1873 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1874 / tb_ticks_per_sec;
1875 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
1876 vcpu->arch.timer_running = 1;
1879 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1881 vcpu->arch.ceded = 0;
1882 if (vcpu->arch.timer_running) {
1883 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1884 vcpu->arch.timer_running = 0;
1888 extern void __kvmppc_vcore_entry(void);
1890 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1891 struct kvm_vcpu *vcpu)
1893 u64 now;
1895 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1896 return;
1897 spin_lock_irq(&vcpu->arch.tbacct_lock);
1898 now = mftb();
1899 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1900 vcpu->arch.stolen_logged;
1901 vcpu->arch.busy_preempt = now;
1902 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1903 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1904 --vc->n_runnable;
1905 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1908 static int kvmppc_grab_hwthread(int cpu)
1910 struct paca_struct *tpaca;
1911 long timeout = 10000;
1913 tpaca = &paca[cpu];
1915 /* Ensure the thread won't go into the kernel if it wakes */
1916 tpaca->kvm_hstate.kvm_vcpu = NULL;
1917 tpaca->kvm_hstate.kvm_vcore = NULL;
1918 tpaca->kvm_hstate.napping = 0;
1919 smp_wmb();
1920 tpaca->kvm_hstate.hwthread_req = 1;
1923 * If the thread is already executing in the kernel (e.g. handling
1924 * a stray interrupt), wait for it to get back to nap mode.
1925 * The smp_mb() is to ensure that our setting of hwthread_req
1926 * is visible before we look at hwthread_state, so if this
1927 * races with the code at system_reset_pSeries and the thread
1928 * misses our setting of hwthread_req, we are sure to see its
1929 * setting of hwthread_state, and vice versa.
1931 smp_mb();
1932 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1933 if (--timeout <= 0) {
1934 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1935 return -EBUSY;
1937 udelay(1);
1939 return 0;
1942 static void kvmppc_release_hwthread(int cpu)
1944 struct paca_struct *tpaca;
1946 tpaca = &paca[cpu];
1947 tpaca->kvm_hstate.hwthread_req = 0;
1948 tpaca->kvm_hstate.kvm_vcpu = NULL;
1949 tpaca->kvm_hstate.kvm_vcore = NULL;
1950 tpaca->kvm_hstate.kvm_split_mode = NULL;
1953 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1955 int cpu;
1956 struct paca_struct *tpaca;
1957 struct kvmppc_vcore *mvc = vc->master_vcore;
1959 cpu = vc->pcpu;
1960 if (vcpu) {
1961 if (vcpu->arch.timer_running) {
1962 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1963 vcpu->arch.timer_running = 0;
1965 cpu += vcpu->arch.ptid;
1966 vcpu->cpu = mvc->pcpu;
1967 vcpu->arch.thread_cpu = cpu;
1969 tpaca = &paca[cpu];
1970 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1971 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1972 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1973 smp_wmb();
1974 tpaca->kvm_hstate.kvm_vcore = mvc;
1975 if (cpu != smp_processor_id())
1976 kvmppc_ipi_thread(cpu);
1979 static void kvmppc_wait_for_nap(void)
1981 int cpu = smp_processor_id();
1982 int i, loops;
1983 int n_threads = threads_per_vcore();
1985 if (n_threads <= 1)
1986 return;
1987 for (loops = 0; loops < 1000000; ++loops) {
1989 * Check if all threads are finished.
1990 * We set the vcore pointer when starting a thread
1991 * and the thread clears it when finished, so we look
1992 * for any threads that still have a non-NULL vcore ptr.
1994 for (i = 1; i < n_threads; ++i)
1995 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1996 break;
1997 if (i == n_threads) {
1998 HMT_medium();
1999 return;
2001 HMT_low();
2003 HMT_medium();
2004 for (i = 1; i < n_threads; ++i)
2005 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2006 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2010 * Check that we are on thread 0 and that any other threads in
2011 * this core are off-line. Then grab the threads so they can't
2012 * enter the kernel.
2014 static int on_primary_thread(void)
2016 int cpu = smp_processor_id();
2017 int thr;
2019 /* Are we on a primary subcore? */
2020 if (cpu_thread_in_subcore(cpu))
2021 return 0;
2023 thr = 0;
2024 while (++thr < threads_per_subcore)
2025 if (cpu_online(cpu + thr))
2026 return 0;
2028 /* Grab all hw threads so they can't go into the kernel */
2029 for (thr = 1; thr < threads_per_subcore; ++thr) {
2030 if (kvmppc_grab_hwthread(cpu + thr)) {
2031 /* Couldn't grab one; let the others go */
2032 do {
2033 kvmppc_release_hwthread(cpu + thr);
2034 } while (--thr > 0);
2035 return 0;
2038 return 1;
2042 * A list of virtual cores for each physical CPU.
2043 * These are vcores that could run but their runner VCPU tasks are
2044 * (or may be) preempted.
2046 struct preempted_vcore_list {
2047 struct list_head list;
2048 spinlock_t lock;
2051 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2053 static void init_vcore_lists(void)
2055 int cpu;
2057 for_each_possible_cpu(cpu) {
2058 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2059 spin_lock_init(&lp->lock);
2060 INIT_LIST_HEAD(&lp->list);
2064 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2066 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2068 vc->vcore_state = VCORE_PREEMPT;
2069 vc->pcpu = smp_processor_id();
2070 if (vc->num_threads < threads_per_vcore()) {
2071 spin_lock(&lp->lock);
2072 list_add_tail(&vc->preempt_list, &lp->list);
2073 spin_unlock(&lp->lock);
2076 /* Start accumulating stolen time */
2077 kvmppc_core_start_stolen(vc);
2080 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2082 struct preempted_vcore_list *lp;
2084 kvmppc_core_end_stolen(vc);
2085 if (!list_empty(&vc->preempt_list)) {
2086 lp = &per_cpu(preempted_vcores, vc->pcpu);
2087 spin_lock(&lp->lock);
2088 list_del_init(&vc->preempt_list);
2089 spin_unlock(&lp->lock);
2091 vc->vcore_state = VCORE_INACTIVE;
2095 * This stores information about the virtual cores currently
2096 * assigned to a physical core.
2098 struct core_info {
2099 int n_subcores;
2100 int max_subcore_threads;
2101 int total_threads;
2102 int subcore_threads[MAX_SUBCORES];
2103 struct kvm *subcore_vm[MAX_SUBCORES];
2104 struct list_head vcs[MAX_SUBCORES];
2108 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2109 * respectively in 2-way micro-threading (split-core) mode.
