Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blobff8dcd5b0631fb3be397274247c8566db524c1d8
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {0,}
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access},
160 {0x3243103C, "Smart Array P410", &SA5_access},
161 {0x3245103C, "Smart Array P410i", &SA5_access},
162 {0x3247103C, "Smart Array P411", &SA5_access},
163 {0x3249103C, "Smart Array P812", &SA5_access},
164 {0x324A103C, "Smart Array P712m", &SA5_access},
165 {0x324B103C, "Smart Array P711m", &SA5_access},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access},
168 {0x3351103C, "Smart Array P420", &SA5_access},
169 {0x3352103C, "Smart Array P421", &SA5_access},
170 {0x3353103C, "Smart Array P822", &SA5_access},
171 {0x3354103C, "Smart Array P420i", &SA5_access},
172 {0x3355103C, "Smart Array P220i", &SA5_access},
173 {0x3356103C, "Smart Array P721m", &SA5_access},
174 {0x1921103C, "Smart Array P830i", &SA5_access},
175 {0x1922103C, "Smart Array P430", &SA5_access},
176 {0x1923103C, "Smart Array P431", &SA5_access},
177 {0x1924103C, "Smart Array P830", &SA5_access},
178 {0x1926103C, "Smart Array P731m", &SA5_access},
179 {0x1928103C, "Smart Array P230i", &SA5_access},
180 {0x1929103C, "Smart Array P530", &SA5_access},
181 {0x21BD103C, "Smart Array P244br", &SA5_access},
182 {0x21BE103C, "Smart Array P741m", &SA5_access},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access},
186 {0x21C2103C, "Smart Array P440", &SA5_access},
187 {0x21C3103C, "Smart Array P441", &SA5_access},
188 {0x21C4103C, "Smart Array", &SA5_access},
189 {0x21C5103C, "Smart Array P841", &SA5_access},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access},
191 {0x21C7103C, "Smart HBA H240", &SA5_access},
192 {0x21C8103C, "Smart HBA H241", &SA5_access},
193 {0x21C9103C, "Smart Array", &SA5_access},
194 {0x21CA103C, "Smart Array P246br", &SA5_access},
195 {0x21CB103C, "Smart Array P840", &SA5_access},
196 {0x21CC103C, "Smart Array", &SA5_access},
197 {0x21CD103C, "Smart Array", &SA5_access},
198 {0x21CE103C, "Smart HBA", &SA5_access},
199 {0x05809005, "SmartHBA-SA", &SA5_access},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 struct sas_rphy *rphy);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 void __user *arg);
236 #endif
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298 struct hpsa_scsi_dev_t *dev,
299 unsigned char *scsi3addr);
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
303 unsigned long *priv = shost_priv(sdev->host);
304 return (struct ctlr_info *) *priv;
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
309 unsigned long *priv = shost_priv(sh);
310 return (struct ctlr_info *) *priv;
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
315 return c->scsi_cmd == SCSI_CMD_IDLE;
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
320 return c->abort_pending || c->reset_pending;
323 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325 u8 *sense_key, u8 *asc, u8 *ascq)
327 struct scsi_sense_hdr sshdr;
328 bool rc;
330 *sense_key = -1;
331 *asc = -1;
332 *ascq = -1;
334 if (sense_data_len < 1)
335 return;
337 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338 if (rc) {
339 *sense_key = sshdr.sense_key;
340 *asc = sshdr.asc;
341 *ascq = sshdr.ascq;
345 static int check_for_unit_attention(struct ctlr_info *h,
346 struct CommandList *c)
348 u8 sense_key, asc, ascq;
349 int sense_len;
351 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352 sense_len = sizeof(c->err_info->SenseInfo);
353 else
354 sense_len = c->err_info->SenseLen;
356 decode_sense_data(c->err_info->SenseInfo, sense_len,
357 &sense_key, &asc, &ascq);
358 if (sense_key != UNIT_ATTENTION || asc == 0xff)
359 return 0;
361 switch (asc) {
362 case STATE_CHANGED:
363 dev_warn(&h->pdev->dev,
364 "%s: a state change detected, command retried\n",
365 h->devname);
366 break;
367 case LUN_FAILED:
368 dev_warn(&h->pdev->dev,
369 "%s: LUN failure detected\n", h->devname);
370 break;
371 case REPORT_LUNS_CHANGED:
372 dev_warn(&h->pdev->dev,
373 "%s: report LUN data changed\n", h->devname);
375 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376 * target (array) devices.
378 break;
379 case POWER_OR_RESET:
380 dev_warn(&h->pdev->dev,
381 "%s: a power on or device reset detected\n",
382 h->devname);
383 break;
384 case UNIT_ATTENTION_CLEARED:
385 dev_warn(&h->pdev->dev,
386 "%s: unit attention cleared by another initiator\n",
387 h->devname);
388 break;
389 default:
390 dev_warn(&h->pdev->dev,
391 "%s: unknown unit attention detected\n",
392 h->devname);
393 break;
395 return 1;
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
400 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403 return 0;
404 dev_warn(&h->pdev->dev, HPSA "device busy");
405 return 1;
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410 struct device_attribute *attr, char *buf)
412 int ld;
413 struct ctlr_info *h;
414 struct Scsi_Host *shost = class_to_shost(dev);
416 h = shost_to_hba(shost);
417 ld = lockup_detected(h);
419 return sprintf(buf, "ld=%d\n", ld);
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423 struct device_attribute *attr,
424 const char *buf, size_t count)
426 int status, len;
427 struct ctlr_info *h;
428 struct Scsi_Host *shost = class_to_shost(dev);
429 char tmpbuf[10];
431 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432 return -EACCES;
433 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434 strncpy(tmpbuf, buf, len);
435 tmpbuf[len] = '\0';
436 if (sscanf(tmpbuf, "%d", &status) != 1)
437 return -EINVAL;
438 h = shost_to_hba(shost);
439 h->acciopath_status = !!status;
440 dev_warn(&h->pdev->dev,
441 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442 h->acciopath_status ? "enabled" : "disabled");
443 return count;
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447 struct device_attribute *attr,
448 const char *buf, size_t count)
450 int debug_level, len;
451 struct ctlr_info *h;
452 struct Scsi_Host *shost = class_to_shost(dev);
453 char tmpbuf[10];
455 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456 return -EACCES;
457 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458 strncpy(tmpbuf, buf, len);
459 tmpbuf[len] = '\0';
460 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461 return -EINVAL;
462 if (debug_level < 0)
463 debug_level = 0;
464 h = shost_to_hba(shost);
465 h->raid_offload_debug = debug_level;
466 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467 h->raid_offload_debug);
468 return count;
471 static ssize_t host_store_rescan(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
475 struct ctlr_info *h;
476 struct Scsi_Host *shost = class_to_shost(dev);
477 h = shost_to_hba(shost);
478 hpsa_scan_start(h->scsi_host);
479 return count;
482 static ssize_t host_show_firmware_revision(struct device *dev,
483 struct device_attribute *attr, char *buf)
485 struct ctlr_info *h;
486 struct Scsi_Host *shost = class_to_shost(dev);
487 unsigned char *fwrev;
489 h = shost_to_hba(shost);
490 if (!h->hba_inquiry_data)
491 return 0;
492 fwrev = &h->hba_inquiry_data[32];
493 return snprintf(buf, 20, "%c%c%c%c\n",
494 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 struct Scsi_Host *shost = class_to_shost(dev);
501 struct ctlr_info *h = shost_to_hba(shost);
503 return snprintf(buf, 20, "%d\n",
504 atomic_read(&h->commands_outstanding));
507 static ssize_t host_show_transport_mode(struct device *dev,
508 struct device_attribute *attr, char *buf)
510 struct ctlr_info *h;
511 struct Scsi_Host *shost = class_to_shost(dev);
513 h = shost_to_hba(shost);
514 return snprintf(buf, 20, "%s\n",
515 h->transMethod & CFGTBL_Trans_Performant ?
516 "performant" : "simple");
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520 struct device_attribute *attr, char *buf)
522 struct ctlr_info *h;
523 struct Scsi_Host *shost = class_to_shost(dev);
525 h = shost_to_hba(shost);
526 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527 (h->acciopath_status == 1) ? "enabled" : "disabled");
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532 0x324a103C, /* Smart Array P712m */
533 0x324b103C, /* Smart Array P711m */
534 0x3223103C, /* Smart Array P800 */
535 0x3234103C, /* Smart Array P400 */
536 0x3235103C, /* Smart Array P400i */
537 0x3211103C, /* Smart Array E200i */
538 0x3212103C, /* Smart Array E200 */
539 0x3213103C, /* Smart Array E200i */
540 0x3214103C, /* Smart Array E200i */
541 0x3215103C, /* Smart Array E200i */
542 0x3237103C, /* Smart Array E500 */
543 0x323D103C, /* Smart Array P700m */
544 0x40800E11, /* Smart Array 5i */
545 0x409C0E11, /* Smart Array 6400 */
546 0x409D0E11, /* Smart Array 6400 EM */
547 0x40700E11, /* Smart Array 5300 */
548 0x40820E11, /* Smart Array 532 */
549 0x40830E11, /* Smart Array 5312 */
550 0x409A0E11, /* Smart Array 641 */
551 0x409B0E11, /* Smart Array 642 */
552 0x40910E11, /* Smart Array 6i */
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557 0x40800E11, /* Smart Array 5i */
558 0x40700E11, /* Smart Array 5300 */
559 0x40820E11, /* Smart Array 532 */
560 0x40830E11, /* Smart Array 5312 */
561 0x409A0E11, /* Smart Array 641 */
562 0x409B0E11, /* Smart Array 642 */
563 0x40910E11, /* Smart Array 6i */
564 /* Exclude 640x boards. These are two pci devices in one slot
565 * which share a battery backed cache module. One controls the
566 * cache, the other accesses the cache through the one that controls
567 * it. If we reset the one controlling the cache, the other will
568 * likely not be happy. Just forbid resetting this conjoined mess.
569 * The 640x isn't really supported by hpsa anyway.
