2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
152 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products
[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access
},
160 {0x3243103C, "Smart Array P410", &SA5_access
},
161 {0x3245103C, "Smart Array P410i", &SA5_access
},
162 {0x3247103C, "Smart Array P411", &SA5_access
},
163 {0x3249103C, "Smart Array P812", &SA5_access
},
164 {0x324A103C, "Smart Array P712m", &SA5_access
},
165 {0x324B103C, "Smart Array P711m", &SA5_access
},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access
},
168 {0x3351103C, "Smart Array P420", &SA5_access
},
169 {0x3352103C, "Smart Array P421", &SA5_access
},
170 {0x3353103C, "Smart Array P822", &SA5_access
},
171 {0x3354103C, "Smart Array P420i", &SA5_access
},
172 {0x3355103C, "Smart Array P220i", &SA5_access
},
173 {0x3356103C, "Smart Array P721m", &SA5_access
},
174 {0x1921103C, "Smart Array P830i", &SA5_access
},
175 {0x1922103C, "Smart Array P430", &SA5_access
},
176 {0x1923103C, "Smart Array P431", &SA5_access
},
177 {0x1924103C, "Smart Array P830", &SA5_access
},
178 {0x1926103C, "Smart Array P731m", &SA5_access
},
179 {0x1928103C, "Smart Array P230i", &SA5_access
},
180 {0x1929103C, "Smart Array P530", &SA5_access
},
181 {0x21BD103C, "Smart Array P244br", &SA5_access
},
182 {0x21BE103C, "Smart Array P741m", &SA5_access
},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
186 {0x21C2103C, "Smart Array P440", &SA5_access
},
187 {0x21C3103C, "Smart Array P441", &SA5_access
},
188 {0x21C4103C, "Smart Array", &SA5_access
},
189 {0x21C5103C, "Smart Array P841", &SA5_access
},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
191 {0x21C7103C, "Smart HBA H240", &SA5_access
},
192 {0x21C8103C, "Smart HBA H241", &SA5_access
},
193 {0x21C9103C, "Smart Array", &SA5_access
},
194 {0x21CA103C, "Smart Array P246br", &SA5_access
},
195 {0x21CB103C, "Smart Array P840", &SA5_access
},
196 {0x21CC103C, "Smart Array", &SA5_access
},
197 {0x21CD103C, "Smart Array", &SA5_access
},
198 {0x21CE103C, "Smart HBA", &SA5_access
},
199 {0x05809005, "SmartHBA-SA", &SA5_access
},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
213 static struct scsi_transport_template
*hpsa_sas_transport_template
;
214 static int hpsa_add_sas_host(struct ctlr_info
*h
);
215 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
216 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
217 struct hpsa_scsi_dev_t
*device
);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
221 struct sas_rphy
*rphy
);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy
;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle
;
227 static int number_of_controllers
;
229 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
230 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
231 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
234 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
238 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
239 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
240 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
241 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
242 struct scsi_cmnd
*scmd
);
243 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
244 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
246 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
251 static void hpsa_scan_start(struct Scsi_Host
*);
252 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
253 unsigned long elapsed_time
);
254 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
258 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
259 static int hpsa_slave_configure(struct scsi_device
*sdev
);
260 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
262 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
263 static int check_for_unit_attention(struct ctlr_info
*h
,
264 struct CommandList
*c
);
265 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket
, int num_buckets
,
269 int nsgs
, int min_blocks
, u32
*bucket_map
);
270 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
272 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
273 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
274 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
276 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
277 unsigned long *memory_bar
);
278 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
279 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
281 static inline void finish_cmd(struct CommandList
*c
);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
286 static void hpsa_flush_cache(struct ctlr_info
*h
);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
288 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
289 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
290 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
291 static u32
lockup_detected(struct ctlr_info
*h
);
292 static int detect_controller_lockup(struct ctlr_info
*h
);
293 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
295 struct ReportExtendedLUNdata
*buf
, int bufsize
);
296 static int hpsa_luns_changed(struct ctlr_info
*h
);
297 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
298 struct hpsa_scsi_dev_t
*dev
,
299 unsigned char *scsi3addr
);
301 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
303 unsigned long *priv
= shost_priv(sdev
->host
);
304 return (struct ctlr_info
*) *priv
;
307 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
309 unsigned long *priv
= shost_priv(sh
);
310 return (struct ctlr_info
*) *priv
;
313 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
315 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
318 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
320 return c
->abort_pending
|| c
->reset_pending
;
323 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
324 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
325 u8
*sense_key
, u8
*asc
, u8
*ascq
)
327 struct scsi_sense_hdr sshdr
;
334 if (sense_data_len
< 1)
337 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
339 *sense_key
= sshdr
.sense_key
;
345 static int check_for_unit_attention(struct ctlr_info
*h
,
346 struct CommandList
*c
)
348 u8 sense_key
, asc
, ascq
;
351 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
352 sense_len
= sizeof(c
->err_info
->SenseInfo
);
354 sense_len
= c
->err_info
->SenseLen
;
356 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
357 &sense_key
, &asc
, &ascq
);
358 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
363 dev_warn(&h
->pdev
->dev
,
364 "%s: a state change detected, command retried\n",
368 dev_warn(&h
->pdev
->dev
,
369 "%s: LUN failure detected\n", h
->devname
);
371 case REPORT_LUNS_CHANGED
:
372 dev_warn(&h
->pdev
->dev
,
373 "%s: report LUN data changed\n", h
->devname
);
375 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376 * target (array) devices.
380 dev_warn(&h
->pdev
->dev
,
381 "%s: a power on or device reset detected\n",
384 case UNIT_ATTENTION_CLEARED
:
385 dev_warn(&h
->pdev
->dev
,
386 "%s: unit attention cleared by another initiator\n",
390 dev_warn(&h
->pdev
->dev
,
391 "%s: unknown unit attention detected\n",
398 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
400 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
401 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
402 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
404 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
408 static u32
lockup_detected(struct ctlr_info
*h
);
409 static ssize_t
host_show_lockup_detected(struct device
*dev
,
410 struct device_attribute
*attr
, char *buf
)
414 struct Scsi_Host
*shost
= class_to_shost(dev
);
416 h
= shost_to_hba(shost
);
417 ld
= lockup_detected(h
);
419 return sprintf(buf
, "ld=%d\n", ld
);
422 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
423 struct device_attribute
*attr
,
424 const char *buf
, size_t count
)
428 struct Scsi_Host
*shost
= class_to_shost(dev
);
431 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
433 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
434 strncpy(tmpbuf
, buf
, len
);
436 if (sscanf(tmpbuf
, "%d", &status
) != 1)
438 h
= shost_to_hba(shost
);
439 h
->acciopath_status
= !!status
;
440 dev_warn(&h
->pdev
->dev
,
441 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442 h
->acciopath_status
? "enabled" : "disabled");
446 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
447 struct device_attribute
*attr
,
448 const char *buf
, size_t count
)
450 int debug_level
, len
;
452 struct Scsi_Host
*shost
= class_to_shost(dev
);
455 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
457 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
458 strncpy(tmpbuf
, buf
, len
);
460 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
464 h
= shost_to_hba(shost
);
465 h
->raid_offload_debug
= debug_level
;
466 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
467 h
->raid_offload_debug
);
471 static ssize_t
host_store_rescan(struct device
*dev
,
472 struct device_attribute
*attr
,
473 const char *buf
, size_t count
)
476 struct Scsi_Host
*shost
= class_to_shost(dev
);
477 h
= shost_to_hba(shost
);
478 hpsa_scan_start(h
->scsi_host
);
482 static ssize_t
host_show_firmware_revision(struct device
*dev
,
483 struct device_attribute
*attr
, char *buf
)
486 struct Scsi_Host
*shost
= class_to_shost(dev
);
487 unsigned char *fwrev
;
489 h
= shost_to_hba(shost
);
490 if (!h
->hba_inquiry_data
)
492 fwrev
= &h
->hba_inquiry_data
[32];
493 return snprintf(buf
, 20, "%c%c%c%c\n",
494 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
497 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
498 struct device_attribute
*attr
, char *buf
)
500 struct Scsi_Host
*shost
= class_to_shost(dev
);
501 struct ctlr_info
*h
= shost_to_hba(shost
);
503 return snprintf(buf
, 20, "%d\n",
504 atomic_read(&h
->commands_outstanding
));
507 static ssize_t
host_show_transport_mode(struct device
*dev
,
508 struct device_attribute
*attr
, char *buf
)
511 struct Scsi_Host
*shost
= class_to_shost(dev
);
513 h
= shost_to_hba(shost
);
514 return snprintf(buf
, 20, "%s\n",
515 h
->transMethod
& CFGTBL_Trans_Performant
?
516 "performant" : "simple");
519 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
520 struct device_attribute
*attr
, char *buf
)
523 struct Scsi_Host
*shost
= class_to_shost(dev
);
525 h
= shost_to_hba(shost
);
526 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
527 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller
[] = {
532 0x324a103C, /* Smart Array P712m */
533 0x324b103C, /* Smart Array P711m */
534 0x3223103C, /* Smart Array P800 */
535 0x3234103C, /* Smart Array P400 */
536 0x3235103C, /* Smart Array P400i */
537 0x3211103C, /* Smart Array E200i */
538 0x3212103C, /* Smart Array E200 */
539 0x3213103C, /* Smart Array E200i */
540 0x3214103C, /* Smart Array E200i */
541 0x3215103C, /* Smart Array E200i */
542 0x3237103C, /* Smart Array E500 */
543 0x323D103C, /* Smart Array P700m */
544 0x40800E11, /* Smart Array 5i */
545 0x409C0E11, /* Smart Array 6400 */
546 0x409D0E11, /* Smart Array 6400 EM */
547 0x40700E11, /* Smart Array 5300 */
548 0x40820E11, /* Smart Array 532 */
549 0x40830E11, /* Smart Array 5312 */
550 0x409A0E11, /* Smart Array 641 */
551 0x409B0E11, /* Smart Array 642 */
552 0x40910E11, /* Smart Array 6i */
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller
[] = {
557 0x40800E11, /* Smart Array 5i */
558 0x40700E11, /* Smart Array 5300 */
559 0x40820E11, /* Smart Array 532 */
560 0x40830E11, /* Smart Array 5312 */
561 0x409A0E11, /* Smart Array 641 */
562 0x409B0E11, /* Smart Array 642 */
563 0x40910E11, /* Smart Array 6i */
564 /* Exclude 640x boards. These are two pci devices in one slot
565 * which share a battery backed cache module. One controls the
566 * cache, the other accesses the cache through the one that controls
567 * it. If we reset the one controlling the cache, the other will
568 * likely not be happy. Just forbid resetting this conjoined mess.
569 * The 640x isn't really supported by hpsa anyway.
571 0x409C0E11, /* Smart Array 6400 */
572 0x409D0E11, /* Smart Array 6400 EM */
575 static u32 needs_abort_tags_swizzled
[] = {
576 0x323D103C, /* Smart Array P700m */
577 0x324a103C, /* Smart Array P712m */
578 0x324b103C, /* SmartArray P711m */
581 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
585 for (i
= 0; i
< nelems
; i
++)
586 if (a
[i
] == board_id
)
591 static int ctlr_is_hard_resettable(u32 board_id
)
593 return !board_id_in_array(unresettable_controller
,
594 ARRAY_SIZE(unresettable_controller
), board_id
);
597 static int ctlr_is_soft_resettable(u32 board_id
)
599 return !board_id_in_array(soft_unresettable_controller
,
600 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
603 static int ctlr_is_resettable(u32 board_id
)
605 return ctlr_is_hard_resettable(board_id
) ||
606 ctlr_is_soft_resettable(board_id
);
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
611 return board_id_in_array(needs_abort_tags_swizzled
,
612 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
615 static ssize_t
host_show_resettable(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
619 struct Scsi_Host
*shost
= class_to_shost(dev
);
621 h
= shost_to_hba(shost
);
622 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
627 return (scsi3addr
[3] & 0xC0) == 0x40;
630 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
633 #define HPSA_RAID_0 0
634 #define HPSA_RAID_4 1
635 #define HPSA_RAID_1 2 /* also used for RAID 10 */
636 #define HPSA_RAID_5 3 /* also used for RAID 50 */
637 #define HPSA_RAID_51 4
638 #define HPSA_RAID_6 5 /* also used for RAID 60 */
639 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
645 return !device
->physical_device
;
648 static ssize_t
raid_level_show(struct device
*dev
,
649 struct device_attribute
*attr
, char *buf
)
652 unsigned char rlevel
;
654 struct scsi_device
*sdev
;
655 struct hpsa_scsi_dev_t
*hdev
;
658 sdev
= to_scsi_device(dev
);
659 h
= sdev_to_hba(sdev
);
660 spin_lock_irqsave(&h
->lock
, flags
);
661 hdev
= sdev
->hostdata
;
663 spin_unlock_irqrestore(&h
->lock
, flags
);
667 /* Is this even a logical drive? */
668 if (!is_logical_device(hdev
)) {
669 spin_unlock_irqrestore(&h
->lock
, flags
);
670 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
674 rlevel
= hdev
->raid_level
;
675 spin_unlock_irqrestore(&h
->lock
, flags
);
676 if (rlevel
> RAID_UNKNOWN
)
677 rlevel
= RAID_UNKNOWN
;
678 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
682 static ssize_t
lunid_show(struct device
*dev
,
683 struct device_attribute
*attr
, char *buf
)
686 struct scsi_device
*sdev
;
687 struct hpsa_scsi_dev_t
*hdev
;
689 unsigned char lunid
[8];
691 sdev
= to_scsi_device(dev
);
692 h
= sdev_to_hba(sdev
);
693 spin_lock_irqsave(&h
->lock
, flags
);
694 hdev
= sdev
->hostdata
;
696 spin_unlock_irqrestore(&h
->lock
, flags
);
699 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
700 spin_unlock_irqrestore(&h
->lock
, flags
);
701 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
703 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
706 static ssize_t
unique_id_show(struct device
*dev
,
707 struct device_attribute
*attr
, char *buf
)
710 struct scsi_device
*sdev
;
711 struct hpsa_scsi_dev_t
*hdev
;
713 unsigned char sn
[16];
715 sdev
= to_scsi_device(dev
);
716 h
= sdev_to_hba(sdev
);
717 spin_lock_irqsave(&h
->lock
, flags
);
718 hdev
= sdev
->hostdata
;
720 spin_unlock_irqrestore(&h
->lock
, flags
);
723 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
724 spin_unlock_irqrestore(&h
->lock
, flags
);
725 return snprintf(buf
, 16 * 2 + 2,
726 "%02X%02X%02X%02X%02X%02X%02X%02X"
727 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728 sn
[0], sn
[1], sn
[2], sn
[3],
729 sn
[4], sn
[5], sn
[6], sn
[7],
730 sn
[8], sn
[9], sn
[10], sn
[11],
731 sn
[12], sn
[13], sn
[14], sn
[15]);
734 static ssize_t
sas_address_show(struct device
*dev
,
735 struct device_attribute
*attr
, char *buf
)
738 struct scsi_device
*sdev
;
739 struct hpsa_scsi_dev_t
*hdev
;
743 sdev
= to_scsi_device(dev
);
744 h
= sdev_to_hba(sdev
);
745 spin_lock_irqsave(&h
->lock
, flags
);
746 hdev
= sdev
->hostdata
;
747 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
748 spin_unlock_irqrestore(&h
->lock
, flags
);
751 sas_address
= hdev
->sas_address
;
752 spin_unlock_irqrestore(&h
->lock
, flags
);
754 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
757 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
758 struct device_attribute
*attr
, char *buf
)
761 struct scsi_device
*sdev
;
762 struct hpsa_scsi_dev_t
*hdev
;
766 sdev
= to_scsi_device(dev
);
767 h
= sdev_to_hba(sdev
);
768 spin_lock_irqsave(&h
->lock
, flags
);
769 hdev
= sdev
->hostdata
;
771 spin_unlock_irqrestore(&h
->lock
, flags
);
774 offload_enabled
= hdev
->offload_enabled
;
775 spin_unlock_irqrestore(&h
->lock
, flags
);
776 return snprintf(buf
, 20, "%d\n", offload_enabled
);
780 static ssize_t
path_info_show(struct device
*dev
,
781 struct device_attribute
*attr
, char *buf
)
784 struct scsi_device
*sdev
;
785 struct hpsa_scsi_dev_t
*hdev
;
791 u8 path_map_index
= 0;
793 unsigned char phys_connector
[2];
795 sdev
= to_scsi_device(dev
);
796 h
= sdev_to_hba(sdev
);
797 spin_lock_irqsave(&h
->devlock
, flags
);
798 hdev
= sdev
->hostdata
;
800 spin_unlock_irqrestore(&h
->devlock
, flags
);
805 for (i
= 0; i
< MAX_PATHS
; i
++) {
806 path_map_index
= 1<<i
;
807 if (i
== hdev
->active_path_index
)
809 else if (hdev
->path_map
& path_map_index
)
814 output_len
+= scnprintf(buf
+ output_len
,
815 PAGE_SIZE
- output_len
,
816 "[%d:%d:%d:%d] %20.20s ",
817 h
->scsi_host
->host_no
,
818 hdev
->bus
, hdev
->target
, hdev
->lun
,
819 scsi_device_type(hdev
->devtype
));
821 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
822 output_len
+= scnprintf(buf
+ output_len
,
823 PAGE_SIZE
- output_len
,
829 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
830 sizeof(phys_connector
));
831 if (phys_connector
[0] < '0')
832 phys_connector
[0] = '0';
833 if (phys_connector
[1] < '0')
834 phys_connector
[1] = '0';
835 output_len
+= scnprintf(buf
+ output_len
,
836 PAGE_SIZE
- output_len
,
839 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
840 hdev
->expose_device
) {
841 if (box
== 0 || box
== 0xFF) {
842 output_len
+= scnprintf(buf
+ output_len
,
843 PAGE_SIZE
- output_len
,
847 output_len
+= scnprintf(buf
+ output_len
,
848 PAGE_SIZE
- output_len
,
849 "BOX: %hhu BAY: %hhu %s\n",
852 } else if (box
!= 0 && box
!= 0xFF) {
853 output_len
+= scnprintf(buf
+ output_len
,
854 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
857 output_len
+= scnprintf(buf
+ output_len
,
858 PAGE_SIZE
- output_len
, "%s\n", active
);
861 spin_unlock_irqrestore(&h
->devlock
, flags
);
865 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
866 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
867 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
868 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
869 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
871 host_show_hp_ssd_smart_path_enabled
, NULL
);
872 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
873 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
874 host_show_hp_ssd_smart_path_status
,
875 host_store_hp_ssd_smart_path_status
);
876 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
877 host_store_raid_offload_debug
);
878 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
879 host_show_firmware_revision
, NULL
);
880 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
881 host_show_commands_outstanding
, NULL
);
882 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
883 host_show_transport_mode
, NULL
);
884 static DEVICE_ATTR(resettable
, S_IRUGO
,
885 host_show_resettable
, NULL
);
886 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
887 host_show_lockup_detected
, NULL
);
889 static struct device_attribute
*hpsa_sdev_attrs
[] = {
890 &dev_attr_raid_level
,
893 &dev_attr_hp_ssd_smart_path_enabled
,
895 &dev_attr_sas_address
,
899 static struct device_attribute
*hpsa_shost_attrs
[] = {
901 &dev_attr_firmware_revision
,
902 &dev_attr_commands_outstanding
,
903 &dev_attr_transport_mode
,
904 &dev_attr_resettable
,
905 &dev_attr_hp_ssd_smart_path_status
,
906 &dev_attr_raid_offload_debug
,
907 &dev_attr_lockup_detected
,
911 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
914 static struct scsi_host_template hpsa_driver_template
= {
915 .module
= THIS_MODULE
,
918 .queuecommand
= hpsa_scsi_queue_command
,
919 .scan_start
= hpsa_scan_start
,
920 .scan_finished
= hpsa_scan_finished
,
921 .change_queue_depth
= hpsa_change_queue_depth
,
923 .use_clustering
= ENABLE_CLUSTERING
,
924 .eh_abort_handler
= hpsa_eh_abort_handler
,
925 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
927 .slave_alloc
= hpsa_slave_alloc
,
928 .slave_configure
= hpsa_slave_configure
,
929 .slave_destroy
= hpsa_slave_destroy
,
931 .compat_ioctl
= hpsa_compat_ioctl
,
933 .sdev_attrs
= hpsa_sdev_attrs
,
934 .shost_attrs
= hpsa_shost_attrs
,
939 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
942 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
944 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
945 return h
->access
.command_completed(h
, q
);
947 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
948 return h
->access
.command_completed(h
, q
);
950 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
951 a
= rq
->head
[rq
->current_entry
];
953 atomic_dec(&h
->commands_outstanding
);
957 /* Check for wraparound */
958 if (rq
->current_entry
== h
->max_commands
) {
959 rq
->current_entry
= 0;
966 * There are some special bits in the bus address of the
967 * command that we have to set for the controller to know
968 * how to process the command:
970 * Normal performant mode:
971 * bit 0: 1 means performant mode, 0 means simple mode.
972 * bits 1-3 = block fetch table entry
973 * bits 4-6 = command type (== 0)
976 * bit 0 = "performant mode" bit.
977 * bits 1-3 = block fetch table entry
978 * bits 4-6 = command type (== 110)
979 * (command type is needed because ioaccel1 mode
980 * commands are submitted through the same register as normal
981 * mode commands, so this is how the controller knows whether
982 * the command is normal mode or ioaccel1 mode.)
985 * bit 0 = "performant mode" bit.
986 * bits 1-4 = block fetch table entry (note extra bit)
987 * bits 4-6 = not needed, because ioaccel2 mode has
988 * a separate special register for submitting commands.
992 * set_performant_mode: Modify the tag for cciss performant
993 * set bit 0 for pull model, bits 3-1 for block fetch
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1000 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1001 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1002 if (unlikely(!h
->msix_vector
))
1004 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1005 c
->Header
.ReplyQueue
=
1006 raw_smp_processor_id() % h
->nreply_queues
;
1008 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1012 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1013 struct CommandList
*c
,
1016 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1019 * Tell the controller to post the reply to the queue for this
1020 * processor. This seems to give the best I/O throughput.
1022 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1023 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1025 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1027 * Set the bits in the address sent down to include:
1028 * - performant mode bit (bit 0)
1029 * - pull count (bits 1-3)
1030 * - command type (bits 4-6)
1032 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1033 IOACCEL1_BUSADDR_CMDTYPE
;
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1037 struct CommandList
*c
,
1040 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1041 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1043 /* Tell the controller to post the reply to the queue for this
1044 * processor. This seems to give the best I/O throughput.
1046 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1047 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1049 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1050 /* Set the bits in the address sent down to include:
1051 * - performant mode bit not used in ioaccel mode 2
1052 * - pull count (bits 0-3)
1053 * - command type isn't needed for ioaccel2
1055 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1058 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1059 struct CommandList
*c
,
1062 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1065 * Tell the controller to post the reply to the queue for this
1066 * processor. This seems to give the best I/O throughput.
1068 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1069 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1071 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1073 * Set the bits in the address sent down to include:
1074 * - performant mode bit not used in ioaccel mode 2
1075 * - pull count (bits 0-3)
1076 * - command type isn't needed for ioaccel2
1078 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1081 static int is_firmware_flash_cmd(u8
*cdb
)
1083 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1087 * During firmware flash, the heartbeat register may not update as frequently
1088 * as it should. So we dial down lockup detection during firmware flash. and
1089 * dial it back up when firmware flash completes.
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1094 struct CommandList
*c
)
1096 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1098 atomic_inc(&h
->firmware_flash_in_progress
);
1099 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1103 struct CommandList
*c
)
1105 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1106 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1107 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1111 struct CommandList
*c
, int reply_queue
)
1113 dial_down_lockup_detection_during_fw_flash(h
, c
);
1114 atomic_inc(&h
->commands_outstanding
);
1115 switch (c
->cmd_type
) {
1117 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1118 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1121 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1122 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1125 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1126 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1129 set_performant_mode(h
, c
, reply_queue
);
1130 h
->access
.submit_command(h
, c
);
1134 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1136 if (unlikely(hpsa_is_pending_event(c
)))
1137 return finish_cmd(c
);
1139 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1142 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1144 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1147 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1149 if (!h
->hba_inquiry_data
)
1151 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1156 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1157 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1159 /* finds an unused bus, target, lun for a new physical device
1160 * assumes h->devlock is held
1163 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1165 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1167 for (i
= 0; i
< h
->ndevices
; i
++) {
1168 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1169 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1172 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1173 if (i
< HPSA_MAX_DEVICES
) {
1182 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1183 struct hpsa_scsi_dev_t
*dev
, char *description
)
1185 #define LABEL_SIZE 25
1186 char label
[LABEL_SIZE
];
1188 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1191 switch (dev
->devtype
) {
1193 snprintf(label
, LABEL_SIZE
, "controller");
1195 case TYPE_ENCLOSURE
:
1196 snprintf(label
, LABEL_SIZE
, "enclosure");
1201 snprintf(label
, LABEL_SIZE
, "external");
1202 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1203 snprintf(label
, LABEL_SIZE
, "%s",
1204 raid_label
[PHYSICAL_DRIVE
]);
1206 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1207 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1208 raid_label
[dev
->raid_level
]);
1211 snprintf(label
, LABEL_SIZE
, "rom");
1214 snprintf(label
, LABEL_SIZE
, "tape");
1216 case TYPE_MEDIUM_CHANGER
:
1217 snprintf(label
, LABEL_SIZE
, "changer");
1220 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1224 dev_printk(level
, &h
->pdev
->dev
,
1225 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1228 scsi_device_type(dev
->devtype
),
1232 dev
->offload_config
? '+' : '-',
1233 dev
->offload_enabled
? '+' : '-',
1234 dev
->expose_device
);
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1239 struct hpsa_scsi_dev_t
*device
,
1240 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1242 /* assumes h->devlock is held */
1243 int n
= h
->ndevices
;
1245 unsigned char addr1
[8], addr2
[8];
1246 struct hpsa_scsi_dev_t
*sd
;
1248 if (n
>= HPSA_MAX_DEVICES
) {
1249 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1254 /* physical devices do not have lun or target assigned until now. */
1255 if (device
->lun
!= -1)
1256 /* Logical device, lun is already assigned. */
1259 /* If this device a non-zero lun of a multi-lun device
1260 * byte 4 of the 8-byte LUN addr will contain the logical
1261 * unit no, zero otherwise.
1263 if (device
->scsi3addr
[4] == 0) {
1264 /* This is not a non-zero lun of a multi-lun device */
1265 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1266 device
->bus
, &device
->target
, &device
->lun
) != 0)
1271 /* This is a non-zero lun of a multi-lun device.
1272 * Search through our list and find the device which
1273 * has the same 8 byte LUN address, excepting byte 4 and 5.
1274 * Assign the same bus and target for this new LUN.
1275 * Use the logical unit number from the firmware.