2111 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2113 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2115 int sub;
2117 memset(cip, 0, sizeof(*cip));
2118 cip->n_subcores = 1;
2119 cip->max_subcore_threads = vc->num_threads;
2120 cip->total_threads = vc->num_threads;
2121 cip->subcore_threads[0] = vc->num_threads;
2122 cip->subcore_vm[0] = vc->kvm;
2123 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2124 INIT_LIST_HEAD(&cip->vcs[sub]);
2125 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2128 static bool subcore_config_ok(int n_subcores, int n_threads)
2130 /* Can only dynamically split if unsplit to begin with */
2131 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2132 return false;
2133 if (n_subcores > MAX_SUBCORES)
2134 return false;
2135 if (n_subcores > 1) {
2136 if (!(dynamic_mt_modes & 2))
2137 n_subcores = 4;
2138 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2139 return false;
2142 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2145 static void init_master_vcore(struct kvmppc_vcore *vc)
2147 vc->master_vcore = vc;
2148 vc->entry_exit_map = 0;
2149 vc->in_guest = 0;
2150 vc->napping_threads = 0;
2151 vc->conferring_threads = 0;
2154 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2156 int n_threads = vc->num_threads;
2157 int sub;
2159 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2160 return false;
2162 if (n_threads < cip->max_subcore_threads)
2163 n_threads = cip->max_subcore_threads;
2164 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2165 return false;
2166 cip->max_subcore_threads = n_threads;
2168 sub = cip->n_subcores;
2169 ++cip->n_subcores;
2170 cip->total_threads += vc->num_threads;
2171 cip->subcore_threads[sub] = vc->num_threads;
2172 cip->subcore_vm[sub] = vc->kvm;
2173 init_master_vcore(vc);
2174 list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2176 return true;
2180 * Work out whether it is possible to piggyback the execution of
2181 * vcore *pvc onto the execution of the other vcores described in *cip.
2183 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2184 int target_threads)
2186 if (cip->total_threads + pvc->num_threads > target_threads)
2187 return false;
2189 return can_dynamic_split(pvc, cip);
2192 static void prepare_threads(struct kvmppc_vcore *vc)
2194 int i;
2195 struct kvm_vcpu *vcpu;
2197 for_each_runnable_thread(i, vcpu, vc) {
2198 if (signal_pending(vcpu->arch.run_task))
2199 vcpu->arch.ret = -EINTR;
2200 else if (vcpu->arch.vpa.update_pending ||
2201 vcpu->arch.slb_shadow.update_pending ||
2202 vcpu->arch.dtl.update_pending)
2203 vcpu->arch.ret = RESUME_GUEST;
2204 else
2205 continue;
2206 kvmppc_remove_runnable(vc, vcpu);
2207 wake_up(&vcpu->arch.cpu_run);
2211 static void collect_piggybacks(struct core_info *cip, int target_threads)
2213 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2214 struct kvmppc_vcore *pvc, *vcnext;
2216 spin_lock(&lp->lock);
2217 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2218 if (!spin_trylock(&pvc->lock))
2219 continue;
2220 prepare_threads(pvc);
2221 if (!pvc->n_runnable) {
2222 list_del_init(&pvc->preempt_list);
2223 if (pvc->runner == NULL) {
2224 pvc->vcore_state = VCORE_INACTIVE;
2225 kvmppc_core_end_stolen(pvc);
2227 spin_unlock(&pvc->lock);
2228 continue;
2230 if (!can_piggyback(pvc, cip, target_threads)) {
2231 spin_unlock(&pvc->lock);
2232 continue;
2234 kvmppc_core_end_stolen(pvc);
2235 pvc->vcore_state = VCORE_PIGGYBACK;
2236 if (cip->total_threads >= target_threads)
2237 break;
2239 spin_unlock(&lp->lock);
2242 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2244 int still_running = 0, i;
2245 u64 now;
2246 long ret;
2247 struct kvm_vcpu *vcpu;
2249 spin_lock(&vc->lock);
2250 now = get_tb();
2251 for_each_runnable_thread(i, vcpu, vc) {
2252 /* cancel pending dec exception if dec is positive */
2253 if (now < vcpu->arch.dec_expires &&
2254 kvmppc_core_pending_dec(vcpu))
2255 kvmppc_core_dequeue_dec(vcpu);
2257 trace_kvm_guest_exit(vcpu);
2259 ret = RESUME_GUEST;
2260 if (vcpu->arch.trap)
2261 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2262 vcpu->arch.run_task);
2264 vcpu->arch.ret = ret;
2265 vcpu->arch.trap = 0;
2267 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2268 if (vcpu->arch.pending_exceptions)
2269 kvmppc_core_prepare_to_enter(vcpu);
2270 if (vcpu->arch.ceded)
2271 kvmppc_set_timer(vcpu);
2272 else
2273 ++still_running;
2274 } else {
2275 kvmppc_remove_runnable(vc, vcpu);
2276 wake_up(&vcpu->arch.cpu_run);
2279 list_del_init(&vc->preempt_list);
2280 if (!is_master) {
2281 if (still_running > 0) {
2282 kvmppc_vcore_preempt(vc);
2283 } else if (vc->runner) {
2284 vc->vcore_state = VCORE_PREEMPT;
2285 kvmppc_core_start_stolen(vc);
2286 } else {
2287 vc->vcore_state = VCORE_INACTIVE;
2289 if (vc->n_runnable > 0 && vc->runner == NULL) {
2290 /* make sure there's a candidate runner awake */
2291 i = -1;
2292 vcpu = next_runnable_thread(vc, &i);
2293 wake_up(&vcpu->arch.cpu_run);
2296 spin_unlock(&vc->lock);
2300 * Clear core from the list of active host cores as we are about to
2301 * enter the guest. Only do this if it is the primary thread of the
2302 * core (not if a subcore) that is entering the guest.
2304 static inline int kvmppc_clear_host_core(unsigned int cpu)
2306 int core;
2308 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2309 return 0;
2311 * Memory barrier can be omitted here as we will do a smp_wmb()
2312 * later in kvmppc_start_thread and we need ensure that state is
2313 * visible to other CPUs only after we enter guest.
2315 core = cpu >> threads_shift;
2316 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2317 return 0;
2321 * Advertise this core as an active host core since we exited the guest
2322 * Only need to do this if it is the primary thread of the core that is
2323 * exiting.
2325 static inline int kvmppc_set_host_core(unsigned int cpu)
2327 int core;
2329 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2330 return 0;
2333 * Memory barrier can be omitted here because we do a spin_unlock
2334 * immediately after this which provides the memory barrier.
2336 core = cpu >> threads_shift;
2337 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2338 return 0;
2342 * Run a set of guest threads on a physical core.
2343 * Called with vc->lock held.
2345 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2347 struct kvm_vcpu *vcpu;
2348 int i;
2349 int srcu_idx;
2350 struct core_info core_info;
2351 struct kvmppc_vcore *pvc, *vcnext;
2352 struct kvm_split_mode split_info, *sip;
2353 int split, subcore_size, active;
2354 int sub;
2355 bool thr0_done;
2356 unsigned long cmd_bit, stat_bit;
2357 int pcpu, thr;
2358 int target_threads;
2359 int controlled_threads;
2362 * Remove from the list any threads that have a signal pending
2363 * or need a VPA update done
2365 prepare_threads(vc);
2367 /* if the runner is no longer runnable, let the caller pick a new one */
2368 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2369 return;
2372 * Initialize *vc.