571 0x409C0E11, /* Smart Array 6400 */
572 0x409D0E11, /* Smart Array 6400 EM */
575 static u32 needs_abort_tags_swizzled[] = {
576 0x323D103C, /* Smart Array P700m */
577 0x324a103C, /* Smart Array P712m */
578 0x324b103C, /* SmartArray P711m */
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
583 int i;
585 for (i = 0; i < nelems; i++)
586 if (a[i] == board_id)
587 return 1;
588 return 0;
591 static int ctlr_is_hard_resettable(u32 board_id)
593 return !board_id_in_array(unresettable_controller,
594 ARRAY_SIZE(unresettable_controller), board_id);
597 static int ctlr_is_soft_resettable(u32 board_id)
599 return !board_id_in_array(soft_unresettable_controller,
600 ARRAY_SIZE(soft_unresettable_controller), board_id);
603 static int ctlr_is_resettable(u32 board_id)
605 return ctlr_is_hard_resettable(board_id) ||
606 ctlr_is_soft_resettable(board_id);
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
611 return board_id_in_array(needs_abort_tags_swizzled,
612 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
615 static ssize_t host_show_resettable(struct device *dev,
616 struct device_attribute *attr, char *buf)
618 struct ctlr_info *h;
619 struct Scsi_Host *shost = class_to_shost(dev);
621 h = shost_to_hba(shost);
622 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
627 return (scsi3addr[3] & 0xC0) == 0x40;
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
633 #define HPSA_RAID_0 0
634 #define HPSA_RAID_4 1
635 #define HPSA_RAID_1 2 /* also used for RAID 10 */
636 #define HPSA_RAID_5 3 /* also used for RAID 50 */
637 #define HPSA_RAID_51 4
638 #define HPSA_RAID_6 5 /* also used for RAID 60 */
639 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
645 return !device->physical_device;
648 static ssize_t raid_level_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
651 ssize_t l = 0;
652 unsigned char rlevel;
653 struct ctlr_info *h;
654 struct scsi_device *sdev;
655 struct hpsa_scsi_dev_t *hdev;
656 unsigned long flags;
658 sdev = to_scsi_device(dev);
659 h = sdev_to_hba(sdev);
660 spin_lock_irqsave(&h->lock, flags);
661 hdev = sdev->hostdata;
662 if (!hdev) {
663 spin_unlock_irqrestore(&h->lock, flags);
664 return -ENODEV;
667 /* Is this even a logical drive? */
668 if (!is_logical_device(hdev)) {
669 spin_unlock_irqrestore(&h->lock, flags);
670 l = snprintf(buf, PAGE_SIZE, "N/A\n");
671 return l;
674 rlevel = hdev->raid_level;
675 spin_unlock_irqrestore(&h->lock, flags);
676 if (rlevel > RAID_UNKNOWN)
677 rlevel = RAID_UNKNOWN;
678 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679 return l;
682 static ssize_t lunid_show(struct device *dev,
683 struct device_attribute *attr, char *buf)
685 struct ctlr_info *h;
686 struct scsi_device *sdev;
687 struct hpsa_scsi_dev_t *hdev;
688 unsigned long flags;
689 unsigned char lunid[8];
691 sdev = to_scsi_device(dev);
692 h = sdev_to_hba(sdev);
693 spin_lock_irqsave(&h->lock, flags);
694 hdev = sdev->hostdata;
695 if (!hdev) {
696 spin_unlock_irqrestore(&h->lock, flags);
697 return -ENODEV;
699 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700 spin_unlock_irqrestore(&h->lock, flags);
701 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702 lunid[0], lunid[1], lunid[2], lunid[3],
703 lunid[4], lunid[5], lunid[6], lunid[7]);
706 static ssize_t unique_id_show(struct device *dev,
707 struct device_attribute *attr, char *buf)
709 struct ctlr_info *h;
710 struct scsi_device *sdev;
711 struct hpsa_scsi_dev_t *hdev;
712 unsigned long flags;
713 unsigned char sn[16];
715 sdev = to_scsi_device(dev);
716 h = sdev_to_hba(sdev);
717 spin_lock_irqsave(&h->lock, flags);
718 hdev = sdev->hostdata;
719 if (!hdev) {
720 spin_unlock_irqrestore(&h->lock, flags);
721 return -ENODEV;
723 memcpy(sn, hdev->device_id, sizeof(sn));
724 spin_unlock_irqrestore(&h->lock, flags);
725 return snprintf(buf, 16 * 2 + 2,
726 "%02X%02X%02X%02X%02X%02X%02X%02X"
727 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728 sn[0], sn[1], sn[2], sn[3],
729 sn[4], sn[5], sn[6], sn[7],
730 sn[8], sn[9], sn[10], sn[11],
731 sn[12], sn[13], sn[14], sn[15]);
734 static ssize_t sas_address_show(struct device *dev,
735 struct device_attribute *attr, char *buf)
737 struct ctlr_info *h;
738 struct scsi_device *sdev;
739 struct hpsa_scsi_dev_t *hdev;
740 unsigned long flags;
741 u64 sas_address;
743 sdev = to_scsi_device(dev);
744 h = sdev_to_hba(sdev);
745 spin_lock_irqsave(&h->lock, flags);
746 hdev = sdev->hostdata;
747 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748 spin_unlock_irqrestore(&h->lock, flags);
749 return -ENODEV;
751 sas_address = hdev->sas_address;
752 spin_unlock_irqrestore(&h->lock, flags);
754 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758 struct device_attribute *attr, char *buf)
760 struct ctlr_info *h;
761 struct scsi_device *sdev;
762 struct hpsa_scsi_dev_t *hdev;
763 unsigned long flags;
764 int offload_enabled;
766 sdev = to_scsi_device(dev);
767 h = sdev_to_hba(sdev);
768 spin_lock_irqsave(&h->lock, flags);
769 hdev = sdev->hostdata;
770 if (!hdev) {
771 spin_unlock_irqrestore(&h->lock, flags);
772 return -ENODEV;
774 offload_enabled = hdev->offload_enabled;
775 spin_unlock_irqrestore(&h->lock, flags);
776 return snprintf(buf, 20, "%d\n", offload_enabled);
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781 struct device_attribute *attr, char *buf)
783 struct ctlr_info *h;
784 struct scsi_device *sdev;
785 struct hpsa_scsi_dev_t *hdev;
786 unsigned long flags;
787 int i;
788 int output_len = 0;
789 u8 box;
790 u8 bay;
791 u8 path_map_index = 0;
792 char *active;
793 unsigned char phys_connector[2];
795 sdev = to_scsi_device(dev);
796 h = sdev_to_hba(sdev);
797 spin_lock_irqsave(&h->devlock, flags);
798 hdev = sdev->hostdata;
799 if (!hdev) {
800 spin_unlock_irqrestore(&h->devlock, flags);
801 return -ENODEV;
804 bay = hdev->bay;
805 for (i = 0; i < MAX_PATHS; i++) {
806 path_map_index = 1<<i;
807 if (i == hdev->active_path_index)
808 active = "Active";
809 else if (hdev->path_map & path_map_index)
810 active = "Inactive";
811 else
812 continue;
814 output_len += scnprintf(buf + output_len,
815 PAGE_SIZE - output_len,
816 "[%d:%d:%d:%d] %20.20s ",
817 h->scsi_host->host_no,
818 hdev->bus, hdev->target, hdev->lun,
819 scsi_device_type(hdev->devtype));
821 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822 output_len += scnprintf(buf + output_len,
823 PAGE_SIZE - output_len,
824 "%s\n", active);
825 continue;
828 box = hdev->box[i];
829 memcpy(&phys_connector, &hdev->phys_connector[i],
830 sizeof(phys_connector));
831 if (phys_connector[0] < '0')
832 phys_connector[0] = '0';
833 if (phys_connector[1] < '0')
834 phys_connector[1] = '0';
835 output_len += scnprintf(buf + output_len,
836 PAGE_SIZE - output_len,
837 "PORT: %.2s ",
838 phys_connector);
839 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840 hdev->expose_device) {
841 if (box == 0 || box == 0xFF) {
842 output_len += scnprintf(buf + output_len,
843 PAGE_SIZE - output_len,
844 "BAY: %hhu %s\n",
845 bay, active);
846 } else {
847 output_len += scnprintf(buf + output_len,
848 PAGE_SIZE - output_len,
849 "BOX: %hhu BAY: %hhu %s\n",
850 box, bay, active);
852 } else if (box != 0 && box != 0xFF) {
853 output_len += scnprintf(buf + output_len,
854 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855 box, active);
856 } else
857 output_len += scnprintf(buf + output_len,
858 PAGE_SIZE - output_len, "%s\n", active);
861 spin_unlock_irqrestore(&h->devlock, flags);
862 return output_len;
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871 host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874 host_show_hp_ssd_smart_path_status,
875 host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877 host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879 host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881 host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883 host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885 host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887 host_show_lockup_detected, NULL);
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890 &dev_attr_raid_level,
891 &dev_attr_lunid,
892 &dev_attr_unique_id,
893 &dev_attr_hp_ssd_smart_path_enabled,
894 &dev_attr_path_info,
895 &dev_attr_sas_address,
896 NULL,
899 static struct device_attribute *hpsa_shost_attrs[] = {
900 &dev_attr_rescan,
901 &dev_attr_firmware_revision,
902 &dev_attr_commands_outstanding,
903 &dev_attr_transport_mode,
904 &dev_attr_resettable,
905 &dev_attr_hp_ssd_smart_path_status,
906 &dev_attr_raid_offload_debug,
907 &dev_attr_lockup_detected,
908 NULL,
911 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
914 static struct scsi_host_template hpsa_driver_template = {
915 .module = THIS_MODULE,
916 .name = HPSA,
917 .proc_name = HPSA,
918 .queuecommand = hpsa_scsi_queue_command,
919 .scan_start = hpsa_scan_start,
920 .scan_finished = hpsa_scan_finished,
921 .change_queue_depth = hpsa_change_queue_depth,
922 .this_id = -1,
923 .use_clustering = ENABLE_CLUSTERING,
924 .eh_abort_handler = hpsa_eh_abort_handler,
925 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
926 .ioctl = hpsa_ioctl,
927 .slave_alloc = hpsa_slave_alloc,
928 .slave_configure = hpsa_slave_configure,
929 .slave_destroy = hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931 .compat_ioctl = hpsa_compat_ioctl,
932 #endif
933 .sdev_attrs = hpsa_sdev_attrs,
934 .shost_attrs = hpsa_shost_attrs,
935 .max_sectors = 8192,
936 .no_write_same = 1,
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
941 u32 a;
942 struct reply_queue_buffer *rq = &h->reply_queue[q];
944 if (h->transMethod & CFGTBL_Trans_io_accel1)
945 return h->access.command_completed(h, q);
947 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948 return h->access.command_completed(h, q);
950 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951 a = rq->head[rq->current_entry];
952 rq->current_entry++;
953 atomic_dec(&h->commands_outstanding);
954 } else {
955 a = FIFO_EMPTY;
957 /* Check for wraparound */
958 if (rq->current_entry == h->max_commands) {
959 rq->current_entry = 0;
960 rq->wraparound ^= 1;
962 return a;
966 * There are some special bits in the bus address of the
967 * command that we have to set for the controller to know
968 * how to process the command:
970 * Normal performant mode:
971 * bit 0: 1 means performant mode, 0 means simple mode.
972 * bits 1-3 = block fetch table entry
973 * bits 4-6 = command type (== 0)
975 * ioaccel1 mode:
976 * bit 0 = "performant mode" bit.
977 * bits 1-3 = block fetch table entry
978 * bits 4-6 = command type (== 110)
979 * (command type is needed because ioaccel1 mode
980 * commands are submitted through the same register as normal
981 * mode commands, so this is how the controller knows whether
982 * the command is normal mode or ioaccel1 mode.)
984 * ioaccel2 mode:
985 * bit 0 = "performant mode" bit.
986 * bits 1-4 = block fetch table entry (note extra bit)
987 * bits 4-6 = not needed, because ioaccel2 mode has
988 * a separate special register for submitting commands.
992 * set_performant_mode: Modify the tag for cciss performant
993 * set bit 0 for pull model, bits 3-1 for block fetch
994 * register number
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998 int reply_queue)
1000 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002 if (unlikely(!h->msix_vector))
1003 return;
1004 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005 c->Header.ReplyQueue =
1006 raw_smp_processor_id() % h->nreply_queues;
1007 else
1008 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013 struct CommandList *c,
1014 int reply_queue)
1016 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1019 * Tell the controller to post the reply to the queue for this
1020 * processor. This seems to give the best I/O throughput.
1022 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024 else
1025 cp->ReplyQueue = reply_queue % h->nreply_queues;
1027 * Set the bits in the address sent down to include:
1028 * - performant mode bit (bit 0)
1029 * - pull count (bits 1-3)
1030 * - command type (bits 4-6)
1032 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033 IOACCEL1_BUSADDR_CMDTYPE;
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037 struct CommandList *c,
1038 int reply_queue)
1040 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041 &h->ioaccel2_cmd_pool[c->cmdindex];
1043 /* Tell the controller to post the reply to the queue for this
1044 * processor. This seems to give the best I/O throughput.
1046 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048 else
1049 cp->reply_queue = reply_queue % h->nreply_queues;
1050 /* Set the bits in the address sent down to include:
1051 * - performant mode bit not used in ioaccel mode 2
1052 * - pull count (bits 0-3)
1053 * - command type isn't needed for ioaccel2
1055 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059 struct CommandList *c,
1060 int reply_queue)
1062 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1065 * Tell the controller to post the reply to the queue for this
1066 * processor. This seems to give the best I/O throughput.
1068 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070 else
1071 cp->reply_queue = reply_queue % h->nreply_queues;
1073 * Set the bits in the address sent down to include:
1074 * - performant mode bit not used in ioaccel mode 2
1075 * - pull count (bits 0-3)
1076 * - command type isn't needed for ioaccel2
1078 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1081 static int is_firmware_flash_cmd(u8 *cdb)
1083 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1087 * During firmware flash, the heartbeat register may not update as frequently
1088 * as it should. So we dial down lockup detection during firmware flash. and
1089 * dial it back up when firmware flash completes.
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094 struct CommandList *c)
1096 if (!is_firmware_flash_cmd(c->Request.CDB))
1097 return;
1098 atomic_inc(&h->firmware_flash_in_progress);
1099 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103 struct CommandList *c)
1105 if (is_firmware_flash_cmd(c->Request.CDB) &&
1106 atomic_dec_and_test(&h->firmware_flash_in_progress))
1107 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111 struct CommandList *c, int reply_queue)
1113 dial_down_lockup_detection_during_fw_flash(h, c);
1114 atomic_inc(&h->commands_outstanding);
1115 switch (c->cmd_type) {
1116 case CMD_IOACCEL1:
1117 set_ioaccel1_performant_mode(h, c, reply_queue);
1118 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119 break;
1120 case CMD_IOACCEL2:
1121 set_ioaccel2_performant_mode(h, c, reply_queue);
1122 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123 break;
1124 case IOACCEL2_TMF:
1125 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127 break;
1128 default:
1129 set_performant_mode(h, c, reply_queue);
1130 h->access.submit_command(h, c);
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1136 if (unlikely(hpsa_is_pending_event(c)))
1137 return finish_cmd(c);
1139 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1144 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1149 if (!h->hba_inquiry_data)
1150 return 0;
1151 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152 return 1;
1153 return 0;
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157 unsigned char scsi3addr[], int bus, int *target, int *lun)
1159 /* finds an unused bus, target, lun for a new physical device
1160 * assumes h->devlock is held
1162 int i, found = 0;
1163 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1165 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1167 for (i = 0; i < h->ndevices; i++) {
1168 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169 __set_bit(h->dev[i]->target, lun_taken);
1172 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173 if (i < HPSA_MAX_DEVICES) {
1174 /* *bus = 1; */
1175 *target = i;
1176 *lun = 0;
1177 found = 1;
1179 return !found;
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183 struct hpsa_scsi_dev_t *dev, char *description)
1185 #define LABEL_SIZE 25
1186 char label[LABEL_SIZE];
1188 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189 return;
1191 switch (dev->devtype) {
1192 case TYPE_RAID:
1193 snprintf(label, LABEL_SIZE, "controller");
1194 break;
1195 case TYPE_ENCLOSURE:
1196 snprintf(label, LABEL_SIZE, "enclosure");
1197 break;
1198 case TYPE_DISK:
1199 case TYPE_ZBC:
1200 if (dev->external)
1201 snprintf(label, LABEL_SIZE, "external");
1202 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203 snprintf(label, LABEL_SIZE, "%s",
1204 raid_label[PHYSICAL_DRIVE]);
1205 else
1206 snprintf(label, LABEL_SIZE, "RAID-%s",
1207 dev->raid_level > RAID_UNKNOWN ? "?" :
1208 raid_label[dev->raid_level]);
1209 break;
1210 case TYPE_ROM:
1211 snprintf(label, LABEL_SIZE, "rom");
1212 break;
1213 case TYPE_TAPE:
1214 snprintf(label, LABEL_SIZE, "tape");
1215 break;
1216 case TYPE_MEDIUM_CHANGER:
1217 snprintf(label, LABEL_SIZE, "changer");
1218 break;
1219 default:
1220 snprintf(label, LABEL_SIZE, "UNKNOWN");
1221 break;
1224 dev_printk(level, &h->pdev->dev,
1225 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227 description,
1228 scsi_device_type(dev->devtype),
1229 dev->vendor,
1230 dev->model,
1231 label,
1232 dev->offload_config ? '+' : '-',
1233 dev->offload_enabled ? '+' : '-',
1234 dev->expose_device);
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239 struct hpsa_scsi_dev_t *device,
1240 struct hpsa_scsi_dev_t *added[], int *nadded)
1242 /* assumes h->devlock is held */
1243 int n = h->ndevices;
1244 int i;
1245 unsigned char addr1[8], addr2[8];
1246 struct hpsa_scsi_dev_t *sd;
1248 if (n >= HPSA_MAX_DEVICES) {
1249 dev_err(&h->pdev->dev, "too many devices, some will be "
1250 "inaccessible.\n");
1251 return -1;
1254 /* physical devices do not have lun or target assigned until now. */
1255 if (device->lun != -1)
1256 /* Logical device, lun is already assigned. */
1257 goto lun_assigned;
1259 /* If this device a non-zero lun of a multi-lun device
1260 * byte 4 of the 8-byte LUN addr will contain the logical
1261 * unit no, zero otherwise.