1277 memcpy(addr1
, device
->scsi3addr
, 8);
1280 for (i
= 0; i
< n
; i
++) {
1282 memcpy(addr2
, sd
->scsi3addr
, 8);
1285 /* differ only in byte 4 and 5? */
1286 if (memcmp(addr1
, addr2
, 8) == 0) {
1287 device
->bus
= sd
->bus
;
1288 device
->target
= sd
->target
;
1289 device
->lun
= device
->scsi3addr
[4];
1293 if (device
->lun
== -1) {
1294 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1295 " suspect firmware bug or unsupported hardware "
1296 "configuration.\n");
1304 added
[*nadded
] = device
;
1306 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1307 device
->expose_device
? "added" : "masked");
1308 device
->offload_to_be_enabled
= device
->offload_enabled
;
1309 device
->offload_enabled
= 0;
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1315 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1317 int offload_enabled
;
1318 /* assumes h->devlock is held */
1319 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1321 /* Raid level changed. */
1322 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1324 /* Raid offload parameters changed. Careful about the ordering. */
1325 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1327 * if drive is newly offload_enabled, we want to copy the
1328 * raid map data first. If previously offload_enabled and
1329 * offload_config were set, raid map data had better be
1330 * the same as it was before. if raid map data is changed
1331 * then it had better be the case that
1332 * h->dev[entry]->offload_enabled is currently 0.
1334 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1335 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1337 if (new_entry
->hba_ioaccel_enabled
) {
1338 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1339 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1341 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1342 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1343 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1344 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1347 * We can turn off ioaccel offload now, but need to delay turning
1348 * it on until we can update h->dev[entry]->phys_disk[], but we
1349 * can't do that until all the devices are updated.
1351 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1352 if (!new_entry
->offload_enabled
)
1353 h
->dev
[entry
]->offload_enabled
= 0;
1355 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1356 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1357 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1358 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1363 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1364 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1365 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1367 /* assumes h->devlock is held */
1368 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1369 removed
[*nremoved
] = h
->dev
[entry
];
1373 * New physical devices won't have target/lun assigned yet
1374 * so we need to preserve the values in the slot we are replacing.
1376 if (new_entry
->target
== -1) {
1377 new_entry
->target
= h
->dev
[entry
]->target
;
1378 new_entry
->lun
= h
->dev
[entry
]->lun
;
1381 h
->dev
[entry
] = new_entry
;
1382 added
[*nadded
] = new_entry
;
1384 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1385 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1386 new_entry
->offload_enabled
= 0;
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1391 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1393 /* assumes h->devlock is held */
1395 struct hpsa_scsi_dev_t
*sd
;
1397 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1400 removed
[*nremoved
] = h
->dev
[entry
];
1403 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1404 h
->dev
[i
] = h
->dev
[i
+1];
1406 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410 (a)[7] == (b)[7] && \
1411 (a)[6] == (b)[6] && \
1412 (a)[5] == (b)[5] && \
1413 (a)[4] == (b)[4] && \
1414 (a)[3] == (b)[3] && \
1415 (a)[2] == (b)[2] && \
1416 (a)[1] == (b)[1] && \
1419 static void fixup_botched_add(struct ctlr_info
*h
,
1420 struct hpsa_scsi_dev_t
*added
)
1422 /* called when scsi_add_device fails in order to re-adjust
1423 * h->dev[] to match the mid layer's view.
1425 unsigned long flags
;
1428 spin_lock_irqsave(&h
->lock
, flags
);
1429 for (i
= 0; i
< h
->ndevices
; i
++) {
1430 if (h
->dev
[i
] == added
) {
1431 for (j
= i
; j
< h
->ndevices
-1; j
++)
1432 h
->dev
[j
] = h
->dev
[j
+1];
1437 spin_unlock_irqrestore(&h
->lock
, flags
);
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1442 struct hpsa_scsi_dev_t
*dev2
)
1444 /* we compare everything except lun and target as these
1445 * are not yet assigned. Compare parts likely
1448 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1449 sizeof(dev1
->scsi3addr
)) != 0)
1451 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1452 sizeof(dev1
->device_id
)) != 0)
1454 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1456 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1458 if (dev1
->devtype
!= dev2
->devtype
)
1460 if (dev1
->bus
!= dev2
->bus
)
1465 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1466 struct hpsa_scsi_dev_t
*dev2
)
1468 /* Device attributes that can change, but don't mean
1469 * that the device is a different device, nor that the OS
1470 * needs to be told anything about the change.
1472 if (dev1
->raid_level
!= dev2
->raid_level
)
1474 if (dev1
->offload_config
!= dev2
->offload_config
)
1476 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1478 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1479 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1484 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1485 * and return needle location in *index. If scsi3addr matches, but not
1486 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487 * location in *index.
1488 * In the case of a minor device attribute change, such as RAID level, just
1489 * return DEVICE_UPDATED, along with the updated device's location in index.
1490 * If needle not found, return DEVICE_NOT_FOUND.
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1493 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1502 return DEVICE_NOT_FOUND
;
1504 for (i
= 0; i
< haystack_size
; i
++) {
1505 if (haystack
[i
] == NULL
) /* previously removed. */
1507 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1509 if (device_is_the_same(needle
, haystack
[i
])) {
1510 if (device_updated(needle
, haystack
[i
]))
1511 return DEVICE_UPDATED
;
1514 /* Keep offline devices offline */
1515 if (needle
->volume_offline
)
1516 return DEVICE_NOT_FOUND
;
1517 return DEVICE_CHANGED
;
1522 return DEVICE_NOT_FOUND
;
1525 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1526 unsigned char scsi3addr
[])
1528 struct offline_device_entry
*device
;
1529 unsigned long flags
;
1531 /* Check to see if device is already on the list */
1532 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1533 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1534 if (memcmp(device
->scsi3addr
, scsi3addr
,
1535 sizeof(device
->scsi3addr
)) == 0) {
1536 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1540 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1542 /* Device is not on the list, add it. */
1543 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1545 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1548 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1549 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1550 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1551 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1556 struct hpsa_scsi_dev_t
*sd
)
1558 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1559 dev_info(&h
->pdev
->dev
,
1560 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561 h
->scsi_host
->host_no
,
1562 sd
->bus
, sd
->target
, sd
->lun
);
1563 switch (sd
->volume_offline
) {
1566 case HPSA_LV_UNDERGOING_ERASE
:
1567 dev_info(&h
->pdev
->dev
,
1568 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569 h
->scsi_host
->host_no
,
1570 sd
->bus
, sd
->target
, sd
->lun
);
1572 case HPSA_LV_NOT_AVAILABLE
:
1573 dev_info(&h
->pdev
->dev
,
1574 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575 h
->scsi_host
->host_no
,
1576 sd
->bus
, sd
->target
, sd
->lun
);
1578 case HPSA_LV_UNDERGOING_RPI
:
1579 dev_info(&h
->pdev
->dev
,
1580 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581 h
->scsi_host
->host_no
,
1582 sd
->bus
, sd
->target
, sd
->lun
);
1584 case HPSA_LV_PENDING_RPI
:
1585 dev_info(&h
->pdev
->dev
,
1586 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587 h
->scsi_host
->host_no
,
1588 sd
->bus
, sd
->target
, sd
->lun
);
1590 case HPSA_LV_ENCRYPTED_NO_KEY
:
1591 dev_info(&h
->pdev
->dev
,
1592 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593 h
->scsi_host
->host_no
,
1594 sd
->bus
, sd
->target
, sd
->lun
);
1596 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1597 dev_info(&h
->pdev
->dev
,
1598 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599 h
->scsi_host
->host_no
,
1600 sd
->bus
, sd
->target
, sd
->lun
);
1602 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1603 dev_info(&h
->pdev
->dev
,
1604 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605 h
->scsi_host
->host_no
,
1606 sd
->bus
, sd
->target
, sd
->lun
);
1608 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1609 dev_info(&h
->pdev
->dev
,
1610 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611 h
->scsi_host
->host_no
,
1612 sd
->bus
, sd
->target
, sd
->lun
);
1614 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1615 dev_info(&h
->pdev
->dev
,
1616 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617 h
->scsi_host
->host_no
,
1618 sd
->bus
, sd
->target
, sd
->lun
);
1620 case HPSA_LV_PENDING_ENCRYPTION
:
1621 dev_info(&h
->pdev
->dev
,
1622 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623 h
->scsi_host
->host_no
,
1624 sd
->bus
, sd
->target
, sd
->lun
);
1626 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1627 dev_info(&h
->pdev
->dev
,
1628 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629 h
->scsi_host
->host_no
,
1630 sd
->bus
, sd
->target
, sd
->lun
);
1636 * Figure the list of physical drive pointers for a logical drive with
1637 * raid offload configured.
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1640 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1641 struct hpsa_scsi_dev_t
*logical_drive
)
1643 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1644 struct raid_map_disk_data
*dd
= &map
->data
[0];
1646 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1647 le16_to_cpu(map
->metadata_disks_per_row
);
1648 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1649 le16_to_cpu(map
->layout_map_count
) *
1650 total_disks_per_row
;
1651 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1652 total_disks_per_row
;
1655 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1656 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1658 logical_drive
->nphysical_disks
= nraid_map_entries
;
1661 for (i
= 0; i
< nraid_map_entries
; i
++) {
1662 logical_drive
->phys_disk
[i
] = NULL
;
1663 if (!logical_drive
->offload_config
)
1665 for (j
= 0; j
< ndevices
; j
++) {
1668 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1669 dev
[j
]->devtype
!= TYPE_ZBC
)
1671 if (is_logical_device(dev
[j
]))
1673 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1676 logical_drive
->phys_disk
[i
] = dev
[j
];
1678 qdepth
= min(h
->nr_cmds
, qdepth
+
1679 logical_drive
->phys_disk
[i
]->queue_depth
);
1684 * This can happen if a physical drive is removed and
1685 * the logical drive is degraded. In that case, the RAID
1686 * map data will refer to a physical disk which isn't actually
1687 * present. And in that case offload_enabled should already
1688 * be 0, but we'll turn it off here just in case
1690 if (!logical_drive
->phys_disk
[i
]) {
1691 logical_drive
->offload_enabled
= 0;
1692 logical_drive
->offload_to_be_enabled
= 0;
1693 logical_drive
->queue_depth
= 8;
1696 if (nraid_map_entries
)
1698 * This is correct for reads, too high for full stripe writes,
1699 * way too high for partial stripe writes
1701 logical_drive
->queue_depth
= qdepth
;
1703 logical_drive
->queue_depth
= h
->nr_cmds
;
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1707 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1711 for (i
= 0; i
< ndevices
; i
++) {
1714 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1715 dev
[i
]->devtype
!= TYPE_ZBC
)
1717 if (!is_logical_device(dev
[i
]))
1721 * If offload is currently enabled, the RAID map and
1722 * phys_disk[] assignment *better* not be changing
1723 * and since it isn't changing, we do not need to
1726 if (dev
[i
]->offload_enabled
)
1729 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1733 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1740 if (is_logical_device(device
)) /* RAID */
1741 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1742 device
->target
, device
->lun
);
1744 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1750 struct hpsa_scsi_dev_t
*dev
)
1755 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1756 struct CommandList
*c
= h
->cmd_pool
+ i
;
1757 int refcount
= atomic_inc_return(&c
->refcount
);
1759 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1761 unsigned long flags
;
1763 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1764 if (!hpsa_is_cmd_idle(c
))
1766 spin_unlock_irqrestore(&h
->lock
, flags
);
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1776 struct hpsa_scsi_dev_t
*device
)
1782 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1787 dev_warn(&h
->pdev
->dev
,
1788 "%s: removing device with %d outstanding commands!\n",
1794 static void hpsa_remove_device(struct ctlr_info
*h
,
1795 struct hpsa_scsi_dev_t
*device
)
1797 struct scsi_device
*sdev
= NULL
;
1802 if (is_logical_device(device
)) { /* RAID */
1803 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1804 device
->target
, device
->lun
);
1806 scsi_remove_device(sdev
);
1807 scsi_device_put(sdev
);
1810 * We don't expect to get here. Future commands
1811 * to this device will get a selection timeout as
1812 * if the device were gone.
1814 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1815 "didn't find device for removal.");
1819 device
->removed
= 1;
1820 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1822 hpsa_remove_sas_device(device
);
1826 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1827 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1829 /* sd contains scsi3 addresses and devtypes, and inquiry
1830 * data. This function takes what's in sd to be the current
1831 * reality and updates h->dev[] to reflect that reality.
1833 int i
, entry
, device_change
, changes
= 0;
1834 struct hpsa_scsi_dev_t
*csd
;
1835 unsigned long flags
;
1836 struct hpsa_scsi_dev_t
**added
, **removed
;
1837 int nadded
, nremoved
;
1840 * A reset can cause a device status to change
1841 * re-schedule the scan to see what happened.
1843 if (h
->reset_in_progress
) {
1844 h
->drv_req_rescan
= 1;
1848 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1849 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1851 if (!added
|| !removed
) {
1852 dev_warn(&h
->pdev
->dev
, "out of memory in "
1853 "adjust_hpsa_scsi_table\n");
1857 spin_lock_irqsave(&h
->devlock
, flags
);
1859 /* find any devices in h->dev[] that are not in
1860 * sd[] and remove them from h->dev[], and for any
1861 * devices which have changed, remove the old device
1862 * info and add the new device info.
1863 * If minor device attributes change, just update
1864 * the existing device structure.
1869 while (i
< h
->ndevices
) {
1871 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1872 if (device_change
== DEVICE_NOT_FOUND
) {
1874 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1875 continue; /* remove ^^^, hence i not incremented */
1876 } else if (device_change
== DEVICE_CHANGED
) {
1878 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1879 added
, &nadded
, removed
, &nremoved
);
1880 /* Set it to NULL to prevent it from being freed
1881 * at the bottom of hpsa_update_scsi_devices()
1884 } else if (device_change
== DEVICE_UPDATED
) {
1885 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1890 /* Now, make sure every device listed in sd[] is also
1891 * listed in h->dev[], adding them if they aren't found
1894 for (i
= 0; i
< nsds
; i
++) {
1895 if (!sd
[i
]) /* if already added above. */
1898 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899 * as the SCSI mid-layer does not handle such devices well.
1900 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901 * at 160Hz, and prevents the system from coming up.
1903 if (sd
[i
]->volume_offline
) {
1904 hpsa_show_volume_status(h
, sd
[i
]);
1905 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1909 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1910 h
->ndevices
, &entry
);
1911 if (device_change
== DEVICE_NOT_FOUND
) {
1913 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1915 sd
[i
] = NULL
; /* prevent from being freed later. */
1916 } else if (device_change
== DEVICE_CHANGED
) {
1917 /* should never happen... */
1919 dev_warn(&h
->pdev
->dev
,
1920 "device unexpectedly changed.\n");
1921 /* but if it does happen, we just ignore that device */
1924 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1926 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927 * any logical drives that need it enabled.
1929 for (i
= 0; i
< h
->ndevices
; i
++) {
1930 if (h
->dev
[i
] == NULL
)
1932 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1935 spin_unlock_irqrestore(&h
->devlock
, flags
);
1937 /* Monitor devices which are in one of several NOT READY states to be
1938 * brought online later. This must be done without holding h->devlock,
1939 * so don't touch h->dev[]
1941 for (i
= 0; i
< nsds
; i
++) {
1942 if (!sd
[i
]) /* if already added above. */
1944 if (sd
[i
]->volume_offline
)
1945 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1948 /* Don't notify scsi mid layer of any changes the first time through
1949 * (or if there are no changes) scsi_scan_host will do it later the
1950 * first time through.
1955 /* Notify scsi mid layer of any removed devices */
1956 for (i
= 0; i
< nremoved
; i
++) {
1957 if (removed
[i
] == NULL
)
1959 if (removed
[i
]->expose_device
)
1960 hpsa_remove_device(h
, removed
[i
]);
1965 /* Notify scsi mid layer of any added devices */
1966 for (i
= 0; i
< nadded
; i
++) {
1969 if (added
[i
] == NULL
)
1971 if (!(added
[i
]->expose_device
))
1973 rc
= hpsa_add_device(h
, added
[i
]);
1976 dev_warn(&h
->pdev
->dev
,
1977 "addition failed %d, device not added.", rc
);
1978 /* now we have to remove it from h->dev,
1979 * since it didn't get added to scsi mid layer
1981 fixup_botched_add(h
, added
[i
]);
1982 h
->drv_req_rescan
= 1;
1991 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992 * Assume's h->devlock is held.
1994 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1995 int bus
, int target
, int lun
)
1998 struct hpsa_scsi_dev_t
*sd
;
2000 for (i
= 0; i
< h
->ndevices
; i
++) {
2002 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2008 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2010 struct hpsa_scsi_dev_t
*sd
;
2011 unsigned long flags
;
2012 struct ctlr_info
*h
;
2014 h
= sdev_to_hba(sdev
);
2015 spin_lock_irqsave(&h
->devlock
, flags
);
2016 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2017 struct scsi_target
*starget
;
2018 struct sas_rphy
*rphy
;
2020 starget
= scsi_target(sdev
);
2021 rphy
= target_to_rphy(starget
);
2022 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2024 sd
->target
= sdev_id(sdev
);
2025 sd
->lun
= sdev
->lun
;
2028 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2029 sdev_id(sdev
), sdev
->lun
);
2031 if (sd
&& sd
->expose_device
) {
2032 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2033 sdev
->hostdata
= sd
;
2035 sdev
->hostdata
= NULL
;
2036 spin_unlock_irqrestore(&h
->devlock
, flags
);
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2043 struct hpsa_scsi_dev_t
*sd
;
2046 sd
= sdev
->hostdata
;
2047 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2050 queue_depth
= sd
->queue_depth
!= 0 ?
2051 sd
->queue_depth
: sdev
->host
->can_queue
;
2053 queue_depth
= sdev
->host
->can_queue
;
2055 scsi_change_queue_depth(sdev
, queue_depth
);
2060 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2062 /* nothing to do. */
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2069 if (!h
->ioaccel2_cmd_sg_list
)
2071 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2072 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2073 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2075 kfree(h
->ioaccel2_cmd_sg_list
);
2076 h
->ioaccel2_cmd_sg_list
= NULL
;
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2083 if (h
->chainsize
<= 0)
2086 h
->ioaccel2_cmd_sg_list
=
2087 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2089 if (!h
->ioaccel2_cmd_sg_list
)
2091 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2092 h
->ioaccel2_cmd_sg_list
[i
] =
2093 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2094 h
->maxsgentries
, GFP_KERNEL
);
2095 if (!h
->ioaccel2_cmd_sg_list
[i
])
2101 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2109 if (!h
->cmd_sg_list
)
2111 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2112 kfree(h
->cmd_sg_list
[i
]);
2113 h
->cmd_sg_list
[i
] = NULL
;
2115 kfree(h
->cmd_sg_list
);
2116 h
->cmd_sg_list
= NULL
;
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2123 if (h
->chainsize
<= 0)
2126 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2128 if (!h
->cmd_sg_list
) {
2129 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2132 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2133 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2134 h
->chainsize
, GFP_KERNEL
);
2135 if (!h
->cmd_sg_list
[i
]) {
2136 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2143 hpsa_free_sg_chain_blocks(h
);
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2148 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2150 struct ioaccel2_sg_element
*chain_block
;
2154 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2155 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2156 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2158 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2159 /* prevent subsequent unmapping */
2160 cp
->sg
->address
= 0;
2163 cp
->sg
->address
= cpu_to_le64(temp64
);
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2168 struct io_accel2_cmd
*cp
)
2170 struct ioaccel2_sg_element
*chain_sg
;
2175 temp64
= le64_to_cpu(chain_sg
->address
);
2176 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2177 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2180 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2181 struct CommandList
*c
)
2183 struct SGDescriptor
*chain_sg
, *chain_block
;
2187 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2188 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2189 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2190 chain_len
= sizeof(*chain_sg
) *
2191 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2192 chain_sg
->Len
= cpu_to_le32(chain_len
);
2193 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2195 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2196 /* prevent subsequent unmapping */
2197 chain_sg
->Addr
= cpu_to_le64(0);
2200 chain_sg
->Addr
= cpu_to_le64(temp64
);
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2205 struct CommandList
*c
)
2207 struct SGDescriptor
*chain_sg
;
2209 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2212 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2213 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2214 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2218 /* Decode the various types of errors on ioaccel2 path.
2219 * Return 1 for any error that should generate a RAID path retry.
2220 * Return 0 for errors that don't require a RAID path retry.
2222 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2223 struct CommandList
*c
,
2224 struct scsi_cmnd
*cmd
,
2225 struct io_accel2_cmd
*c2
,
2226 struct hpsa_scsi_dev_t
*dev
)
2230 u32 ioaccel2_resid
= 0;
2232 switch (c2
->error_data
.serv_response
) {
2233 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2234 switch (c2
->error_data
.status
) {
2235 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2237 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2238 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2239 if (c2
->error_data
.data_present
!=
2240 IOACCEL2_SENSE_DATA_PRESENT
) {
2241 memset(cmd
->sense_buffer
, 0,
2242 SCSI_SENSE_BUFFERSIZE
);
2245 /* copy the sense data */
2246 data_len
= c2
->error_data
.sense_data_len
;
2247 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2248 data_len
= SCSI_SENSE_BUFFERSIZE
;
2249 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2251 sizeof(c2
->error_data
.sense_data_buff
);
2252 memcpy(cmd
->sense_buffer
,
2253 c2
->error_data
.sense_data_buff
, data_len
);
2256 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2259 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2262 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2265 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2273 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2274 switch (c2
->error_data
.status
) {
2275 case IOACCEL2_STATUS_SR_IO_ERROR
:
2276 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2277 case IOACCEL2_STATUS_SR_OVERRUN
:
2280 case IOACCEL2_STATUS_SR_UNDERRUN
:
2281 cmd
->result
= (DID_OK
<< 16); /* host byte */
2282 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2283 ioaccel2_resid
= get_unaligned_le32(
2284 &c2
->error_data
.resid_cnt
[0]);
2285 scsi_set_resid(cmd
, ioaccel2_resid
);
2287 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2288 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2289 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2291 * Did an HBA disk disappear? We will eventually
2292 * get a state change event from the controller but
2293 * in the meantime, we need to tell the OS that the
2294 * HBA disk is no longer there and stop I/O
2295 * from going down. This allows the potential re-insert
2296 * of the disk to get the same device node.
2298 if (dev
->physical_device
&& dev
->expose_device
) {
2299 cmd
->result
= DID_NO_CONNECT
<< 16;
2301 h
->drv_req_rescan
= 1;
2302 dev_warn(&h
->pdev
->dev
,
2303 "%s: device is gone!\n", __func__
);
2306 * Retry by sending down the RAID path.
2307 * We will get an event from ctlr to
2308 * trigger rescan regardless.
2316 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2318 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2320 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2323 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2330 return retry
; /* retry on raid path? */
2333 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2334 struct CommandList
*c
)
2336 bool do_wake
= false;
2339 * Prevent the following race in the abort handler:
2341 * 1. LLD is requested to abort a SCSI command
2342 * 2. The SCSI command completes
2343 * 3. The struct CommandList associated with step 2 is made available
2344 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345 * 5. Abort handler follows scsi_cmnd->host_scribble and
2346 * finds struct CommandList and tries to aborts it
2347 * Now we have aborted the wrong command.
2349 * Reset c->scsi_cmd here so that the abort or reset handler will know
2350 * this command has completed. Then, check to see if the handler is
2351 * waiting for this command, and, if so, wake it.
2353 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2354 mb(); /* Declare command idle before checking for pending events. */
2355 if (c
->abort_pending
) {
2357 c
->abort_pending
= false;
2359 if (c
->reset_pending
) {
2360 unsigned long flags
;
2361 struct hpsa_scsi_dev_t
*dev
;
2364 * There appears to be a reset pending; lock the lock and
2365 * reconfirm. If so, then decrement the count of outstanding
2366 * commands and wake the reset command if this is the last one.
2368 spin_lock_irqsave(&h
->lock
, flags
);
2369 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2370 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2372 c
->reset_pending
= NULL
;
2373 spin_unlock_irqrestore(&h
->lock
, flags
);
2377 wake_up_all(&h
->event_sync_wait_queue
);
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2381 struct CommandList
*c
)
2383 hpsa_cmd_resolve_events(h
, c
);
2384 cmd_tagged_free(h
, c
);
2387 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2388 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2390 hpsa_cmd_resolve_and_free(h
, c
);
2391 cmd
->scsi_done(cmd
);
2394 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2396 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2397 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2402 cmd
->result
= DID_ABORT
<< 16;
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2406 struct scsi_cmnd
*cmd
)
2408 hpsa_set_scsi_cmd_aborted(cmd
);
2409 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2410 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2411 hpsa_cmd_resolve_and_free(h
, c
);
2414 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2415 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2416 struct hpsa_scsi_dev_t
*dev
)
2418 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2420 /* check for good status */
2421 if (likely(c2
->error_data
.serv_response
== 0 &&
2422 c2
->error_data
.status
== 0))
2423 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2426 * Any RAID offload error results in retry which will use
2427 * the normal I/O path so the controller can handle whatever's
2430 if (is_logical_device(dev
) &&
2431 c2
->error_data
.serv_response
==
2432 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2433 if (c2
->error_data
.status
==
2434 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2435 dev
->offload_enabled
= 0;
2436 dev
->offload_to_be_enabled
= 0;
2439 return hpsa_retry_cmd(h
, c
);
2442 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2443 return hpsa_retry_cmd(h
, c
);
2445 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2450 struct CommandList
*cp
)
2452 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2454 switch (tmf_status
) {
2455 case CISS_TMF_COMPLETE
:
2457 * CISS_TMF_COMPLETE never happens, instead,
2458 * ei->CommandStatus == 0 for this case.
2460 case CISS_TMF_SUCCESS
:
2462 case CISS_TMF_INVALID_FRAME
:
2463 case CISS_TMF_NOT_SUPPORTED
:
2464 case CISS_TMF_FAILED
:
2465 case CISS_TMF_WRONG_LUN
:
2466 case CISS_TMF_OVERLAPPED_TAG
:
2469 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2476 static void complete_scsi_command(struct CommandList
*cp
)
2478 struct scsi_cmnd
*cmd
;
2479 struct ctlr_info
*h
;
2480 struct ErrorInfo
*ei
;
2481 struct hpsa_scsi_dev_t
*dev
;
2482 struct io_accel2_cmd
*c2
;
2485 u8 asc
; /* additional sense code */
2486 u8 ascq
; /* additional sense code qualifier */
2487 unsigned long sense_data_size
;
2492 dev
= cmd
->device
->hostdata
;
2493 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2495 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2496 if ((cp
->cmd_type
== CMD_SCSI
) &&
2497 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2498 hpsa_unmap_sg_chain_block(h
, cp
);
2500 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2501 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2502 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2504 cmd
->result
= (DID_OK
<< 16); /* host byte */
2505 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2507 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2508 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2511 * We check for lockup status here as it may be set for
2512 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513 * fail_all_oustanding_cmds()
2515 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2516 /* DID_NO_CONNECT will prevent a retry */
2517 cmd
->result
= DID_NO_CONNECT
<< 16;
2518 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2521 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2522 if (cp
->reset_pending
)
2523 return hpsa_cmd_resolve_and_free(h
, cp
);
2524 if (cp
->abort_pending
)
2525 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2528 if (cp
->cmd_type
== CMD_IOACCEL2
)
2529 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2531 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2532 if (ei
->CommandStatus
== 0)
2533 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2535 /* For I/O accelerator commands, copy over some fields to the normal
2536 * CISS header used below for error handling.