2374 init_master_vcore(vc);
2375 vc->preempt_tb = TB_NIL;
2378 * Number of threads that we will be controlling: the same as
2379 * the number of threads per subcore, except on POWER9,
2380 * where it's 1 because the threads are (mostly) independent.
2382 controlled_threads = threads_per_vcore();
2385 * Make sure we are running on primary threads, and that secondary
2386 * threads are offline. Also check if the number of threads in this
2387 * guest are greater than the current system threads per guest.
2389 if ((controlled_threads > 1) &&
2390 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2391 for_each_runnable_thread(i, vcpu, vc) {
2392 vcpu->arch.ret = -EBUSY;
2393 kvmppc_remove_runnable(vc, vcpu);
2394 wake_up(&vcpu->arch.cpu_run);
2396 goto out;
2400 * See if we could run any other vcores on the physical core
2401 * along with this one.
2403 init_core_info(&core_info, vc);
2404 pcpu = smp_processor_id();
2405 target_threads = controlled_threads;
2406 if (target_smt_mode && target_smt_mode < target_threads)
2407 target_threads = target_smt_mode;
2408 if (vc->num_threads < target_threads)
2409 collect_piggybacks(&core_info, target_threads);
2411 /* Decide on micro-threading (split-core) mode */
2412 subcore_size = threads_per_subcore;
2413 cmd_bit = stat_bit = 0;
2414 split = core_info.n_subcores;
2415 sip = NULL;
2416 if (split > 1) {
2417 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2418 if (split == 2 && (dynamic_mt_modes & 2)) {
2419 cmd_bit = HID0_POWER8_1TO2LPAR;
2420 stat_bit = HID0_POWER8_2LPARMODE;
2421 } else {
2422 split = 4;
2423 cmd_bit = HID0_POWER8_1TO4LPAR;
2424 stat_bit = HID0_POWER8_4LPARMODE;
2426 subcore_size = MAX_SMT_THREADS / split;
2427 sip = &split_info;
2428 memset(&split_info, 0, sizeof(split_info));
2429 split_info.rpr = mfspr(SPRN_RPR);
2430 split_info.pmmar = mfspr(SPRN_PMMAR);
2431 split_info.ldbar = mfspr(SPRN_LDBAR);
2432 split_info.subcore_size = subcore_size;
2433 for (sub = 0; sub < core_info.n_subcores; ++sub)
2434 split_info.master_vcs[sub] =
2435 list_first_entry(&core_info.vcs[sub],
2436 struct kvmppc_vcore, preempt_list);
2437 /* order writes to split_info before kvm_split_mode pointer */
2438 smp_wmb();
2440 pcpu = smp_processor_id();
2441 for (thr = 0; thr < controlled_threads; ++thr)
2442 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2444 /* Initiate micro-threading (split-core) if required */
2445 if (cmd_bit) {
2446 unsigned long hid0 = mfspr(SPRN_HID0);
2448 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2449 mb();
2450 mtspr(SPRN_HID0, hid0);
2451 isync();
2452 for (;;) {
2453 hid0 = mfspr(SPRN_HID0);
2454 if (hid0 & stat_bit)
2455 break;
2456 cpu_relax();
2460 kvmppc_clear_host_core(pcpu);
2462 /* Start all the threads */
2463 active = 0;
2464 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2465 thr = subcore_thread_map[sub];
2466 thr0_done = false;
2467 active |= 1 << thr;
2468 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2469 pvc->pcpu = pcpu + thr;
2470 for_each_runnable_thread(i, vcpu, pvc) {
2471 kvmppc_start_thread(vcpu, pvc);
2472 kvmppc_create_dtl_entry(vcpu, pvc);
2473 trace_kvm_guest_enter(vcpu);
2474 if (!vcpu->arch.ptid)
2475 thr0_done = true;
2476 active |= 1 << (thr + vcpu->arch.ptid);
2479 * We need to start the first thread of each subcore
2480 * even if it doesn't have a vcpu.
2482 if (pvc->master_vcore == pvc && !thr0_done)
2483 kvmppc_start_thread(NULL, pvc);
2484 thr += pvc->num_threads;
2489 * Ensure that split_info.do_nap is set after setting
2490 * the vcore pointer in the PACA of the secondaries.
2492 smp_mb();
2493 if (cmd_bit)
2494 split_info.do_nap = 1; /* ask secondaries to nap when done */
2497 * When doing micro-threading, poke the inactive threads as well.
2498 * This gets them to the nap instruction after kvm_do_nap,
2499 * which reduces the time taken to unsplit later.
2501 if (split > 1)
2502 for (thr = 1; thr < threads_per_subcore; ++thr)
2503 if (!(active & (1 << thr)))
2504 kvmppc_ipi_thread(pcpu + thr);
2506 vc->vcore_state = VCORE_RUNNING;
2507 preempt_disable();
2509 trace_kvmppc_run_core(vc, 0);
2511 for (sub = 0; sub < core_info.n_subcores; ++sub)
2512 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2513 spin_unlock(&pvc->lock);
2515 guest_enter();
2517 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2519 __kvmppc_vcore_entry();
2521 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2523 spin_lock(&vc->lock);
2524 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2525 vc->vcore_state = VCORE_EXITING;
2527 /* wait for secondary threads to finish writing their state to memory */
2528 kvmppc_wait_for_nap();
2530 /* Return to whole-core mode if we split the core earlier */
2531 if (split > 1) {
2532 unsigned long hid0 = mfspr(SPRN_HID0);
2533 unsigned long loops = 0;
2535 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2536 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2537 mb();
2538 mtspr(SPRN_HID0, hid0);
2539 isync();
2540 for (;;) {
2541 hid0 = mfspr(SPRN_HID0);
2542 if (!(hid0 & stat_bit))
2543 break;
2544 cpu_relax();
2545 ++loops;
2547 split_info.do_nap = 0;
2550 /* Let secondaries go back to the offline loop */
2551 for (i = 0; i < controlled_threads; ++i) {
2552 kvmppc_release_hwthread(pcpu + i);
2553 if (sip && sip->napped[i])
2554 kvmppc_ipi_thread(pcpu + i);
2557 kvmppc_set_host_core(pcpu);
2559 spin_unlock(&vc->lock);
2561 /* make sure updates to secondary vcpu structs are visible now */
2562 smp_mb();
2563 guest_exit();
2565 for (sub = 0; sub < core_info.n_subcores; ++sub)
2566 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2567 preempt_list)
2568 post_guest_process(pvc, pvc == vc);
2570 spin_lock(&vc->lock);
2571 preempt_enable();
2573 out:
2574 vc->vcore_state = VCORE_INACTIVE;
2575 trace_kvmppc_run_core(vc, 1);
2579 * Wait for some other vcpu thread to execute us, and
2580 * wake us up when we need to handle something in the host.