1263 if (device->scsi3addr[4] == 0) {
1264 /* This is not a non-zero lun of a multi-lun device */
1265 if (hpsa_find_target_lun(h, device->scsi3addr,
1266 device->bus, &device->target, &device->lun) != 0)
1267 return -1;
1268 goto lun_assigned;
1271 /* This is a non-zero lun of a multi-lun device.
1272 * Search through our list and find the device which
1273 * has the same 8 byte LUN address, excepting byte 4 and 5.
1274 * Assign the same bus and target for this new LUN.
1275 * Use the logical unit number from the firmware.
1277 memcpy(addr1, device->scsi3addr, 8);
1278 addr1[4] = 0;
1279 addr1[5] = 0;
1280 for (i = 0; i < n; i++) {
1281 sd = h->dev[i];
1282 memcpy(addr2, sd->scsi3addr, 8);
1283 addr2[4] = 0;
1284 addr2[5] = 0;
1285 /* differ only in byte 4 and 5? */
1286 if (memcmp(addr1, addr2, 8) == 0) {
1287 device->bus = sd->bus;
1288 device->target = sd->target;
1289 device->lun = device->scsi3addr[4];
1290 break;
1293 if (device->lun == -1) {
1294 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295 " suspect firmware bug or unsupported hardware "
1296 "configuration.\n");
1297 return -1;
1300 lun_assigned:
1302 h->dev[n] = device;
1303 h->ndevices++;
1304 added[*nadded] = device;
1305 (*nadded)++;
1306 hpsa_show_dev_msg(KERN_INFO, h, device,
1307 device->expose_device ? "added" : "masked");
1308 device->offload_to_be_enabled = device->offload_enabled;
1309 device->offload_enabled = 0;
1310 return 0;
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315 int entry, struct hpsa_scsi_dev_t *new_entry)
1317 int offload_enabled;
1318 /* assumes h->devlock is held */
1319 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1321 /* Raid level changed. */
1322 h->dev[entry]->raid_level = new_entry->raid_level;
1324 /* Raid offload parameters changed. Careful about the ordering. */
1325 if (new_entry->offload_config && new_entry->offload_enabled) {
1327 * if drive is newly offload_enabled, we want to copy the
1328 * raid map data first. If previously offload_enabled and
1329 * offload_config were set, raid map data had better be
1330 * the same as it was before. if raid map data is changed
1331 * then it had better be the case that
1332 * h->dev[entry]->offload_enabled is currently 0.
1334 h->dev[entry]->raid_map = new_entry->raid_map;
1335 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1337 if (new_entry->hba_ioaccel_enabled) {
1338 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1341 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342 h->dev[entry]->offload_config = new_entry->offload_config;
1343 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344 h->dev[entry]->queue_depth = new_entry->queue_depth;
1347 * We can turn off ioaccel offload now, but need to delay turning
1348 * it on until we can update h->dev[entry]->phys_disk[], but we
1349 * can't do that until all the devices are updated.
1351 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352 if (!new_entry->offload_enabled)
1353 h->dev[entry]->offload_enabled = 0;
1355 offload_enabled = h->dev[entry]->offload_enabled;
1356 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358 h->dev[entry]->offload_enabled = offload_enabled;
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363 int entry, struct hpsa_scsi_dev_t *new_entry,
1364 struct hpsa_scsi_dev_t *added[], int *nadded,
1365 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1367 /* assumes h->devlock is held */
1368 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369 removed[*nremoved] = h->dev[entry];
1370 (*nremoved)++;
1373 * New physical devices won't have target/lun assigned yet
1374 * so we need to preserve the values in the slot we are replacing.
1376 if (new_entry->target == -1) {
1377 new_entry->target = h->dev[entry]->target;
1378 new_entry->lun = h->dev[entry]->lun;
1381 h->dev[entry] = new_entry;
1382 added[*nadded] = new_entry;
1383 (*nadded)++;
1384 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386 new_entry->offload_enabled = 0;
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1393 /* assumes h->devlock is held */
1394 int i;
1395 struct hpsa_scsi_dev_t *sd;
1397 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1399 sd = h->dev[entry];
1400 removed[*nremoved] = h->dev[entry];
1401 (*nremoved)++;
1403 for (i = entry; i < h->ndevices-1; i++)
1404 h->dev[i] = h->dev[i+1];
1405 h->ndevices--;
1406 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410 (a)[7] == (b)[7] && \
1411 (a)[6] == (b)[6] && \
1412 (a)[5] == (b)[5] && \
1413 (a)[4] == (b)[4] && \
1414 (a)[3] == (b)[3] && \
1415 (a)[2] == (b)[2] && \
1416 (a)[1] == (b)[1] && \
1417 (a)[0] == (b)[0])
1419 static void fixup_botched_add(struct ctlr_info *h,
1420 struct hpsa_scsi_dev_t *added)
1422 /* called when scsi_add_device fails in order to re-adjust
1423 * h->dev[] to match the mid layer's view.
1425 unsigned long flags;
1426 int i, j;
1428 spin_lock_irqsave(&h->lock, flags);
1429 for (i = 0; i < h->ndevices; i++) {
1430 if (h->dev[i] == added) {
1431 for (j = i; j < h->ndevices-1; j++)
1432 h->dev[j] = h->dev[j+1];
1433 h->ndevices--;
1434 break;
1437 spin_unlock_irqrestore(&h->lock, flags);
1438 kfree(added);
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442 struct hpsa_scsi_dev_t *dev2)
1444 /* we compare everything except lun and target as these
1445 * are not yet assigned. Compare parts likely
1446 * to differ first
1448 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449 sizeof(dev1->scsi3addr)) != 0)
1450 return 0;
1451 if (memcmp(dev1->device_id, dev2->device_id,
1452 sizeof(dev1->device_id)) != 0)
1453 return 0;
1454 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455 return 0;
1456 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457 return 0;
1458 if (dev1->devtype != dev2->devtype)
1459 return 0;
1460 if (dev1->bus != dev2->bus)
1461 return 0;
1462 return 1;
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466 struct hpsa_scsi_dev_t *dev2)
1468 /* Device attributes that can change, but don't mean
1469 * that the device is a different device, nor that the OS
1470 * needs to be told anything about the change.
1472 if (dev1->raid_level != dev2->raid_level)
1473 return 1;
1474 if (dev1->offload_config != dev2->offload_config)
1475 return 1;
1476 if (dev1->offload_enabled != dev2->offload_enabled)
1477 return 1;
1478 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479 if (dev1->queue_depth != dev2->queue_depth)
1480 return 1;
1481 return 0;
1484 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1485 * and return needle location in *index. If scsi3addr matches, but not
1486 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487 * location in *index.
1488 * In the case of a minor device attribute change, such as RAID level, just
1489 * return DEVICE_UPDATED, along with the updated device's location in index.
1490 * If needle not found, return DEVICE_NOT_FOUND.
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494 int *index)
1496 int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501 if (needle == NULL)
1502 return DEVICE_NOT_FOUND;
1504 for (i = 0; i < haystack_size; i++) {
1505 if (haystack[i] == NULL) /* previously removed. */
1506 continue;
1507 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508 *index = i;
1509 if (device_is_the_same(needle, haystack[i])) {
1510 if (device_updated(needle, haystack[i]))
1511 return DEVICE_UPDATED;
1512 return DEVICE_SAME;
1513 } else {
1514 /* Keep offline devices offline */
1515 if (needle->volume_offline)
1516 return DEVICE_NOT_FOUND;
1517 return DEVICE_CHANGED;
1521 *index = -1;
1522 return DEVICE_NOT_FOUND;
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526 unsigned char scsi3addr[])
1528 struct offline_device_entry *device;
1529 unsigned long flags;
1531 /* Check to see if device is already on the list */
1532 spin_lock_irqsave(&h->offline_device_lock, flags);
1533 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534 if (memcmp(device->scsi3addr, scsi3addr,
1535 sizeof(device->scsi3addr)) == 0) {
1536 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537 return;
1540 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1542 /* Device is not on the list, add it. */
1543 device = kmalloc(sizeof(*device), GFP_KERNEL);
1544 if (!device) {
1545 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546 return;
1548 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549 spin_lock_irqsave(&h->offline_device_lock, flags);
1550 list_add_tail(&device->offline_list, &h->offline_device_list);
1551 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556 struct hpsa_scsi_dev_t *sd)
1558 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559 dev_info(&h->pdev->dev,
1560 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561 h->scsi_host->host_no,
1562 sd->bus, sd->target, sd->lun);
1563 switch (sd->volume_offline) {
1564 case HPSA_LV_OK:
1565 break;
1566 case HPSA_LV_UNDERGOING_ERASE:
1567 dev_info(&h->pdev->dev,
1568 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569 h->scsi_host->host_no,
1570 sd->bus, sd->target, sd->lun);
1571 break;
1572 case HPSA_LV_NOT_AVAILABLE:
1573 dev_info(&h->pdev->dev,
1574 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575 h->scsi_host->host_no,
1576 sd->bus, sd->target, sd->lun);
1577 break;
1578 case HPSA_LV_UNDERGOING_RPI:
1579 dev_info(&h->pdev->dev,
1580 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581 h->scsi_host->host_no,
1582 sd->bus, sd->target, sd->lun);
1583 break;
1584 case HPSA_LV_PENDING_RPI:
1585 dev_info(&h->pdev->dev,
1586 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587 h->scsi_host->host_no,
1588 sd->bus, sd->target, sd->lun);
1589 break;
1590 case HPSA_LV_ENCRYPTED_NO_KEY:
1591 dev_info(&h->pdev->dev,
1592 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593 h->scsi_host->host_no,
1594 sd->bus, sd->target, sd->lun);
1595 break;
1596 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597 dev_info(&h->pdev->dev,
1598 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599 h->scsi_host->host_no,
1600 sd->bus, sd->target, sd->lun);
1601 break;
1602 case HPSA_LV_UNDERGOING_ENCRYPTION:
1603 dev_info(&h->pdev->dev,
1604 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605 h->scsi_host->host_no,
1606 sd->bus, sd->target, sd->lun);
1607 break;
1608 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609 dev_info(&h->pdev->dev,
1610 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611 h->scsi_host->host_no,
1612 sd->bus, sd->target, sd->lun);
1613 break;
1614 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615 dev_info(&h->pdev->dev,
1616 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617 h->scsi_host->host_no,
1618 sd->bus, sd->target, sd->lun);
1619 break;
1620 case HPSA_LV_PENDING_ENCRYPTION:
1621 dev_info(&h->pdev->dev,
1622 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623 h->scsi_host->host_no,
1624 sd->bus, sd->target, sd->lun);
1625 break;
1626 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627 dev_info(&h->pdev->dev,
1628 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629 h->scsi_host->host_no,
1630 sd->bus, sd->target, sd->lun);
1631 break;
1636 * Figure the list of physical drive pointers for a logical drive with
1637 * raid offload configured.