2538 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2539 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2540 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2541 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2542 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2543 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2544 cp
->Header
.tag
= c
->tag
;
2545 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2546 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2548 /* Any RAID offload error results in retry which will use
2549 * the normal I/O path so the controller can handle whatever's
2552 if (is_logical_device(dev
)) {
2553 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2554 dev
->offload_enabled
= 0;
2555 return hpsa_retry_cmd(h
, cp
);
2559 /* an error has occurred */
2560 switch (ei
->CommandStatus
) {
2562 case CMD_TARGET_STATUS
:
2563 cmd
->result
|= ei
->ScsiStatus
;
2564 /* copy the sense data */
2565 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2566 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2568 sense_data_size
= sizeof(ei
->SenseInfo
);
2569 if (ei
->SenseLen
< sense_data_size
)
2570 sense_data_size
= ei
->SenseLen
;
2571 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2573 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2574 &sense_key
, &asc
, &ascq
);
2575 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2576 if (sense_key
== ABORTED_COMMAND
) {
2577 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2582 /* Problem was not a check condition
2583 * Pass it up to the upper layers...
2585 if (ei
->ScsiStatus
) {
2586 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2587 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588 "Returning result: 0x%x\n",
2590 sense_key
, asc
, ascq
,
2592 } else { /* scsi status is zero??? How??? */
2593 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2594 "Returning no connection.\n", cp
),
2596 /* Ordinarily, this case should never happen,
2597 * but there is a bug in some released firmware
2598 * revisions that allows it to happen if, for
2599 * example, a 4100 backplane loses power and
2600 * the tape drive is in it. We assume that
2601 * it's a fatal error of some kind because we
2602 * can't show that it wasn't. We will make it
2603 * look like selection timeout since that is
2604 * the most common reason for this to occur,
2605 * and it's severe enough.
2608 cmd
->result
= DID_NO_CONNECT
<< 16;
2612 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2614 case CMD_DATA_OVERRUN
:
2615 dev_warn(&h
->pdev
->dev
,
2616 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2619 /* print_bytes(cp, sizeof(*cp), 1, 0);
2621 /* We get CMD_INVALID if you address a non-existent device
2622 * instead of a selection timeout (no response). You will
2623 * see this if you yank out a drive, then try to access it.
2624 * This is kind of a shame because it means that any other
2625 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626 * missing target. */
2627 cmd
->result
= DID_NO_CONNECT
<< 16;
2630 case CMD_PROTOCOL_ERR
:
2631 cmd
->result
= DID_ERROR
<< 16;
2632 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2635 case CMD_HARDWARE_ERR
:
2636 cmd
->result
= DID_ERROR
<< 16;
2637 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2640 case CMD_CONNECTION_LOST
:
2641 cmd
->result
= DID_ERROR
<< 16;
2642 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2646 /* Return now to avoid calling scsi_done(). */
2647 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2648 case CMD_ABORT_FAILED
:
2649 cmd
->result
= DID_ERROR
<< 16;
2650 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2653 case CMD_UNSOLICITED_ABORT
:
2654 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2655 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2659 cmd
->result
= DID_TIME_OUT
<< 16;
2660 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2663 case CMD_UNABORTABLE
:
2664 cmd
->result
= DID_ERROR
<< 16;
2665 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2667 case CMD_TMF_STATUS
:
2668 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2669 cmd
->result
= DID_ERROR
<< 16;
2671 case CMD_IOACCEL_DISABLED
:
2672 /* This only handles the direct pass-through case since RAID
2673 * offload is handled above. Just attempt a retry.
2675 cmd
->result
= DID_SOFT_ERROR
<< 16;
2676 dev_warn(&h
->pdev
->dev
,
2677 "cp %p had HP SSD Smart Path error\n", cp
);
2680 cmd
->result
= DID_ERROR
<< 16;
2681 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2682 cp
, ei
->CommandStatus
);
2685 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2688 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2689 struct CommandList
*c
, int sg_used
, int data_direction
)
2693 for (i
= 0; i
< sg_used
; i
++)
2694 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2695 le32_to_cpu(c
->SG
[i
].Len
),
2699 static int hpsa_map_one(struct pci_dev
*pdev
,
2700 struct CommandList
*cp
,
2707 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2708 cp
->Header
.SGList
= 0;
2709 cp
->Header
.SGTotal
= cpu_to_le16(0);
2713 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2714 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2715 /* Prevent subsequent unmap of something never mapped */
2716 cp
->Header
.SGList
= 0;
2717 cp
->Header
.SGTotal
= cpu_to_le16(0);
2720 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2721 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2722 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2723 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2724 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2731 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2733 DECLARE_COMPLETION_ONSTACK(wait
);
2736 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2737 if (timeout_msecs
== NO_TIMEOUT
) {
2738 /* TODO: get rid of this no-timeout thing */
2739 wait_for_completion_io(&wait
);
2742 if (!wait_for_completion_io_timeout(&wait
,
2743 msecs_to_jiffies(timeout_msecs
))) {
2744 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2751 int reply_queue
, unsigned long timeout_msecs
)
2753 if (unlikely(lockup_detected(h
))) {
2754 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2757 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2760 static u32
lockup_detected(struct ctlr_info
*h
)
2763 u32 rc
, *lockup_detected
;
2766 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2767 rc
= *lockup_detected
;
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2774 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2776 int backoff_time
= 10, retry_count
= 0;
2780 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2781 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2786 if (retry_count
> 3) {
2787 msleep(backoff_time
);
2788 if (backoff_time
< 1000)
2791 } while ((check_for_unit_attention(h
, c
) ||
2792 check_for_busy(h
, c
)) &&
2793 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2794 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2795 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2800 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2801 struct CommandList
*c
)
2803 const u8
*cdb
= c
->Request
.CDB
;
2804 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2806 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2809 lun
[4], lun
[5], lun
[6], lun
[7],
2810 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2811 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2812 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2813 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2816 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2817 struct CommandList
*cp
)
2819 const struct ErrorInfo
*ei
= cp
->err_info
;
2820 struct device
*d
= &cp
->h
->pdev
->dev
;
2821 u8 sense_key
, asc
, ascq
;
2824 switch (ei
->CommandStatus
) {
2825 case CMD_TARGET_STATUS
:
2826 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2827 sense_len
= sizeof(ei
->SenseInfo
);
2829 sense_len
= ei
->SenseLen
;
2830 decode_sense_data(ei
->SenseInfo
, sense_len
,
2831 &sense_key
, &asc
, &ascq
);
2832 hpsa_print_cmd(h
, "SCSI status", cp
);
2833 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2834 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835 sense_key
, asc
, ascq
);
2837 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2838 if (ei
->ScsiStatus
== 0)
2839 dev_warn(d
, "SCSI status is abnormally zero. "
2840 "(probably indicates selection timeout "
2841 "reported incorrectly due to a known "
2842 "firmware bug, circa July, 2001.)\n");
2844 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2846 case CMD_DATA_OVERRUN
:
2847 hpsa_print_cmd(h
, "overrun condition", cp
);
2850 /* controller unfortunately reports SCSI passthru's
2851 * to non-existent targets as invalid commands.
2853 hpsa_print_cmd(h
, "invalid command", cp
);
2854 dev_warn(d
, "probably means device no longer present\n");
2857 case CMD_PROTOCOL_ERR
:
2858 hpsa_print_cmd(h
, "protocol error", cp
);
2860 case CMD_HARDWARE_ERR
:
2861 hpsa_print_cmd(h
, "hardware error", cp
);
2863 case CMD_CONNECTION_LOST
:
2864 hpsa_print_cmd(h
, "connection lost", cp
);
2867 hpsa_print_cmd(h
, "aborted", cp
);
2869 case CMD_ABORT_FAILED
:
2870 hpsa_print_cmd(h
, "abort failed", cp
);
2872 case CMD_UNSOLICITED_ABORT
:
2873 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2876 hpsa_print_cmd(h
, "timed out", cp
);
2878 case CMD_UNABORTABLE
:
2879 hpsa_print_cmd(h
, "unabortable", cp
);
2881 case CMD_CTLR_LOCKUP
:
2882 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2885 hpsa_print_cmd(h
, "unknown status", cp
);
2886 dev_warn(d
, "Unknown command status %x\n",
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2892 u16 page
, unsigned char *buf
,
2893 unsigned char bufsize
)
2896 struct CommandList
*c
;
2897 struct ErrorInfo
*ei
;
2901 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2902 page
, scsi3addr
, TYPE_CMD
)) {
2906 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2907 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2911 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2912 hpsa_scsi_interpret_error(h
, c
);
2920 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2921 u8 reset_type
, int reply_queue
)
2924 struct CommandList
*c
;
2925 struct ErrorInfo
*ei
;
2930 /* fill_cmd can't fail here, no data buffer to map. */
2931 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2932 scsi3addr
, TYPE_MSG
);
2933 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
2935 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2938 /* no unmap needed here because no data xfer. */
2941 if (ei
->CommandStatus
!= 0) {
2942 hpsa_scsi_interpret_error(h
, c
);
2950 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2951 struct hpsa_scsi_dev_t
*dev
,
2952 unsigned char *scsi3addr
)
2956 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2957 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2959 if (hpsa_is_cmd_idle(c
))
2962 switch (c
->cmd_type
) {
2964 case CMD_IOCTL_PEND
:
2965 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2966 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2971 if (c
->phys_disk
== dev
) {
2972 /* HBA mode match */
2975 /* Possible RAID mode -- check each phys dev. */
2976 /* FIXME: Do we need to take out a lock here? If
2977 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2979 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2980 /* FIXME: an alternate test might be
2982 * match = dev->phys_disk[i]->ioaccel_handle
2983 * == c2->scsi_nexus; */
2984 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2990 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2991 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2992 le32_to_cpu(ac
->it_nexus
);
2996 case 0: /* The command is in the middle of being initialized. */
3001 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3009 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3010 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3015 /* We can really only handle one reset at a time */
3016 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3017 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3021 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3023 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3024 struct CommandList
*c
= h
->cmd_pool
+ i
;
3025 int refcount
= atomic_inc_return(&c
->refcount
);
3027 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3028 unsigned long flags
;
3031 * Mark the target command as having a reset pending,
3032 * then lock a lock so that the command cannot complete
3033 * while we're considering it. If the command is not
3034 * idle then count it; otherwise revoke the event.
3036 c
->reset_pending
= dev
;
3037 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3038 if (!hpsa_is_cmd_idle(c
))
3039 atomic_inc(&dev
->reset_cmds_out
);
3041 c
->reset_pending
= NULL
;
3042 spin_unlock_irqrestore(&h
->lock
, flags
);
3048 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3050 wait_event(h
->event_sync_wait_queue
,
3051 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3052 lockup_detected(h
));
3054 if (unlikely(lockup_detected(h
))) {
3055 dev_warn(&h
->pdev
->dev
,
3056 "Controller lockup detected during reset wait\n");
3061 atomic_set(&dev
->reset_cmds_out
, 0);
3063 mutex_unlock(&h
->reset_mutex
);
3067 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3068 unsigned char *scsi3addr
, unsigned char *raid_level
)
3073 *raid_level
= RAID_UNKNOWN
;
3074 buf
= kzalloc(64, GFP_KERNEL
);
3077 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
3079 *raid_level
= buf
[8];
3080 if (*raid_level
> RAID_UNKNOWN
)
3081 *raid_level
= RAID_UNKNOWN
;
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3089 struct raid_map_data
*map_buff
)
3091 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3093 u16 map_cnt
, row_cnt
, disks_per_row
;
3098 /* Show details only if debugging has been activated. */
3099 if (h
->raid_offload_debug
< 2)
3102 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3103 le32_to_cpu(map_buff
->structure_size
));
3104 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3105 le32_to_cpu(map_buff
->volume_blk_size
));
3106 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3107 le64_to_cpu(map_buff
->volume_blk_cnt
));
3108 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3109 map_buff
->phys_blk_shift
);
3110 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3111 map_buff
->parity_rotation_shift
);
3112 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3113 le16_to_cpu(map_buff
->strip_size
));
3114 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3115 le64_to_cpu(map_buff
->disk_starting_blk
));
3116 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3117 le64_to_cpu(map_buff
->disk_blk_cnt
));
3118 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3119 le16_to_cpu(map_buff
->data_disks_per_row
));
3120 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3121 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3122 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3123 le16_to_cpu(map_buff
->row_cnt
));
3124 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3125 le16_to_cpu(map_buff
->layout_map_count
));
3126 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3127 le16_to_cpu(map_buff
->flags
));
3128 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3129 le16_to_cpu(map_buff
->flags
) &
3130 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3131 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3132 le16_to_cpu(map_buff
->dekindex
));
3133 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3134 for (map
= 0; map
< map_cnt
; map
++) {
3135 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3136 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3137 for (row
= 0; row
< row_cnt
; row
++) {
3138 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3140 le16_to_cpu(map_buff
->data_disks_per_row
);
3141 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3142 dev_info(&h
->pdev
->dev
,
3143 " D%02u: h=0x%04x xor=%u,%u\n",
3144 col
, dd
->ioaccel_handle
,
3145 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3147 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3148 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3149 dev_info(&h
->pdev
->dev
,
3150 " M%02u: h=0x%04x xor=%u,%u\n",
3151 col
, dd
->ioaccel_handle
,
3152 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3157 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3158 __attribute__((unused
)) int rc
,
3159 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3164 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3165 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3168 struct CommandList
*c
;
3169 struct ErrorInfo
*ei
;
3173 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3174 sizeof(this_device
->raid_map
), 0,
3175 scsi3addr
, TYPE_CMD
)) {
3176 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3180 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3181 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3185 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3186 hpsa_scsi_interpret_error(h
, c
);
3192 /* @todo in the future, dynamically allocate RAID map memory */
3193 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3194 sizeof(this_device
->raid_map
)) {
3195 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3198 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3206 unsigned char scsi3addr
[], u16 bmic_device_index
,
3207 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3210 struct CommandList
*c
;
3211 struct ErrorInfo
*ei
;
3215 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3216 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3220 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3221 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3223 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3224 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3228 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3229 hpsa_scsi_interpret_error(h
, c
);
3237 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3238 struct bmic_identify_controller
*buf
, size_t bufsize
)
3241 struct CommandList
*c
;
3242 struct ErrorInfo
*ei
;
3246 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3247 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3251 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3252 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3256 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3257 hpsa_scsi_interpret_error(h
, c
);
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3266 unsigned char scsi3addr
[], u16 bmic_device_index
,
3267 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3270 struct CommandList
*c
;
3271 struct ErrorInfo
*ei
;
3274 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3275 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3279 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3280 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3282 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3285 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3286 hpsa_scsi_interpret_error(h
, c
);
3296 * get enclosure information
3297 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299 * Uses id_physical_device to determine the box_index.
3301 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3302 unsigned char *scsi3addr
,
3303 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3304 struct hpsa_scsi_dev_t
*encl_dev
)
3307 struct CommandList
*c
= NULL
;
3308 struct ErrorInfo
*ei
= NULL
;
3309 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3310 struct bmic_identify_physical_device
*id_phys
= NULL
;
3311 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3312 u16 bmic_device_index
= 0;
3314 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3316 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3321 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3325 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3329 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3330 id_phys
, sizeof(*id_phys
));
3332 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3333 __func__
, encl_dev
->external
, bmic_device_index
);
3339 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3340 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3345 if (id_phys
->phys_connector
[1] == 'E')
3346 c
->Request
.CDB
[5] = id_phys
->box_index
;
3348 c
->Request
.CDB
[5] = 0;
3350 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3356 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3361 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3362 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3363 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3374 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3375 "Error, could not get enclosure information\n");
3378 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3379 unsigned char *scsi3addr
)
3381 struct ReportExtendedLUNdata
*physdev
;
3386 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3390 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3391 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3395 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3397 for (i
= 0; i
< nphysicals
; i
++)
3398 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3399 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3408 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3409 struct hpsa_scsi_dev_t
*dev
)
3414 if (is_hba_lunid(scsi3addr
)) {
3415 struct bmic_sense_subsystem_info
*ssi
;
3417 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3419 dev_warn(&h
->pdev
->dev
,
3420 "%s: out of memory\n", __func__
);
3424 rc
= hpsa_bmic_sense_subsystem_information(h
,
3425 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3427 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3428 h
->sas_address
= sa
;
3433 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3435 dev
->sas_address
= sa
;
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3440 unsigned char scsi3addr
[], u8 page
)
3445 unsigned char *buf
, bufsize
;
3447 buf
= kzalloc(256, GFP_KERNEL
);
3451 /* Get the size of the page list first */
3452 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3453 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3454 buf
, HPSA_VPD_HEADER_SZ
);
3456 goto exit_unsupported
;
3458 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3459 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3463 /* Get the whole VPD page list */
3464 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3465 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3468 goto exit_unsupported
;
3471 for (i
= 1; i
<= pages
; i
++)
3472 if (buf
[3 + i
] == page
)
3473 goto exit_supported
;
3482 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3483 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3489 this_device
->offload_config
= 0;
3490 this_device
->offload_enabled
= 0;
3491 this_device
->offload_to_be_enabled
= 0;
3493 buf
= kzalloc(64, GFP_KERNEL
);
3496 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3498 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3499 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3507 this_device
->offload_config
=
3508 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3509 if (this_device
->offload_config
) {
3510 this_device
->offload_enabled
=
3511 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3512 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3513 this_device
->offload_enabled
= 0;
3515 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3523 unsigned char *device_id
, int index
, int buflen
)
3530 buf
= kzalloc(64, GFP_KERNEL
);
3533 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3535 memcpy(device_id
, &buf
[index
], buflen
);
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3543 void *buf
, int bufsize
,
3544 int extended_response
)
3547 struct CommandList
*c
;
3548 unsigned char scsi3addr
[8];
3549 struct ErrorInfo
*ei
;
3553 /* address the controller */
3554 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3555 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3556 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3560 if (extended_response
)
3561 c
->Request
.CDB
[1] = extended_response
;
3562 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3563 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3567 if (ei
->CommandStatus
!= 0 &&
3568 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3569 hpsa_scsi_interpret_error(h
, c
);
3572 struct ReportLUNdata
*rld
= buf
;
3574 if (rld
->extended_response_flag
!= extended_response
) {
3575 dev_err(&h
->pdev
->dev
,
3576 "report luns requested format %u, got %u\n",
3578 rld
->extended_response_flag
);
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3588 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3590 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3591 HPSA_REPORT_PHYS_EXTENDED
);
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3595 struct ReportLUNdata
*buf
, int bufsize
)
3597 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3601 int bus
, int target
, int lun
)
3604 device
->target
= target
;
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3610 unsigned char scsi3addr
[])
3617 buf
= kzalloc(64, GFP_KERNEL
);
3619 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3621 /* Does controller have VPD for logical volume status? */
3622 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3625 /* Get the size of the VPD return buffer */
3626 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3627 buf
, HPSA_VPD_HEADER_SZ
);
3632 /* Now get the whole VPD buffer */
3633 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3634 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3637 status
= buf
[4]; /* status byte */
3643 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3646 /* Determine offline status of a volume.
3649 * 0xff (offline for unknown reasons)
3650 * # (integer code indicating one of several NOT READY states
3651 * describing why a volume is to be kept offline)
3653 static int hpsa_volume_offline(struct ctlr_info
*h
,
3654 unsigned char scsi3addr
[])
3656 struct CommandList
*c
;
3657 unsigned char *sense
;
3658 u8 sense_key
, asc
, ascq
;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3669 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3670 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3676 sense
= c
->err_info
->SenseInfo
;
3677 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3678 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3680 sense_len
= c
->err_info
->SenseLen
;
3681 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3682 cmd_status
= c
->err_info
->CommandStatus
;
3683 scsi_status
= c
->err_info
->ScsiStatus
;
3685 /* Is the volume 'not ready'? */
3686 if (cmd_status
!= CMD_TARGET_STATUS
||
3687 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3688 sense_key
!= NOT_READY
||
3689 asc
!= ASC_LUN_NOT_READY
) {
3693 /* Determine the reason for not ready state */
3694 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3696 /* Keep volume offline in certain cases: */
3698 case HPSA_LV_UNDERGOING_ERASE
:
3699 case HPSA_LV_NOT_AVAILABLE
:
3700 case HPSA_LV_UNDERGOING_RPI
:
3701 case HPSA_LV_PENDING_RPI
:
3702 case HPSA_LV_ENCRYPTED_NO_KEY
:
3703 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3704 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3705 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3706 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3708 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3709 /* If VPD status page isn't available,
3710 * use ASC/ASCQ to determine state
3712 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3713 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3723 * Find out if a logical device supports aborts by simply trying one.
3724 * Smart Array may claim not to support aborts on logical drives, but
3725 * if a MSA2000 * is connected, the drives on that will be presented
3726 * by the Smart Array as logical drives, and aborts may be sent to
3727 * those devices successfully. So the simplest way to find out is
3728 * to simply try an abort and see how the device responds.
3730 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3731 unsigned char *scsi3addr
)
3733 struct CommandList
*c
;
3734 struct ErrorInfo
*ei
;
3737 u64 tag
= (u64
) -1; /* bogus tag */
3739 /* Assume that physical devices support aborts */
3740 if (!is_logical_dev_addr_mode(scsi3addr
))
3745 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3746 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3748 /* no unmap needed here because no data xfer. */
3750 switch (ei
->CommandStatus
) {
3754 case CMD_UNABORTABLE
:
3755 case CMD_ABORT_FAILED
:
3758 case CMD_TMF_STATUS
:
3759 rc
= hpsa_evaluate_tmf_status(h
, c
);
3769 static int hpsa_update_device_info(struct ctlr_info
*h
,
3770 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3771 unsigned char *is_OBDR_device
)
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3779 unsigned char *inq_buff
;
3780 unsigned char *obdr_sig
;
3783 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3789 /* Do an inquiry to the device to see what it is. */
3790 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3791 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3792 /* Inquiry failed (msg printed already) */
3793 dev_err(&h
->pdev
->dev
,
3794 "hpsa_update_device_info: inquiry failed\n");
3799 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3800 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3802 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3803 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3804 memcpy(this_device
->vendor
, &inq_buff
[8],
3805 sizeof(this_device
->vendor
));
3806 memcpy(this_device
->model
, &inq_buff
[16],
3807 sizeof(this_device
->model
));
3808 memset(this_device
->device_id
, 0,
3809 sizeof(this_device
->device_id
));
3810 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3811 sizeof(this_device
->device_id
));
3813 if ((this_device
->devtype
== TYPE_DISK
||
3814 this_device
->devtype
== TYPE_ZBC
) &&
3815 is_logical_dev_addr_mode(scsi3addr
)) {
3818 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3819 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3820 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3821 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3822 if (volume_offline
< 0 || volume_offline
> 0xff)
3823 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3824 this_device
->volume_offline
= volume_offline
& 0xff;
3826 this_device
->raid_level
= RAID_UNKNOWN
;
3827 this_device
->offload_config
= 0;
3828 this_device
->offload_enabled
= 0;
3829 this_device
->offload_to_be_enabled
= 0;
3830 this_device
->hba_ioaccel_enabled
= 0;
3831 this_device
->volume_offline
= 0;
3832 this_device
->queue_depth
= h
->nr_cmds
;
3835 if (is_OBDR_device
) {
3836 /* See if this is a One-Button-Disaster-Recovery device
3837 * by looking for "$DR-10" at offset 43 in inquiry data.
3839 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3840 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3841 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3842 OBDR_SIG_LEN
) == 0);
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3853 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3855 unsigned long flags
;
3858 * See if this device supports aborts. If we already know
3859 * the device, we already know if it supports aborts, otherwise
3860 * we have to find out if it supports aborts by trying one.
3862 spin_lock_irqsave(&h
->devlock
, flags
);
3863 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3864 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3865 entry
>= 0 && entry
< h
->ndevices
) {
3866 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3867 spin_unlock_irqrestore(&h
->devlock
, flags
);
3869 spin_unlock_irqrestore(&h
->devlock
, flags
);
3870 dev
->supports_aborts
=
3871 hpsa_device_supports_aborts(h
, scsi3addr
);
3872 if (dev
->supports_aborts
< 0)
3873 dev
->supports_aborts
= 0;
3878 * Helper function to assign bus, target, lun mapping of devices.
3879 * Logical drive target and lun are assigned at this time, but
3880 * physical device lun and target assignment are deferred (assigned
3881 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3883 static void figure_bus_target_lun(struct ctlr_info
*h
,
3884 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3886 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3888 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3889 /* physical device, target and lun filled in later */
3890 if (is_hba_lunid(lunaddrbytes
))
3891 hpsa_set_bus_target_lun(device
,
3892 HPSA_HBA_BUS
, 0, lunid
& 0x3fff);
3894 /* defer target, lun assignment for physical devices */
3895 hpsa_set_bus_target_lun(device
,
3896 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3899 /* It's a logical device */
3900 if (device
->external
) {
3901 hpsa_set_bus_target_lun(device
,
3902 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3906 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3912 * Get address of physical disk used for an ioaccel2 mode command:
3913 * 1. Extract ioaccel2 handle from the command.
3914 * 2. Find a matching ioaccel2 handle from list of physical disks.
3916 * 1 and set scsi3addr to address of matching physical
3917 * 0 if no matching physical disk was found.
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3920 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3922 struct io_accel2_cmd
*c2
=
3923 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3924 unsigned long flags
;
3927 spin_lock_irqsave(&h
->devlock
, flags
);
3928 for (i
= 0; i
< h
->ndevices
; i
++)
3929 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3930 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3931 sizeof(h
->dev
[i
]->scsi3addr
));
3932 spin_unlock_irqrestore(&h
->devlock
, flags
);
3935 spin_unlock_irqrestore(&h
->devlock
, flags
);
3939 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3940 int i
, int nphysicals
, int nlocal_logicals
)
3942 /* In report logicals, local logicals are listed first,
3943 * then any externals.
3945 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3947 if (i
== raid_ctlr_position
)
3950 if (i
< logicals_start
)
3953 /* i is in logicals range, but still within local logicals */
3954 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3957 return 1; /* it's an external lun */
3961 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3962 * logdev. The number of luns in physdev and logdev are returned in
3963 * *nphysicals and *nlogicals, respectively.
3964 * Returns 0 on success, -1 otherwise.