2582 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2583 struct kvm_vcpu *vcpu, int wait_state)
2585 DEFINE_WAIT(wait);
2587 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2588 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2589 spin_unlock(&vc->lock);
2590 schedule();
2591 spin_lock(&vc->lock);
2593 finish_wait(&vcpu->arch.cpu_run, &wait);
2596 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2598 /* 10us base */
2599 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2600 vc->halt_poll_ns = 10000;
2601 else
2602 vc->halt_poll_ns *= halt_poll_ns_grow;
2605 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2607 if (halt_poll_ns_shrink == 0)
2608 vc->halt_poll_ns = 0;
2609 else
2610 vc->halt_poll_ns /= halt_poll_ns_shrink;
2614 * Check to see if any of the runnable vcpus on the vcore have pending
2615 * exceptions or are no longer ceded
2617 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2619 struct kvm_vcpu *vcpu;
2620 int i;
2622 for_each_runnable_thread(i, vcpu, vc) {
2623 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
2624 return 1;
2627 return 0;
2631 * All the vcpus in this vcore are idle, so wait for a decrementer
2632 * or external interrupt to one of the vcpus. vc->lock is held.
2634 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2636 ktime_t cur, start_poll, start_wait;
2637 int do_sleep = 1;
2638 u64 block_ns;
2639 DECLARE_SWAITQUEUE(wait);
2641 /* Poll for pending exceptions and ceded state */
2642 cur = start_poll = ktime_get();
2643 if (vc->halt_poll_ns) {
2644 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2645 ++vc->runner->stat.halt_attempted_poll;
2647 vc->vcore_state = VCORE_POLLING;
2648 spin_unlock(&vc->lock);
2650 do {
2651 if (kvmppc_vcore_check_block(vc)) {
2652 do_sleep = 0;
2653 break;
2655 cur = ktime_get();
2656 } while (single_task_running() && ktime_before(cur, stop));
2658 spin_lock(&vc->lock);
2659 vc->vcore_state = VCORE_INACTIVE;
2661 if (!do_sleep) {
2662 ++vc->runner->stat.halt_successful_poll;
2663 goto out;
2667 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2669 if (kvmppc_vcore_check_block(vc)) {
2670 finish_swait(&vc->wq, &wait);
2671 do_sleep = 0;
2672 /* If we polled, count this as a successful poll */
2673 if (vc->halt_poll_ns)
2674 ++vc->runner->stat.halt_successful_poll;
2675 goto out;
2678 start_wait = ktime_get();
2680 vc->vcore_state = VCORE_SLEEPING;
2681 trace_kvmppc_vcore_blocked(vc, 0);
2682 spin_unlock(&vc->lock);
2683 schedule();
2684 finish_swait(&vc->wq, &wait);
2685 spin_lock(&vc->lock);
2686 vc->vcore_state = VCORE_INACTIVE;
2687 trace_kvmppc_vcore_blocked(vc, 1);
2688 ++vc->runner->stat.halt_successful_wait;
2690 cur = ktime_get();
2692 out:
2693 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2695 /* Attribute wait time */
2696 if (do_sleep) {
2697 vc->runner->stat.halt_wait_ns +=
2698 ktime_to_ns(cur) - ktime_to_ns(start_wait);
2699 /* Attribute failed poll time */
2700 if (vc->halt_poll_ns)
2701 vc->runner->stat.halt_poll_fail_ns +=
2702 ktime_to_ns(start_wait) -
2703 ktime_to_ns(start_poll);
2704 } else {
2705 /* Attribute successful poll time */
2706 if (vc->halt_poll_ns)
2707 vc->runner->stat.halt_poll_success_ns +=
2708 ktime_to_ns(cur) -
2709 ktime_to_ns(start_poll);
2712 /* Adjust poll time */
2713 if (halt_poll_ns) {
2714 if (block_ns <= vc->halt_poll_ns)
2716 /* We slept and blocked for longer than the max halt time */
2717 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2718 shrink_halt_poll_ns(vc);
2719 /* We slept and our poll time is too small */
2720 else if (vc->halt_poll_ns < halt_poll_ns &&
2721 block_ns < halt_poll_ns)
2722 grow_halt_poll_ns(vc);
2723 if (vc->halt_poll_ns > halt_poll_ns)
2724 vc->halt_poll_ns = halt_poll_ns;
2725 } else
2726 vc->halt_poll_ns = 0;
2728 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2731 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2733 int n_ceded, i;
2734 struct kvmppc_vcore *vc;
2735 struct kvm_vcpu *v;
2737 trace_kvmppc_run_vcpu_enter(vcpu);
2739 kvm_run->exit_reason = 0;
2740 vcpu->arch.ret = RESUME_GUEST;
2741 vcpu->arch.trap = 0;
2742 kvmppc_update_vpas(vcpu);
2745 * Synchronize with other threads in this virtual core
2747 vc = vcpu->arch.vcore;
2748 spin_lock(&vc->lock);
2749 vcpu->arch.ceded = 0;
2750 vcpu->arch.run_task = current;
2751 vcpu->arch.kvm_run = kvm_run;
2752 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2753 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2754 vcpu->arch.busy_preempt = TB_NIL;
2755 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2756 ++vc->n_runnable;
2759 * This happens the first time this is called for a vcpu.
2760 * If the vcore is already running, we may be able to start
2761 * this thread straight away and have it join in.