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640 struct hpsa_scsi_dev_t *dev[], int ndevices,
1641 struct hpsa_scsi_dev_t *logical_drive)
1643 struct raid_map_data *map = &logical_drive->raid_map;
1644 struct raid_map_disk_data *dd = &map->data[0];
1645 int i, j;
1646 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647 le16_to_cpu(map->metadata_disks_per_row);
1648 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649 le16_to_cpu(map->layout_map_count) *
1650 total_disks_per_row;
1651 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652 total_disks_per_row;
1653 int qdepth;
1655 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1658 logical_drive->nphysical_disks = nraid_map_entries;
1660 qdepth = 0;
1661 for (i = 0; i < nraid_map_entries; i++) {
1662 logical_drive->phys_disk[i] = NULL;
1663 if (!logical_drive->offload_config)
1664 continue;
1665 for (j = 0; j < ndevices; j++) {
1666 if (dev[j] == NULL)
1667 continue;
1668 if (dev[j]->devtype != TYPE_DISK &&
1669 dev[j]->devtype != TYPE_ZBC)
1670 continue;
1671 if (is_logical_device(dev[j]))
1672 continue;
1673 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674 continue;
1676 logical_drive->phys_disk[i] = dev[j];
1677 if (i < nphys_disk)
1678 qdepth = min(h->nr_cmds, qdepth +
1679 logical_drive->phys_disk[i]->queue_depth);
1680 break;
1684 * This can happen if a physical drive is removed and
1685 * the logical drive is degraded. In that case, the RAID
1686 * map data will refer to a physical disk which isn't actually
1687 * present. And in that case offload_enabled should already
1688 * be 0, but we'll turn it off here just in case
1690 if (!logical_drive->phys_disk[i]) {
1691 logical_drive->offload_enabled = 0;
1692 logical_drive->offload_to_be_enabled = 0;
1693 logical_drive->queue_depth = 8;
1696 if (nraid_map_entries)
1698 * This is correct for reads, too high for full stripe writes,
1699 * way too high for partial stripe writes
1701 logical_drive->queue_depth = qdepth;
1702 else
1703 logical_drive->queue_depth = h->nr_cmds;
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707 struct hpsa_scsi_dev_t *dev[], int ndevices)
1709 int i;
1711 for (i = 0; i < ndevices; i++) {
1712 if (dev[i] == NULL)
1713 continue;
1714 if (dev[i]->devtype != TYPE_DISK &&
1715 dev[i]->devtype != TYPE_ZBC)
1716 continue;
1717 if (!is_logical_device(dev[i]))
1718 continue;
1721 * If offload is currently enabled, the RAID map and
1722 * phys_disk[] assignment *better* not be changing
1723 * and since it isn't changing, we do not need to
1724 * update it.
1726 if (dev[i]->offload_enabled)
1727 continue;
1729 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1735 int rc = 0;
1737 if (!h->scsi_host)
1738 return 1;
1740 if (is_logical_device(device)) /* RAID */
1741 rc = scsi_add_device(h->scsi_host, device->bus,
1742 device->target, device->lun);
1743 else /* HBA */
1744 rc = hpsa_add_sas_device(h->sas_host, device);
1746 return rc;
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750 struct hpsa_scsi_dev_t *dev)
1752 int i;
1753 int count = 0;
1755 for (i = 0; i < h->nr_cmds; i++) {
1756 struct CommandList *c = h->cmd_pool + i;
1757 int refcount = atomic_inc_return(&c->refcount);
1759 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760 dev->scsi3addr)) {
1761 unsigned long flags;
1763 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1764 if (!hpsa_is_cmd_idle(c))
1765 ++count;
1766 spin_unlock_irqrestore(&h->lock, flags);
1769 cmd_free(h, c);
1772 return count;
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776 struct hpsa_scsi_dev_t *device)
1778 int cmds = 0;
1779 int waits = 0;
1781 while (1) {
1782 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783 if (cmds == 0)
1784 break;
1785 if (++waits > 20)
1786 break;
1787 dev_warn(&h->pdev->dev,
1788 "%s: removing device with %d outstanding commands!\n",
1789 __func__, cmds);
1790 msleep(1000);
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795 struct hpsa_scsi_dev_t *device)
1797 struct scsi_device *sdev = NULL;
1799 if (!h->scsi_host)
1800 return;
1802 if (is_logical_device(device)) { /* RAID */
1803 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804 device->target, device->lun);
1805 if (sdev) {
1806 scsi_remove_device(sdev);
1807 scsi_device_put(sdev);
1808 } else {
1810 * We don't expect to get here. Future commands
1811 * to this device will get a selection timeout as
1812 * if the device were gone.
1814 hpsa_show_dev_msg(KERN_WARNING, h, device,
1815 "didn't find device for removal.");
1817 } else { /* HBA */
1819 device->removed = 1;
1820 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1822 hpsa_remove_sas_device(device);
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827 struct hpsa_scsi_dev_t *sd[], int nsds)
1829 /* sd contains scsi3 addresses and devtypes, and inquiry
1830 * data. This function takes what's in sd to be the current
1831 * reality and updates h->dev[] to reflect that reality.
1833 int i, entry, device_change, changes = 0;
1834 struct hpsa_scsi_dev_t *csd;
1835 unsigned long flags;
1836 struct hpsa_scsi_dev_t **added, **removed;
1837 int nadded, nremoved;
1840 * A reset can cause a device status to change
1841 * re-schedule the scan to see what happened.
1843 if (h->reset_in_progress) {
1844 h->drv_req_rescan = 1;
1845 return;
1848 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1851 if (!added || !removed) {
1852 dev_warn(&h->pdev->dev, "out of memory in "
1853 "adjust_hpsa_scsi_table\n");
1854 goto free_and_out;
1857 spin_lock_irqsave(&h->devlock, flags);
1859 /* find any devices in h->dev[] that are not in
1860 * sd[] and remove them from h->dev[], and for any
1861 * devices which have changed, remove the old device
1862 * info and add the new device info.
1863 * If minor device attributes change, just update
1864 * the existing device structure.
1866 i = 0;
1867 nremoved = 0;
1868 nadded = 0;
1869 while (i < h->ndevices) {
1870 csd = h->dev[i];
1871 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872 if (device_change == DEVICE_NOT_FOUND) {
1873 changes++;
1874 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875 continue; /* remove ^^^, hence i not incremented */
1876 } else if (device_change == DEVICE_CHANGED) {
1877 changes++;
1878 hpsa_scsi_replace_entry(h, i, sd[entry],
1879 added, &nadded, removed, &nremoved);
1880 /* Set it to NULL to prevent it from being freed
1881 * at the bottom of hpsa_update_scsi_devices()
1883 sd[entry] = NULL;
1884 } else if (device_change == DEVICE_UPDATED) {
1885 hpsa_scsi_update_entry(h, i, sd[entry]);
1887 i++;
1890 /* Now, make sure every device listed in sd[] is also
1891 * listed in h->dev[], adding them if they aren't found
1894 for (i = 0; i < nsds; i++) {
1895 if (!sd[i]) /* if already added above. */
1896 continue;
1898 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899 * as the SCSI mid-layer does not handle such devices well.
1900 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901 * at 160Hz, and prevents the system from coming up.
1903 if (sd[i]->volume_offline) {
1904 hpsa_show_volume_status(h, sd[i]);
1905 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906 continue;
1909 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910 h->ndevices, &entry);
1911 if (device_change == DEVICE_NOT_FOUND) {
1912 changes++;
1913 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914 break;
1915 sd[i] = NULL; /* prevent from being freed later. */
1916 } else if (device_change == DEVICE_CHANGED) {
1917 /* should never happen... */
1918 changes++;
1919 dev_warn(&h->pdev->dev,
1920 "device unexpectedly changed.\n");
1921 /* but if it does happen, we just ignore that device */
1924 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1926 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927 * any logical drives that need it enabled.
1929 for (i = 0; i < h->ndevices; i++) {
1930 if (h->dev[i] == NULL)
1931 continue;
1932 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1935 spin_unlock_irqrestore(&h->devlock, flags);
1937 /* Monitor devices which are in one of several NOT READY states to be
1938 * brought online later. This must be done without holding h->devlock,
1939 * so don't touch h->dev[]
1941 for (i = 0; i < nsds; i++) {
1942 if (!sd[i]) /* if already added above. */
1943 continue;
1944 if (sd[i]->volume_offline)
1945 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1948 /* Don't notify scsi mid layer of any changes the first time through
1949 * (or if there are no changes) scsi_scan_host will do it later the
1950 * first time through.
1952 if (!changes)
1953 goto free_and_out;
1955 /* Notify scsi mid layer of any removed devices */
1956 for (i = 0; i < nremoved; i++) {
1957 if (removed[i] == NULL)
1958 continue;
1959 if (removed[i]->expose_device)
1960 hpsa_remove_device(h, removed[i]);
1961 kfree(removed[i]);
1962 removed[i] = NULL;
1965 /* Notify scsi mid layer of any added devices */
1966 for (i = 0; i < nadded; i++) {
1967 int rc = 0;
1969 if (added[i] == NULL)
1970 continue;
1971 if (!(added[i]->expose_device))
1972 continue;
1973 rc = hpsa_add_device(h, added[i]);
1974 if (!rc)
1975 continue;
1976 dev_warn(&h->pdev->dev,
1977 "addition failed %d, device not added.", rc);
1978 /* now we have to remove it from h->dev,
1979 * since it didn't get added to scsi mid layer
1981 fixup_botched_add(h, added[i]);
1982 h->drv_req_rescan = 1;
1985 free_and_out:
1986 kfree(added);
1987 kfree(removed);
1991 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992 * Assume's h->devlock is held.
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995 int bus, int target, int lun)
1997 int i;
1998 struct hpsa_scsi_dev_t *sd;
2000 for (i = 0; i < h->ndevices; i++) {
2001 sd = h->dev[i];
2002 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003 return sd;
2005 return NULL;
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2010 struct hpsa_scsi_dev_t *sd;
2011 unsigned long flags;
2012 struct ctlr_info *h;
2014 h = sdev_to_hba(sdev);
2015 spin_lock_irqsave(&h->devlock, flags);
2016 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017 struct scsi_target *starget;
2018 struct sas_rphy *rphy;
2020 starget = scsi_target(sdev);
2021 rphy = target_to_rphy(starget);
2022 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023 if (sd) {
2024 sd->target = sdev_id(sdev);
2025 sd->lun = sdev->lun;
2027 } else
2028 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029 sdev_id(sdev), sdev->lun);
2031 if (sd && sd->expose_device) {
2032 atomic_set(&sd->ioaccel_cmds_out, 0);
2033 sdev->hostdata = sd;
2034 } else
2035 sdev->hostdata = NULL;
2036 spin_unlock_irqrestore(&h->devlock, flags);
2037 return 0;
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2043 struct hpsa_scsi_dev_t *sd;
2044 int queue_depth;
2046 sd = sdev->hostdata;
2047 sdev->no_uld_attach = !sd || !sd->expose_device;
2049 if (sd)
2050 queue_depth = sd->queue_depth != 0 ?
2051 sd->queue_depth : sdev->host->can_queue;
2052 else
2053 queue_depth = sdev->host->can_queue;
2055 scsi_change_queue_depth(sdev, queue_depth);
2057 return 0;
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2062 /* nothing to do. */
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2067 int i;
2069 if (!h->ioaccel2_cmd_sg_list)
2070 return;
2071 for (i = 0; i < h->nr_cmds; i++) {
2072 kfree(h->ioaccel2_cmd_sg_list[i]);
2073 h->ioaccel2_cmd_sg_list[i] = NULL;
2075 kfree(h->ioaccel2_cmd_sg_list);
2076 h->ioaccel2_cmd_sg_list = NULL;
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2081 int i;
2083 if (h->chainsize <= 0)
2084 return 0;
2086 h->ioaccel2_cmd_sg_list =
2087 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088 GFP_KERNEL);
2089 if (!h->ioaccel2_cmd_sg_list)
2090 return -ENOMEM;
2091 for (i = 0; i < h->nr_cmds; i++) {
2092 h->ioaccel2_cmd_sg_list[i] =
2093 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094 h->maxsgentries, GFP_KERNEL);
2095 if (!h->ioaccel2_cmd_sg_list[i])
2096 goto clean;
2098 return 0;
2100 clean:
2101 hpsa_free_ioaccel2_sg_chain_blocks(h);
2102 return -ENOMEM;
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2107 int i;
2109 if (!h->cmd_sg_list)
2110 return;
2111 for (i = 0; i < h->nr_cmds; i++) {
2112 kfree(h->cmd_sg_list[i]);
2113 h->cmd_sg_list[i] = NULL;
2115 kfree(h->cmd_sg_list);
2116 h->cmd_sg_list = NULL;
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2121 int i;
2123 if (h->chainsize <= 0)
2124 return 0;
2126 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127 GFP_KERNEL);
2128 if (!h->cmd_sg_list) {
2129 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130 return -ENOMEM;
2132 for (i = 0; i < h->nr_cmds; i++) {
2133 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134 h->chainsize, GFP_KERNEL);
2135 if (!h->cmd_sg_list[i]) {
2136 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137 goto clean;
2140 return 0;
2142 clean:
2143 hpsa_free_sg_chain_blocks(h);
2144 return -ENOMEM;
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148 struct io_accel2_cmd *cp, struct CommandList *c)
2150 struct ioaccel2_sg_element *chain_block;
2151 u64 temp64;
2152 u32 chain_size;
2154 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155 chain_size = le32_to_cpu(cp->sg[0].length);
2156 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157 PCI_DMA_TODEVICE);
2158 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159 /* prevent subsequent unmapping */
2160 cp->sg->address = 0;
2161 return -1;
2163 cp->sg->address = cpu_to_le64(temp64);
2164 return 0;
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168 struct io_accel2_cmd *cp)
2170 struct ioaccel2_sg_element *chain_sg;
2171 u64 temp64;
2172 u32 chain_size;
2174 chain_sg = cp->sg;
2175 temp64 = le64_to_cpu(chain_sg->address);
2176 chain_size = le32_to_cpu(cp->sg[0].length);
2177 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181 struct CommandList *c)
2183 struct SGDescriptor *chain_sg, *chain_block;
2184 u64 temp64;
2185 u32 chain_len;
2187 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188 chain_block = h->cmd_sg_list[c->cmdindex];
2189 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190 chain_len = sizeof(*chain_sg) *
2191 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192 chain_sg->Len = cpu_to_le32(chain_len);
2193 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194 PCI_DMA_TODEVICE);
2195 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196 /* prevent subsequent unmapping */
2197 chain_sg->Addr = cpu_to_le64(0);
2198 return -1;
2200 chain_sg->Addr = cpu_to_le64(temp64);
2201 return 0;
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205 struct CommandList *c)
2207 struct SGDescriptor *chain_sg;
2209 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210 return;
2212 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2218 /* Decode the various types of errors on ioaccel2 path.