3966 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3967 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3968 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3970 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3971 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3974 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3975 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3976 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3978 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3980 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3981 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3984 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3985 /* Reject Logicals in excess of our max capability. */
3986 if (*nlogicals
> HPSA_MAX_LUN
) {
3987 dev_warn(&h
->pdev
->dev
,
3988 "maximum logical LUNs (%d) exceeded. "
3989 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3990 *nlogicals
- HPSA_MAX_LUN
);
3991 *nlogicals
= HPSA_MAX_LUN
;
3993 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3994 dev_warn(&h
->pdev
->dev
,
3995 "maximum logical + physical LUNs (%d) exceeded. "
3996 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3997 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3998 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4003 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4004 int i
, int nphysicals
, int nlogicals
,
4005 struct ReportExtendedLUNdata
*physdev_list
,
4006 struct ReportLUNdata
*logdev_list
)
4008 /* Helper function, figure out where the LUN ID info is coming from
4009 * given index i, lists of physical and logical devices, where in
4010 * the list the raid controller is supposed to appear (first or last)
4013 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4014 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4016 if (i
== raid_ctlr_position
)
4017 return RAID_CTLR_LUNID
;
4019 if (i
< logicals_start
)
4020 return &physdev_list
->LUN
[i
-
4021 (raid_ctlr_position
== 0)].lunid
[0];
4023 if (i
< last_device
)
4024 return &logdev_list
->LUN
[i
- nphysicals
-
4025 (raid_ctlr_position
== 0)][0];
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4032 struct hpsa_scsi_dev_t
*dev
,
4033 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4034 struct bmic_identify_physical_device
*id_phys
)
4037 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4039 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4040 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4041 dev
->hba_ioaccel_enabled
= 1;
4042 memset(id_phys
, 0, sizeof(*id_phys
));
4043 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4044 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4047 /* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4051 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4052 DRIVE_CMDS_RESERVED_FOR_FW
;
4054 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4058 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4059 struct bmic_identify_physical_device
*id_phys
)
4061 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4063 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4064 this_device
->hba_ioaccel_enabled
= 1;
4066 memcpy(&this_device
->active_path_index
,
4067 &id_phys
->active_path_number
,
4068 sizeof(this_device
->active_path_index
));
4069 memcpy(&this_device
->path_map
,
4070 &id_phys
->redundant_path_present_map
,
4071 sizeof(this_device
->path_map
));
4072 memcpy(&this_device
->box
,
4073 &id_phys
->alternate_paths_phys_box_on_port
,
4074 sizeof(this_device
->box
));
4075 memcpy(&this_device
->phys_connector
,
4076 &id_phys
->alternate_paths_phys_connector
,
4077 sizeof(this_device
->phys_connector
));
4078 memcpy(&this_device
->bay
,
4079 &id_phys
->phys_bay_in_box
,
4080 sizeof(this_device
->bay
));
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4085 struct bmic_identify_controller
*id_ctlr
,
4091 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4095 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4096 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4098 if (id_ctlr
->configured_logical_drive_count
< 256)
4099 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4101 *nlocals
= le16_to_cpu(
4102 id_ctlr
->extended_logical_unit_count
);
4109 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4111 /* the idea here is we could get notified
4112 * that some devices have changed, so we do a report
4113 * physical luns and report logical luns cmd, and adjust
4114 * our list of devices accordingly.
4116 * The scsi3addr's of devices won't change so long as the
4117 * adapter is not reset. That means we can rescan and
4118 * tell which devices we already know about, vs. new
4119 * devices, vs. disappearing devices.
4121 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4122 struct ReportLUNdata
*logdev_list
= NULL
;
4123 struct bmic_identify_physical_device
*id_phys
= NULL
;
4124 struct bmic_identify_controller
*id_ctlr
= NULL
;
4127 u32 nlocal_logicals
= 0;
4128 u32 ndev_allocated
= 0;
4129 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4131 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4132 int raid_ctlr_position
;
4133 bool physical_device
;
4134 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4136 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4137 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4138 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4139 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4140 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4141 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4143 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4144 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4145 dev_err(&h
->pdev
->dev
, "out of memory\n");
4148 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4150 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4152 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4153 logdev_list
, &nlogicals
)) {
4154 h
->drv_req_rescan
= 1;
4158 /* Set number of local logicals (non PTRAID) */
4159 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4160 dev_warn(&h
->pdev
->dev
,
4161 "%s: Can't determine number of local logical devices.\n",
4165 /* We might see up to the maximum number of logical and physical disks
4166 * plus external target devices, and a device for the local RAID
4169 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4171 /* Allocate the per device structures */
4172 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4173 if (i
>= HPSA_MAX_DEVICES
) {
4174 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4175 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4176 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4180 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4181 if (!currentsd
[i
]) {
4182 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4183 __FILE__
, __LINE__
);
4184 h
->drv_req_rescan
= 1;
4190 if (is_scsi_rev_5(h
))
4191 raid_ctlr_position
= 0;
4193 raid_ctlr_position
= nphysicals
+ nlogicals
;
4195 /* adjust our table of devices */
4196 n_ext_target_devs
= 0;
4197 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4198 u8
*lunaddrbytes
, is_OBDR
= 0;
4200 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4202 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4204 /* Figure out where the LUN ID info is coming from */
4205 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4206 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4208 /* skip masked non-disk devices */
4209 if (MASKED_DEVICE(lunaddrbytes
) && physical_device
&&
4210 (physdev_list
->LUN
[phys_dev_index
].device_type
!= 0x06) &&
4211 (physdev_list
->LUN
[phys_dev_index
].device_flags
& 0x01))
4214 /* Get device type, vendor, model, device id */
4215 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4217 if (rc
== -ENOMEM
) {
4218 dev_warn(&h
->pdev
->dev
,
4219 "Out of memory, rescan deferred.\n");
4220 h
->drv_req_rescan
= 1;
4224 dev_warn(&h
->pdev
->dev
,
4225 "Inquiry failed, skipping device.\n");
4229 /* Determine if this is a lun from an external target array */
4230 tmpdevice
->external
=
4231 figure_external_status(h
, raid_ctlr_position
, i
,
4232 nphysicals
, nlocal_logicals
);
4234 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4235 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4236 this_device
= currentsd
[ncurrent
];
4238 /* Turn on discovery_polling if there are ext target devices.
4239 * Event-based change notification is unreliable for those.
4241 if (!h
->discovery_polling
) {
4242 if (tmpdevice
->external
) {
4243 h
->discovery_polling
= 1;
4244 dev_info(&h
->pdev
->dev
,
4245 "External target, activate discovery polling.\n");
4250 *this_device
= *tmpdevice
;
4251 this_device
->physical_device
= physical_device
;
4254 * Expose all devices except for physical devices that
4257 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4258 this_device
->expose_device
= 0;
4260 this_device
->expose_device
= 1;
4264 * Get the SAS address for physical devices that are exposed.
4266 if (this_device
->physical_device
&& this_device
->expose_device
)
4267 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4269 switch (this_device
->devtype
) {
4271 /* We don't *really* support actual CD-ROM devices,
4272 * just "One Button Disaster Recovery" tape drive
4273 * which temporarily pretends to be a CD-ROM drive.
4274 * So we check that the device is really an OBDR tape
4275 * device by checking for "$DR-10" in bytes 43-48 of
4283 if (this_device
->physical_device
) {
4284 /* The disk is in HBA mode. */
4285 /* Never use RAID mapper in HBA mode. */
4286 this_device
->offload_enabled
= 0;
4287 hpsa_get_ioaccel_drive_info(h
, this_device
,
4288 physdev_list
, phys_dev_index
, id_phys
);
4289 hpsa_get_path_info(this_device
,
4290 physdev_list
, phys_dev_index
, id_phys
);
4295 case TYPE_MEDIUM_CHANGER
:
4298 case TYPE_ENCLOSURE
:
4299 if (!this_device
->external
)
4300 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4301 physdev_list
, phys_dev_index
,
4306 /* Only present the Smartarray HBA as a RAID controller.
4307 * If it's a RAID controller other than the HBA itself
4308 * (an external RAID controller, MSA500 or similar)
4311 if (!is_hba_lunid(lunaddrbytes
))
4318 if (ncurrent
>= HPSA_MAX_DEVICES
)
4322 if (h
->sas_host
== NULL
) {
4325 rc
= hpsa_add_sas_host(h
);
4327 dev_warn(&h
->pdev
->dev
,
4328 "Could not add sas host %d\n", rc
);
4333 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4336 for (i
= 0; i
< ndev_allocated
; i
++)
4337 kfree(currentsd
[i
]);
4339 kfree(physdev_list
);
4345 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4346 struct scatterlist
*sg
)
4348 u64 addr64
= (u64
) sg_dma_address(sg
);
4349 unsigned int len
= sg_dma_len(sg
);
4351 desc
->Addr
= cpu_to_le64(addr64
);
4352 desc
->Len
= cpu_to_le32(len
);
4357 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4358 * dma mapping and fills in the scatter gather entries of the
4361 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4362 struct CommandList
*cp
,
4363 struct scsi_cmnd
*cmd
)
4365 struct scatterlist
*sg
;
4366 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4367 struct SGDescriptor
*curr_sg
;
4369 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4371 use_sg
= scsi_dma_map(cmd
);
4376 goto sglist_finished
;
4379 * If the number of entries is greater than the max for a single list,
4380 * then we have a chained list; we will set up all but one entry in the
4381 * first list (the last entry is saved for link information);
4382 * otherwise, we don't have a chained list and we'll set up at each of
4383 * the entries in the one list.
4386 chained
= use_sg
> h
->max_cmd_sg_entries
;
4387 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4388 last_sg
= scsi_sg_count(cmd
) - 1;
4389 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4390 hpsa_set_sg_descriptor(curr_sg
, sg
);
4396 * Continue with the chained list. Set curr_sg to the chained
4397 * list. Modify the limit to the total count less the entries
4398 * we've already set up. Resume the scan at the list entry
4399 * where the previous loop left off.
4401 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4402 sg_limit
= use_sg
- sg_limit
;
4403 for_each_sg(sg
, sg
, sg_limit
, i
) {
4404 hpsa_set_sg_descriptor(curr_sg
, sg
);
4409 /* Back the pointer up to the last entry and mark it as "last". */
4410 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4412 if (use_sg
+ chained
> h
->maxSG
)
4413 h
->maxSG
= use_sg
+ chained
;
4416 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4417 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4418 if (hpsa_map_sg_chain_block(h
, cp
)) {
4419 scsi_dma_unmap(cmd
);
4427 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4428 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4432 #define IO_ACCEL_INELIGIBLE (1)
4433 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4439 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4446 if (*cdb_len
== 6) {
4447 block
= get_unaligned_be16(&cdb
[2]);
4452 BUG_ON(*cdb_len
!= 12);
4453 block
= get_unaligned_be32(&cdb
[2]);
4454 block_cnt
= get_unaligned_be32(&cdb
[6]);
4456 if (block_cnt
> 0xffff)
4457 return IO_ACCEL_INELIGIBLE
;
4459 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4461 cdb
[2] = (u8
) (block
>> 24);
4462 cdb
[3] = (u8
) (block
>> 16);
4463 cdb
[4] = (u8
) (block
>> 8);
4464 cdb
[5] = (u8
) (block
);
4466 cdb
[7] = (u8
) (block_cnt
>> 8);
4467 cdb
[8] = (u8
) (block_cnt
);
4475 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4476 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4477 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4479 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4480 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4482 unsigned int total_len
= 0;
4483 struct scatterlist
*sg
;
4486 struct SGDescriptor
*curr_sg
;
4487 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4489 /* TODO: implement chaining support */
4490 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4491 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4492 return IO_ACCEL_INELIGIBLE
;
4495 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4497 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4498 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4499 return IO_ACCEL_INELIGIBLE
;
4502 c
->cmd_type
= CMD_IOACCEL1
;
4504 /* Adjust the DMA address to point to the accelerated command buffer */
4505 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4506 (c
->cmdindex
* sizeof(*cp
));
4507 BUG_ON(c
->busaddr
& 0x0000007F);
4509 use_sg
= scsi_dma_map(cmd
);
4511 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4517 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4518 addr64
= (u64
) sg_dma_address(sg
);
4519 len
= sg_dma_len(sg
);
4521 curr_sg
->Addr
= cpu_to_le64(addr64
);
4522 curr_sg
->Len
= cpu_to_le32(len
);
4523 curr_sg
->Ext
= cpu_to_le32(0);
4526 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4528 switch (cmd
->sc_data_direction
) {
4530 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4532 case DMA_FROM_DEVICE
:
4533 control
|= IOACCEL1_CONTROL_DATA_IN
;
4536 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4539 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4540 cmd
->sc_data_direction
);
4545 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4548 c
->Header
.SGList
= use_sg
;
4549 /* Fill out the command structure to submit */
4550 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4551 cp
->transfer_len
= cpu_to_le32(total_len
);
4552 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4553 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4554 cp
->control
= cpu_to_le32(control
);
4555 memcpy(cp
->CDB
, cdb
, cdb_len
);
4556 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4557 /* Tag was already set at init time. */
4558 enqueue_cmd_and_start_io(h
, c
);
4563 * Queue a command directly to a device behind the controller using the
4564 * I/O accelerator path.
4566 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4567 struct CommandList
*c
)
4569 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4570 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4574 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4575 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4579 * Set encryption parameters for the ioaccel2 request
4581 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4582 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4584 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4585 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4586 struct raid_map_data
*map
= &dev
->raid_map
;
4589 /* Are we doing encryption on this device */
4590 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4592 /* Set the data encryption key index. */
4593 cp
->dekindex
= map
->dekindex
;
4595 /* Set the encryption enable flag, encoded into direction field. */
4596 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4598 /* Set encryption tweak values based on logical block address
4599 * If block size is 512, tweak value is LBA.
4600 * For other block sizes, tweak is (LBA * block size)/ 512)
4602 switch (cmd
->cmnd
[0]) {
4603 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4606 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4610 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4613 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4617 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4620 dev_err(&h
->pdev
->dev
,
4621 "ERROR: %s: size (0x%x) not supported for encryption\n",
4622 __func__
, cmd
->cmnd
[0]);
4627 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4628 first_block
= first_block
*
4629 le32_to_cpu(map
->volume_blk_size
)/512;
4631 cp
->tweak_lower
= cpu_to_le32(first_block
);
4632 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4635 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4636 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4637 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4639 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4640 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4641 struct ioaccel2_sg_element
*curr_sg
;
4643 struct scatterlist
*sg
;
4648 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4650 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4651 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4652 return IO_ACCEL_INELIGIBLE
;
4655 c
->cmd_type
= CMD_IOACCEL2
;
4656 /* Adjust the DMA address to point to the accelerated command buffer */
4657 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4658 (c
->cmdindex
* sizeof(*cp
));
4659 BUG_ON(c
->busaddr
& 0x0000007F);
4661 memset(cp
, 0, sizeof(*cp
));
4662 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4664 use_sg
= scsi_dma_map(cmd
);
4666 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4672 if (use_sg
> h
->ioaccel_maxsg
) {
4673 addr64
= le64_to_cpu(
4674 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4675 curr_sg
->address
= cpu_to_le64(addr64
);
4676 curr_sg
->length
= 0;
4677 curr_sg
->reserved
[0] = 0;
4678 curr_sg
->reserved
[1] = 0;
4679 curr_sg
->reserved
[2] = 0;
4680 curr_sg
->chain_indicator
= 0x80;
4682 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4684 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4685 addr64
= (u64
) sg_dma_address(sg
);
4686 len
= sg_dma_len(sg
);
4688 curr_sg
->address
= cpu_to_le64(addr64
);
4689 curr_sg
->length
= cpu_to_le32(len
);
4690 curr_sg
->reserved
[0] = 0;
4691 curr_sg
->reserved
[1] = 0;
4692 curr_sg
->reserved
[2] = 0;
4693 curr_sg
->chain_indicator
= 0;
4697 switch (cmd
->sc_data_direction
) {
4699 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4700 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4702 case DMA_FROM_DEVICE
:
4703 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4704 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4707 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4708 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4711 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4712 cmd
->sc_data_direction
);
4717 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4718 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4721 /* Set encryption parameters, if necessary */
4722 set_encrypt_ioaccel2(h
, c
, cp
);
4724 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4725 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4726 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4728 cp
->data_len
= cpu_to_le32(total_len
);
4729 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4730 offsetof(struct io_accel2_cmd
, error_data
));
4731 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4733 /* fill in sg elements */
4734 if (use_sg
> h
->ioaccel_maxsg
) {
4736 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4737 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4738 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4739 scsi_dma_unmap(cmd
);
4743 cp
->sg_count
= (u8
) use_sg
;
4745 enqueue_cmd_and_start_io(h
, c
);
4750 * Queue a command to the correct I/O accelerator path.
4752 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4753 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4754 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4756 /* Try to honor the device's queue depth */
4757 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4758 phys_disk
->queue_depth
) {
4759 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4760 return IO_ACCEL_INELIGIBLE
;
4762 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4763 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4764 cdb
, cdb_len
, scsi3addr
,
4767 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4768 cdb
, cdb_len
, scsi3addr
,
4772 static void raid_map_helper(struct raid_map_data
*map
,
4773 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4775 if (offload_to_mirror
== 0) {
4776 /* use physical disk in the first mirrored group. */
4777 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4781 /* determine mirror group that *map_index indicates */
4782 *current_group
= *map_index
/
4783 le16_to_cpu(map
->data_disks_per_row
);
4784 if (offload_to_mirror
== *current_group
)
4786 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4787 /* select map index from next group */
4788 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4791 /* select map index from first group */
4792 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4795 } while (offload_to_mirror
!= *current_group
);
4799 * Attempt to perform offload RAID mapping for a logical volume I/O.
4801 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4802 struct CommandList
*c
)
4804 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4805 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4806 struct raid_map_data
*map
= &dev
->raid_map
;
4807 struct raid_map_disk_data
*dd
= &map
->data
[0];
4810 u64 first_block
, last_block
;
4813 u64 first_row
, last_row
;
4814 u32 first_row_offset
, last_row_offset
;
4815 u32 first_column
, last_column
;
4816 u64 r0_first_row
, r0_last_row
;
4817 u32 r5or6_blocks_per_row
;
4818 u64 r5or6_first_row
, r5or6_last_row
;
4819 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4820 u32 r5or6_first_column
, r5or6_last_column
;
4821 u32 total_disks_per_row
;
4823 u32 first_group
, last_group
, current_group
;
4831 #if BITS_PER_LONG == 32
4834 int offload_to_mirror
;
4836 /* check for valid opcode, get LBA and block count */
4837 switch (cmd
->cmnd
[0]) {
4841 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4842 block_cnt
= cmd
->cmnd
[4];
4850 (((u64
) cmd
->cmnd
[2]) << 24) |
4851 (((u64
) cmd
->cmnd
[3]) << 16) |
4852 (((u64
) cmd
->cmnd
[4]) << 8) |
4855 (((u32
) cmd
->cmnd
[7]) << 8) |
4862 (((u64
) cmd
->cmnd
[2]) << 24) |
4863 (((u64
) cmd
->cmnd
[3]) << 16) |
4864 (((u64
) cmd
->cmnd
[4]) << 8) |
4867 (((u32
) cmd
->cmnd
[6]) << 24) |
4868 (((u32
) cmd
->cmnd
[7]) << 16) |
4869 (((u32
) cmd
->cmnd
[8]) << 8) |
4876 (((u64
) cmd
->cmnd
[2]) << 56) |
4877 (((u64
) cmd
->cmnd
[3]) << 48) |
4878 (((u64
) cmd
->cmnd
[4]) << 40) |
4879 (((u64
) cmd
->cmnd
[5]) << 32) |
4880 (((u64
) cmd
->cmnd
[6]) << 24) |
4881 (((u64
) cmd
->cmnd
[7]) << 16) |
4882 (((u64
) cmd
->cmnd
[8]) << 8) |
4885 (((u32
) cmd
->cmnd
[10]) << 24) |
4886 (((u32
) cmd
->cmnd
[11]) << 16) |
4887 (((u32
) cmd
->cmnd
[12]) << 8) |
4891 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4893 last_block
= first_block
+ block_cnt
- 1;
4895 /* check for write to non-RAID-0 */
4896 if (is_write
&& dev
->raid_level
!= 0)
4897 return IO_ACCEL_INELIGIBLE
;
4899 /* check for invalid block or wraparound */
4900 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4901 last_block
< first_block
)
4902 return IO_ACCEL_INELIGIBLE
;
4904 /* calculate stripe information for the request */
4905 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4906 le16_to_cpu(map
->strip_size
);
4907 strip_size
= le16_to_cpu(map
->strip_size
);
4908 #if BITS_PER_LONG == 32
4909 tmpdiv
= first_block
;
4910 (void) do_div(tmpdiv
, blocks_per_row
);
4912 tmpdiv
= last_block
;
4913 (void) do_div(tmpdiv
, blocks_per_row
);
4915 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4916 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4917 tmpdiv
= first_row_offset
;
4918 (void) do_div(tmpdiv
, strip_size
);
4919 first_column
= tmpdiv
;
4920 tmpdiv
= last_row_offset
;
4921 (void) do_div(tmpdiv
, strip_size
);
4922 last_column
= tmpdiv
;
4924 first_row
= first_block
/ blocks_per_row
;
4925 last_row
= last_block
/ blocks_per_row
;
4926 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4927 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4928 first_column
= first_row_offset
/ strip_size
;
4929 last_column
= last_row_offset
/ strip_size
;
4932 /* if this isn't a single row/column then give to the controller */
4933 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4934 return IO_ACCEL_INELIGIBLE
;
4936 /* proceeding with driver mapping */
4937 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4938 le16_to_cpu(map
->metadata_disks_per_row
);
4939 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4940 le16_to_cpu(map
->row_cnt
);
4941 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4943 switch (dev
->raid_level
) {
4945 break; /* nothing special to do */
4947 /* Handles load balance across RAID 1 members.
4948 * (2-drive R1 and R10 with even # of drives.)
4949 * Appropriate for SSDs, not optimal for HDDs
4951 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4952 if (dev
->offload_to_mirror
)
4953 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4954 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4957 /* Handles N-way mirrors (R1-ADM)
4958 * and R10 with # of drives divisible by 3.)
4960 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4962 offload_to_mirror
= dev
->offload_to_mirror
;
4963 raid_map_helper(map
, offload_to_mirror
,
4964 &map_index
, ¤t_group
);
4965 /* set mirror group to use next time */
4967 (offload_to_mirror
>=
4968 le16_to_cpu(map
->layout_map_count
) - 1)
4969 ? 0 : offload_to_mirror
+ 1;
4970 dev
->offload_to_mirror
= offload_to_mirror
;
4971 /* Avoid direct use of dev->offload_to_mirror within this
4972 * function since multiple threads might simultaneously
4973 * increment it beyond the range of dev->layout_map_count -1.
4978 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4981 /* Verify first and last block are in same RAID group */
4982 r5or6_blocks_per_row
=
4983 le16_to_cpu(map
->strip_size
) *
4984 le16_to_cpu(map
->data_disks_per_row
);
4985 BUG_ON(r5or6_blocks_per_row
== 0);
4986 stripesize
= r5or6_blocks_per_row
*
4987 le16_to_cpu(map
->layout_map_count
);
4988 #if BITS_PER_LONG == 32
4989 tmpdiv
= first_block
;
4990 first_group
= do_div(tmpdiv
, stripesize
);
4991 tmpdiv
= first_group
;
4992 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4993 first_group
= tmpdiv
;
4994 tmpdiv
= last_block
;
4995 last_group
= do_div(tmpdiv
, stripesize
);
4996 tmpdiv
= last_group
;
4997 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4998 last_group
= tmpdiv
;
5000 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5001 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5003 if (first_group
!= last_group
)
5004 return IO_ACCEL_INELIGIBLE
;
5006 /* Verify request is in a single row of RAID 5/6 */
5007 #if BITS_PER_LONG == 32
5008 tmpdiv
= first_block
;
5009 (void) do_div(tmpdiv
, stripesize
);
5010 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5011 tmpdiv
= last_block
;
5012 (void) do_div(tmpdiv
, stripesize
);
5013 r5or6_last_row
= r0_last_row
= tmpdiv
;
5015 first_row
= r5or6_first_row
= r0_first_row
=
5016 first_block
/ stripesize
;
5017 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5019 if (r5or6_first_row
!= r5or6_last_row
)
5020 return IO_ACCEL_INELIGIBLE
;
5023 /* Verify request is in a single column */
5024 #if BITS_PER_LONG == 32
5025 tmpdiv
= first_block
;
5026 first_row_offset
= do_div(tmpdiv
, stripesize
);
5027 tmpdiv
= first_row_offset
;
5028 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5029 r5or6_first_row_offset
= first_row_offset
;
5030 tmpdiv
= last_block
;
5031 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5032 tmpdiv
= r5or6_last_row_offset
;
5033 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5034 tmpdiv
= r5or6_first_row_offset
;
5035 (void) do_div(tmpdiv
, map
->strip_size
);
5036 first_column
= r5or6_first_column
= tmpdiv
;
5037 tmpdiv
= r5or6_last_row_offset
;
5038 (void) do_div(tmpdiv
, map
->strip_size
);
5039 r5or6_last_column
= tmpdiv
;
5041 first_row_offset
= r5or6_first_row_offset
=
5042 (u32
)((first_block
% stripesize
) %
5043 r5or6_blocks_per_row
);
5045 r5or6_last_row_offset
=
5046 (u32
)((last_block
% stripesize
) %
5047 r5or6_blocks_per_row
);
5049 first_column
= r5or6_first_column
=
5050 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5052 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5054 if (r5or6_first_column
!= r5or6_last_column
)
5055 return IO_ACCEL_INELIGIBLE
;
5057 /* Request is eligible */
5058 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5059 le16_to_cpu(map
->row_cnt
);
5061 map_index
= (first_group
*
5062 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5063 (map_row
* total_disks_per_row
) + first_column
;
5066 return IO_ACCEL_INELIGIBLE
;
5069 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5070 return IO_ACCEL_INELIGIBLE
;
5072 c
->phys_disk
= dev
->phys_disk
[map_index
];
5074 return IO_ACCEL_INELIGIBLE
;
5076 disk_handle
= dd
[map_index
].ioaccel_handle
;
5077 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5078 first_row
* le16_to_cpu(map
->strip_size
) +
5079 (first_row_offset
- first_column
*
5080 le16_to_cpu(map
->strip_size
));
5081 disk_block_cnt
= block_cnt
;
5083 /* handle differing logical/physical block sizes */
5084 if (map
->phys_blk_shift
) {
5085 disk_block
<<= map
->phys_blk_shift
;
5086 disk_block_cnt
<<= map
->phys_blk_shift
;
5088 BUG_ON(disk_block_cnt
> 0xffff);
5090 /* build the new CDB for the physical disk I/O */
5091 if (disk_block
> 0xffffffff) {
5092 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5094 cdb
[2] = (u8
) (disk_block
>> 56);
5095 cdb
[3] = (u8
) (disk_block
>> 48);
5096 cdb
[4] = (u8
) (disk_block
>> 40);
5097 cdb
[5] = (u8
) (disk_block
>> 32);
5098 cdb
[6] = (u8
) (disk_block
>> 24);
5099 cdb
[7] = (u8
) (disk_block
>> 16);
5100 cdb
[8] = (u8
) (disk_block
>> 8);
5101 cdb
[9] = (u8
) (disk_block
);
5102 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5103 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5104 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5105 cdb
[13] = (u8
) (disk_block_cnt
);
5110 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5112 cdb
[2] = (u8
) (disk_block
>> 24);
5113 cdb
[3] = (u8
) (disk_block
>> 16);
5114 cdb
[4] = (u8
) (disk_block
>> 8);
5115 cdb
[5] = (u8
) (disk_block
);
5117 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5118 cdb
[8] = (u8
) (disk_block_cnt
);
5122 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5124 dev
->phys_disk
[map_index
]);
5128 * Submit commands down the "normal" RAID stack path
5129 * All callers to hpsa_ciss_submit must check lockup_detected
5130 * beforehand, before (opt.) and after calling cmd_alloc
5132 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5133 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5134 unsigned char scsi3addr
[])
5136 cmd
->host_scribble
= (unsigned char *) c
;
5137 c
->cmd_type
= CMD_SCSI
;
5139 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5140 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5141 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5143 /* Fill in the request block... */
5145 c
->Request
.Timeout
= 0;
5146 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5147 c
->Request
.CDBLen
= cmd
->cmd_len
;
5148 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5149 switch (cmd
->sc_data_direction
) {
5151 c
->Request
.type_attr_dir
=
5152 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5154 case DMA_FROM_DEVICE
:
5155 c
->Request
.type_attr_dir
=
5156 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5159 c
->Request
.type_attr_dir
=
5160 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5162 case DMA_BIDIRECTIONAL
:
5163 /* This can happen if a buggy application does a scsi passthru
5164 * and sets both inlen and outlen to non-zero. ( see
5165 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5168 c
->Request
.type_attr_dir
=
5169 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5170 /* This is technically wrong, and hpsa controllers should
5171 * reject it with CMD_INVALID, which is the most correct
5172 * response, but non-fibre backends appear to let it
5173 * slide by, and give the same results as if this field
5174 * were set correctly. Either way is acceptable for
5175 * our purposes here.