2763 if (!signal_pending(current)) {
2764 if (vc->vcore_state == VCORE_PIGGYBACK) {
2765 struct kvmppc_vcore *mvc = vc->master_vcore;
2766 if (spin_trylock(&mvc->lock)) {
2767 if (mvc->vcore_state == VCORE_RUNNING &&
2768 !VCORE_IS_EXITING(mvc)) {
2769 kvmppc_create_dtl_entry(vcpu, vc);
2770 kvmppc_start_thread(vcpu, vc);
2771 trace_kvm_guest_enter(vcpu);
2773 spin_unlock(&mvc->lock);
2775 } else if (vc->vcore_state == VCORE_RUNNING &&
2776 !VCORE_IS_EXITING(vc)) {
2777 kvmppc_create_dtl_entry(vcpu, vc);
2778 kvmppc_start_thread(vcpu, vc);
2779 trace_kvm_guest_enter(vcpu);
2780 } else if (vc->vcore_state == VCORE_SLEEPING) {
2781 swake_up(&vc->wq);
2786 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2787 !signal_pending(current)) {
2788 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2789 kvmppc_vcore_end_preempt(vc);
2791 if (vc->vcore_state != VCORE_INACTIVE) {
2792 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2793 continue;
2795 for_each_runnable_thread(i, v, vc) {
2796 kvmppc_core_prepare_to_enter(v);
2797 if (signal_pending(v->arch.run_task)) {
2798 kvmppc_remove_runnable(vc, v);
2799 v->stat.signal_exits++;
2800 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2801 v->arch.ret = -EINTR;
2802 wake_up(&v->arch.cpu_run);
2805 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2806 break;
2807 n_ceded = 0;
2808 for_each_runnable_thread(i, v, vc) {
2809 if (!v->arch.pending_exceptions)
2810 n_ceded += v->arch.ceded;
2811 else
2812 v->arch.ceded = 0;
2814 vc->runner = vcpu;
2815 if (n_ceded == vc->n_runnable) {
2816 kvmppc_vcore_blocked(vc);
2817 } else if (need_resched()) {
2818 kvmppc_vcore_preempt(vc);
2819 /* Let something else run */
2820 cond_resched_lock(&vc->lock);
2821 if (vc->vcore_state == VCORE_PREEMPT)
2822 kvmppc_vcore_end_preempt(vc);
2823 } else {
2824 kvmppc_run_core(vc);
2826 vc->runner = NULL;
2829 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2830 (vc->vcore_state == VCORE_RUNNING ||
2831 vc->vcore_state == VCORE_EXITING ||
2832 vc->vcore_state == VCORE_PIGGYBACK))
2833 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2835 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2836 kvmppc_vcore_end_preempt(vc);
2838 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2839 kvmppc_remove_runnable(vc, vcpu);
2840 vcpu->stat.signal_exits++;
2841 kvm_run->exit_reason = KVM_EXIT_INTR;
2842 vcpu->arch.ret = -EINTR;
2845 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2846 /* Wake up some vcpu to run the core */
2847 i = -1;
2848 v = next_runnable_thread(vc, &i);
2849 wake_up(&v->arch.cpu_run);
2852 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2853 spin_unlock(&vc->lock);
2854 return vcpu->arch.ret;
2857 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2859 int r;
2860 int srcu_idx;
2862 if (!vcpu->arch.sane) {
2863 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2864 return -EINVAL;
2867 kvmppc_core_prepare_to_enter(vcpu);
2869 /* No need to go into the guest when all we'll do is come back out */
2870 if (signal_pending(current)) {
2871 run->exit_reason = KVM_EXIT_INTR;
2872 return -EINTR;
2875 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2876 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2877 smp_mb();
2879 /* On the first time here, set up HTAB and VRMA */
2880 if (!vcpu->kvm->arch.hpte_setup_done) {
2881 r = kvmppc_hv_setup_htab_rma(vcpu);
2882 if (r)
2883 goto out;
2886 flush_all_to_thread(current);
2888 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2889 vcpu->arch.pgdir = current->mm->pgd;
2890 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2892 do {
2893 r = kvmppc_run_vcpu(run, vcpu);
2895 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2896 !(vcpu->arch.shregs.msr & MSR_PR)) {
2897 trace_kvm_hcall_enter(vcpu);
2898 r = kvmppc_pseries_do_hcall(vcpu);
2899 trace_kvm_hcall_exit(vcpu, r);
2900 kvmppc_core_prepare_to_enter(vcpu);
2901 } else if (r == RESUME_PAGE_FAULT) {
2902 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2903 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2904 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2905 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2906 } else if (r == RESUME_PASSTHROUGH)
2907 r = kvmppc_xics_rm_complete(vcpu, 0);
2908 } while (is_kvmppc_resume_guest(r));
2910 out:
2911 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2912 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2913 return r;
2916 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2917 int linux_psize)
2919 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2921 if (!def->shift)
2922 return;
2923 (*sps)->page_shift = def->shift;
2924 (*sps)->slb_enc = def->sllp;
2925 (*sps)->enc[0].page_shift = def->shift;
2926 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2928 * Add 16MB MPSS support if host supports it
2930 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2931 (*sps)->enc[1].page_shift = 24;
2932 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2934 (*sps)++;
2937 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2938 struct kvm_ppc_smmu_info *info)
2940 struct kvm_ppc_one_seg_page_size *sps;
2942 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2943 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2944 info->flags |= KVM_PPC_1T_SEGMENTS;
2945 info->slb_size = mmu_slb_size;
2947 /* We only support these sizes for now, and no muti-size segments */
2948 sps = &info->sps[0];
2949 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2950 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2951 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2953 return 0;
2957 * Get (and clear) the dirty memory log for a memory slot.
2959 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2960 struct kvm_dirty_log *log)
2962 struct kvm_memslots *slots;
2963 struct kvm_memory_slot *memslot;
2964 int i, r;
2965 unsigned long n;
2966 unsigned long *buf;
2967 struct kvm_vcpu *vcpu;
2969 mutex_lock(&kvm->slots_lock);
2971 r = -EINVAL;
2972 if (log->slot >= KVM_USER_MEM_SLOTS)
2973 goto out;
2975 slots = kvm_memslots(kvm);
2976 memslot = id_to_memslot(slots, log->slot);
2977 r = -ENOENT;
2978 if (!memslot->dirty_bitmap)
2979 goto out;
2982 * Use second half of bitmap area because radix accumulates
2983 * bits in the first half.
2985 n = kvm_dirty_bitmap_bytes(memslot);
2986 buf = memslot->dirty_bitmap + n / sizeof(long);
2987 memset(buf, 0, n);
2989 if (kvm_is_radix(kvm))
2990 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
2991 else
2992 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
2993 if (r)
2994 goto out;
2996 /* Harvest dirty bits from VPA and DTL updates */
2997 /* Note: we never modify the SLB shadow buffer areas */
2998 kvm_for_each_vcpu(i, vcpu, kvm) {
2999 spin_lock(&vcpu->arch.vpa_update_lock);
3000 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3001 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3002 spin_unlock(&vcpu->arch.vpa_update_lock);
3005 r = -EFAULT;
3006 if (copy_to_user(log->dirty_bitmap, buf, n))
3007 goto out;
3009 r = 0;
3010 out:
3011 mutex_unlock(&kvm->slots_lock);
3012 return r;
3015 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3016 struct kvm_memory_slot *dont)
3018 if (!dont || free->arch.rmap != dont->arch.rmap) {
3019 vfree(free->arch.rmap);
3020 free->arch.rmap = NULL;
3024 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3025 unsigned long npages)
3027 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3028 if (!slot->arch.rmap)
3029 return -ENOMEM;
3031 return 0;
3034 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3035 struct kvm_memory_slot *memslot,
3036 const struct kvm_userspace_memory_region *mem)
3038 return 0;
3041 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3042 const struct kvm_userspace_memory_region *mem,
3043 const struct kvm_memory_slot *old,
3044 const struct kvm_memory_slot *new)
3046 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3047 struct kvm_memslots *slots;
3048 struct kvm_memory_slot *memslot;
3051 * If we are making a new memslot, it might make
3052 * some address that was previously cached as emulated
3053 * MMIO be no longer emulated MMIO, so invalidate
3054 * all the caches of emulated MMIO translations.
3056 if (npages)
3057 atomic64_inc(&kvm->arch.mmio_update);
3059 if (npages && old->npages && !kvm_is_radix(kvm)) {
3061 * If modifying a memslot, reset all the rmap dirty bits.
3062 * If this is a new memslot, we don't need to do anything
3063 * since the rmap array starts out as all zeroes,
3064 * i.e. no pages are dirty.