2219 * Return 1 for any error that should generate a RAID path retry.
2220 * Return 0 for errors that don't require a RAID path retry.
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223 struct CommandList *c,
2224 struct scsi_cmnd *cmd,
2225 struct io_accel2_cmd *c2,
2226 struct hpsa_scsi_dev_t *dev)
2228 int data_len;
2229 int retry = 0;
2230 u32 ioaccel2_resid = 0;
2232 switch (c2->error_data.serv_response) {
2233 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234 switch (c2->error_data.status) {
2235 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236 break;
2237 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238 cmd->result |= SAM_STAT_CHECK_CONDITION;
2239 if (c2->error_data.data_present !=
2240 IOACCEL2_SENSE_DATA_PRESENT) {
2241 memset(cmd->sense_buffer, 0,
2242 SCSI_SENSE_BUFFERSIZE);
2243 break;
2245 /* copy the sense data */
2246 data_len = c2->error_data.sense_data_len;
2247 if (data_len > SCSI_SENSE_BUFFERSIZE)
2248 data_len = SCSI_SENSE_BUFFERSIZE;
2249 if (data_len > sizeof(c2->error_data.sense_data_buff))
2250 data_len =
2251 sizeof(c2->error_data.sense_data_buff);
2252 memcpy(cmd->sense_buffer,
2253 c2->error_data.sense_data_buff, data_len);
2254 retry = 1;
2255 break;
2256 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257 retry = 1;
2258 break;
2259 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260 retry = 1;
2261 break;
2262 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263 retry = 1;
2264 break;
2265 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266 retry = 1;
2267 break;
2268 default:
2269 retry = 1;
2270 break;
2272 break;
2273 case IOACCEL2_SERV_RESPONSE_FAILURE:
2274 switch (c2->error_data.status) {
2275 case IOACCEL2_STATUS_SR_IO_ERROR:
2276 case IOACCEL2_STATUS_SR_IO_ABORTED:
2277 case IOACCEL2_STATUS_SR_OVERRUN:
2278 retry = 1;
2279 break;
2280 case IOACCEL2_STATUS_SR_UNDERRUN:
2281 cmd->result = (DID_OK << 16); /* host byte */
2282 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2283 ioaccel2_resid = get_unaligned_le32(
2284 &c2->error_data.resid_cnt[0]);
2285 scsi_set_resid(cmd, ioaccel2_resid);
2286 break;
2287 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2291 * Did an HBA disk disappear? We will eventually
2292 * get a state change event from the controller but
2293 * in the meantime, we need to tell the OS that the
2294 * HBA disk is no longer there and stop I/O
2295 * from going down. This allows the potential re-insert
2296 * of the disk to get the same device node.
2298 if (dev->physical_device && dev->expose_device) {
2299 cmd->result = DID_NO_CONNECT << 16;
2300 dev->removed = 1;
2301 h->drv_req_rescan = 1;
2302 dev_warn(&h->pdev->dev,
2303 "%s: device is gone!\n", __func__);
2304 } else
2306 * Retry by sending down the RAID path.
2307 * We will get an event from ctlr to
2308 * trigger rescan regardless.
2310 retry = 1;
2311 break;
2312 default:
2313 retry = 1;
2315 break;
2316 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317 break;
2318 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319 break;
2320 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321 retry = 1;
2322 break;
2323 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324 break;
2325 default:
2326 retry = 1;
2327 break;
2330 return retry; /* retry on raid path? */
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334 struct CommandList *c)
2336 bool do_wake = false;
2339 * Prevent the following race in the abort handler:
2341 * 1. LLD is requested to abort a SCSI command
2342 * 2. The SCSI command completes
2343 * 3. The struct CommandList associated with step 2 is made available
2344 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345 * 5. Abort handler follows scsi_cmnd->host_scribble and
2346 * finds struct CommandList and tries to aborts it
2347 * Now we have aborted the wrong command.
2349 * Reset c->scsi_cmd here so that the abort or reset handler will know
2350 * this command has completed. Then, check to see if the handler is
2351 * waiting for this command, and, if so, wake it.
2353 c->scsi_cmd = SCSI_CMD_IDLE;
2354 mb(); /* Declare command idle before checking for pending events. */
2355 if (c->abort_pending) {
2356 do_wake = true;
2357 c->abort_pending = false;
2359 if (c->reset_pending) {
2360 unsigned long flags;
2361 struct hpsa_scsi_dev_t *dev;
2364 * There appears to be a reset pending; lock the lock and
2365 * reconfirm. If so, then decrement the count of outstanding
2366 * commands and wake the reset command if this is the last one.
2368 spin_lock_irqsave(&h->lock, flags);
2369 dev = c->reset_pending; /* Re-fetch under the lock. */
2370 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371 do_wake = true;
2372 c->reset_pending = NULL;
2373 spin_unlock_irqrestore(&h->lock, flags);
2376 if (do_wake)
2377 wake_up_all(&h->event_sync_wait_queue);
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381 struct CommandList *c)
2383 hpsa_cmd_resolve_events(h, c);
2384 cmd_tagged_free(h, c);
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388 struct CommandList *c, struct scsi_cmnd *cmd)
2390 hpsa_cmd_resolve_and_free(h, c);
2391 cmd->scsi_done(cmd);
2394 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2396 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2402 cmd->result = DID_ABORT << 16;
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406 struct scsi_cmnd *cmd)
2408 hpsa_set_scsi_cmd_aborted(cmd);
2409 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410 c->Request.CDB, c->err_info->ScsiStatus);
2411 hpsa_cmd_resolve_and_free(h, c);
2414 static void process_ioaccel2_completion(struct ctlr_info *h,
2415 struct CommandList *c, struct scsi_cmnd *cmd,
2416 struct hpsa_scsi_dev_t *dev)
2418 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2420 /* check for good status */
2421 if (likely(c2->error_data.serv_response == 0 &&
2422 c2->error_data.status == 0))
2423 return hpsa_cmd_free_and_done(h, c, cmd);
2426 * Any RAID offload error results in retry which will use
2427 * the normal I/O path so the controller can handle whatever's
2428 * wrong.
2430 if (is_logical_device(dev) &&
2431 c2->error_data.serv_response ==
2432 IOACCEL2_SERV_RESPONSE_FAILURE) {
2433 if (c2->error_data.status ==
2434 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435 dev->offload_enabled = 0;
2436 dev->offload_to_be_enabled = 0;
2439 return hpsa_retry_cmd(h, c);
2442 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443 return hpsa_retry_cmd(h, c);
2445 return hpsa_cmd_free_and_done(h, c, cmd);
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450 struct CommandList *cp)
2452 u8 tmf_status = cp->err_info->ScsiStatus;
2454 switch (tmf_status) {
2455 case CISS_TMF_COMPLETE:
2457 * CISS_TMF_COMPLETE never happens, instead,
2458 * ei->CommandStatus == 0 for this case.
2460 case CISS_TMF_SUCCESS:
2461 return 0;
2462 case CISS_TMF_INVALID_FRAME:
2463 case CISS_TMF_NOT_SUPPORTED:
2464 case CISS_TMF_FAILED:
2465 case CISS_TMF_WRONG_LUN:
2466 case CISS_TMF_OVERLAPPED_TAG:
2467 break;
2468 default:
2469 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470 tmf_status);
2471 break;
2473 return -tmf_status;
2476 static void complete_scsi_command(struct CommandList *cp)
2478 struct scsi_cmnd *cmd;
2479 struct ctlr_info *h;
2480 struct ErrorInfo *ei;
2481 struct hpsa_scsi_dev_t *dev;
2482 struct io_accel2_cmd *c2;
2484 u8 sense_key;
2485 u8 asc; /* additional sense code */
2486 u8 ascq; /* additional sense code qualifier */
2487 unsigned long sense_data_size;
2489 ei = cp->err_info;
2490 cmd = cp->scsi_cmd;
2491 h = cp->h;
2492 dev = cmd->device->hostdata;
2493 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2495 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496 if ((cp->cmd_type == CMD_SCSI) &&
2497 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498 hpsa_unmap_sg_chain_block(h, cp);
2500 if ((cp->cmd_type == CMD_IOACCEL2) &&
2501 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2504 cmd->result = (DID_OK << 16); /* host byte */
2505 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2507 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2511 * We check for lockup status here as it may be set for
2512 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513 * fail_all_oustanding_cmds()
2515 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516 /* DID_NO_CONNECT will prevent a retry */
2517 cmd->result = DID_NO_CONNECT << 16;
2518 return hpsa_cmd_free_and_done(h, cp, cmd);
2521 if ((unlikely(hpsa_is_pending_event(cp)))) {
2522 if (cp->reset_pending)
2523 return hpsa_cmd_resolve_and_free(h, cp);
2524 if (cp->abort_pending)
2525 return hpsa_cmd_abort_and_free(h, cp, cmd);
2528 if (cp->cmd_type == CMD_IOACCEL2)
2529 return process_ioaccel2_completion(h, cp, cmd, dev);
2531 scsi_set_resid(cmd, ei->ResidualCnt);
2532 if (ei->CommandStatus == 0)
2533 return hpsa_cmd_free_and_done(h, cp, cmd);
2535 /* For I/O accelerator commands, copy over some fields to the normal
2536 * CISS header used below for error handling.
2538 if (cp->cmd_type == CMD_IOACCEL1) {
2539 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540 cp->Header.SGList = scsi_sg_count(cmd);
2541 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544 cp->Header.tag = c->tag;
2545 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2548 /* Any RAID offload error results in retry which will use
2549 * the normal I/O path so the controller can handle whatever's
2550 * wrong.
2552 if (is_logical_device(dev)) {
2553 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554 dev->offload_enabled = 0;
2555 return hpsa_retry_cmd(h, cp);
2559 /* an error has occurred */
2560 switch (ei->CommandStatus) {
2562 case CMD_TARGET_STATUS:
2563 cmd->result |= ei->ScsiStatus;
2564 /* copy the sense data */
2565 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567 else
2568 sense_data_size = sizeof(ei->SenseInfo);
2569 if (ei->SenseLen < sense_data_size)
2570 sense_data_size = ei->SenseLen;
2571 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572 if (ei->ScsiStatus)
2573 decode_sense_data(ei->SenseInfo, sense_data_size,
2574 &sense_key, &asc, &ascq);
2575 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576 if (sense_key == ABORTED_COMMAND) {
2577 cmd->result |= DID_SOFT_ERROR << 16;
2578 break;
2580 break;
2582 /* Problem was not a check condition
2583 * Pass it up to the upper layers...
2585 if (ei->ScsiStatus) {
2586 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588 "Returning result: 0x%x\n",
2589 cp, ei->ScsiStatus,
2590 sense_key, asc, ascq,
2591 cmd->result);
2592 } else { /* scsi status is zero??? How??? */
2593 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594 "Returning no connection.\n", cp),
2596 /* Ordinarily, this case should never happen,
2597 * but there is a bug in some released firmware
2598 * revisions that allows it to happen if, for
2599 * example, a 4100 backplane loses power and
2600 * the tape drive is in it. We assume that
2601 * it's a fatal error of some kind because we
2602 * can't show that it wasn't. We will make it
2603 * look like selection timeout since that is
2604 * the most common reason for this to occur,
2605 * and it's severe enough.
2608 cmd->result = DID_NO_CONNECT << 16;
2610 break;
2612 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613 break;
2614 case CMD_DATA_OVERRUN:
2615 dev_warn(&h->pdev->dev,
2616 "CDB %16phN data overrun\n", cp->Request.CDB);
2617 break;
2618 case CMD_INVALID: {
2619 /* print_bytes(cp, sizeof(*cp), 1, 0);
2620 print_cmd(cp); */
2621 /* We get CMD_INVALID if you address a non-existent device
2622 * instead of a selection timeout (no response). You will
2623 * see this if you yank out a drive, then try to access it.
2624 * This is kind of a shame because it means that any other
2625 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626 * missing target. */
2627 cmd->result = DID_NO_CONNECT << 16;
2629 break;
2630 case CMD_PROTOCOL_ERR:
2631 cmd->result = DID_ERROR << 16;
2632 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633 cp->Request.CDB);
2634 break;
2635 case CMD_HARDWARE_ERR:
2636 cmd->result = DID_ERROR << 16;
2637 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638 cp->Request.CDB);
2639 break;
2640 case CMD_CONNECTION_LOST:
2641 cmd->result = DID_ERROR << 16;
2642 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643 cp->Request.CDB);
2644 break;
2645 case CMD_ABORTED:
2646 /* Return now to avoid calling scsi_done(). */
2647 return hpsa_cmd_abort_and_free(h, cp, cmd);
2648 case CMD_ABORT_FAILED:
2649 cmd->result = DID_ERROR << 16;
2650 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651 cp->Request.CDB);
2652 break;
2653 case CMD_UNSOLICITED_ABORT:
2654 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656 cp->Request.CDB);
2657 break;
2658 case CMD_TIMEOUT:
2659 cmd->result = DID_TIME_OUT << 16;
2660 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661 cp->Request.CDB);
2662 break;
2663 case CMD_UNABORTABLE:
2664 cmd->result = DID_ERROR << 16;
2665 dev_warn(&h->pdev->dev, "Command unabortable\n");
2666 break;
2667 case CMD_TMF_STATUS:
2668 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669 cmd->result = DID_ERROR << 16;
2670 break;
2671 case CMD_IOACCEL_DISABLED:
2672 /* This only handles the direct pass-through case since RAID
2673 * offload is handled above. Just attempt a retry.