5181 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5182 cmd
->sc_data_direction
);
5187 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5188 hpsa_cmd_resolve_and_free(h
, c
);
5189 return SCSI_MLQUEUE_HOST_BUSY
;
5191 enqueue_cmd_and_start_io(h
, c
);
5192 /* the cmd'll come back via intr handler in complete_scsi_command() */
5196 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5197 struct CommandList
*c
)
5199 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5201 /* Zero out all of commandlist except the last field, refcount */
5202 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5203 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5204 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5205 c
->err_info
= h
->errinfo_pool
+ index
;
5206 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5207 err_dma_handle
= h
->errinfo_pool_dhandle
5208 + index
* sizeof(*c
->err_info
);
5209 c
->cmdindex
= index
;
5210 c
->busaddr
= (u32
) cmd_dma_handle
;
5211 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5212 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5214 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5217 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5221 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5222 struct CommandList
*c
= h
->cmd_pool
+ i
;
5224 hpsa_cmd_init(h
, i
, c
);
5225 atomic_set(&c
->refcount
, 0);
5229 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5230 struct CommandList
*c
)
5232 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5234 BUG_ON(c
->cmdindex
!= index
);
5236 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5237 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5238 c
->busaddr
= (u32
) cmd_dma_handle
;
5241 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5242 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5243 unsigned char *scsi3addr
)
5245 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5246 int rc
= IO_ACCEL_INELIGIBLE
;
5248 cmd
->host_scribble
= (unsigned char *) c
;
5250 if (dev
->offload_enabled
) {
5251 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5252 c
->cmd_type
= CMD_SCSI
;
5254 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5255 if (rc
< 0) /* scsi_dma_map failed. */
5256 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5257 } else if (dev
->hba_ioaccel_enabled
) {
5258 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5259 c
->cmd_type
= CMD_SCSI
;
5261 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5262 if (rc
< 0) /* scsi_dma_map failed. */
5263 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5268 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5270 struct scsi_cmnd
*cmd
;
5271 struct hpsa_scsi_dev_t
*dev
;
5272 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5275 dev
= cmd
->device
->hostdata
;
5277 cmd
->result
= DID_NO_CONNECT
<< 16;
5278 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5280 if (c
->reset_pending
)
5281 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5282 if (c
->abort_pending
)
5283 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5284 if (c
->cmd_type
== CMD_IOACCEL2
) {
5285 struct ctlr_info
*h
= c
->h
;
5286 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5289 if (c2
->error_data
.serv_response
==
5290 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5291 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5294 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5296 * If we get here, it means dma mapping failed.
5297 * Try again via scsi mid layer, which will
5298 * then get SCSI_MLQUEUE_HOST_BUSY.
5300 cmd
->result
= DID_IMM_RETRY
<< 16;
5301 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5303 /* else, fall thru and resubmit down CISS path */
5306 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5307 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5309 * If we get here, it means dma mapping failed. Try
5310 * again via scsi mid layer, which will then get
5311 * SCSI_MLQUEUE_HOST_BUSY.
5313 * hpsa_ciss_submit will have already freed c
5314 * if it encountered a dma mapping failure.
5316 cmd
->result
= DID_IMM_RETRY
<< 16;
5317 cmd
->scsi_done(cmd
);
5321 /* Running in struct Scsi_Host->host_lock less mode */
5322 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5324 struct ctlr_info
*h
;
5325 struct hpsa_scsi_dev_t
*dev
;
5326 unsigned char scsi3addr
[8];
5327 struct CommandList
*c
;
5330 /* Get the ptr to our adapter structure out of cmd->host. */
5331 h
= sdev_to_hba(cmd
->device
);
5333 BUG_ON(cmd
->request
->tag
< 0);
5335 dev
= cmd
->device
->hostdata
;
5337 cmd
->result
= NOT_READY
<< 16; /* host byte */
5338 cmd
->scsi_done(cmd
);
5343 cmd
->result
= DID_NO_CONNECT
<< 16;
5344 cmd
->scsi_done(cmd
);
5348 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5350 if (unlikely(lockup_detected(h
))) {
5351 cmd
->result
= DID_NO_CONNECT
<< 16;
5352 cmd
->scsi_done(cmd
);
5355 c
= cmd_tagged_alloc(h
, cmd
);
5358 * Call alternate submit routine for I/O accelerated commands.
5359 * Retries always go down the normal I/O path.
5361 if (likely(cmd
->retries
== 0 &&
5362 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5363 h
->acciopath_status
)) {
5364 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5367 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5368 hpsa_cmd_resolve_and_free(h
, c
);
5369 return SCSI_MLQUEUE_HOST_BUSY
;
5372 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5375 static void hpsa_scan_complete(struct ctlr_info
*h
)
5377 unsigned long flags
;
5379 spin_lock_irqsave(&h
->scan_lock
, flags
);
5380 h
->scan_finished
= 1;
5381 wake_up_all(&h
->scan_wait_queue
);
5382 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5385 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5387 struct ctlr_info
*h
= shost_to_hba(sh
);
5388 unsigned long flags
;
5391 * Don't let rescans be initiated on a controller known to be locked
5392 * up. If the controller locks up *during* a rescan, that thread is
5393 * probably hosed, but at least we can prevent new rescan threads from
5394 * piling up on a locked up controller.
5396 if (unlikely(lockup_detected(h
)))
5397 return hpsa_scan_complete(h
);
5399 /* wait until any scan already in progress is finished. */
5401 spin_lock_irqsave(&h
->scan_lock
, flags
);
5402 if (h
->scan_finished
)
5404 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5405 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5406 /* Note: We don't need to worry about a race between this
5407 * thread and driver unload because the midlayer will
5408 * have incremented the reference count, so unload won't
5409 * happen if we're in here.
5412 h
->scan_finished
= 0; /* mark scan as in progress */
5413 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5415 if (unlikely(lockup_detected(h
)))
5416 return hpsa_scan_complete(h
);
5418 hpsa_update_scsi_devices(h
);
5420 hpsa_scan_complete(h
);
5423 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5425 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5432 else if (qdepth
> logical_drive
->queue_depth
)
5433 qdepth
= logical_drive
->queue_depth
;
5435 return scsi_change_queue_depth(sdev
, qdepth
);
5438 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5439 unsigned long elapsed_time
)
5441 struct ctlr_info
*h
= shost_to_hba(sh
);
5442 unsigned long flags
;
5445 spin_lock_irqsave(&h
->scan_lock
, flags
);
5446 finished
= h
->scan_finished
;
5447 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5451 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5453 struct Scsi_Host
*sh
;
5455 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5457 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5464 sh
->max_channel
= 3;
5465 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5466 sh
->max_lun
= HPSA_MAX_LUN
;
5467 sh
->max_id
= HPSA_MAX_LUN
;
5468 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5469 sh
->cmd_per_lun
= sh
->can_queue
;
5470 sh
->sg_tablesize
= h
->maxsgentries
;
5471 sh
->transportt
= hpsa_sas_transport_template
;
5472 sh
->hostdata
[0] = (unsigned long) h
;
5473 sh
->irq
= h
->intr
[h
->intr_mode
];
5474 sh
->unique_id
= sh
->irq
;
5480 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5484 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5486 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5489 scsi_scan_host(h
->scsi_host
);
5494 * The block layer has already gone to the trouble of picking out a unique,
5495 * small-integer tag for this request. We use an offset from that value as
5496 * an index to select our command block. (The offset allows us to reserve the
5497 * low-numbered entries for our own uses.)
5499 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5501 int idx
= scmd
->request
->tag
;
5506 /* Offset to leave space for internal cmds. */
5507 return idx
+= HPSA_NRESERVED_CMDS
;
5511 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5512 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5514 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5515 struct CommandList
*c
, unsigned char lunaddr
[],
5520 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5521 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5522 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5523 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5526 /* no unmap needed here because no data xfer. */
5528 /* Check if the unit is already ready. */
5529 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5533 * The first command sent after reset will receive "unit attention" to
5534 * indicate that the LUN has been reset...this is actually what we're
5535 * looking for (but, success is good too).
5537 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5538 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5539 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5540 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5547 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5548 * returns zero when the unit is ready, and non-zero when giving up.
5550 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5551 struct CommandList
*c
,
5552 unsigned char lunaddr
[], int reply_queue
)
5556 int waittime
= 1; /* seconds */
5558 /* Send test unit ready until device ready, or give up. */
5559 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5562 * Wait for a bit. do this first, because if we send
5563 * the TUR right away, the reset will just abort it.
5565 msleep(1000 * waittime
);
5567 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5571 /* Increase wait time with each try, up to a point. */
5572 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5575 dev_warn(&h
->pdev
->dev
,
5576 "waiting %d secs for device to become ready.\n",
5583 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5584 unsigned char lunaddr
[],
5591 struct CommandList
*c
;
5596 * If no specific reply queue was requested, then send the TUR
5597 * repeatedly, requesting a reply on each reply queue; otherwise execute
5598 * the loop exactly once using only the specified queue.
5600 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5602 last_queue
= h
->nreply_queues
- 1;
5604 first_queue
= reply_queue
;
5605 last_queue
= reply_queue
;
5608 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5609 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5615 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5617 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5623 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5624 * complaining. Doing a host- or bus-reset can't do anything good here.
5626 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5629 struct ctlr_info
*h
;
5630 struct hpsa_scsi_dev_t
*dev
;
5634 /* find the controller to which the command to be aborted was sent */
5635 h
= sdev_to_hba(scsicmd
->device
);
5636 if (h
== NULL
) /* paranoia */
5639 if (lockup_detected(h
))
5642 dev
= scsicmd
->device
->hostdata
;
5644 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5648 /* if controller locked up, we can guarantee command won't complete */
5649 if (lockup_detected(h
)) {
5650 snprintf(msg
, sizeof(msg
),
5651 "cmd %d RESET FAILED, lockup detected",
5652 hpsa_get_cmd_index(scsicmd
));
5653 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5657 /* this reset request might be the result of a lockup; check */
5658 if (detect_controller_lockup(h
)) {
5659 snprintf(msg
, sizeof(msg
),
5660 "cmd %d RESET FAILED, new lockup detected",
5661 hpsa_get_cmd_index(scsicmd
));
5662 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5666 /* Do not attempt on controller */
5667 if (is_hba_lunid(dev
->scsi3addr
))
5670 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5671 reset_type
= HPSA_DEVICE_RESET_MSG
;
5673 reset_type
= HPSA_PHYS_TARGET_RESET
;
5675 sprintf(msg
, "resetting %s",
5676 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5677 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5679 h
->reset_in_progress
= 1;
5681 /* send a reset to the SCSI LUN which the command was sent to */
5682 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5683 DEFAULT_REPLY_QUEUE
);
5684 sprintf(msg
, "reset %s %s",
5685 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5686 rc
== 0 ? "completed successfully" : "failed");
5687 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5688 h
->reset_in_progress
= 0;
5689 return rc
== 0 ? SUCCESS
: FAILED
;
5692 static void swizzle_abort_tag(u8
*tag
)
5696 memcpy(original_tag
, tag
, 8);
5697 tag
[0] = original_tag
[3];
5698 tag
[1] = original_tag
[2];
5699 tag
[2] = original_tag
[1];
5700 tag
[3] = original_tag
[0];
5701 tag
[4] = original_tag
[7];
5702 tag
[5] = original_tag
[6];
5703 tag
[6] = original_tag
[5];
5704 tag
[7] = original_tag
[4];
5707 static void hpsa_get_tag(struct ctlr_info
*h
,
5708 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5711 if (c
->cmd_type
== CMD_IOACCEL1
) {
5712 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5713 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5714 tag
= le64_to_cpu(cm1
->tag
);
5715 *tagupper
= cpu_to_le32(tag
>> 32);
5716 *taglower
= cpu_to_le32(tag
);
5719 if (c
->cmd_type
== CMD_IOACCEL2
) {
5720 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5721 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5722 /* upper tag not used in ioaccel2 mode */
5723 memset(tagupper
, 0, sizeof(*tagupper
));
5724 *taglower
= cm2
->Tag
;
5727 tag
= le64_to_cpu(c
->Header
.tag
);
5728 *tagupper
= cpu_to_le32(tag
>> 32);
5729 *taglower
= cpu_to_le32(tag
);
5732 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5733 struct CommandList
*abort
, int reply_queue
)
5736 struct CommandList
*c
;
5737 struct ErrorInfo
*ei
;
5738 __le32 tagupper
, taglower
;
5742 /* fill_cmd can't fail here, no buffer to map */
5743 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5744 0, 0, scsi3addr
, TYPE_MSG
);
5745 if (h
->needs_abort_tags_swizzled
)
5746 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5747 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5748 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5749 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5750 __func__
, tagupper
, taglower
);
5751 /* no unmap needed here because no data xfer. */
5754 switch (ei
->CommandStatus
) {
5757 case CMD_TMF_STATUS
:
5758 rc
= hpsa_evaluate_tmf_status(h
, c
);
5760 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5764 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5765 __func__
, tagupper
, taglower
);
5766 hpsa_scsi_interpret_error(h
, c
);
5771 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5772 __func__
, tagupper
, taglower
);
5776 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5777 struct CommandList
*command_to_abort
, int reply_queue
)
5779 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5780 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5781 struct io_accel2_cmd
*c2a
=
5782 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5783 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5784 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5787 * We're overlaying struct hpsa_tmf_struct on top of something which
5788 * was allocated as a struct io_accel2_cmd, so we better be sure it
5789 * actually fits, and doesn't overrun the error info space.
5791 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5792 sizeof(struct io_accel2_cmd
));
5793 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5794 offsetof(struct hpsa_tmf_struct
, error_len
) +
5795 sizeof(ac
->error_len
));
5797 c
->cmd_type
= IOACCEL2_TMF
;
5798 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5800 /* Adjust the DMA address to point to the accelerated command buffer */
5801 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5802 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5803 BUG_ON(c
->busaddr
& 0x0000007F);
5805 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5806 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5807 ac
->reply_queue
= reply_queue
;
5808 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5809 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5810 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5811 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5812 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5813 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5814 offsetof(struct io_accel2_cmd
, error_data
));
5815 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5818 /* ioaccel2 path firmware cannot handle abort task requests.
5819 * Change abort requests to physical target reset, and send to the
5820 * address of the physical disk used for the ioaccel 2 command.
5821 * Return 0 on success (IO_OK)
5825 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5826 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5829 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5830 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5831 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5832 unsigned char *psa
= &phys_scsi3addr
[0];
5834 /* Get a pointer to the hpsa logical device. */
5835 scmd
= abort
->scsi_cmd
;
5836 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5838 dev_warn(&h
->pdev
->dev
,
5839 "Cannot abort: no device pointer for command.\n");
5840 return -1; /* not abortable */
5843 if (h
->raid_offload_debug
> 0)
5844 dev_info(&h
->pdev
->dev
,
5845 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5846 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5848 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5849 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5851 if (!dev
->offload_enabled
) {
5852 dev_warn(&h
->pdev
->dev
,
5853 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5854 return -1; /* not abortable */
5857 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5858 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5859 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5860 return -1; /* not abortable */
5863 /* send the reset */
5864 if (h
->raid_offload_debug
> 0)
5865 dev_info(&h
->pdev
->dev
,
5866 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5867 psa
[0], psa
[1], psa
[2], psa
[3],
5868 psa
[4], psa
[5], psa
[6], psa
[7]);
5869 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5871 dev_warn(&h
->pdev
->dev
,
5872 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5873 psa
[0], psa
[1], psa
[2], psa
[3],
5874 psa
[4], psa
[5], psa
[6], psa
[7]);
5875 return rc
; /* failed to reset */
5878 /* wait for device to recover */
5879 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5880 dev_warn(&h
->pdev
->dev
,
5881 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5882 psa
[0], psa
[1], psa
[2], psa
[3],
5883 psa
[4], psa
[5], psa
[6], psa
[7]);
5884 return -1; /* failed to recover */
5887 /* device recovered */
5888 dev_info(&h
->pdev
->dev
,
5889 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5890 psa
[0], psa
[1], psa
[2], psa
[3],
5891 psa
[4], psa
[5], psa
[6], psa
[7]);
5893 return rc
; /* success */
5896 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5897 struct CommandList
*abort
, int reply_queue
)
5900 struct CommandList
*c
;
5901 __le32 taglower
, tagupper
;
5902 struct hpsa_scsi_dev_t
*dev
;
5903 struct io_accel2_cmd
*c2
;
5905 dev
= abort
->scsi_cmd
->device
->hostdata
;
5906 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5910 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5911 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5912 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5913 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5914 dev_dbg(&h
->pdev
->dev
,
5915 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5916 __func__
, tagupper
, taglower
);
5917 /* no unmap needed here because no data xfer. */
5919 dev_dbg(&h
->pdev
->dev
,
5920 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5921 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5922 switch (c2
->error_data
.serv_response
) {
5923 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5924 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5927 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5928 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5929 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5933 dev_warn(&h
->pdev
->dev
,
5934 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5935 __func__
, tagupper
, taglower
,
5936 c2
->error_data
.serv_response
);
5940 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5941 tagupper
, taglower
);
5945 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5946 struct hpsa_scsi_dev_t
*dev
, struct CommandList
*abort
, int reply_queue
)
5949 * ioccelerator mode 2 commands should be aborted via the
5950 * accelerated path, since RAID path is unaware of these commands,
5951 * but not all underlying firmware can handle abort TMF.
5952 * Change abort to physical device reset when abort TMF is unsupported.
5954 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5955 if ((HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
) ||
5956 dev
->physical_device
)
5957 return hpsa_send_abort_ioaccel2(h
, abort
,
5960 return hpsa_send_reset_as_abort_ioaccel2(h
,
5962 abort
, reply_queue
);
5964 return hpsa_send_abort(h
, dev
->scsi3addr
, abort
, reply_queue
);
5967 /* Find out which reply queue a command was meant to return on */
5968 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5969 struct CommandList
*c
)
5971 if (c
->cmd_type
== CMD_IOACCEL2
)
5972 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5973 return c
->Header
.ReplyQueue
;
5977 * Limit concurrency of abort commands to prevent
5978 * over-subscription of commands
5980 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5982 #define ABORT_CMD_WAIT_MSECS 5000
5983 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5984 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5985 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5988 /* Send an abort for the specified command.
5989 * If the device and controller support it,
5990 * send a task abort request.
5992 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5996 struct ctlr_info
*h
;
5997 struct hpsa_scsi_dev_t
*dev
;
5998 struct CommandList
*abort
; /* pointer to command to be aborted */
5999 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
6000 char msg
[256]; /* For debug messaging. */
6002 __le32 tagupper
, taglower
;
6003 int refcount
, reply_queue
;
6008 if (sc
->device
== NULL
)
6011 /* Find the controller of the command to be aborted */
6012 h
= sdev_to_hba(sc
->device
);
6016 /* Find the device of the command to be aborted */
6017 dev
= sc
->device
->hostdata
;
6019 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
6024 /* If controller locked up, we can guarantee command won't complete */
6025 if (lockup_detected(h
)) {
6026 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6027 "ABORT FAILED, lockup detected");
6031 /* This is a good time to check if controller lockup has occurred */
6032 if (detect_controller_lockup(h
)) {
6033 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6034 "ABORT FAILED, new lockup detected");
6038 /* Check that controller supports some kind of task abort */
6039 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
6040 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6043 memset(msg
, 0, sizeof(msg
));
6044 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
6045 h
->scsi_host
->host_no
, sc
->device
->channel
,
6046 sc
->device
->id
, sc
->device
->lun
,
6047 "Aborting command", sc
);
6049 /* Get SCSI command to be aborted */
6050 abort
= (struct CommandList
*) sc
->host_scribble
;
6051 if (abort
== NULL
) {
6052 /* This can happen if the command already completed. */
6055 refcount
= atomic_inc_return(&abort
->refcount
);
6056 if (refcount
== 1) { /* Command is done already. */
6061 /* Don't bother trying the abort if we know it won't work. */
6062 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
6063 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
6069 * Check that we're aborting the right command.
6070 * It's possible the CommandList already completed and got re-used.
6072 if (abort
->scsi_cmd
!= sc
) {
6077 abort
->abort_pending
= true;
6078 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6079 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
6080 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
6081 as
= abort
->scsi_cmd
;
6083 ml
+= sprintf(msg
+ml
,
6084 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6085 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
6087 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
6088 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
6091 * Command is in flight, or possibly already completed
6092 * by the firmware (but not to the scsi mid layer) but we can't
6093 * distinguish which. Send the abort down.
6095 if (wait_for_available_abort_cmd(h
)) {
6096 dev_warn(&h
->pdev
->dev
,
6097 "%s FAILED, timeout waiting for an abort command to become available.\n",
6102 rc
= hpsa_send_abort_both_ways(h
, dev
, abort
, reply_queue
);
6103 atomic_inc(&h
->abort_cmds_available
);
6104 wake_up_all(&h
->abort_cmd_wait_queue
);
6106 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6107 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6108 "FAILED to abort command");
6112 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6113 wait_event(h
->event_sync_wait_queue
,
6114 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6116 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6120 * For operations with an associated SCSI command, a command block is allocated
6121 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6122 * block request tag as an index into a table of entries. cmd_tagged_free() is
6123 * the complement, although cmd_free() may be called instead.
6125 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6126 struct scsi_cmnd
*scmd
)
6128 int idx
= hpsa_get_cmd_index(scmd
);
6129 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6131 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6132 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6133 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6134 /* The index value comes from the block layer, so if it's out of
6135 * bounds, it's probably not our bug.
6140 atomic_inc(&c
->refcount
);
6141 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6143 * We expect that the SCSI layer will hand us a unique tag
6144 * value. Thus, there should never be a collision here between
6145 * two requests...because if the selected command isn't idle
6146 * then someone is going to be very disappointed.
6148 dev_err(&h
->pdev
->dev
,
6149 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6151 if (c
->scsi_cmd
!= NULL
)
6152 scsi_print_command(c
->scsi_cmd
);
6153 scsi_print_command(scmd
);
6156 hpsa_cmd_partial_init(h
, idx
, c
);
6160 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6163 * Release our reference to the block. We don't need to do anything
6164 * else to free it, because it is accessed by index. (There's no point
6165 * in checking the result of the decrement, since we cannot guarantee
6166 * that there isn't a concurrent abort which is also accessing it.)
6168 (void)atomic_dec(&c
->refcount
);
6172 * For operations that cannot sleep, a command block is allocated at init,
6173 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6174 * which ones are free or in use. Lock must be held when calling this.
6175 * cmd_free() is the complement.
6176 * This function never gives up and returns NULL. If it hangs,
6177 * another thread must call cmd_free() to free some tags.
6180 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6182 struct CommandList
*c
;
6187 * There is some *extremely* small but non-zero chance that that
6188 * multiple threads could get in here, and one thread could
6189 * be scanning through the list of bits looking for a free
6190 * one, but the free ones are always behind him, and other
6191 * threads sneak in behind him and eat them before he can
6192 * get to them, so that while there is always a free one, a
6193 * very unlucky thread might be starved anyway, never able to
6194 * beat the other threads. In reality, this happens so
6195 * infrequently as to be indistinguishable from never.
6197 * Note that we start allocating commands before the SCSI host structure
6198 * is initialized. Since the search starts at bit zero, this
6199 * all works, since we have at least one command structure available;
6200 * however, it means that the structures with the low indexes have to be
6201 * reserved for driver-initiated requests, while requests from the block
6202 * layer will use the higher indexes.
6206 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6207 HPSA_NRESERVED_CMDS
,
6209 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6213 c
= h
->cmd_pool
+ i
;
6214 refcount
= atomic_inc_return(&c
->refcount
);
6215 if (unlikely(refcount
> 1)) {
6216 cmd_free(h
, c
); /* already in use */
6217 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6220 set_bit(i
& (BITS_PER_LONG
- 1),
6221 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6222 break; /* it's ours now. */
6224 hpsa_cmd_partial_init(h
, i
, c
);
6229 * This is the complementary operation to cmd_alloc(). Note, however, in some
6230 * corner cases it may also be used to free blocks allocated by
6231 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6232 * the clear-bit is harmless.