3066 slots = kvm_memslots(kvm);
3067 memslot = id_to_memslot(slots, mem->slot);
3068 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3073 * Update LPCR values in kvm->arch and in vcores.
3074 * Caller must hold kvm->lock.
3076 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3078 long int i;
3079 u32 cores_done = 0;
3081 if ((kvm->arch.lpcr & mask) == lpcr)
3082 return;
3084 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3086 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3087 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3088 if (!vc)
3089 continue;
3090 spin_lock(&vc->lock);
3091 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3092 spin_unlock(&vc->lock);
3093 if (++cores_done >= kvm->arch.online_vcores)
3094 break;
3098 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3100 return;
3103 static void kvmppc_setup_partition_table(struct kvm *kvm)
3105 unsigned long dw0, dw1;
3107 /* PS field - page size for VRMA */
3108 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3109 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3110 /* HTABSIZE and HTABORG fields */
3111 dw0 |= kvm->arch.sdr1;
3113 /* Second dword as set by userspace */
3114 dw1 = kvm->arch.process_table;
3116 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3119 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3121 int err = 0;
3122 struct kvm *kvm = vcpu->kvm;
3123 unsigned long hva;
3124 struct kvm_memory_slot *memslot;
3125 struct vm_area_struct *vma;
3126 unsigned long lpcr = 0, senc;
3127 unsigned long psize, porder;
3128 int srcu_idx;
3130 mutex_lock(&kvm->lock);
3131 if (kvm->arch.hpte_setup_done)
3132 goto out; /* another vcpu beat us to it */
3134 /* Allocate hashed page table (if not done already) and reset it */
3135 if (!kvm->arch.hpt_virt) {
3136 err = kvmppc_alloc_hpt(kvm, NULL);
3137 if (err) {
3138 pr_err("KVM: Couldn't alloc HPT\n");
3139 goto out;
3143 /* Look up the memslot for guest physical address 0 */
3144 srcu_idx = srcu_read_lock(&kvm->srcu);
3145 memslot = gfn_to_memslot(kvm, 0);
3147 /* We must have some memory at 0 by now */
3148 err = -EINVAL;
3149 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3150 goto out_srcu;
3152 /* Look up the VMA for the start of this memory slot */
3153 hva = memslot->userspace_addr;
3154 down_read(&current->mm->mmap_sem);
3155 vma = find_vma(current->mm, hva);
3156 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3157 goto up_out;
3159 psize = vma_kernel_pagesize(vma);
3160 porder = __ilog2(psize);
3162 up_read(&current->mm->mmap_sem);
3164 /* We can handle 4k, 64k or 16M pages in the VRMA */
3165 err = -EINVAL;
3166 if (!(psize == 0x1000 || psize == 0x10000 ||
3167 psize == 0x1000000))
3168 goto out_srcu;
3170 senc = slb_pgsize_encoding(psize);
3171 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3172 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3173 /* Create HPTEs in the hash page table for the VRMA */
3174 kvmppc_map_vrma(vcpu, memslot, porder);
3176 /* Update VRMASD field in the LPCR */
3177 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3178 /* the -4 is to account for senc values starting at 0x10 */
3179 lpcr = senc << (LPCR_VRMASD_SH - 4);
3180 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3181 } else {
3182 kvmppc_setup_partition_table(kvm);
3185 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3186 smp_wmb();
3187 kvm->arch.hpte_setup_done = 1;
3188 err = 0;
3189 out_srcu:
3190 srcu_read_unlock(&kvm->srcu, srcu_idx);
3191 out:
3192 mutex_unlock(&kvm->lock);
3193 return err;
3195 up_out:
3196 up_read(&current->mm->mmap_sem);
3197 goto out_srcu;
3200 #ifdef CONFIG_KVM_XICS
3202 * Allocate a per-core structure for managing state about which cores are
3203 * running in the host versus the guest and for exchanging data between
3204 * real mode KVM and CPU running in the host.
3205 * This is only done for the first VM.
3206 * The allocated structure stays even if all VMs have stopped.
3207 * It is only freed when the kvm-hv module is unloaded.
3208 * It's OK for this routine to fail, we just don't support host
3209 * core operations like redirecting H_IPI wakeups.
3211 void kvmppc_alloc_host_rm_ops(void)
3213 struct kvmppc_host_rm_ops *ops;
3214 unsigned long l_ops;
3215 int cpu, core;
3216 int size;
3218 /* Not the first time here ? */
3219 if (kvmppc_host_rm_ops_hv != NULL)
3220 return;
3222 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3223 if (!ops)
3224 return;
3226 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3227 ops->rm_core = kzalloc(size, GFP_KERNEL);
3229 if (!ops->rm_core) {
3230 kfree(ops);
3231 return;
3234 get_online_cpus();
3236 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3237 if (!cpu_online(cpu))
3238 continue;
3240 core = cpu >> threads_shift;
3241 ops->rm_core[core].rm_state.in_host = 1;
3244 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3247 * Make the contents of the kvmppc_host_rm_ops structure visible
3248 * to other CPUs before we assign it to the global variable.
3249 * Do an atomic assignment (no locks used here), but if someone
3250 * beats us to it, just free our copy and return.
3252 smp_wmb();
3253 l_ops = (unsigned long) ops;
3255 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3256 put_online_cpus();
3257 kfree(ops->rm_core);
3258 kfree(ops);
3259 return;
3262 cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3263 "ppc/kvm_book3s:prepare",
3264 kvmppc_set_host_core,
3265 kvmppc_clear_host_core);
3266 put_online_cpus();
3269 void kvmppc_free_host_rm_ops(void)
3271 if (kvmppc_host_rm_ops_hv) {
3272 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3273 kfree(kvmppc_host_rm_ops_hv->rm_core);
3274 kfree(kvmppc_host_rm_ops_hv);
3275 kvmppc_host_rm_ops_hv = NULL;
3278 #endif
3280 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3282 unsigned long lpcr, lpid;
3283 char buf[32];
3285 /* Allocate the guest's logical partition ID */
3287 lpid = kvmppc_alloc_lpid();
3288 if ((long)lpid < 0)
3289 return -ENOMEM;
3290 kvm->arch.lpid = lpid;
3292 kvmppc_alloc_host_rm_ops();
3295 * Since we don't flush the TLB when tearing down a VM,
3296 * and this lpid might have previously been used,
3297 * make sure we flush on each core before running the new VM.
3298 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3299 * does this flush for us.
3301 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3302 cpumask_setall(&kvm->arch.need_tlb_flush);
3304 /* Start out with the default set of hcalls enabled */
3305 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3306 sizeof(kvm->arch.enabled_hcalls));
3308 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3309 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3311 /* Init LPCR for virtual RMA mode */
3312 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3313 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3314 lpcr &= LPCR_PECE | LPCR_LPES;
3315 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3316 LPCR_VPM0 | LPCR_VPM1;
3317 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3318 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3319 /* On POWER8 turn on online bit to enable PURR/SPURR */
3320 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3321 lpcr |= LPCR_ONL;
3323 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3324 * Set HVICE bit to enable hypervisor virtualization interrupts.