2675 cmd->result = DID_SOFT_ERROR << 16;
2676 dev_warn(&h->pdev->dev,
2677 "cp %p had HP SSD Smart Path error\n", cp);
2678 break;
2679 default:
2680 cmd->result = DID_ERROR << 16;
2681 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682 cp, ei->CommandStatus);
2685 return hpsa_cmd_free_and_done(h, cp, cmd);
2688 static void hpsa_pci_unmap(struct pci_dev *pdev,
2689 struct CommandList *c, int sg_used, int data_direction)
2691 int i;
2693 for (i = 0; i < sg_used; i++)
2694 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695 le32_to_cpu(c->SG[i].Len),
2696 data_direction);
2699 static int hpsa_map_one(struct pci_dev *pdev,
2700 struct CommandList *cp,
2701 unsigned char *buf,
2702 size_t buflen,
2703 int data_direction)
2705 u64 addr64;
2707 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708 cp->Header.SGList = 0;
2709 cp->Header.SGTotal = cpu_to_le16(0);
2710 return 0;
2713 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714 if (dma_mapping_error(&pdev->dev, addr64)) {
2715 /* Prevent subsequent unmap of something never mapped */
2716 cp->Header.SGList = 0;
2717 cp->Header.SGTotal = cpu_to_le16(0);
2718 return -1;
2720 cp->SG[0].Addr = cpu_to_le64(addr64);
2721 cp->SG[0].Len = cpu_to_le32(buflen);
2722 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2724 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725 return 0;
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2733 DECLARE_COMPLETION_ONSTACK(wait);
2735 c->waiting = &wait;
2736 __enqueue_cmd_and_start_io(h, c, reply_queue);
2737 if (timeout_msecs == NO_TIMEOUT) {
2738 /* TODO: get rid of this no-timeout thing */
2739 wait_for_completion_io(&wait);
2740 return IO_OK;
2742 if (!wait_for_completion_io_timeout(&wait,
2743 msecs_to_jiffies(timeout_msecs))) {
2744 dev_warn(&h->pdev->dev, "Command timed out.\n");
2745 return -ETIMEDOUT;
2747 return IO_OK;
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751 int reply_queue, unsigned long timeout_msecs)
2753 if (unlikely(lockup_detected(h))) {
2754 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755 return IO_OK;
2757 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2760 static u32 lockup_detected(struct ctlr_info *h)
2762 int cpu;
2763 u32 rc, *lockup_detected;
2765 cpu = get_cpu();
2766 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767 rc = *lockup_detected;
2768 put_cpu();
2769 return rc;
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2776 int backoff_time = 10, retry_count = 0;
2777 int rc;
2779 do {
2780 memset(c->err_info, 0, sizeof(*c->err_info));
2781 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782 timeout_msecs);
2783 if (rc)
2784 break;
2785 retry_count++;
2786 if (retry_count > 3) {
2787 msleep(backoff_time);
2788 if (backoff_time < 1000)
2789 backoff_time *= 2;
2791 } while ((check_for_unit_attention(h, c) ||
2792 check_for_busy(h, c)) &&
2793 retry_count <= MAX_DRIVER_CMD_RETRIES);
2794 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796 rc = -EIO;
2797 return rc;
2800 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801 struct CommandList *c)
2803 const u8 *cdb = c->Request.CDB;
2804 const u8 *lun = c->Header.LUN.LunAddrBytes;
2806 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808 txt, lun[0], lun[1], lun[2], lun[3],
2809 lun[4], lun[5], lun[6], lun[7],
2810 cdb[0], cdb[1], cdb[2], cdb[3],
2811 cdb[4], cdb[5], cdb[6], cdb[7],
2812 cdb[8], cdb[9], cdb[10], cdb[11],
2813 cdb[12], cdb[13], cdb[14], cdb[15]);
2816 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817 struct CommandList *cp)
2819 const struct ErrorInfo *ei = cp->err_info;
2820 struct device *d = &cp->h->pdev->dev;
2821 u8 sense_key, asc, ascq;
2822 int sense_len;
2824 switch (ei->CommandStatus) {
2825 case CMD_TARGET_STATUS:
2826 if (ei->SenseLen > sizeof(ei->SenseInfo))
2827 sense_len = sizeof(ei->SenseInfo);
2828 else
2829 sense_len = ei->SenseLen;
2830 decode_sense_data(ei->SenseInfo, sense_len,
2831 &sense_key, &asc, &ascq);
2832 hpsa_print_cmd(h, "SCSI status", cp);
2833 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835 sense_key, asc, ascq);
2836 else
2837 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838 if (ei->ScsiStatus == 0)
2839 dev_warn(d, "SCSI status is abnormally zero. "
2840 "(probably indicates selection timeout "
2841 "reported incorrectly due to a known "
2842 "firmware bug, circa July, 2001.)\n");
2843 break;
2844 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845 break;
2846 case CMD_DATA_OVERRUN:
2847 hpsa_print_cmd(h, "overrun condition", cp);
2848 break;
2849 case CMD_INVALID: {
2850 /* controller unfortunately reports SCSI passthru's
2851 * to non-existent targets as invalid commands.
2853 hpsa_print_cmd(h, "invalid command", cp);
2854 dev_warn(d, "probably means device no longer present\n");
2856 break;
2857 case CMD_PROTOCOL_ERR:
2858 hpsa_print_cmd(h, "protocol error", cp);
2859 break;
2860 case CMD_HARDWARE_ERR:
2861 hpsa_print_cmd(h, "hardware error", cp);
2862 break;
2863 case CMD_CONNECTION_LOST:
2864 hpsa_print_cmd(h, "connection lost", cp);
2865 break;
2866 case CMD_ABORTED:
2867 hpsa_print_cmd(h, "aborted", cp);
2868 break;
2869 case CMD_ABORT_FAILED:
2870 hpsa_print_cmd(h, "abort failed", cp);
2871 break;
2872 case CMD_UNSOLICITED_ABORT:
2873 hpsa_print_cmd(h, "unsolicited abort", cp);
2874 break;
2875 case CMD_TIMEOUT:
2876 hpsa_print_cmd(h, "timed out", cp);
2877 break;
2878 case CMD_UNABORTABLE:
2879 hpsa_print_cmd(h, "unabortable", cp);
2880 break;
2881 case CMD_CTLR_LOCKUP:
2882 hpsa_print_cmd(h, "controller lockup detected", cp);
2883 break;
2884 default:
2885 hpsa_print_cmd(h, "unknown status", cp);
2886 dev_warn(d, "Unknown command status %x\n",
2887 ei->CommandStatus);
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892 u16 page, unsigned char *buf,
2893 unsigned char bufsize)
2895 int rc = IO_OK;
2896 struct CommandList *c;
2897 struct ErrorInfo *ei;
2899 c = cmd_alloc(h);
2901 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902 page, scsi3addr, TYPE_CMD)) {
2903 rc = -1;
2904 goto out;
2906 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908 if (rc)
2909 goto out;
2910 ei = c->err_info;
2911 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912 hpsa_scsi_interpret_error(h, c);
2913 rc = -1;
2915 out:
2916 cmd_free(h, c);
2917 return rc;
2920 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921 u8 reset_type, int reply_queue)
2923 int rc = IO_OK;
2924 struct CommandList *c;
2925 struct ErrorInfo *ei;
2927 c = cmd_alloc(h);
2930 /* fill_cmd can't fail here, no data buffer to map. */
2931 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932 scsi3addr, TYPE_MSG);
2933 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934 if (rc) {
2935 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936 goto out;
2938 /* no unmap needed here because no data xfer. */
2940 ei = c->err_info;
2941 if (ei->CommandStatus != 0) {
2942 hpsa_scsi_interpret_error(h, c);
2943 rc = -1;
2945 out:
2946 cmd_free(h, c);
2947 return rc;
2950 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951 struct hpsa_scsi_dev_t *dev,
2952 unsigned char *scsi3addr)
2954 int i;
2955 bool match = false;
2956 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2959 if (hpsa_is_cmd_idle(c))
2960 return false;
2962 switch (c->cmd_type) {
2963 case CMD_SCSI:
2964 case CMD_IOCTL_PEND:
2965 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966 sizeof(c->Header.LUN.LunAddrBytes));
2967 break;
2969 case CMD_IOACCEL1:
2970 case CMD_IOACCEL2:
2971 if (c->phys_disk == dev) {
2972 /* HBA mode match */
2973 match = true;
2974 } else {
2975 /* Possible RAID mode -- check each phys dev. */
2976 /* FIXME: Do we need to take out a lock here? If
2977 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978 * instead. */
2979 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980 /* FIXME: an alternate test might be
2982 * match = dev->phys_disk[i]->ioaccel_handle
2983 * == c2->scsi_nexus; */
2984 match = dev->phys_disk[i] == c->phys_disk;
2987 break;
2989 case IOACCEL2_TMF:
2990 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991 match = dev->phys_disk[i]->ioaccel_handle ==
2992 le32_to_cpu(ac->it_nexus);
2994 break;
2996 case 0: /* The command is in the middle of being initialized. */
2997 match = false;
2998 break;
3000 default:
3001 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002 c->cmd_type);
3003 BUG();
3006 return match;
3009 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3012 int i;
3013 int rc = 0;
3015 /* We can really only handle one reset at a time */
3016 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018 return -EINTR;
3021 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3023 for (i = 0; i < h->nr_cmds; i++) {
3024 struct CommandList *c = h->cmd_pool + i;
3025 int refcount = atomic_inc_return(&c->refcount);
3027 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028 unsigned long flags;
3031 * Mark the target command as having a reset pending,
3032 * then lock a lock so that the command cannot complete
3033 * while we're considering it. If the command is not
3034 * idle then count it; otherwise revoke the event.