6234 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6236 if (atomic_dec_and_test(&c
->refcount
)) {
6239 i
= c
- h
->cmd_pool
;
6240 clear_bit(i
& (BITS_PER_LONG
- 1),
6241 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6245 #ifdef CONFIG_COMPAT
6247 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6250 IOCTL32_Command_struct __user
*arg32
=
6251 (IOCTL32_Command_struct __user
*) arg
;
6252 IOCTL_Command_struct arg64
;
6253 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6257 memset(&arg64
, 0, sizeof(arg64
));
6259 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6260 sizeof(arg64
.LUN_info
));
6261 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6262 sizeof(arg64
.Request
));
6263 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6264 sizeof(arg64
.error_info
));
6265 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6266 err
|= get_user(cp
, &arg32
->buf
);
6267 arg64
.buf
= compat_ptr(cp
);
6268 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6273 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6276 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6277 sizeof(arg32
->error_info
));
6283 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6284 int cmd
, void __user
*arg
)
6286 BIG_IOCTL32_Command_struct __user
*arg32
=
6287 (BIG_IOCTL32_Command_struct __user
*) arg
;
6288 BIG_IOCTL_Command_struct arg64
;
6289 BIG_IOCTL_Command_struct __user
*p
=
6290 compat_alloc_user_space(sizeof(arg64
));
6294 memset(&arg64
, 0, sizeof(arg64
));
6296 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6297 sizeof(arg64
.LUN_info
));
6298 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6299 sizeof(arg64
.Request
));
6300 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6301 sizeof(arg64
.error_info
));
6302 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6303 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6304 err
|= get_user(cp
, &arg32
->buf
);
6305 arg64
.buf
= compat_ptr(cp
);
6306 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6311 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6314 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6315 sizeof(arg32
->error_info
));
6321 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6324 case CCISS_GETPCIINFO
:
6325 case CCISS_GETINTINFO
:
6326 case CCISS_SETINTINFO
:
6327 case CCISS_GETNODENAME
:
6328 case CCISS_SETNODENAME
:
6329 case CCISS_GETHEARTBEAT
:
6330 case CCISS_GETBUSTYPES
:
6331 case CCISS_GETFIRMVER
:
6332 case CCISS_GETDRIVVER
:
6333 case CCISS_REVALIDVOLS
:
6334 case CCISS_DEREGDISK
:
6335 case CCISS_REGNEWDISK
:
6337 case CCISS_RESCANDISK
:
6338 case CCISS_GETLUNINFO
:
6339 return hpsa_ioctl(dev
, cmd
, arg
);
6341 case CCISS_PASSTHRU32
:
6342 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6343 case CCISS_BIG_PASSTHRU32
:
6344 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6347 return -ENOIOCTLCMD
;
6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6354 struct hpsa_pci_info pciinfo
;
6358 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6359 pciinfo
.bus
= h
->pdev
->bus
->number
;
6360 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6361 pciinfo
.board_id
= h
->board_id
;
6362 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6367 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6369 DriverVer_type DriverVer
;
6370 unsigned char vmaj
, vmin
, vsubmin
;
6373 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6374 &vmaj
, &vmin
, &vsubmin
);
6376 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6377 "unrecognized.", HPSA_DRIVER_VERSION
);
6382 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6385 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6390 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6392 IOCTL_Command_struct iocommand
;
6393 struct CommandList
*c
;
6400 if (!capable(CAP_SYS_RAWIO
))
6402 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6404 if ((iocommand
.buf_size
< 1) &&
6405 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6408 if (iocommand
.buf_size
> 0) {
6409 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6412 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6413 /* Copy the data into the buffer we created */
6414 if (copy_from_user(buff
, iocommand
.buf
,
6415 iocommand
.buf_size
)) {
6420 memset(buff
, 0, iocommand
.buf_size
);
6425 /* Fill in the command type */
6426 c
->cmd_type
= CMD_IOCTL_PEND
;
6427 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6428 /* Fill in Command Header */
6429 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6430 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6431 c
->Header
.SGList
= 1;
6432 c
->Header
.SGTotal
= cpu_to_le16(1);
6433 } else { /* no buffers to fill */
6434 c
->Header
.SGList
= 0;
6435 c
->Header
.SGTotal
= cpu_to_le16(0);
6437 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6439 /* Fill in Request block */
6440 memcpy(&c
->Request
, &iocommand
.Request
,
6441 sizeof(c
->Request
));
6443 /* Fill in the scatter gather information */
6444 if (iocommand
.buf_size
> 0) {
6445 temp64
= pci_map_single(h
->pdev
, buff
,
6446 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6447 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6448 c
->SG
[0].Addr
= cpu_to_le64(0);
6449 c
->SG
[0].Len
= cpu_to_le32(0);
6453 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6454 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6455 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6457 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6459 if (iocommand
.buf_size
> 0)
6460 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6461 check_ioctl_unit_attention(h
, c
);
6467 /* Copy the error information out */
6468 memcpy(&iocommand
.error_info
, c
->err_info
,
6469 sizeof(iocommand
.error_info
));
6470 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6474 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6475 iocommand
.buf_size
> 0) {
6476 /* Copy the data out of the buffer we created */
6477 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6489 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6491 BIG_IOCTL_Command_struct
*ioc
;
6492 struct CommandList
*c
;
6493 unsigned char **buff
= NULL
;
6494 int *buff_size
= NULL
;
6500 BYTE __user
*data_ptr
;
6504 if (!capable(CAP_SYS_RAWIO
))
6506 ioc
= (BIG_IOCTL_Command_struct
*)
6507 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6512 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6516 if ((ioc
->buf_size
< 1) &&
6517 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6521 /* Check kmalloc limits using all SGs */
6522 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6526 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6530 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6535 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6540 left
= ioc
->buf_size
;
6541 data_ptr
= ioc
->buf
;
6543 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6544 buff_size
[sg_used
] = sz
;
6545 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6546 if (buff
[sg_used
] == NULL
) {
6550 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6551 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6556 memset(buff
[sg_used
], 0, sz
);
6563 c
->cmd_type
= CMD_IOCTL_PEND
;
6564 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6565 c
->Header
.ReplyQueue
= 0;
6566 c
->Header
.SGList
= (u8
) sg_used
;
6567 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6568 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6569 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6570 if (ioc
->buf_size
> 0) {
6572 for (i
= 0; i
< sg_used
; i
++) {
6573 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6574 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6575 if (dma_mapping_error(&h
->pdev
->dev
,
6576 (dma_addr_t
) temp64
)) {
6577 c
->SG
[i
].Addr
= cpu_to_le64(0);
6578 c
->SG
[i
].Len
= cpu_to_le32(0);
6579 hpsa_pci_unmap(h
->pdev
, c
, i
,
6580 PCI_DMA_BIDIRECTIONAL
);
6584 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6585 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6586 c
->SG
[i
].Ext
= cpu_to_le32(0);
6588 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6590 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6593 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6594 check_ioctl_unit_attention(h
, c
);
6600 /* Copy the error information out */
6601 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6602 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6606 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6609 /* Copy the data out of the buffer we created */
6610 BYTE __user
*ptr
= ioc
->buf
;
6611 for (i
= 0; i
< sg_used
; i
++) {
6612 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6616 ptr
+= buff_size
[i
];
6626 for (i
= 0; i
< sg_used
; i
++)
6635 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6636 struct CommandList
*c
)
6638 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6639 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6640 (void) check_for_unit_attention(h
, c
);
6646 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6648 struct ctlr_info
*h
;
6649 void __user
*argp
= (void __user
*)arg
;
6652 h
= sdev_to_hba(dev
);
6655 case CCISS_DEREGDISK
:
6656 case CCISS_REGNEWDISK
:
6658 hpsa_scan_start(h
->scsi_host
);
6660 case CCISS_GETPCIINFO
:
6661 return hpsa_getpciinfo_ioctl(h
, argp
);
6662 case CCISS_GETDRIVVER
:
6663 return hpsa_getdrivver_ioctl(h
, argp
);
6664 case CCISS_PASSTHRU
:
6665 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6667 rc
= hpsa_passthru_ioctl(h
, argp
);
6668 atomic_inc(&h
->passthru_cmds_avail
);
6670 case CCISS_BIG_PASSTHRU
:
6671 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6673 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6674 atomic_inc(&h
->passthru_cmds_avail
);
6681 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6684 struct CommandList
*c
;
6688 /* fill_cmd can't fail here, no data buffer to map */
6689 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6690 RAID_CTLR_LUNID
, TYPE_MSG
);
6691 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6693 enqueue_cmd_and_start_io(h
, c
);
6694 /* Don't wait for completion, the reset won't complete. Don't free
6695 * the command either. This is the last command we will send before
6696 * re-initializing everything, so it doesn't matter and won't leak.
6701 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6702 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6705 int pci_dir
= XFER_NONE
;
6706 u64 tag
; /* for commands to be aborted */
6708 c
->cmd_type
= CMD_IOCTL_PEND
;
6709 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6710 c
->Header
.ReplyQueue
= 0;
6711 if (buff
!= NULL
&& size
> 0) {
6712 c
->Header
.SGList
= 1;
6713 c
->Header
.SGTotal
= cpu_to_le16(1);
6715 c
->Header
.SGList
= 0;
6716 c
->Header
.SGTotal
= cpu_to_le16(0);
6718 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6720 if (cmd_type
== TYPE_CMD
) {
6723 /* are we trying to read a vital product page */
6724 if (page_code
& VPD_PAGE
) {
6725 c
->Request
.CDB
[1] = 0x01;
6726 c
->Request
.CDB
[2] = (page_code
& 0xff);
6728 c
->Request
.CDBLen
= 6;
6729 c
->Request
.type_attr_dir
=
6730 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6731 c
->Request
.Timeout
= 0;
6732 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6733 c
->Request
.CDB
[4] = size
& 0xFF;
6735 case HPSA_REPORT_LOG
:
6736 case HPSA_REPORT_PHYS
:
6737 /* Talking to controller so It's a physical command
6738 mode = 00 target = 0. Nothing to write.
6740 c
->Request
.CDBLen
= 12;
6741 c
->Request
.type_attr_dir
=
6742 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6743 c
->Request
.Timeout
= 0;
6744 c
->Request
.CDB
[0] = cmd
;
6745 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6746 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6747 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6748 c
->Request
.CDB
[9] = size
& 0xFF;
6750 case BMIC_SENSE_DIAG_OPTIONS
:
6751 c
->Request
.CDBLen
= 16;
6752 c
->Request
.type_attr_dir
=
6753 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6754 c
->Request
.Timeout
= 0;
6755 /* Spec says this should be BMIC_WRITE */
6756 c
->Request
.CDB
[0] = BMIC_READ
;
6757 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6759 case BMIC_SET_DIAG_OPTIONS
:
6760 c
->Request
.CDBLen
= 16;
6761 c
->Request
.type_attr_dir
=
6762 TYPE_ATTR_DIR(cmd_type
,
6763 ATTR_SIMPLE
, XFER_WRITE
);
6764 c
->Request
.Timeout
= 0;
6765 c
->Request
.CDB
[0] = BMIC_WRITE
;
6766 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6768 case HPSA_CACHE_FLUSH
:
6769 c
->Request
.CDBLen
= 12;
6770 c
->Request
.type_attr_dir
=
6771 TYPE_ATTR_DIR(cmd_type
,
6772 ATTR_SIMPLE
, XFER_WRITE
);
6773 c
->Request
.Timeout
= 0;
6774 c
->Request
.CDB
[0] = BMIC_WRITE
;
6775 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6776 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6777 c
->Request
.CDB
[8] = size
& 0xFF;
6779 case TEST_UNIT_READY
:
6780 c
->Request
.CDBLen
= 6;
6781 c
->Request
.type_attr_dir
=
6782 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6783 c
->Request
.Timeout
= 0;
6785 case HPSA_GET_RAID_MAP
:
6786 c
->Request
.CDBLen
= 12;
6787 c
->Request
.type_attr_dir
=
6788 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6789 c
->Request
.Timeout
= 0;
6790 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6791 c
->Request
.CDB
[1] = cmd
;
6792 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6793 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6794 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6795 c
->Request
.CDB
[9] = size
& 0xFF;
6797 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6798 c
->Request
.CDBLen
= 10;
6799 c
->Request
.type_attr_dir
=
6800 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6801 c
->Request
.Timeout
= 0;
6802 c
->Request
.CDB
[0] = BMIC_READ
;
6803 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6804 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6805 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6807 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6808 c
->Request
.CDBLen
= 10;
6809 c
->Request
.type_attr_dir
=
6810 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6811 c
->Request
.Timeout
= 0;
6812 c
->Request
.CDB
[0] = BMIC_READ
;
6813 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6814 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6815 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6817 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6818 c
->Request
.CDBLen
= 10;
6819 c
->Request
.type_attr_dir
=
6820 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6821 c
->Request
.Timeout
= 0;
6822 c
->Request
.CDB
[0] = BMIC_READ
;
6823 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6824 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6825 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6827 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6828 c
->Request
.CDBLen
= 10;
6829 c
->Request
.type_attr_dir
=
6830 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6831 c
->Request
.Timeout
= 0;
6832 c
->Request
.CDB
[0] = BMIC_READ
;
6833 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6834 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6835 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6837 case BMIC_IDENTIFY_CONTROLLER
:
6838 c
->Request
.CDBLen
= 10;
6839 c
->Request
.type_attr_dir
=
6840 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6841 c
->Request
.Timeout
= 0;
6842 c
->Request
.CDB
[0] = BMIC_READ
;
6843 c
->Request
.CDB
[1] = 0;
6844 c
->Request
.CDB
[2] = 0;
6845 c
->Request
.CDB
[3] = 0;
6846 c
->Request
.CDB
[4] = 0;
6847 c
->Request
.CDB
[5] = 0;
6848 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6849 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6850 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6851 c
->Request
.CDB
[9] = 0;
6854 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6858 } else if (cmd_type
== TYPE_MSG
) {
6861 case HPSA_PHYS_TARGET_RESET
:
6862 c
->Request
.CDBLen
= 16;
6863 c
->Request
.type_attr_dir
=
6864 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6865 c
->Request
.Timeout
= 0; /* Don't time out */
6866 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6867 c
->Request
.CDB
[0] = HPSA_RESET
;
6868 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6869 /* Physical target reset needs no control bytes 4-7*/
6870 c
->Request
.CDB
[4] = 0x00;
6871 c
->Request
.CDB
[5] = 0x00;
6872 c
->Request
.CDB
[6] = 0x00;
6873 c
->Request
.CDB
[7] = 0x00;
6875 case HPSA_DEVICE_RESET_MSG
:
6876 c
->Request
.CDBLen
= 16;
6877 c
->Request
.type_attr_dir
=
6878 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6879 c
->Request
.Timeout
= 0; /* Don't time out */
6880 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6881 c
->Request
.CDB
[0] = cmd
;
6882 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6883 /* If bytes 4-7 are zero, it means reset the */
6885 c
->Request
.CDB
[4] = 0x00;
6886 c
->Request
.CDB
[5] = 0x00;
6887 c
->Request
.CDB
[6] = 0x00;
6888 c
->Request
.CDB
[7] = 0x00;
6890 case HPSA_ABORT_MSG
:
6891 memcpy(&tag
, buff
, sizeof(tag
));
6892 dev_dbg(&h
->pdev
->dev
,
6893 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6894 tag
, c
->Header
.tag
);
6895 c
->Request
.CDBLen
= 16;
6896 c
->Request
.type_attr_dir
=
6897 TYPE_ATTR_DIR(cmd_type
,
6898 ATTR_SIMPLE
, XFER_WRITE
);
6899 c
->Request
.Timeout
= 0; /* Don't time out */
6900 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6901 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6902 c
->Request
.CDB
[2] = 0x00; /* reserved */
6903 c
->Request
.CDB
[3] = 0x00; /* reserved */
6904 /* Tag to abort goes in CDB[4]-CDB[11] */
6905 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6906 c
->Request
.CDB
[12] = 0x00; /* reserved */
6907 c
->Request
.CDB
[13] = 0x00; /* reserved */
6908 c
->Request
.CDB
[14] = 0x00; /* reserved */
6909 c
->Request
.CDB
[15] = 0x00; /* reserved */
6912 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6917 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6921 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6923 pci_dir
= PCI_DMA_FROMDEVICE
;
6926 pci_dir
= PCI_DMA_TODEVICE
;
6929 pci_dir
= PCI_DMA_NONE
;
6932 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6934 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6940 * Map (physical) PCI mem into (virtual) kernel space
6942 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6944 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6945 ulong page_offs
= ((ulong
) base
) - page_base
;
6946 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6949 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6952 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6954 return h
->access
.command_completed(h
, q
);
6957 static inline bool interrupt_pending(struct ctlr_info
*h
)
6959 return h
->access
.intr_pending(h
);
6962 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6964 return (h
->access
.intr_pending(h
) == 0) ||
6965 (h
->interrupts_enabled
== 0);
6968 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6971 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6972 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6978 static inline void finish_cmd(struct CommandList
*c
)
6980 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6981 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6982 || c
->cmd_type
== CMD_IOACCEL2
))
6983 complete_scsi_command(c
);
6984 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6985 complete(c
->waiting
);
6988 /* process completion of an indexed ("direct lookup") command */
6989 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6993 struct CommandList
*c
;
6995 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6996 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6997 c
= h
->cmd_pool
+ tag_index
;
7002 /* Some controllers, like p400, will give us one interrupt
7003 * after a soft reset, even if we turned interrupts off.
7004 * Only need to check for this in the hpsa_xxx_discard_completions
7007 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
7009 if (likely(!reset_devices
))
7012 if (likely(h
->interrupts_enabled
))
7015 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
7016 "(known firmware bug.) Ignoring.\n");
7022 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7023 * Relies on (h-q[x] == x) being true for x such that
7024 * 0 <= x < MAX_REPLY_QUEUES.
7026 static struct ctlr_info
*queue_to_hba(u8
*queue
)
7028 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
7031 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
7033 struct ctlr_info
*h
= queue_to_hba(queue
);
7034 u8 q
= *(u8
*) queue
;
7037 if (ignore_bogus_interrupt(h
))
7040 if (interrupt_not_for_us(h
))
7042 h
->last_intr_timestamp
= get_jiffies_64();
7043 while (interrupt_pending(h
)) {
7044 raw_tag
= get_next_completion(h
, q
);
7045 while (raw_tag
!= FIFO_EMPTY
)
7046 raw_tag
= next_command(h
, q
);
7051 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7053 struct ctlr_info
*h
= queue_to_hba(queue
);
7055 u8 q
= *(u8
*) queue
;
7057 if (ignore_bogus_interrupt(h
))
7060 h
->last_intr_timestamp
= get_jiffies_64();
7061 raw_tag
= get_next_completion(h
, q
);
7062 while (raw_tag
!= FIFO_EMPTY
)
7063 raw_tag
= next_command(h
, q
);
7067 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7069 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7071 u8 q
= *(u8
*) queue
;
7073 if (interrupt_not_for_us(h
))
7075 h
->last_intr_timestamp
= get_jiffies_64();
7076 while (interrupt_pending(h
)) {
7077 raw_tag
= get_next_completion(h
, q
);
7078 while (raw_tag
!= FIFO_EMPTY
) {
7079 process_indexed_cmd(h
, raw_tag
);
7080 raw_tag
= next_command(h
, q
);
7086 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7088 struct ctlr_info
*h
= queue_to_hba(queue
);
7090 u8 q
= *(u8
*) queue
;
7092 h
->last_intr_timestamp
= get_jiffies_64();
7093 raw_tag
= get_next_completion(h
, q
);
7094 while (raw_tag
!= FIFO_EMPTY
) {
7095 process_indexed_cmd(h
, raw_tag
);
7096 raw_tag
= next_command(h
, q
);
7101 /* Send a message CDB to the firmware. Careful, this only works
7102 * in simple mode, not performant mode due to the tag lookup.
7103 * We only ever use this immediately after a controller reset.
7105 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7109 struct CommandListHeader CommandHeader
;
7110 struct RequestBlock Request
;
7111 struct ErrDescriptor ErrorDescriptor
;
7113 struct Command
*cmd
;
7114 static const size_t cmd_sz
= sizeof(*cmd
) +
7115 sizeof(cmd
->ErrorDescriptor
);
7119 void __iomem
*vaddr
;
7122 vaddr
= pci_ioremap_bar(pdev
, 0);
7126 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7127 * CCISS commands, so they must be allocated from the lower 4GiB of
7130 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7136 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7142 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7143 * although there's no guarantee, we assume that the address is at
7144 * least 4-byte aligned (most likely, it's page-aligned).
7146 paddr32
= cpu_to_le32(paddr64
);
7148 cmd
->CommandHeader
.ReplyQueue
= 0;
7149 cmd
->CommandHeader
.SGList
= 0;
7150 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7151 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7152 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7154 cmd
->Request
.CDBLen
= 16;
7155 cmd
->Request
.type_attr_dir
=
7156 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7157 cmd
->Request
.Timeout
= 0; /* Don't time out */
7158 cmd
->Request
.CDB
[0] = opcode
;
7159 cmd
->Request
.CDB
[1] = type
;
7160 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7161 cmd
->ErrorDescriptor
.Addr
=
7162 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7163 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7165 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7167 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7168 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7169 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7171 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7176 /* we leak the DMA buffer here ... no choice since the controller could
7177 * still complete the command.
7179 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7180 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7185 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7187 if (tag
& HPSA_ERROR_BIT
) {
7188 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7193 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7198 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7200 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7201 void __iomem
*vaddr
, u32 use_doorbell
)
7205 /* For everything after the P600, the PCI power state method
7206 * of resetting the controller doesn't work, so we have this
7207 * other way using the doorbell register.
7209 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7210 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7212 /* PMC hardware guys tell us we need a 10 second delay after
7213 * doorbell reset and before any attempt to talk to the board
7214 * at all to ensure that this actually works and doesn't fall
7215 * over in some weird corner cases.
7218 } else { /* Try to do it the PCI power state way */
7220 /* Quoting from the Open CISS Specification: "The Power
7221 * Management Control/Status Register (CSR) controls the power
7222 * state of the device. The normal operating state is D0,
7223 * CSR=00h. The software off state is D3, CSR=03h. To reset
7224 * the controller, place the interface device in D3 then to D0,
7225 * this causes a secondary PCI reset which will reset the
7230 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7232 /* enter the D3hot power management state */
7233 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7239 /* enter the D0 power management state */
7240 rc
= pci_set_power_state(pdev
, PCI_D0
);
7245 * The P600 requires a small delay when changing states.
7246 * Otherwise we may think the board did not reset and we bail.
7247 * This for kdump only and is particular to the P600.
7254 static void init_driver_version(char *driver_version
, int len
)
7256 memset(driver_version
, 0, len
);
7257 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7260 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7262 char *driver_version
;
7263 int i
, size
= sizeof(cfgtable
->driver_version
);
7265 driver_version
= kmalloc(size
, GFP_KERNEL
);
7266 if (!driver_version
)
7269 init_driver_version(driver_version
, size
);
7270 for (i
= 0; i
< size
; i
++)
7271 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7272 kfree(driver_version
);
7276 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7277 unsigned char *driver_ver
)
7281 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7282 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7285 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7288 char *driver_ver
, *old_driver_ver
;
7289 int rc
, size
= sizeof(cfgtable
->driver_version
);
7291 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7292 if (!old_driver_ver
)
7294 driver_ver
= old_driver_ver
+ size
;
7296 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7297 * should have been changed, otherwise we know the reset failed.
7299 init_driver_version(old_driver_ver
, size
);
7300 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7301 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7302 kfree(old_driver_ver
);
7305 /* This does a hard reset of the controller using PCI power management
7306 * states or the using the doorbell register.
7308 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7312 u64 cfg_base_addr_index
;
7313 void __iomem
*vaddr
;
7314 unsigned long paddr
;
7315 u32 misc_fw_support
;
7317 struct CfgTable __iomem
*cfgtable
;
7319 u16 command_register
;
7321 /* For controllers as old as the P600, this is very nearly
7324 * pci_save_state(pci_dev);
7325 * pci_set_power_state(pci_dev, PCI_D3hot);
7326 * pci_set_power_state(pci_dev, PCI_D0);
7327 * pci_restore_state(pci_dev);
7329 * For controllers newer than the P600, the pci power state
7330 * method of resetting doesn't work so we have another way
7331 * using the doorbell register.
7334 if (!ctlr_is_resettable(board_id
)) {
7335 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7339 /* if controller is soft- but not hard resettable... */
7340 if (!ctlr_is_hard_resettable(board_id
))
7341 return -ENOTSUPP
; /* try soft reset later. */
7343 /* Save the PCI command register */
7344 pci_read_config_word(pdev
, 4, &command_register
);
7345 pci_save_state(pdev
);
7347 /* find the first memory BAR, so we can find the cfg table */
7348 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7351 vaddr
= remap_pci_mem(paddr
, 0x250);
7355 /* find cfgtable in order to check if reset via doorbell is supported */
7356 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7357 &cfg_base_addr_index
, &cfg_offset
);
7360 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7361 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7366 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7368 goto unmap_cfgtable
;
7370 /* If reset via doorbell register is supported, use that.
7371 * There are two such methods. Favor the newest method.
7373 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7374 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7376 use_doorbell
= DOORBELL_CTLR_RESET2
;
7378 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7380 dev_warn(&pdev
->dev
,
7381 "Soft reset not supported. Firmware update is required.\n");
7382 rc
= -ENOTSUPP
; /* try soft reset */
7383 goto unmap_cfgtable
;
7387 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7389 goto unmap_cfgtable
;
7391 pci_restore_state(pdev
);
7392 pci_write_config_word(pdev
, 4, command_register
);
7394 /* Some devices (notably the HP Smart Array 5i Controller)
7395 need a little pause here */
7396 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7398 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7400 dev_warn(&pdev
->dev
,
7401 "Failed waiting for board to become ready after hard reset\n");
7402 goto unmap_cfgtable
;
7405 rc
= controller_reset_failed(vaddr
);
7407 goto unmap_cfgtable
;
7409 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7410 "controller. Will try soft reset.\n");
7413 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7425 * We cannot read the structure directly, for portability we must use
7427 * This is for debug only.
7429 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7435 dev_info(dev
, "Controller Configuration information\n");
7436 dev_info(dev
, "------------------------------------\n");
7437 for (i
= 0; i
< 4; i
++)
7438 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7439 temp_name
[4] = '\0';
7440 dev_info(dev
, " Signature = %s\n", temp_name
);
7441 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7442 dev_info(dev
, " Transport methods supported = 0x%x\n",
7443 readl(&(tb
->TransportSupport
)));
7444 dev_info(dev
, " Transport methods active = 0x%x\n",
7445 readl(&(tb
->TransportActive
)));
7446 dev_info(dev
, " Requested transport Method = 0x%x\n",
7447 readl(&(tb
->HostWrite
.TransportRequest
)));
7448 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7449 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7450 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7451 readl(&(tb
->HostWrite
.CoalIntCount
)));
7452 dev_info(dev
, " Max outstanding commands = %d\n",
7453 readl(&(tb
->CmdsOutMax
)));
7454 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7455 for (i
= 0; i
< 16; i
++)
7456 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7457 temp_name
[16] = '\0';
7458 dev_info(dev
, " Server Name = %s\n", temp_name
);
7459 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7460 readl(&(tb
->HeartBeat
)));
7461 #endif /* HPSA_DEBUG */
7464 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7466 int i
, offset
, mem_type
, bar_type
;
7468 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7471 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7472 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7473 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7476 mem_type
= pci_resource_flags(pdev
, i
) &
7477 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7479 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7480 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7481 offset
+= 4; /* 32 bit */
7483 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7486 default: /* reserved in PCI 2.2 */
7487 dev_warn(&pdev
->dev
,
7488 "base address is invalid\n");
7493 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7499 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7501 if (h
->msix_vector
) {
7502 if (h
->pdev
->msix_enabled
)
7503 pci_disable_msix(h
->pdev
);
7505 } else if (h
->msi_vector
) {
7506 if (h
->pdev
->msi_enabled
)
7507 pci_disable_msi(h
->pdev
);
7512 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7513 * controllers that are capable. If not, we use legacy INTx mode.