3326 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3327 lpcr &= ~LPCR_VPM0;
3328 lpcr |= LPCR_HVICE;
3331 kvm->arch.lpcr = lpcr;
3334 * Work out how many sets the TLB has, for the use of
3335 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3337 if (cpu_has_feature(CPU_FTR_ARCH_300))
3338 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3339 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3340 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3341 else
3342 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3345 * Track that we now have a HV mode VM active. This blocks secondary
3346 * CPU threads from coming online.
3348 kvm_hv_vm_activated();
3351 * Create a debugfs directory for the VM
3353 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3354 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3355 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3356 kvmppc_mmu_debugfs_init(kvm);
3358 return 0;
3361 static void kvmppc_free_vcores(struct kvm *kvm)
3363 long int i;
3365 for (i = 0; i < KVM_MAX_VCORES; ++i)
3366 kfree(kvm->arch.vcores[i]);
3367 kvm->arch.online_vcores = 0;
3370 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3372 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3374 kvm_hv_vm_deactivated();
3376 kvmppc_free_vcores(kvm);
3378 if (kvm_is_radix(kvm))
3379 kvmppc_free_radix(kvm);
3380 else
3381 kvmppc_free_hpt(kvm);
3383 kvmppc_free_pimap(kvm);
3386 /* We don't need to emulate any privileged instructions or dcbz */
3387 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3388 unsigned int inst, int *advance)
3390 return EMULATE_FAIL;
3393 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3394 ulong spr_val)
3396 return EMULATE_FAIL;
3399 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3400 ulong *spr_val)
3402 return EMULATE_FAIL;
3405 static int kvmppc_core_check_processor_compat_hv(void)
3407 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3408 !cpu_has_feature(CPU_FTR_ARCH_206))
3409 return -EIO;
3411 * Disable KVM for Power9 in radix mode.
3413 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
3414 return -EIO;
3416 return 0;
3419 #ifdef CONFIG_KVM_XICS
3421 void kvmppc_free_pimap(struct kvm *kvm)
3423 kfree(kvm->arch.pimap);
3426 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3428 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3431 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3433 struct irq_desc *desc;
3434 struct kvmppc_irq_map *irq_map;
3435 struct kvmppc_passthru_irqmap *pimap;
3436 struct irq_chip *chip;
3437 int i;
3439 if (!kvm_irq_bypass)
3440 return 1;
3442 desc = irq_to_desc(host_irq);
3443 if (!desc)
3444 return -EIO;
3446 mutex_lock(&kvm->lock);
3448 pimap = kvm->arch.pimap;
3449 if (pimap == NULL) {
3450 /* First call, allocate structure to hold IRQ map */
3451 pimap = kvmppc_alloc_pimap();
3452 if (pimap == NULL) {
3453 mutex_unlock(&kvm->lock);
3454 return -ENOMEM;
3456 kvm->arch.pimap = pimap;
3460 * For now, we only support interrupts for which the EOI operation
3461 * is an OPAL call followed by a write to XIRR, since that's
3462 * what our real-mode EOI code does.
3464 chip = irq_data_get_irq_chip(&desc->irq_data);
3465 if (!chip || !is_pnv_opal_msi(chip)) {
3466 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3467 host_irq, guest_gsi);
3468 mutex_unlock(&kvm->lock);
3469 return -ENOENT;
3473 * See if we already have an entry for this guest IRQ number.
3474 * If it's mapped to a hardware IRQ number, that's an error,
3475 * otherwise re-use this entry.
3477 for (i = 0; i < pimap->n_mapped; i++) {
3478 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3479 if (pimap->mapped[i].r_hwirq) {
3480 mutex_unlock(&kvm->lock);
3481 return -EINVAL;
3483 break;
3487 if (i == KVMPPC_PIRQ_MAPPED) {
3488 mutex_unlock(&kvm->lock);
3489 return -EAGAIN; /* table is full */
3492 irq_map = &pimap->mapped[i];
3494 irq_map->v_hwirq = guest_gsi;
3495 irq_map->desc = desc;
3498 * Order the above two stores before the next to serialize with
3499 * the KVM real mode handler.
3501 smp_wmb();
3502 irq_map->r_hwirq = desc->irq_data.hwirq;
3504 if (i == pimap->n_mapped)
3505 pimap->n_mapped++;
3507 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3509 mutex_unlock(&kvm->lock);
3511 return 0;
3514 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3516 struct irq_desc *desc;
3517 struct kvmppc_passthru_irqmap *pimap;
3518 int i;
3520 if (!kvm_irq_bypass)
3521 return 0;
3523 desc = irq_to_desc(host_irq);
3524 if (!desc)
3525 return -EIO;
3527 mutex_lock(&kvm->lock);
3529 if (kvm->arch.pimap == NULL) {
3530 mutex_unlock(&kvm->lock);
3531 return 0;
3533 pimap = kvm->arch.pimap;
3535 for (i = 0; i < pimap->n_mapped; i++) {
3536 if (guest_gsi == pimap->mapped[i].v_hwirq)
3537 break;
3540 if (i == pimap->n_mapped) {
3541 mutex_unlock(&kvm->lock);
3542 return -ENODEV;
3545 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3547 /* invalidate the entry */
3548 pimap->mapped[i].r_hwirq = 0;
3551 * We don't free this structure even when the count goes to
3552 * zero. The structure is freed when we destroy the VM.
3555 mutex_unlock(&kvm->lock);
3556 return 0;
3559 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3560 struct irq_bypass_producer *prod)
3562 int ret = 0;
3563 struct kvm_kernel_irqfd *irqfd =
3564 container_of(cons, struct kvm_kernel_irqfd, consumer);
3566 irqfd->producer = prod;
3568 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3569 if (ret)
3570 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3571 prod->irq, irqfd->gsi, ret);
3573 return ret;
3576 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3577 struct irq_bypass_producer *prod)
3579 int ret;
3580 struct kvm_kernel_irqfd *irqfd =
3581 container_of(cons, struct kvm_kernel_irqfd, consumer);
3583 irqfd->producer = NULL;
3586 * When producer of consumer is unregistered, we change back to
3587 * default external interrupt handling mode - KVM real mode
3588 * will switch back to host.
3590 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3591 if (ret)
3592 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3593 prod->irq, irqfd->gsi, ret);
3595 #endif
3597 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3598 unsigned int ioctl, unsigned long arg)
3600 struct kvm *kvm __maybe_unused = filp->private_data;
3601 void __user *argp = (void __user *)arg;
3602 long r;
3604 switch (ioctl) {
3606 case KVM_PPC_ALLOCATE_HTAB: {
3607 u32 htab_order;
3609 r = -EFAULT;
3610 if (get_user(htab_order, (u32 __user *)argp))
3611 break;
3612 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3613 if (r)
3614 break;
3615 r = -EFAULT;
3616 if (put_user(htab_order, (u32 __user *)argp))
3617 break;
3618 r = 0;
3619 break;
3622 case KVM_PPC_GET_HTAB_FD: {
3623 struct kvm_get_htab_fd ghf;
3625 r = -EFAULT;
3626 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3627 break;
3628 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3629 break;
3632 default:
3633 r = -ENOTTY;
3636 return r;
3640 * List of hcall numbers to enable by default.