3036 c->reset_pending = dev;
3037 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3038 if (!hpsa_is_cmd_idle(c))
3039 atomic_inc(&dev->reset_cmds_out);
3040 else
3041 c->reset_pending = NULL;
3042 spin_unlock_irqrestore(&h->lock, flags);
3045 cmd_free(h, c);
3048 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049 if (!rc)
3050 wait_event(h->event_sync_wait_queue,
3051 atomic_read(&dev->reset_cmds_out) == 0 ||
3052 lockup_detected(h));
3054 if (unlikely(lockup_detected(h))) {
3055 dev_warn(&h->pdev->dev,
3056 "Controller lockup detected during reset wait\n");
3057 rc = -ENODEV;
3060 if (unlikely(rc))
3061 atomic_set(&dev->reset_cmds_out, 0);
3063 mutex_unlock(&h->reset_mutex);
3064 return rc;
3067 static void hpsa_get_raid_level(struct ctlr_info *h,
3068 unsigned char *scsi3addr, unsigned char *raid_level)
3070 int rc;
3071 unsigned char *buf;
3073 *raid_level = RAID_UNKNOWN;
3074 buf = kzalloc(64, GFP_KERNEL);
3075 if (!buf)
3076 return;
3077 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078 if (rc == 0)
3079 *raid_level = buf[8];
3080 if (*raid_level > RAID_UNKNOWN)
3081 *raid_level = RAID_UNKNOWN;
3082 kfree(buf);
3083 return;
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089 struct raid_map_data *map_buff)
3091 struct raid_map_disk_data *dd = &map_buff->data[0];
3092 int map, row, col;
3093 u16 map_cnt, row_cnt, disks_per_row;
3095 if (rc != 0)
3096 return;
3098 /* Show details only if debugging has been activated. */
3099 if (h->raid_offload_debug < 2)
3100 return;
3102 dev_info(&h->pdev->dev, "structure_size = %u\n",
3103 le32_to_cpu(map_buff->structure_size));
3104 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105 le32_to_cpu(map_buff->volume_blk_size));
3106 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107 le64_to_cpu(map_buff->volume_blk_cnt));
3108 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109 map_buff->phys_blk_shift);
3110 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111 map_buff->parity_rotation_shift);
3112 dev_info(&h->pdev->dev, "strip_size = %u\n",
3113 le16_to_cpu(map_buff->strip_size));
3114 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115 le64_to_cpu(map_buff->disk_starting_blk));
3116 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117 le64_to_cpu(map_buff->disk_blk_cnt));
3118 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119 le16_to_cpu(map_buff->data_disks_per_row));
3120 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121 le16_to_cpu(map_buff->metadata_disks_per_row));
3122 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123 le16_to_cpu(map_buff->row_cnt));
3124 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125 le16_to_cpu(map_buff->layout_map_count));
3126 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127 le16_to_cpu(map_buff->flags));
3128 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129 le16_to_cpu(map_buff->flags) &
3130 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3131 dev_info(&h->pdev->dev, "dekindex = %u\n",
3132 le16_to_cpu(map_buff->dekindex));
3133 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134 for (map = 0; map < map_cnt; map++) {
3135 dev_info(&h->pdev->dev, "Map%u:\n", map);
3136 row_cnt = le16_to_cpu(map_buff->row_cnt);
3137 for (row = 0; row < row_cnt; row++) {
3138 dev_info(&h->pdev->dev, " Row%u:\n", row);
3139 disks_per_row =
3140 le16_to_cpu(map_buff->data_disks_per_row);
3141 for (col = 0; col < disks_per_row; col++, dd++)
3142 dev_info(&h->pdev->dev,
3143 " D%02u: h=0x%04x xor=%u,%u\n",
3144 col, dd->ioaccel_handle,
3145 dd->xor_mult[0], dd->xor_mult[1]);
3146 disks_per_row =
3147 le16_to_cpu(map_buff->metadata_disks_per_row);
3148 for (col = 0; col < disks_per_row; col++, dd++)
3149 dev_info(&h->pdev->dev,
3150 " M%02u: h=0x%04x xor=%u,%u\n",
3151 col, dd->ioaccel_handle,
3152 dd->xor_mult[0], dd->xor_mult[1]);
3156 #else
3157 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158 __attribute__((unused)) int rc,
3159 __attribute__((unused)) struct raid_map_data *map_buff)
3162 #endif
3164 static int hpsa_get_raid_map(struct ctlr_info *h,
3165 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3167 int rc = 0;
3168 struct CommandList *c;
3169 struct ErrorInfo *ei;
3171 c = cmd_alloc(h);
3173 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174 sizeof(this_device->raid_map), 0,
3175 scsi3addr, TYPE_CMD)) {
3176 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177 cmd_free(h, c);
3178 return -1;
3180 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182 if (rc)
3183 goto out;
3184 ei = c->err_info;
3185 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186 hpsa_scsi_interpret_error(h, c);
3187 rc = -1;
3188 goto out;
3190 cmd_free(h, c);
3192 /* @todo in the future, dynamically allocate RAID map memory */
3193 if (le32_to_cpu(this_device->raid_map.structure_size) >
3194 sizeof(this_device->raid_map)) {
3195 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196 rc = -1;
3198 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199 return rc;
3200 out:
3201 cmd_free(h, c);
3202 return rc;
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206 unsigned char scsi3addr[], u16 bmic_device_index,
3207 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3209 int rc = IO_OK;
3210 struct CommandList *c;
3211 struct ErrorInfo *ei;
3213 c = cmd_alloc(h);
3215 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216 0, RAID_CTLR_LUNID, TYPE_CMD);
3217 if (rc)
3218 goto out;
3220 c->Request.CDB[2] = bmic_device_index & 0xff;
3221 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3223 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225 if (rc)
3226 goto out;
3227 ei = c->err_info;
3228 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229 hpsa_scsi_interpret_error(h, c);
3230 rc = -1;
3232 out:
3233 cmd_free(h, c);
3234 return rc;
3237 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238 struct bmic_identify_controller *buf, size_t bufsize)
3240 int rc = IO_OK;
3241 struct CommandList *c;
3242 struct ErrorInfo *ei;
3244 c = cmd_alloc(h);
3246 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247 0, RAID_CTLR_LUNID, TYPE_CMD);
3248 if (rc)
3249 goto out;
3251 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253 if (rc)
3254 goto out;
3255 ei = c->err_info;
3256 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257 hpsa_scsi_interpret_error(h, c);
3258 rc = -1;
3260 out:
3261 cmd_free(h, c);
3262 return rc;
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266 unsigned char scsi3addr[], u16 bmic_device_index,
3267 struct bmic_identify_physical_device *buf, size_t bufsize)
3269 int rc = IO_OK;
3270 struct CommandList *c;
3271 struct ErrorInfo *ei;
3273 c = cmd_alloc(h);
3274 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275 0, RAID_CTLR_LUNID, TYPE_CMD);
3276 if (rc)
3277 goto out;
3279 c->Request.CDB[2] = bmic_device_index & 0xff;
3280 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3282 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283 DEFAULT_TIMEOUT);
3284 ei = c->err_info;
3285 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286 hpsa_scsi_interpret_error(h, c);
3287 rc = -1;
3289 out:
3290 cmd_free(h, c);
3292 return rc;
3296 * get enclosure information
3297 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299 * Uses id_physical_device to determine the box_index.
3301 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302 unsigned char *scsi3addr,
3303 struct ReportExtendedLUNdata *rlep, int rle_index,
3304 struct hpsa_scsi_dev_t *encl_dev)
3306 int rc = -1;
3307 struct CommandList *c = NULL;
3308 struct ErrorInfo *ei = NULL;
3309 struct bmic_sense_storage_box_params *bssbp = NULL;
3310 struct bmic_identify_physical_device *id_phys = NULL;
3311 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312 u16 bmic_device_index = 0;
3314 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3316 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317 rc = IO_OK;
3318 goto out;
3321 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322 if (!bssbp)
3323 goto out;
3325 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326 if (!id_phys)
3327 goto out;
3329 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330 id_phys, sizeof(*id_phys));
3331 if (rc) {
3332 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333 __func__, encl_dev->external, bmic_device_index);
3334 goto out;
3337 c = cmd_alloc(h);
3339 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3342 if (rc)
3343 goto out;
3345 if (id_phys->phys_connector[1] == 'E')
3346 c->Request.CDB[5] = id_phys->box_index;
3347 else
3348 c->Request.CDB[5] = 0;
3350 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351 DEFAULT_TIMEOUT);
3352 if (rc)
3353 goto out;
3355 ei = c->err_info;
3356 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357 rc = -1;
3358 goto out;
3361 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3365 rc = IO_OK;
3366 out:
3367 kfree(bssbp);
3368 kfree(id_phys);
3370 if (c)
3371 cmd_free(h, c);
3373 if (rc != IO_OK)
3374 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375 "Error, could not get enclosure information\n");
3378 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379 unsigned char *scsi3addr)
3381 struct ReportExtendedLUNdata *physdev;
3382 u32 nphysicals;
3383 u64 sa = 0;
3384 int i;
3386 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387 if (!physdev)
3388 return 0;
3390 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392 kfree(physdev);
3393 return 0;
3395 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3397 for (i = 0; i < nphysicals; i++)
3398 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400 break;
3403 kfree(physdev);
3405 return sa;
3408 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409 struct hpsa_scsi_dev_t *dev)
3411 int rc;
3412 u64 sa = 0;
3414 if (is_hba_lunid(scsi3addr)) {
3415 struct bmic_sense_subsystem_info *ssi;
3417 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418 if (ssi == NULL) {
3419 dev_warn(&h->pdev->dev,
3420 "%s: out of memory\n", __func__);
3421 return;
3424 rc = hpsa_bmic_sense_subsystem_information(h,
3425 scsi3addr, 0, ssi, sizeof(*ssi));
3426 if (rc == 0) {
3427 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428 h->sas_address = sa;
3431 kfree(ssi);
3432 } else
3433 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3435 dev->sas_address = sa;
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440 unsigned char scsi3addr[], u8 page)
3442 int rc;
3443 int i;
3444 int pages;
3445 unsigned char *buf, bufsize;
3447 buf = kzalloc(256, GFP_KERNEL);
3448 if (!buf)
3449 return 0;
3451 /* Get the size of the page list first */
3452 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454 buf, HPSA_VPD_HEADER_SZ);
3455 if (rc != 0)
3456 goto exit_unsupported;
3457 pages = buf[3];
3458 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459 bufsize = pages + HPSA_VPD_HEADER_SZ;
3460 else
3461 bufsize = 255;
3463 /* Get the whole VPD page list */
3464 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466 buf, bufsize);
3467 if (rc != 0)
3468 goto exit_unsupported;
3470 pages = buf[3];
3471 for (i = 1; i <= pages; i++)
3472 if (buf[3 + i] == page)
3473 goto exit_supported;
3474 exit_unsupported:
3475 kfree(buf);
3476 return 0;
3477 exit_supported:
3478 kfree(buf);
3479 return 1;
3482 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3485 int rc;
3486 unsigned char *buf;
3487 u8 ioaccel_status;
3489 this_device->offload_config = 0;
3490 this_device->offload_enabled = 0;
3491 this_device->offload_to_be_enabled = 0;
3493 buf = kzalloc(64, GFP_KERNEL);
3494 if (!buf)
3495 return;
3496 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497 goto out;
3498 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500 if (rc != 0)
3501 goto out;
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507 this_device->offload_config =
3508 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509 if (this_device->offload_config) {
3510 this_device->offload_enabled =
3511 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513 this_device->offload_enabled = 0;
3515 this_device->offload_to_be_enabled = this_device->offload_enabled;
3516 out:
3517 kfree(buf);
3518 return;
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523 unsigned char *device_id, int index, int buflen)
3525 int rc;
3526 unsigned char *buf;
3528 if (buflen > 16)
3529 buflen = 16;
3530 buf = kzalloc(64, GFP_KERNEL);
3531 if (!buf)
3532 return -ENOMEM;
3533 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534 if (rc == 0)
3535 memcpy(device_id, &buf[index], buflen);
3537 kfree(buf);
3539 return rc != 0;
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543 void *buf, int bufsize,
3544 int extended_response)
3546 int rc = IO_OK;
3547 struct CommandList *c;
3548 unsigned char scsi3addr[8];
3549 struct ErrorInfo *ei;
3551 c = cmd_alloc(h);
3553 /* address the controller */
3554 memset(scsi3addr, 0, sizeof(scsi3addr));
3555 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557 rc = -1;
3558 goto out;
3560 if (extended_response)
3561 c->Request.CDB[1] = extended_response;
3562 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564 if (rc)
3565 goto out;
3566 ei = c->err_info;
3567 if (ei->CommandStatus != 0 &&
3568 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569 hpsa_scsi_interpret_error(h, c);
3570 rc = -1;
3571 } else {
3572 struct ReportLUNdata *rld = buf;
3574 if (rld->extended_response_flag != extended_response) {
3575 dev_err(&h->pdev->dev,
3576 "report luns requested format %u, got %u\n",
3577 extended_response,
3578 rld->extended_response_flag);
3579 rc = -1;
3582 out:
3583 cmd_free(h, c);
3584 return rc;
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588 struct ReportExtendedLUNdata *buf, int bufsize)
3590 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591 HPSA_REPORT_PHYS_EXTENDED);
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595 struct ReportLUNdata *buf, int bufsize)
3597 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601 int bus, int target, int lun)
3603 device->bus = bus;
3604 device->target = target;
3605 device->lun = lun;
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info *h,
3610 unsigned char scsi3addr[])
3612 int rc;
3613 int status;
3614 int size;
3615 unsigned char *buf;
3617 buf = kzalloc(64, GFP_KERNEL);
3618 if (!buf)
3619 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3621 /* Does controller have VPD for logical volume status? */
3622 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623 goto exit_failed;
3625 /* Get the size of the VPD return buffer */
3626 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627 buf, HPSA_VPD_HEADER_SZ);
3628 if (rc != 0)
3629 goto exit_failed;
3630 size = buf[3];
3632 /* Now get the whole VPD buffer */
3633 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634 buf, size + HPSA_VPD_HEADER_SZ);
3635 if (rc != 0)
3636 goto exit_failed;
3637 status = buf[4]; /* status byte */
3639 kfree(buf);
3640 return status;
3641 exit_failed:
3642 kfree(buf);
3643 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3646 /* Determine offline status of a volume.
3647 * Return either:
3648 * 0 (not offline)
3649 * 0xff (offline for unknown reasons)
3650 * # (integer code indicating one of several NOT READY states
3651 * describing why a volume is to be kept offline)
3653 static int hpsa_volume_offline(struct ctlr_info *h,
3654 unsigned char scsi3addr[])
3656 struct CommandList *c;
3657 unsigned char *sense;
3658 u8 sense_key, asc, ascq;
3659 int sense_len;
3660 int rc, ldstat = 0;
3661 u16 cmd_status;
3662 u8 scsi_status;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3667 c = cmd_alloc(h);
3669 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671 DEFAULT_TIMEOUT);
3672 if (rc) {
3673 cmd_free(h, c);
3674 return 0;
3676 sense = c->err_info->SenseInfo;
3677 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678 sense_len = sizeof(c->err_info->SenseInfo);
3679 else
3680 sense_len = c->err_info->SenseLen;
3681 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682 cmd_status = c->err_info->CommandStatus;
3683 scsi_status = c->err_info->ScsiStatus;
3684 cmd_free(h, c);
3685 /* Is the volume 'not ready'? */
3686 if (cmd_status != CMD_TARGET_STATUS ||
3687 scsi_status != SAM_STAT_CHECK_CONDITION ||
3688 sense_key != NOT_READY ||
3689 asc != ASC_LUN_NOT_READY) {
3690 return 0;
3693 /* Determine the reason for not ready state */
3694 ldstat = hpsa_get_volume_status(h, scsi3addr);
3696 /* Keep volume offline in certain cases: */
3697 switch (ldstat) {
3698 case HPSA_LV_UNDERGOING_ERASE:
3699 case HPSA_LV_NOT_AVAILABLE:
3700 case HPSA_LV_UNDERGOING_RPI:
3701 case HPSA_LV_PENDING_RPI:
3702 case HPSA_LV_ENCRYPTED_NO_KEY:
3703 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704 case HPSA_LV_UNDERGOING_ENCRYPTION:
3705 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707 return ldstat;
3708 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709 /* If VPD status page isn't available,
3710 * use ASC/ASCQ to determine state
3712 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714 return ldstat;
3715 break;
3716 default:
3717 break;
3719 return 0;
3723 * Find out if a logical device supports aborts by simply trying one.
3724 * Smart Array may claim not to support aborts on logical drives, but
3725 * if a MSA2000 * is connected, the drives on that will be presented
3726 * by the Smart Array as logical drives, and aborts may be sent to
3727 * those devices successfully. So the simplest way to find out is
3728 * to simply try an abort and see how the device responds.