7515 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7517 #ifdef CONFIG_PCI_MSI
7519 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7521 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7522 hpsa_msix_entries
[i
].vector
= 0;
7523 hpsa_msix_entries
[i
].entry
= i
;
7526 /* Some boards advertise MSI but don't really support it */
7527 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7528 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7529 goto default_int_mode
;
7530 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7531 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7532 h
->msix_vector
= MAX_REPLY_QUEUES
;
7533 if (h
->msix_vector
> num_online_cpus())
7534 h
->msix_vector
= num_online_cpus();
7535 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7538 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7540 goto single_msi_mode
;
7541 } else if (err
< h
->msix_vector
) {
7542 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7543 "available\n", err
);
7545 h
->msix_vector
= err
;
7546 for (i
= 0; i
< h
->msix_vector
; i
++)
7547 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7551 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7552 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7553 if (!pci_enable_msi(h
->pdev
))
7556 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7559 #endif /* CONFIG_PCI_MSI */
7560 /* if we get here we're going to use the default interrupt mode */
7561 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7564 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7567 u32 subsystem_vendor_id
, subsystem_device_id
;
7569 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7570 subsystem_device_id
= pdev
->subsystem_device
;
7571 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7572 subsystem_vendor_id
;
7574 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7575 if (*board_id
== products
[i
].board_id
)
7578 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7579 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7581 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7582 "0x%08x, ignoring.\n", *board_id
);
7585 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7588 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7589 unsigned long *memory_bar
)
7593 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7594 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7595 /* addressing mode bits already removed */
7596 *memory_bar
= pci_resource_start(pdev
, i
);
7597 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7601 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7605 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7611 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7613 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7615 for (i
= 0; i
< iterations
; i
++) {
7616 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7617 if (wait_for_ready
) {
7618 if (scratchpad
== HPSA_FIRMWARE_READY
)
7621 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7624 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7626 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7630 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7631 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7634 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7635 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7636 *cfg_base_addr
&= (u32
) 0x0000ffff;
7637 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7638 if (*cfg_base_addr_index
== -1) {
7639 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7645 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7647 if (h
->transtable
) {
7648 iounmap(h
->transtable
);
7649 h
->transtable
= NULL
;
7652 iounmap(h
->cfgtable
);
7657 /* Find and map CISS config table and transfer table
7658 + * several items must be unmapped (freed) later
7660 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7664 u64 cfg_base_addr_index
;
7668 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7669 &cfg_base_addr_index
, &cfg_offset
);
7672 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7673 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7675 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7678 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7681 /* Find performant mode table. */
7682 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7683 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7684 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7685 sizeof(*h
->transtable
));
7686 if (!h
->transtable
) {
7687 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7688 hpsa_free_cfgtables(h
);
7694 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7696 #define MIN_MAX_COMMANDS 16
7697 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7699 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7701 /* Limit commands in memory limited kdump scenario. */
7702 if (reset_devices
&& h
->max_commands
> 32)
7703 h
->max_commands
= 32;
7705 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7706 dev_warn(&h
->pdev
->dev
,
7707 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7710 h
->max_commands
= MIN_MAX_COMMANDS
;
7714 /* If the controller reports that the total max sg entries is greater than 512,
7715 * then we know that chained SG blocks work. (Original smart arrays did not
7716 * support chained SG blocks and would return zero for max sg entries.)
7718 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7720 return h
->maxsgentries
> 512;
7723 /* Interrogate the hardware for some limits:
7724 * max commands, max SG elements without chaining, and with chaining,
7725 * SG chain block size, etc.
7727 static void hpsa_find_board_params(struct ctlr_info
*h
)
7729 hpsa_get_max_perf_mode_cmds(h
);
7730 h
->nr_cmds
= h
->max_commands
;
7731 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7732 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7733 if (hpsa_supports_chained_sg_blocks(h
)) {
7734 /* Limit in-command s/g elements to 32 save dma'able memory. */
7735 h
->max_cmd_sg_entries
= 32;
7736 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7737 h
->maxsgentries
--; /* save one for chain pointer */
7740 * Original smart arrays supported at most 31 s/g entries
7741 * embedded inline in the command (trying to use more
7742 * would lock up the controller)
7744 h
->max_cmd_sg_entries
= 31;
7745 h
->maxsgentries
= 31; /* default to traditional values */
7749 /* Find out what task management functions are supported and cache */
7750 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7751 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7752 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7753 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7754 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7755 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7756 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7759 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7761 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7762 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7768 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7772 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7773 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7775 driver_support
|= ENABLE_SCSI_PREFETCH
;
7777 driver_support
|= ENABLE_UNIT_ATTN
;
7778 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7781 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7782 * in a prefetch beyond physical memory.
7784 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7788 if (h
->board_id
!= 0x3225103C)
7790 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7791 dma_prefetch
|= 0x8000;
7792 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7795 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7799 unsigned long flags
;
7800 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7801 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7802 spin_lock_irqsave(&h
->lock
, flags
);
7803 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7804 spin_unlock_irqrestore(&h
->lock
, flags
);
7805 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7807 /* delay and try again */
7808 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7815 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7819 unsigned long flags
;
7821 /* under certain very rare conditions, this can take awhile.
7822 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7823 * as we enter this code.)
7825 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7826 if (h
->remove_in_progress
)
7828 spin_lock_irqsave(&h
->lock
, flags
);
7829 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7830 spin_unlock_irqrestore(&h
->lock
, flags
);
7831 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7833 /* delay and try again */
7834 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7841 /* return -ENODEV or other reason on error, 0 on success */
7842 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7846 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7847 if (!(trans_support
& SIMPLE_MODE
))
7850 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7852 /* Update the field, and then ring the doorbell */
7853 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7854 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7855 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7856 if (hpsa_wait_for_mode_change_ack(h
))
7858 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7859 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7861 h
->transMethod
= CFGTBL_Trans_Simple
;
7864 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7868 /* free items allocated or mapped by hpsa_pci_init */
7869 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7871 hpsa_free_cfgtables(h
); /* pci_init 4 */
7872 iounmap(h
->vaddr
); /* pci_init 3 */
7874 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7876 * call pci_disable_device before pci_release_regions per
7877 * Documentation/PCI/pci.txt
7879 pci_disable_device(h
->pdev
); /* pci_init 1 */
7880 pci_release_regions(h
->pdev
); /* pci_init 2 */
7883 /* several items must be freed later */
7884 static int hpsa_pci_init(struct ctlr_info
*h
)
7886 int prod_index
, err
;
7888 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7891 h
->product_name
= products
[prod_index
].product_name
;
7892 h
->access
= *(products
[prod_index
].access
);
7894 h
->needs_abort_tags_swizzled
=
7895 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7897 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7898 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7900 err
= pci_enable_device(h
->pdev
);
7902 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7903 pci_disable_device(h
->pdev
);
7907 err
= pci_request_regions(h
->pdev
, HPSA
);
7909 dev_err(&h
->pdev
->dev
,
7910 "failed to obtain PCI resources\n");
7911 pci_disable_device(h
->pdev
);
7915 pci_set_master(h
->pdev
);
7917 hpsa_interrupt_mode(h
);
7918 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7920 goto clean2
; /* intmode+region, pci */
7921 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7923 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7925 goto clean2
; /* intmode+region, pci */
7927 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7929 goto clean3
; /* vaddr, intmode+region, pci */
7930 err
= hpsa_find_cfgtables(h
);
7932 goto clean3
; /* vaddr, intmode+region, pci */
7933 hpsa_find_board_params(h
);
7935 if (!hpsa_CISS_signature_present(h
)) {
7937 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7939 hpsa_set_driver_support_bits(h
);
7940 hpsa_p600_dma_prefetch_quirk(h
);
7941 err
= hpsa_enter_simple_mode(h
);
7943 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7946 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7947 hpsa_free_cfgtables(h
);
7948 clean3
: /* vaddr, intmode+region, pci */
7951 clean2
: /* intmode+region, pci */
7952 hpsa_disable_interrupt_mode(h
);
7954 * call pci_disable_device before pci_release_regions per
7955 * Documentation/PCI/pci.txt
7957 pci_disable_device(h
->pdev
);
7958 pci_release_regions(h
->pdev
);
7962 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7966 #define HBA_INQUIRY_BYTE_COUNT 64
7967 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7968 if (!h
->hba_inquiry_data
)
7970 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7971 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7973 kfree(h
->hba_inquiry_data
);
7974 h
->hba_inquiry_data
= NULL
;
7978 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7981 void __iomem
*vaddr
;
7986 /* kdump kernel is loading, we don't know in which state is
7987 * the pci interface. The dev->enable_cnt is equal zero
7988 * so we call enable+disable, wait a while and switch it on.
7990 rc
= pci_enable_device(pdev
);
7992 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7995 pci_disable_device(pdev
);
7996 msleep(260); /* a randomly chosen number */
7997 rc
= pci_enable_device(pdev
);
7999 dev_warn(&pdev
->dev
, "failed to enable device.\n");
8003 pci_set_master(pdev
);
8005 vaddr
= pci_ioremap_bar(pdev
, 0);
8006 if (vaddr
== NULL
) {
8010 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
8013 /* Reset the controller with a PCI power-cycle or via doorbell */
8014 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
8016 /* -ENOTSUPP here means we cannot reset the controller
8017 * but it's already (and still) up and running in
8018 * "performant mode". Or, it might be 640x, which can't reset
8019 * due to concerns about shared bbwc between 6402/6404 pair.
8024 /* Now try to get the controller to respond to a no-op */
8025 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
8026 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
8027 if (hpsa_noop(pdev
) == 0)
8030 dev_warn(&pdev
->dev
, "no-op failed%s\n",
8031 (i
< 11 ? "; re-trying" : ""));
8036 pci_disable_device(pdev
);
8040 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
8042 kfree(h
->cmd_pool_bits
);
8043 h
->cmd_pool_bits
= NULL
;
8045 pci_free_consistent(h
->pdev
,
8046 h
->nr_cmds
* sizeof(struct CommandList
),
8048 h
->cmd_pool_dhandle
);
8050 h
->cmd_pool_dhandle
= 0;
8052 if (h
->errinfo_pool
) {
8053 pci_free_consistent(h
->pdev
,
8054 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8056 h
->errinfo_pool_dhandle
);
8057 h
->errinfo_pool
= NULL
;
8058 h
->errinfo_pool_dhandle
= 0;
8062 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8064 h
->cmd_pool_bits
= kzalloc(
8065 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
8066 sizeof(unsigned long), GFP_KERNEL
);
8067 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
8068 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8069 &(h
->cmd_pool_dhandle
));
8070 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
8071 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8072 &(h
->errinfo_pool_dhandle
));
8073 if ((h
->cmd_pool_bits
== NULL
)
8074 || (h
->cmd_pool
== NULL
)
8075 || (h
->errinfo_pool
== NULL
)) {
8076 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8079 hpsa_preinitialize_commands(h
);
8082 hpsa_free_cmd_pool(h
);
8086 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
8090 cpu
= cpumask_first(cpu_online_mask
);
8091 for (i
= 0; i
< h
->msix_vector
; i
++) {
8092 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
8093 cpu
= cpumask_next(cpu
, cpu_online_mask
);
8097 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8098 static void hpsa_free_irqs(struct ctlr_info
*h
)
8102 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
8103 /* Single reply queue, only one irq to free */
8105 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8106 free_irq(h
->intr
[i
], &h
->q
[i
]);
8111 for (i
= 0; i
< h
->msix_vector
; i
++) {
8112 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8113 free_irq(h
->intr
[i
], &h
->q
[i
]);
8116 for (; i
< MAX_REPLY_QUEUES
; i
++)
8120 /* returns 0 on success; cleans up and returns -Enn on error */
8121 static int hpsa_request_irqs(struct ctlr_info
*h
,
8122 irqreturn_t (*msixhandler
)(int, void *),
8123 irqreturn_t (*intxhandler
)(int, void *))
8128 * initialize h->q[x] = x so that interrupt handlers know which
8131 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8134 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
8135 /* If performant mode and MSI-X, use multiple reply queues */
8136 for (i
= 0; i
< h
->msix_vector
; i
++) {
8137 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8138 rc
= request_irq(h
->intr
[i
], msixhandler
,
8144 dev_err(&h
->pdev
->dev
,
8145 "failed to get irq %d for %s\n",
8146 h
->intr
[i
], h
->devname
);
8147 for (j
= 0; j
< i
; j
++) {
8148 free_irq(h
->intr
[j
], &h
->q
[j
]);
8151 for (; j
< MAX_REPLY_QUEUES
; j
++)
8156 hpsa_irq_affinity_hints(h
);
8158 /* Use single reply pool */
8159 if (h
->msix_vector
> 0 || h
->msi_vector
) {
8161 sprintf(h
->intrname
[h
->intr_mode
],
8162 "%s-msix", h
->devname
);
8164 sprintf(h
->intrname
[h
->intr_mode
],
8165 "%s-msi", h
->devname
);
8166 rc
= request_irq(h
->intr
[h
->intr_mode
],
8168 h
->intrname
[h
->intr_mode
],
8169 &h
->q
[h
->intr_mode
]);
8171 sprintf(h
->intrname
[h
->intr_mode
],
8172 "%s-intx", h
->devname
);
8173 rc
= request_irq(h
->intr
[h
->intr_mode
],
8174 intxhandler
, IRQF_SHARED
,
8175 h
->intrname
[h
->intr_mode
],
8176 &h
->q
[h
->intr_mode
]);
8178 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
8181 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8182 h
->intr
[h
->intr_mode
], h
->devname
);
8189 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8192 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8194 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8195 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8197 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8201 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8202 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8204 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8205 "after soft reset.\n");
8212 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8216 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8217 if (!h
->reply_queue
[i
].head
)
8219 pci_free_consistent(h
->pdev
,
8220 h
->reply_queue_size
,
8221 h
->reply_queue
[i
].head
,
8222 h
->reply_queue
[i
].busaddr
);
8223 h
->reply_queue
[i
].head
= NULL
;
8224 h
->reply_queue
[i
].busaddr
= 0;
8226 h
->reply_queue_size
= 0;
8229 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8231 hpsa_free_performant_mode(h
); /* init_one 7 */
8232 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8233 hpsa_free_cmd_pool(h
); /* init_one 5 */
8234 hpsa_free_irqs(h
); /* init_one 4 */
8235 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8236 h
->scsi_host
= NULL
; /* init_one 3 */
8237 hpsa_free_pci_init(h
); /* init_one 2_5 */
8238 free_percpu(h
->lockup_detected
); /* init_one 2 */
8239 h
->lockup_detected
= NULL
; /* init_one 2 */
8240 if (h
->resubmit_wq
) {
8241 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8242 h
->resubmit_wq
= NULL
;
8244 if (h
->rescan_ctlr_wq
) {
8245 destroy_workqueue(h
->rescan_ctlr_wq
);
8246 h
->rescan_ctlr_wq
= NULL
;
8248 kfree(h
); /* init_one 1 */
8251 /* Called when controller lockup detected. */
8252 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8255 struct CommandList
*c
;
8258 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8259 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8260 c
= h
->cmd_pool
+ i
;
8261 refcount
= atomic_inc_return(&c
->refcount
);
8263 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8265 atomic_dec(&h
->commands_outstanding
);
8270 dev_warn(&h
->pdev
->dev
,
8271 "failed %d commands in fail_all\n", failcount
);
8274 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8278 for_each_online_cpu(cpu
) {
8279 u32
*lockup_detected
;
8280 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8281 *lockup_detected
= value
;
8283 wmb(); /* be sure the per-cpu variables are out to memory */
8286 static void controller_lockup_detected(struct ctlr_info
*h
)
8288 unsigned long flags
;
8289 u32 lockup_detected
;
8291 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8292 spin_lock_irqsave(&h
->lock
, flags
);
8293 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8294 if (!lockup_detected
) {
8295 /* no heartbeat, but controller gave us a zero. */
8296 dev_warn(&h
->pdev
->dev
,
8297 "lockup detected after %d but scratchpad register is zero\n",
8298 h
->heartbeat_sample_interval
/ HZ
);
8299 lockup_detected
= 0xffffffff;
8301 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8302 spin_unlock_irqrestore(&h
->lock
, flags
);
8303 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8304 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8305 pci_disable_device(h
->pdev
);
8306 fail_all_outstanding_cmds(h
);
8309 static int detect_controller_lockup(struct ctlr_info
*h
)
8313 unsigned long flags
;
8315 now
= get_jiffies_64();
8316 /* If we've received an interrupt recently, we're ok. */
8317 if (time_after64(h
->last_intr_timestamp
+
8318 (h
->heartbeat_sample_interval
), now
))
8322 * If we've already checked the heartbeat recently, we're ok.
8323 * This could happen if someone sends us a signal. We
8324 * otherwise don't care about signals in this thread.
8326 if (time_after64(h
->last_heartbeat_timestamp
+
8327 (h
->heartbeat_sample_interval
), now
))
8330 /* If heartbeat has not changed since we last looked, we're not ok. */
8331 spin_lock_irqsave(&h
->lock
, flags
);
8332 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8333 spin_unlock_irqrestore(&h
->lock
, flags
);
8334 if (h
->last_heartbeat
== heartbeat
) {
8335 controller_lockup_detected(h
);
8340 h
->last_heartbeat
= heartbeat
;
8341 h
->last_heartbeat_timestamp
= now
;
8345 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8350 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8353 /* Ask the controller to clear the events we're handling. */
8354 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8355 | CFGTBL_Trans_io_accel2
)) &&
8356 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8357 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8359 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8360 event_type
= "state change";
8361 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8362 event_type
= "configuration change";
8363 /* Stop sending new RAID offload reqs via the IO accelerator */
8364 scsi_block_requests(h
->scsi_host
);
8365 for (i
= 0; i
< h
->ndevices
; i
++) {
8366 h
->dev
[i
]->offload_enabled
= 0;
8367 h
->dev
[i
]->offload_to_be_enabled
= 0;
8369 hpsa_drain_accel_commands(h
);
8370 /* Set 'accelerator path config change' bit */
8371 dev_warn(&h
->pdev
->dev
,
8372 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373 h
->events
, event_type
);
8374 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8375 /* Set the "clear event notify field update" bit 6 */
8376 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8377 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378 hpsa_wait_for_clear_event_notify_ack(h
);
8379 scsi_unblock_requests(h
->scsi_host
);
8381 /* Acknowledge controller notification events. */
8382 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8383 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8384 hpsa_wait_for_clear_event_notify_ack(h
);
8386 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8387 hpsa_wait_for_mode_change_ack(h
);
8393 /* Check a register on the controller to see if there are configuration
8394 * changes (added/changed/removed logical drives, etc.) which mean that
8395 * we should rescan the controller for devices.
8396 * Also check flag for driver-initiated rescan.
8398 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8400 if (h
->drv_req_rescan
) {
8401 h
->drv_req_rescan
= 0;
8405 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8408 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8409 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8413 * Check if any of the offline devices have become ready
8415 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8417 unsigned long flags
;
8418 struct offline_device_entry
*d
;
8419 struct list_head
*this, *tmp
;
8421 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8422 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8423 d
= list_entry(this, struct offline_device_entry
,
8425 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8426 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8427 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8428 list_del(&d
->offline_list
);
8429 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8432 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8434 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8438 static int hpsa_luns_changed(struct ctlr_info
*h
)
8440 int rc
= 1; /* assume there are changes */
8441 struct ReportLUNdata
*logdev
= NULL
;
8443 /* if we can't find out if lun data has changed,
8444 * assume that it has.
8447 if (!h
->lastlogicals
)
8450 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8452 dev_warn(&h
->pdev
->dev
,
8453 "Out of memory, can't track lun changes.\n");
8456 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8457 dev_warn(&h
->pdev
->dev
,
8458 "report luns failed, can't track lun changes.\n");
8461 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8462 dev_info(&h
->pdev
->dev
,
8463 "Lun changes detected.\n");
8464 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8467 rc
= 0; /* no changes detected. */
8473 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8475 unsigned long flags
;
8476 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8477 struct ctlr_info
, rescan_ctlr_work
);
8480 if (h
->remove_in_progress
)
8483 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8484 scsi_host_get(h
->scsi_host
);
8485 hpsa_ack_ctlr_events(h
);
8486 hpsa_scan_start(h
->scsi_host
);
8487 scsi_host_put(h
->scsi_host
);
8488 } else if (h
->discovery_polling
) {
8489 hpsa_disable_rld_caching(h
);
8490 if (hpsa_luns_changed(h
)) {
8491 struct Scsi_Host
*sh
= NULL
;
8493 dev_info(&h
->pdev
->dev
,
8494 "driver discovery polling rescan.\n");
8495 sh
= scsi_host_get(h
->scsi_host
);
8497 hpsa_scan_start(sh
);
8502 spin_lock_irqsave(&h
->lock
, flags
);
8503 if (!h
->remove_in_progress
)
8504 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8505 h
->heartbeat_sample_interval
);
8506 spin_unlock_irqrestore(&h
->lock
, flags
);
8509 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8511 unsigned long flags
;
8512 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8513 struct ctlr_info
, monitor_ctlr_work
);
8515 detect_controller_lockup(h
);
8516 if (lockup_detected(h
))
8519 spin_lock_irqsave(&h
->lock
, flags
);
8520 if (!h
->remove_in_progress
)
8521 schedule_delayed_work(&h
->monitor_ctlr_work
,
8522 h
->heartbeat_sample_interval
);
8523 spin_unlock_irqrestore(&h
->lock
, flags
);
8526 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8529 struct workqueue_struct
*wq
= NULL
;
8531 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8533 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8538 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8541 struct ctlr_info
*h
;
8542 int try_soft_reset
= 0;
8543 unsigned long flags
;
8546 if (number_of_controllers
== 0)
8547 printk(KERN_INFO DRIVER_NAME
"\n");
8549 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8551 dev_warn(&pdev
->dev
, "Board ID not found\n");
8555 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8557 if (rc
!= -ENOTSUPP
)
8559 /* If the reset fails in a particular way (it has no way to do
8560 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8561 * a soft reset once we get the controller configured up to the
8562 * point that it can accept a command.
8568 reinit_after_soft_reset
:
8570 /* Command structures must be aligned on a 32-byte boundary because
8571 * the 5 lower bits of the address are used by the hardware. and by
8572 * the driver. See comments in hpsa.h for more info.
8574 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8575 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8577 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8583 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8584 INIT_LIST_HEAD(&h
->offline_device_list
);
8585 spin_lock_init(&h
->lock
);
8586 spin_lock_init(&h
->offline_device_lock
);
8587 spin_lock_init(&h
->scan_lock
);
8588 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8589 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8591 /* Allocate and clear per-cpu variable lockup_detected */
8592 h
->lockup_detected
= alloc_percpu(u32
);
8593 if (!h
->lockup_detected
) {
8594 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8596 goto clean1
; /* aer/h */
8598 set_lockup_detected_for_all_cpus(h
, 0);
8600 rc
= hpsa_pci_init(h
);
8602 goto clean2
; /* lu, aer/h */
8604 /* relies on h-> settings made by hpsa_pci_init, including
8605 * interrupt_mode h->intr */
8606 rc
= hpsa_scsi_host_alloc(h
);
8608 goto clean2_5
; /* pci, lu, aer/h */
8610 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8611 h
->ctlr
= number_of_controllers
;
8612 number_of_controllers
++;
8614 /* configure PCI DMA stuff */
8615 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8619 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8623 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8624 goto clean3
; /* shost, pci, lu, aer/h */
8628 /* make sure the board interrupts are off */
8629 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8631 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8633 goto clean3
; /* shost, pci, lu, aer/h */
8634 rc
= hpsa_alloc_cmd_pool(h
);
8636 goto clean4
; /* irq, shost, pci, lu, aer/h */
8637 rc
= hpsa_alloc_sg_chain_blocks(h
);
8639 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8640 init_waitqueue_head(&h
->scan_wait_queue
);
8641 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8642 init_waitqueue_head(&h
->event_sync_wait_queue
);
8643 mutex_init(&h
->reset_mutex
);
8644 h
->scan_finished
= 1; /* no scan currently in progress */
8646 pci_set_drvdata(pdev
, h
);
8649 spin_lock_init(&h
->devlock
);
8650 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8652 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8654 /* create the resubmit workqueue */
8655 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8656 if (!h
->rescan_ctlr_wq
) {
8661 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8662 if (!h
->resubmit_wq
) {
8664 goto clean7
; /* aer/h */
8668 * At this point, the controller is ready to take commands.
8669 * Now, if reset_devices and the hard reset didn't work, try
8670 * the soft reset and see if that works.
8672 if (try_soft_reset
) {
8674 /* This is kind of gross. We may or may not get a completion
8675 * from the soft reset command, and if we do, then the value
8676 * from the fifo may or may not be valid. So, we wait 10 secs
8677 * after the reset throwing away any completions we get during
8678 * that time. Unregister the interrupt handler and register
8679 * fake ones to scoop up any residual completions.