3641 * For compatibility with old userspace, we enable by default
3642 * all hcalls that were implemented before the hcall-enabling
3643 * facility was added. Note this list should not include H_RTAS.
3645 static unsigned int default_hcall_list[] = {
3646 H_REMOVE,
3647 H_ENTER,
3648 H_READ,
3649 H_PROTECT,
3650 H_BULK_REMOVE,
3651 H_GET_TCE,
3652 H_PUT_TCE,
3653 H_SET_DABR,
3654 H_SET_XDABR,
3655 H_CEDE,
3656 H_PROD,
3657 H_CONFER,
3658 H_REGISTER_VPA,
3659 #ifdef CONFIG_KVM_XICS
3660 H_EOI,
3661 H_CPPR,
3662 H_IPI,
3663 H_IPOLL,
3664 H_XIRR,
3665 H_XIRR_X,
3666 #endif
3670 static void init_default_hcalls(void)
3672 int i;
3673 unsigned int hcall;
3675 for (i = 0; default_hcall_list[i]; ++i) {
3676 hcall = default_hcall_list[i];
3677 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3678 __set_bit(hcall / 4, default_enabled_hcalls);
3682 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
3684 unsigned long lpcr;
3686 /* If not on a POWER9, reject it */
3687 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3688 return -ENODEV;
3690 /* If any unknown flags set, reject it */
3691 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
3692 return -EINVAL;
3694 /* We can't do radix yet */
3695 if (cfg->flags & KVM_PPC_MMUV3_RADIX)
3696 return -EINVAL;
3698 /* GR (guest radix) bit in process_table field must match */
3699 if (cfg->process_table & PATB_GR)
3700 return -EINVAL;
3702 /* Process table size field must be reasonable, i.e. <= 24 */
3703 if ((cfg->process_table & PRTS_MASK) > 24)
3704 return -EINVAL;
3706 kvm->arch.process_table = cfg->process_table;
3707 kvmppc_setup_partition_table(kvm);
3709 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
3710 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
3712 return 0;
3715 static int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
3717 return -EINVAL;
3720 static struct kvmppc_ops kvm_ops_hv = {
3721 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3722 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3723 .get_one_reg = kvmppc_get_one_reg_hv,
3724 .set_one_reg = kvmppc_set_one_reg_hv,
3725 .vcpu_load = kvmppc_core_vcpu_load_hv,
3726 .vcpu_put = kvmppc_core_vcpu_put_hv,
3727 .set_msr = kvmppc_set_msr_hv,
3728 .vcpu_run = kvmppc_vcpu_run_hv,
3729 .vcpu_create = kvmppc_core_vcpu_create_hv,
3730 .vcpu_free = kvmppc_core_vcpu_free_hv,
3731 .check_requests = kvmppc_core_check_requests_hv,
3732 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3733 .flush_memslot = kvmppc_core_flush_memslot_hv,
3734 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3735 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3736 .unmap_hva = kvm_unmap_hva_hv,
3737 .unmap_hva_range = kvm_unmap_hva_range_hv,
3738 .age_hva = kvm_age_hva_hv,
3739 .test_age_hva = kvm_test_age_hva_hv,
3740 .set_spte_hva = kvm_set_spte_hva_hv,
3741 .mmu_destroy = kvmppc_mmu_destroy_hv,
3742 .free_memslot = kvmppc_core_free_memslot_hv,
3743 .create_memslot = kvmppc_core_create_memslot_hv,
3744 .init_vm = kvmppc_core_init_vm_hv,
3745 .destroy_vm = kvmppc_core_destroy_vm_hv,
3746 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3747 .emulate_op = kvmppc_core_emulate_op_hv,
3748 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3749 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3750 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3751 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3752 .hcall_implemented = kvmppc_hcall_impl_hv,
3753 #ifdef CONFIG_KVM_XICS
3754 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3755 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3756 #endif
3757 .configure_mmu = kvmhv_configure_mmu,
3758 .get_rmmu_info = kvmhv_get_rmmu_info,
3761 static int kvm_init_subcore_bitmap(void)
3763 int i, j;
3764 int nr_cores = cpu_nr_cores();
3765 struct sibling_subcore_state *sibling_subcore_state;
3767 for (i = 0; i < nr_cores; i++) {
3768 int first_cpu = i * threads_per_core;
3769 int node = cpu_to_node(first_cpu);
3771 /* Ignore if it is already allocated. */
3772 if (paca[first_cpu].sibling_subcore_state)
3773 continue;
3775 sibling_subcore_state =
3776 kmalloc_node(sizeof(struct sibling_subcore_state),
3777 GFP_KERNEL, node);
3778 if (!sibling_subcore_state)
3779 return -ENOMEM;
3781 memset(sibling_subcore_state, 0,
3782 sizeof(struct sibling_subcore_state));
3784 for (j = 0; j < threads_per_core; j++) {
3785 int cpu = first_cpu + j;
3787 paca[cpu].sibling_subcore_state = sibling_subcore_state;
3790 return 0;
3793 static int kvmppc_radix_possible(void)
3795 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
3798 static int kvmppc_book3s_init_hv(void)
3800 int r;
3802 * FIXME!! Do we need to check on all cpus ?
3804 r = kvmppc_core_check_processor_compat_hv();
3805 if (r < 0)
3806 return -ENODEV;
3808 r = kvm_init_subcore_bitmap();
3809 if (r)
3810 return r;
3813 * We need a way of accessing the XICS interrupt controller,
3814 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
3815 * indirectly, via OPAL.
3817 #ifdef CONFIG_SMP
3818 if (!get_paca()->kvm_hstate.xics_phys) {
3819 struct device_node *np;
3821 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
3822 if (!np) {
3823 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
3824 return -ENODEV;
3827 #endif
3829 kvm_ops_hv.owner = THIS_MODULE;
3830 kvmppc_hv_ops = &kvm_ops_hv;
3832 init_default_hcalls();
3834 init_vcore_lists();
3836 r = kvmppc_mmu_hv_init();
3837 if (r)
3838 return r;
3840 if (kvmppc_radix_possible())
3841 r = kvmppc_radix_init();
3842 return r;
3845 static void kvmppc_book3s_exit_hv(void)
3847 kvmppc_free_host_rm_ops();
3848 if (kvmppc_radix_possible())
3849 kvmppc_radix_exit();
3850 kvmppc_hv_ops = NULL;
3853 module_init(kvmppc_book3s_init_hv);
3854 module_exit(kvmppc_book3s_exit_hv);
3855 MODULE_LICENSE("GPL");
3856 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3857 MODULE_ALIAS("devname:kvm");