8681 spin_lock_irqsave(&h
->lock
, flags
);
8682 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8683 spin_unlock_irqrestore(&h
->lock
, flags
);
8685 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8686 hpsa_intx_discard_completions
);
8688 dev_warn(&h
->pdev
->dev
,
8689 "Failed to request_irq after soft reset.\n");
8691 * cannot goto clean7 or free_irqs will be called
8692 * again. Instead, do its work
8694 hpsa_free_performant_mode(h
); /* clean7 */
8695 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8696 hpsa_free_cmd_pool(h
); /* clean5 */
8698 * skip hpsa_free_irqs(h) clean4 since that
8699 * was just called before request_irqs failed
8704 rc
= hpsa_kdump_soft_reset(h
);
8706 /* Neither hard nor soft reset worked, we're hosed. */
8709 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8710 dev_info(&h
->pdev
->dev
,
8711 "Waiting for stale completions to drain.\n");
8712 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8714 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8716 rc
= controller_reset_failed(h
->cfgtable
);
8718 dev_info(&h
->pdev
->dev
,
8719 "Soft reset appears to have failed.\n");
8721 /* since the controller's reset, we have to go back and re-init
8722 * everything. Easiest to just forget what we've done and do it
8725 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8728 /* don't goto clean, we already unallocated */
8731 goto reinit_after_soft_reset
;
8734 /* Enable Accelerated IO path at driver layer */
8735 h
->acciopath_status
= 1;
8736 /* Disable discovery polling.*/
8737 h
->discovery_polling
= 0;
8740 /* Turn the interrupts on so we can service requests */
8741 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8743 hpsa_hba_inquiry(h
);
8745 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8746 if (!h
->lastlogicals
)
8747 dev_info(&h
->pdev
->dev
,
8748 "Can't track change to report lun data\n");
8750 /* hook into SCSI subsystem */
8751 rc
= hpsa_scsi_add_host(h
);
8753 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755 /* Monitor the controller for firmware lockups */
8756 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8757 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8758 schedule_delayed_work(&h
->monitor_ctlr_work
,
8759 h
->heartbeat_sample_interval
);
8760 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8761 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8762 h
->heartbeat_sample_interval
);
8765 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8766 hpsa_free_performant_mode(h
);
8767 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8768 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8769 hpsa_free_sg_chain_blocks(h
);
8770 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8771 hpsa_free_cmd_pool(h
);
8772 clean4
: /* irq, shost, pci, lu, aer/h */
8774 clean3
: /* shost, pci, lu, aer/h */
8775 scsi_host_put(h
->scsi_host
);
8776 h
->scsi_host
= NULL
;
8777 clean2_5
: /* pci, lu, aer/h */
8778 hpsa_free_pci_init(h
);
8779 clean2
: /* lu, aer/h */
8780 if (h
->lockup_detected
) {
8781 free_percpu(h
->lockup_detected
);
8782 h
->lockup_detected
= NULL
;
8784 clean1
: /* wq/aer/h */
8785 if (h
->resubmit_wq
) {
8786 destroy_workqueue(h
->resubmit_wq
);
8787 h
->resubmit_wq
= NULL
;
8789 if (h
->rescan_ctlr_wq
) {
8790 destroy_workqueue(h
->rescan_ctlr_wq
);
8791 h
->rescan_ctlr_wq
= NULL
;
8797 static void hpsa_flush_cache(struct ctlr_info
*h
)
8800 struct CommandList
*c
;
8803 if (unlikely(lockup_detected(h
)))
8805 flush_buf
= kzalloc(4, GFP_KERNEL
);
8811 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8812 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8815 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8816 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8819 if (c
->err_info
->CommandStatus
!= 0)
8821 dev_warn(&h
->pdev
->dev
,
8822 "error flushing cache on controller\n");
8827 /* Make controller gather fresh report lun data each time we
8828 * send down a report luns request
8830 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8833 struct CommandList
*c
;
8836 /* Don't bother trying to set diag options if locked up */
8837 if (unlikely(h
->lockup_detected
))
8840 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8842 dev_err(&h
->pdev
->dev
,
8843 "Error: failed to disable rld caching, during alloc.\n");
8849 /* first, get the current diag options settings */
8850 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8851 RAID_CTLR_LUNID
, TYPE_CMD
))
8854 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8855 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8856 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8859 /* Now, set the bit for disabling the RLD caching */
8860 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8862 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8863 RAID_CTLR_LUNID
, TYPE_CMD
))
8866 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8867 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8868 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8871 /* Now verify that it got set: */
8872 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8873 RAID_CTLR_LUNID
, TYPE_CMD
))
8876 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8877 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8878 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8881 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8885 dev_err(&h
->pdev
->dev
,
8886 "Error: failed to disable report lun data caching.\n");
8892 static void hpsa_shutdown(struct pci_dev
*pdev
)
8894 struct ctlr_info
*h
;
8896 h
= pci_get_drvdata(pdev
);
8897 /* Turn board interrupts off and send the flush cache command
8898 * sendcmd will turn off interrupt, and send the flush...
8899 * To write all data in the battery backed cache to disks
8901 hpsa_flush_cache(h
);
8902 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8903 hpsa_free_irqs(h
); /* init_one 4 */
8904 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8907 static void hpsa_free_device_info(struct ctlr_info
*h
)
8911 for (i
= 0; i
< h
->ndevices
; i
++) {
8917 static void hpsa_remove_one(struct pci_dev
*pdev
)
8919 struct ctlr_info
*h
;
8920 unsigned long flags
;
8922 if (pci_get_drvdata(pdev
) == NULL
) {
8923 dev_err(&pdev
->dev
, "unable to remove device\n");
8926 h
= pci_get_drvdata(pdev
);
8928 /* Get rid of any controller monitoring work items */
8929 spin_lock_irqsave(&h
->lock
, flags
);
8930 h
->remove_in_progress
= 1;
8931 spin_unlock_irqrestore(&h
->lock
, flags
);
8932 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8933 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8934 destroy_workqueue(h
->rescan_ctlr_wq
);
8935 destroy_workqueue(h
->resubmit_wq
);
8938 * Call before disabling interrupts.
8939 * scsi_remove_host can trigger I/O operations especially
8940 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8941 * operations which cannot complete and will hang the system.
8944 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8945 /* includes hpsa_free_irqs - init_one 4 */
8946 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8947 hpsa_shutdown(pdev
);
8949 hpsa_free_device_info(h
); /* scan */
8951 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8952 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8953 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8954 hpsa_free_performant_mode(h
); /* init_one 7 */
8955 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8956 hpsa_free_cmd_pool(h
); /* init_one 5 */
8957 kfree(h
->lastlogicals
);
8959 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8961 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8962 h
->scsi_host
= NULL
; /* init_one 3 */
8964 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8965 hpsa_free_pci_init(h
); /* init_one 2.5 */
8967 free_percpu(h
->lockup_detected
); /* init_one 2 */
8968 h
->lockup_detected
= NULL
; /* init_one 2 */
8969 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8971 hpsa_delete_sas_host(h
);
8973 kfree(h
); /* init_one 1 */
8976 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8977 __attribute__((unused
)) pm_message_t state
)
8982 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8987 static struct pci_driver hpsa_pci_driver
= {
8989 .probe
= hpsa_init_one
,
8990 .remove
= hpsa_remove_one
,
8991 .id_table
= hpsa_pci_device_id
, /* id_table */
8992 .shutdown
= hpsa_shutdown
,
8993 .suspend
= hpsa_suspend
,
8994 .resume
= hpsa_resume
,
8997 /* Fill in bucket_map[], given nsgs (the max number of
8998 * scatter gather elements supported) and bucket[],
8999 * which is an array of 8 integers. The bucket[] array
9000 * contains 8 different DMA transfer sizes (in 16
9001 * byte increments) which the controller uses to fetch
9002 * commands. This function fills in bucket_map[], which
9003 * maps a given number of scatter gather elements to one of
9004 * the 8 DMA transfer sizes. The point of it is to allow the
9005 * controller to only do as much DMA as needed to fetch the
9006 * command, with the DMA transfer size encoded in the lower
9007 * bits of the command address.
9009 static void calc_bucket_map(int bucket
[], int num_buckets
,
9010 int nsgs
, int min_blocks
, u32
*bucket_map
)
9014 /* Note, bucket_map must have nsgs+1 entries. */
9015 for (i
= 0; i
<= nsgs
; i
++) {
9016 /* Compute size of a command with i SG entries */
9017 size
= i
+ min_blocks
;
9018 b
= num_buckets
; /* Assume the biggest bucket */
9019 /* Find the bucket that is just big enough */
9020 for (j
= 0; j
< num_buckets
; j
++) {
9021 if (bucket
[j
] >= size
) {
9026 /* for a command with i SG entries, use bucket b. */
9032 * return -ENODEV on err, 0 on success (or no action)
9033 * allocates numerous items that must be freed later
9035 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9038 unsigned long register_value
;
9039 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9040 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9041 CFGTBL_Trans_enable_directed_msix
|
9042 (trans_support
& (CFGTBL_Trans_io_accel1
|
9043 CFGTBL_Trans_io_accel2
));
9044 struct access_method access
= SA5_performant_access
;
9046 /* This is a bit complicated. There are 8 registers on
9047 * the controller which we write to to tell it 8 different
9048 * sizes of commands which there may be. It's a way of
9049 * reducing the DMA done to fetch each command. Encoded into
9050 * each command's tag are 3 bits which communicate to the controller
9051 * which of the eight sizes that command fits within. The size of
9052 * each command depends on how many scatter gather entries there are.
9053 * Each SG entry requires 16 bytes. The eight registers are programmed
9054 * with the number of 16-byte blocks a command of that size requires.
9055 * The smallest command possible requires 5 such 16 byte blocks.
9056 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9057 * blocks. Note, this only extends to the SG entries contained
9058 * within the command block, and does not extend to chained blocks
9059 * of SG elements. bft[] contains the eight values we write to
9060 * the registers. They are not evenly distributed, but have more
9061 * sizes for small commands, and fewer sizes for larger commands.
9063 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9064 #define MIN_IOACCEL2_BFT_ENTRY 5
9065 #define HPSA_IOACCEL2_HEADER_SZ 4
9066 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9067 13, 14, 15, 16, 17, 18, 19,
9068 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9069 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9070 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9071 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9072 16 * MIN_IOACCEL2_BFT_ENTRY
);
9073 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9074 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9075 /* 5 = 1 s/g entry or 4k
9076 * 6 = 2 s/g entry or 8k
9077 * 8 = 4 s/g entry or 16k
9078 * 10 = 6 s/g entry or 24k
9081 /* If the controller supports either ioaccel method then
9082 * we can also use the RAID stack submit path that does not
9083 * perform the superfluous readl() after each command submission.
9085 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9086 access
= SA5_performant_access_no_read
;
9088 /* Controller spec: zero out this buffer. */
9089 for (i
= 0; i
< h
->nreply_queues
; i
++)
9090 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9092 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9093 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9094 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9095 for (i
= 0; i
< 8; i
++)
9096 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9098 /* size of controller ring buffer */
9099 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9100 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9101 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9102 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9104 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9105 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9106 writel(h
->reply_queue
[i
].busaddr
,
9107 &h
->transtable
->RepQAddr
[i
].lower
);
9110 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9111 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9113 * enable outbound interrupt coalescing in accelerator mode;
9115 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9116 access
= SA5_ioaccel_mode1_access
;
9117 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9118 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9120 if (trans_support
& CFGTBL_Trans_io_accel2
) {
9121 access
= SA5_ioaccel_mode2_access
;
9122 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9123 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9126 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9127 if (hpsa_wait_for_mode_change_ack(h
)) {
9128 dev_err(&h
->pdev
->dev
,
9129 "performant mode problem - doorbell timeout\n");
9132 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9133 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9134 dev_err(&h
->pdev
->dev
,
9135 "performant mode problem - transport not active\n");
9138 /* Change the access methods to the performant access methods */
9140 h
->transMethod
= transMethod
;
9142 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9143 (trans_support
& CFGTBL_Trans_io_accel2
)))
9146 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9147 /* Set up I/O accelerator mode */
9148 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9149 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9150 h
->reply_queue
[i
].current_entry
=
9151 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9153 bft
[7] = h
->ioaccel_maxsg
+ 8;
9154 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9155 h
->ioaccel1_blockFetchTable
);
9157 /* initialize all reply queue entries to unused */
9158 for (i
= 0; i
< h
->nreply_queues
; i
++)
9159 memset(h
->reply_queue
[i
].head
,
9160 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9161 h
->reply_queue_size
);
9163 /* set all the constant fields in the accelerator command
9164 * frames once at init time to save CPU cycles later.
9166 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9167 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9169 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9170 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9171 (i
* sizeof(struct ErrorInfo
)));
9172 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9173 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9174 cp
->host_context_flags
=
9175 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9176 cp
->timeout_sec
= 0;
9179 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9181 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9182 (i
* sizeof(struct io_accel1_cmd
)));
9184 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9185 u64 cfg_offset
, cfg_base_addr_index
;
9186 u32 bft2_offset
, cfg_base_addr
;
9189 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9190 &cfg_base_addr_index
, &cfg_offset
);
9191 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9192 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9193 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9194 4, h
->ioaccel2_blockFetchTable
);
9195 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9196 BUILD_BUG_ON(offsetof(struct CfgTable
,
9197 io_accel_request_size_offset
) != 0xb8);
9198 h
->ioaccel2_bft2_regs
=
9199 remap_pci_mem(pci_resource_start(h
->pdev
,
9200 cfg_base_addr_index
) +
9201 cfg_offset
+ bft2_offset
,
9203 sizeof(*h
->ioaccel2_bft2_regs
));
9204 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9205 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9207 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9208 if (hpsa_wait_for_mode_change_ack(h
)) {
9209 dev_err(&h
->pdev
->dev
,
9210 "performant mode problem - enabling ioaccel mode\n");
9216 /* Free ioaccel1 mode command blocks and block fetch table */
9217 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9219 if (h
->ioaccel_cmd_pool
) {
9220 pci_free_consistent(h
->pdev
,
9221 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9222 h
->ioaccel_cmd_pool
,
9223 h
->ioaccel_cmd_pool_dhandle
);
9224 h
->ioaccel_cmd_pool
= NULL
;
9225 h
->ioaccel_cmd_pool_dhandle
= 0;
9227 kfree(h
->ioaccel1_blockFetchTable
);
9228 h
->ioaccel1_blockFetchTable
= NULL
;
9231 /* Allocate ioaccel1 mode command blocks and block fetch table */
9232 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9235 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9236 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9237 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9239 /* Command structures must be aligned on a 128-byte boundary
9240 * because the 7 lower bits of the address are used by the
9243 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9244 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9245 h
->ioaccel_cmd_pool
=
9246 pci_alloc_consistent(h
->pdev
,
9247 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9248 &(h
->ioaccel_cmd_pool_dhandle
));
9250 h
->ioaccel1_blockFetchTable
=
9251 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9252 sizeof(u32
)), GFP_KERNEL
);
9254 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9255 (h
->ioaccel1_blockFetchTable
== NULL
))
9258 memset(h
->ioaccel_cmd_pool
, 0,
9259 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9263 hpsa_free_ioaccel1_cmd_and_bft(h
);
9267 /* Free ioaccel2 mode command blocks and block fetch table */
9268 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9270 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9272 if (h
->ioaccel2_cmd_pool
) {
9273 pci_free_consistent(h
->pdev
,
9274 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9275 h
->ioaccel2_cmd_pool
,
9276 h
->ioaccel2_cmd_pool_dhandle
);
9277 h
->ioaccel2_cmd_pool
= NULL
;
9278 h
->ioaccel2_cmd_pool_dhandle
= 0;
9280 kfree(h
->ioaccel2_blockFetchTable
);
9281 h
->ioaccel2_blockFetchTable
= NULL
;
9284 /* Allocate ioaccel2 mode command blocks and block fetch table */
9285 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9289 /* Allocate ioaccel2 mode command blocks and block fetch table */
9292 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9293 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9294 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9296 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9297 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9298 h
->ioaccel2_cmd_pool
=
9299 pci_alloc_consistent(h
->pdev
,
9300 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9301 &(h
->ioaccel2_cmd_pool_dhandle
));
9303 h
->ioaccel2_blockFetchTable
=
9304 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9305 sizeof(u32
)), GFP_KERNEL
);
9307 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9308 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9313 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9317 memset(h
->ioaccel2_cmd_pool
, 0,
9318 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9322 hpsa_free_ioaccel2_cmd_and_bft(h
);
9326 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9327 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9329 kfree(h
->blockFetchTable
);
9330 h
->blockFetchTable
= NULL
;
9331 hpsa_free_reply_queues(h
);
9332 hpsa_free_ioaccel1_cmd_and_bft(h
);
9333 hpsa_free_ioaccel2_cmd_and_bft(h
);
9336 /* return -ENODEV on error, 0 on success (or no action)
9337 * allocates numerous items that must be freed later
9339 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9342 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9343 CFGTBL_Trans_use_short_tags
;
9346 if (hpsa_simple_mode
)
9349 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9350 if (!(trans_support
& PERFORMANT_MODE
))
9353 /* Check for I/O accelerator mode support */
9354 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9355 transMethod
|= CFGTBL_Trans_io_accel1
|
9356 CFGTBL_Trans_enable_directed_msix
;
9357 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9360 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9361 transMethod
|= CFGTBL_Trans_io_accel2
|
9362 CFGTBL_Trans_enable_directed_msix
;
9363 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9368 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9369 hpsa_get_max_perf_mode_cmds(h
);
9370 /* Performant mode ring buffer and supporting data structures */
9371 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9373 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9374 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9375 h
->reply_queue_size
,
9376 &(h
->reply_queue
[i
].busaddr
));
9377 if (!h
->reply_queue
[i
].head
) {
9379 goto clean1
; /* rq, ioaccel */
9381 h
->reply_queue
[i
].size
= h
->max_commands
;
9382 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9383 h
->reply_queue
[i
].current_entry
= 0;
9386 /* Need a block fetch table for performant mode */
9387 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9388 sizeof(u32
)), GFP_KERNEL
);
9389 if (!h
->blockFetchTable
) {
9391 goto clean1
; /* rq, ioaccel */
9394 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9396 goto clean2
; /* bft, rq, ioaccel */
9399 clean2
: /* bft, rq, ioaccel */
9400 kfree(h
->blockFetchTable
);
9401 h
->blockFetchTable
= NULL
;
9402 clean1
: /* rq, ioaccel */
9403 hpsa_free_reply_queues(h
);
9404 hpsa_free_ioaccel1_cmd_and_bft(h
);
9405 hpsa_free_ioaccel2_cmd_and_bft(h
);
9409 static int is_accelerated_cmd(struct CommandList
*c
)
9411 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9414 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9416 struct CommandList
*c
= NULL
;
9417 int i
, accel_cmds_out
;
9420 do { /* wait for all outstanding ioaccel commands to drain out */
9422 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9423 c
= h
->cmd_pool
+ i
;
9424 refcount
= atomic_inc_return(&c
->refcount
);
9425 if (refcount
> 1) /* Command is allocated */
9426 accel_cmds_out
+= is_accelerated_cmd(c
);
9429 if (accel_cmds_out
<= 0)
9435 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9436 struct hpsa_sas_port
*hpsa_sas_port
)
9438 struct hpsa_sas_phy
*hpsa_sas_phy
;
9439 struct sas_phy
*phy
;
9441 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9445 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9446 hpsa_sas_port
->next_phy_index
);
9448 kfree(hpsa_sas_phy
);
9452 hpsa_sas_port
->next_phy_index
++;
9453 hpsa_sas_phy
->phy
= phy
;
9454 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9456 return hpsa_sas_phy
;
9459 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9461 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9463 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9465 if (hpsa_sas_phy
->added_to_port
)
9466 list_del(&hpsa_sas_phy
->phy_list_entry
);
9467 kfree(hpsa_sas_phy
);
9470 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9473 struct hpsa_sas_port
*hpsa_sas_port
;
9474 struct sas_phy
*phy
;
9475 struct sas_identify
*identify
;
9477 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9478 phy
= hpsa_sas_phy
->phy
;
9480 identify
= &phy
->identify
;
9481 memset(identify
, 0, sizeof(*identify
));
9482 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9483 identify
->device_type
= SAS_END_DEVICE
;
9484 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9485 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9486 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9487 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9488 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9489 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9490 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9492 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9496 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9497 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9498 &hpsa_sas_port
->phy_list_head
);
9499 hpsa_sas_phy
->added_to_port
= true;
9505 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9506 struct sas_rphy
*rphy
)
9508 struct sas_identify
*identify
;
9510 identify
= &rphy
->identify
;
9511 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9512 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9513 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9515 return sas_rphy_add(rphy
);
9518 static struct hpsa_sas_port
9519 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9523 struct hpsa_sas_port
*hpsa_sas_port
;
9524 struct sas_port
*port
;
9526 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9530 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9531 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9533 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9535 goto free_hpsa_port
;
9537 rc
= sas_port_add(port
);
9541 hpsa_sas_port
->port
= port
;
9542 hpsa_sas_port
->sas_address
= sas_address
;
9543 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9544 &hpsa_sas_node
->port_list_head
);
9546 return hpsa_sas_port
;
9549 sas_port_free(port
);
9551 kfree(hpsa_sas_port
);
9556 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9558 struct hpsa_sas_phy
*hpsa_sas_phy
;
9559 struct hpsa_sas_phy
*next
;
9561 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9562 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9563 hpsa_free_sas_phy(hpsa_sas_phy
);
9565 sas_port_delete(hpsa_sas_port
->port
);
9566 list_del(&hpsa_sas_port
->port_list_entry
);
9567 kfree(hpsa_sas_port
);
9570 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9572 struct hpsa_sas_node
*hpsa_sas_node
;
9574 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9575 if (hpsa_sas_node
) {
9576 hpsa_sas_node
->parent_dev
= parent_dev
;
9577 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9580 return hpsa_sas_node
;
9583 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9585 struct hpsa_sas_port
*hpsa_sas_port
;
9586 struct hpsa_sas_port
*next
;
9591 list_for_each_entry_safe(hpsa_sas_port
, next
,
9592 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9593 hpsa_free_sas_port(hpsa_sas_port
);
9595 kfree(hpsa_sas_node
);
9598 static struct hpsa_scsi_dev_t
9599 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9600 struct sas_rphy
*rphy
)
9603 struct hpsa_scsi_dev_t
*device
;
9605 for (i
= 0; i
< h
->ndevices
; i
++) {
9607 if (!device
->sas_port
)
9609 if (device
->sas_port
->rphy
== rphy
)
9616 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9619 struct device
*parent_dev
;
9620 struct hpsa_sas_node
*hpsa_sas_node
;
9621 struct hpsa_sas_port
*hpsa_sas_port
;
9622 struct hpsa_sas_phy
*hpsa_sas_phy
;
9624 parent_dev
= &h
->scsi_host
->shost_gendev
;
9626 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9630 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9631 if (!hpsa_sas_port
) {
9636 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9637 if (!hpsa_sas_phy
) {
9642 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9646 h
->sas_host
= hpsa_sas_node
;
9651 hpsa_free_sas_phy(hpsa_sas_phy
);
9653 hpsa_free_sas_port(hpsa_sas_port
);
9655 hpsa_free_sas_node(hpsa_sas_node
);
9660 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9662 hpsa_free_sas_node(h
->sas_host
);
9665 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9666 struct hpsa_scsi_dev_t
*device
)
9669 struct hpsa_sas_port
*hpsa_sas_port
;
9670 struct sas_rphy
*rphy
;
9672 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9676 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9682 hpsa_sas_port
->rphy
= rphy
;
9683 device
->sas_port
= hpsa_sas_port
;
9685 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9692 hpsa_free_sas_port(hpsa_sas_port
);
9693 device
->sas_port
= NULL
;
9698 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9700 if (device
->sas_port
) {
9701 hpsa_free_sas_port(device
->sas_port
);
9702 device
->sas_port
= NULL
;
9707 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9713 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9720 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9726 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9732 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9738 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9744 hpsa_sas_phy_release(struct sas_phy
*phy
)
9749 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9754 /* SMP = Serial Management Protocol */
9756 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9757 struct request
*req
)
9762 static struct sas_function_template hpsa_sas_transport_functions
= {
9763 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9764 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9765 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9766 .phy_reset
= hpsa_sas_phy_reset
,
9767 .phy_enable
= hpsa_sas_phy_enable
,
9768 .phy_setup
= hpsa_sas_phy_setup
,
9769 .phy_release
= hpsa_sas_phy_release
,
9770 .set_phy_speed
= hpsa_sas_phy_speed
,
9771 .smp_handler
= hpsa_sas_smp_handler
,
9775 * This is it. Register the PCI driver information for the cards we control
9776 * the OS will call our registered routines when it finds one of our cards.
9778 static int __init
hpsa_init(void)
9782 hpsa_sas_transport_template
=
9783 sas_attach_transport(&hpsa_sas_transport_functions
);
9784 if (!hpsa_sas_transport_template
)
9787 rc
= pci_register_driver(&hpsa_pci_driver
);
9790 sas_release_transport(hpsa_sas_transport_template
);
9795 static void __exit
hpsa_cleanup(void)
9797 pci_unregister_driver(&hpsa_pci_driver
);
9798 sas_release_transport(hpsa_sas_transport_template
);
9801 static void __attribute__((unused
)) verify_offsets(void)
9803 #define VERIFY_OFFSET(member, offset) \
9804 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9806 VERIFY_OFFSET(structure_size
, 0);
9807 VERIFY_OFFSET(volume_blk_size
, 4);
9808 VERIFY_OFFSET(volume_blk_cnt
, 8);
9809 VERIFY_OFFSET(phys_blk_shift
, 16);
9810 VERIFY_OFFSET(parity_rotation_shift
, 17);
9811 VERIFY_OFFSET(strip_size
, 18);
9812 VERIFY_OFFSET(disk_starting_blk
, 20);
9813 VERIFY_OFFSET(disk_blk_cnt
, 28);
9814 VERIFY_OFFSET(data_disks_per_row
, 36);
9815 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9816 VERIFY_OFFSET(row_cnt
, 40);
9817 VERIFY_OFFSET(layout_map_count
, 42);
9818 VERIFY_OFFSET(flags
, 44);
9819 VERIFY_OFFSET(dekindex
, 46);
9820 /* VERIFY_OFFSET(reserved, 48 */
9821 VERIFY_OFFSET(data
, 64);
9823 #undef VERIFY_OFFSET
9825 #define VERIFY_OFFSET(member, offset) \
9826 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9828 VERIFY_OFFSET(IU_type
, 0);
9829 VERIFY_OFFSET(direction
, 1);
9830 VERIFY_OFFSET(reply_queue
, 2);
9831 /* VERIFY_OFFSET(reserved1, 3); */
9832 VERIFY_OFFSET(scsi_nexus
, 4);
9833 VERIFY_OFFSET(Tag
, 8);
9834 VERIFY_OFFSET(cdb
, 16);
9835 VERIFY_OFFSET(cciss_lun
, 32);
9836 VERIFY_OFFSET(data_len
, 40);
9837 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9838 VERIFY_OFFSET(sg_count
, 45);
9839 /* VERIFY_OFFSET(reserved3 */
9840 VERIFY_OFFSET(err_ptr
, 48);
9841 VERIFY_OFFSET(err_len
, 56);
9842 /* VERIFY_OFFSET(reserved4 */
9843 VERIFY_OFFSET(sg
, 64);
9845 #undef VERIFY_OFFSET
9847 #define VERIFY_OFFSET(member, offset) \
9848 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9850 VERIFY_OFFSET(dev_handle
, 0x00);
9851 VERIFY_OFFSET(reserved1
, 0x02);
9852 VERIFY_OFFSET(function
, 0x03);
9853 VERIFY_OFFSET(reserved2
, 0x04);
9854 VERIFY_OFFSET(err_info
, 0x0C);
9855 VERIFY_OFFSET(reserved3
, 0x10);
9856 VERIFY_OFFSET(err_info_len
, 0x12);
9857 VERIFY_OFFSET(reserved4
, 0x13);
9858 VERIFY_OFFSET(sgl_offset
, 0x14);
9859 VERIFY_OFFSET(reserved5
, 0x15);
9860 VERIFY_OFFSET(transfer_len
, 0x1C);
9861 VERIFY_OFFSET(reserved6
, 0x20);
9862 VERIFY_OFFSET(io_flags
, 0x24);
9863 VERIFY_OFFSET(reserved7
, 0x26);
9864 VERIFY_OFFSET(LUN
, 0x34);
9865 VERIFY_OFFSET(control
, 0x3C);
9866 VERIFY_OFFSET(CDB
, 0x40);
9867 VERIFY_OFFSET(reserved8
, 0x50);
9868 VERIFY_OFFSET(host_context_flags
, 0x60);
9869 VERIFY_OFFSET(timeout_sec
, 0x62);
9870 VERIFY_OFFSET(ReplyQueue
, 0x64);
9871 VERIFY_OFFSET(reserved9
, 0x65);
9872 VERIFY_OFFSET(tag
, 0x68);
9873 VERIFY_OFFSET(host_addr
, 0x70);
9874 VERIFY_OFFSET(CISS_LUN
, 0x78);
9875 VERIFY_OFFSET(SG
, 0x78 + 8);
9876 #undef VERIFY_OFFSET
9879 module_init(hpsa_init
);
9880 module_exit(hpsa_cleanup
);