3730 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731 unsigned char *scsi3addr)
3733 struct CommandList *c;
3734 struct ErrorInfo *ei;
3735 int rc = 0;
3737 u64 tag = (u64) -1; /* bogus tag */
3739 /* Assume that physical devices support aborts */
3740 if (!is_logical_dev_addr_mode(scsi3addr))
3741 return 1;
3743 c = cmd_alloc(h);
3745 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747 DEFAULT_TIMEOUT);
3748 /* no unmap needed here because no data xfer. */
3749 ei = c->err_info;
3750 switch (ei->CommandStatus) {
3751 case CMD_INVALID:
3752 rc = 0;
3753 break;
3754 case CMD_UNABORTABLE:
3755 case CMD_ABORT_FAILED:
3756 rc = 1;
3757 break;
3758 case CMD_TMF_STATUS:
3759 rc = hpsa_evaluate_tmf_status(h, c);
3760 break;
3761 default:
3762 rc = 0;
3763 break;
3765 cmd_free(h, c);
3766 return rc;
3769 static int hpsa_update_device_info(struct ctlr_info *h,
3770 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771 unsigned char *is_OBDR_device)
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3779 unsigned char *inq_buff;
3780 unsigned char *obdr_sig;
3781 int rc = 0;
3783 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784 if (!inq_buff) {
3785 rc = -ENOMEM;
3786 goto bail_out;
3789 /* Do an inquiry to the device to see what it is. */
3790 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792 /* Inquiry failed (msg printed already) */
3793 dev_err(&h->pdev->dev,
3794 "hpsa_update_device_info: inquiry failed\n");
3795 rc = -EIO;
3796 goto bail_out;
3799 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3802 this_device->devtype = (inq_buff[0] & 0x1f);
3803 memcpy(this_device->scsi3addr, scsi3addr, 8);
3804 memcpy(this_device->vendor, &inq_buff[8],
3805 sizeof(this_device->vendor));
3806 memcpy(this_device->model, &inq_buff[16],
3807 sizeof(this_device->model));
3808 memset(this_device->device_id, 0,
3809 sizeof(this_device->device_id));
3810 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811 sizeof(this_device->device_id));
3813 if ((this_device->devtype == TYPE_DISK ||
3814 this_device->devtype == TYPE_ZBC) &&
3815 is_logical_dev_addr_mode(scsi3addr)) {
3816 int volume_offline;
3818 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821 volume_offline = hpsa_volume_offline(h, scsi3addr);
3822 if (volume_offline < 0 || volume_offline > 0xff)
3823 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824 this_device->volume_offline = volume_offline & 0xff;
3825 } else {
3826 this_device->raid_level = RAID_UNKNOWN;
3827 this_device->offload_config = 0;
3828 this_device->offload_enabled = 0;
3829 this_device->offload_to_be_enabled = 0;
3830 this_device->hba_ioaccel_enabled = 0;
3831 this_device->volume_offline = 0;
3832 this_device->queue_depth = h->nr_cmds;
3835 if (is_OBDR_device) {
3836 /* See if this is a One-Button-Disaster-Recovery device
3837 * by looking for "$DR-10" at offset 43 in inquiry data.
3839 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841 strncmp(obdr_sig, OBDR_TAPE_SIG,
3842 OBDR_SIG_LEN) == 0);
3844 kfree(inq_buff);
3845 return 0;
3847 bail_out:
3848 kfree(inq_buff);
3849 return rc;
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3855 unsigned long flags;
3856 int rc, entry;
3858 * See if this device supports aborts. If we already know
3859 * the device, we already know if it supports aborts, otherwise
3860 * we have to find out if it supports aborts by trying one.
3862 spin_lock_irqsave(&h->devlock, flags);
3863 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865 entry >= 0 && entry < h->ndevices) {
3866 dev->supports_aborts = h->dev[entry]->supports_aborts;
3867 spin_unlock_irqrestore(&h->devlock, flags);
3868 } else {
3869 spin_unlock_irqrestore(&h->devlock, flags);
3870 dev->supports_aborts =
3871 hpsa_device_supports_aborts(h, scsi3addr);
3872 if (dev->supports_aborts < 0)
3873 dev->supports_aborts = 0;
3878 * Helper function to assign bus, target, lun mapping of devices.
3879 * Logical drive target and lun are assigned at this time, but
3880 * physical device lun and target assignment are deferred (assigned
3881 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3883 static void figure_bus_target_lun(struct ctlr_info *h,
3884 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3886 u32 lunid = get_unaligned_le32(lunaddrbytes);
3888 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889 /* physical device, target and lun filled in later */
3890 if (is_hba_lunid(lunaddrbytes))
3891 hpsa_set_bus_target_lun(device,
3892 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893 else
3894 /* defer target, lun assignment for physical devices */
3895 hpsa_set_bus_target_lun(device,
3896 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897 return;
3899 /* It's a logical device */
3900 if (device->external) {
3901 hpsa_set_bus_target_lun(device,
3902 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903 lunid & 0x00ff);
3904 return;
3906 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907 0, lunid & 0x3fff);
3912 * Get address of physical disk used for an ioaccel2 mode command:
3913 * 1. Extract ioaccel2 handle from the command.
3914 * 2. Find a matching ioaccel2 handle from list of physical disks.
3915 * 3. Return:
3916 * 1 and set scsi3addr to address of matching physical
3917 * 0 if no matching physical disk was found.
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3922 struct io_accel2_cmd *c2 =
3923 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924 unsigned long flags;
3925 int i;
3927 spin_lock_irqsave(&h->devlock, flags);
3928 for (i = 0; i < h->ndevices; i++)
3929 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931 sizeof(h->dev[i]->scsi3addr));
3932 spin_unlock_irqrestore(&h->devlock, flags);
3933 return 1;
3935 spin_unlock_irqrestore(&h->devlock, flags);
3936 return 0;
3939 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940 int i, int nphysicals, int nlocal_logicals)
3942 /* In report logicals, local logicals are listed first,
3943 * then any externals.
3945 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3947 if (i == raid_ctlr_position)
3948 return 0;
3950 if (i < logicals_start)
3951 return 0;
3953 /* i is in logicals range, but still within local logicals */
3954 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955 return 0;
3957 return 1; /* it's an external lun */
3961 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3962 * logdev. The number of luns in physdev and logdev are returned in
3963 * *nphysicals and *nlogicals, respectively.
3964 * Returns 0 on success, -1 otherwise.
3966 static int hpsa_gather_lun_info(struct ctlr_info *h,
3967 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968 struct ReportLUNdata *logdev, u32 *nlogicals)
3970 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972 return -1;
3974 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978 *nphysicals = HPSA_MAX_PHYS_LUN;
3980 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982 return -1;
3984 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985 /* Reject Logicals in excess of our max capability. */
3986 if (*nlogicals > HPSA_MAX_LUN) {
3987 dev_warn(&h->pdev->dev,
3988 "maximum logical LUNs (%d) exceeded. "
3989 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3990 *nlogicals - HPSA_MAX_LUN);
3991 *nlogicals = HPSA_MAX_LUN;
3993 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994 dev_warn(&h->pdev->dev,
3995 "maximum logical + physical LUNs (%d) exceeded. "
3996 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4000 return 0;
4003 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004 int i, int nphysicals, int nlogicals,
4005 struct ReportExtendedLUNdata *physdev_list,
4006 struct ReportLUNdata *logdev_list)
4008 /* Helper function, figure out where the LUN ID info is coming from
4009 * given index i, lists of physical and logical devices, where in
4010 * the list the raid controller is supposed to appear (first or last)
4013 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4016 if (i == raid_ctlr_position)
4017 return RAID_CTLR_LUNID;
4019 if (i < logicals_start)
4020 return &physdev_list->LUN[i -
4021 (raid_ctlr_position == 0)].lunid[0];
4023 if (i < last_device)
4024 return &logdev_list->LUN[i - nphysicals -
4025 (raid_ctlr_position == 0)][0];
4026 BUG();
4027 return NULL;
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032 struct hpsa_scsi_dev_t *dev,
4033 struct ReportExtendedLUNdata *rlep, int rle_index,
4034 struct bmic_identify_physical_device *id_phys)
4036 int rc;
4037 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4039 dev->ioaccel_handle = rle->ioaccel_handle;
4040 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041 dev->hba_ioaccel_enabled = 1;
4042 memset(id_phys, 0, sizeof(*id_phys));
4043 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045 sizeof(*id_phys));
4046 if (!rc)
4047 /* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4050 dev->queue_depth =
4051 le16_to_cpu(id_phys->current_queue_depth_limit) -
4052 DRIVE_CMDS_RESERVED_FOR_FW;
4053 else
4054 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058 struct ReportExtendedLUNdata *rlep, int rle_index,
4059 struct bmic_identify_physical_device *id_phys)
4061 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4063 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064 this_device->hba_ioaccel_enabled = 1;
4066 memcpy(&this_device->active_path_index,
4067 &id_phys->active_path_number,
4068 sizeof(this_device->active_path_index));
4069 memcpy(&this_device->path_map,
4070 &id_phys->redundant_path_present_map,
4071 sizeof(this_device->path_map));
4072 memcpy(&this_device->box,
4073 &id_phys->alternate_paths_phys_box_on_port,
4074 sizeof(this_device->box));
4075 memcpy(&this_device->phys_connector,
4076 &id_phys->alternate_paths_phys_connector,
4077 sizeof(this_device->phys_connector));
4078 memcpy(&this_device->bay,
4079 &id_phys->phys_bay_in_box,
4080 sizeof(this_device->bay));
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085 struct bmic_identify_controller *id_ctlr,
4086 u32 *nlocals)
4088 int rc;
4090 if (!id_ctlr) {
4091 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092 __func__);
4093 return -ENOMEM;
4095 memset(id_ctlr, 0, sizeof(*id_ctlr));
4096 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097 if (!rc)
4098 if (id_ctlr->configured_logical_drive_count < 256)
4099 *nlocals = id_ctlr->configured_logical_drive_count;
4100 else
4101 *nlocals = le16_to_cpu(
4102 id_ctlr->extended_logical_unit_count);
4103 else
4104 *nlocals = -1;
4105 return rc;
4109 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4111 /* the idea here is we could get notified
4112 * that some devices have changed, so we do a report
4113 * physical luns and report logical luns cmd, and adjust
4114 * our list of devices accordingly.
4116 * The scsi3addr's of devices won't change so long as the
4117 * adapter is not reset. That means we can rescan and
4118 * tell which devices we already know about, vs. new
4119 * devices, vs. disappearing devices.
4121 struct ReportExtendedLUNdata *physdev_list = NULL;
4122 struct ReportLUNdata *logdev_list = NULL;
4123 struct bmic_identify_physical_device *id_phys = NULL;
4124 struct bmic_identify_controller *id_ctlr = NULL;
4125 u32 nphysicals = 0;
4126 u32 nlogicals = 0;
4127 u32 nlocal_logicals = 0;
4128 u32 ndev_allocated = 0;
4129 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4130 int ncurrent = 0;
4131 int i, n_ext_target_devs, ndevs_to_allocate;
4132 int raid_ctlr_position;
4133 bool physical_device;
4134 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4136 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4137 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4138 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4139 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4140 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4141 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4143 if (!currentsd || !physdev_list || !logdev_list ||
4144 !tmpdevice || !id_phys || !id_ctlr) {
4145 dev_err(&h->pdev->dev, "out of memory\n");
4146 goto out;
4148 memset(lunzerobits, 0, sizeof(lunzerobits));
4150 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4152 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4153 logdev_list, &nlogicals)) {
4154 h->drv_req_rescan = 1;
4155 goto out;
4158 /* Set number of local logicals (non PTRAID) */
4159 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4160 dev_warn(&h->pdev->dev,
4161 "%s: Can't determine number of local logical devices.\n",
4162 __func__);
4165 /* We might see up to the maximum number of logical and physical disks
4166 * plus external target devices, and a device for the local RAID
4167 * controller.
4169 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4171 /* Allocate the per device structures */
4172 for (i = 0; i < ndevs_to_allocate; i++) {
4173 if (i >= HPSA_MAX_DEVICES) {
4174 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4175 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4176 ndevs_to_allocate - HPSA_MAX_DEVICES);
4177 break;
4180 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4181 if (!currentsd[i]) {
4182 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4183 __FILE__, __LINE__);
4184 h->drv_req_rescan = 1;
4185 goto out;
4187 ndev_allocated++;
4190 if (is_scsi_rev_5(h))
4191 raid_ctlr_position = 0;
4192 else
4193 raid_ctlr_position = nphysicals + nlogicals;
4195 /* adjust our table of devices */
4196 n_ext_target_devs = 0;
4197 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4198 u8 *lunaddrbytes, is_OBDR = 0;
4199 int rc = 0;
4200 int phys_dev_index = i - (raid_ctlr_position == 0);
4202 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4204 /* Figure out where the LUN ID info is coming from */
4205 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4206 i, nphysicals, nlogicals, physdev_list, logdev_list);
4208 /* skip masked non-disk devices */
4209 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4210 (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4211 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4212 continue;
4214 /* Get device type, vendor, model, device id */
4215 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4216 &is_OBDR);
4217 if (rc == -ENOMEM) {
4218 dev_warn(&h->pdev->dev,
4219 "Out of memory, rescan deferred.\n");
4220 h->drv_req_rescan = 1;
4221 goto out;
4223 if (rc) {
4224 dev_warn(&h->pdev->dev,
4225 "Inquiry failed, skipping device.\n");
4226 continue;
4229 /* Determine if this is a lun from an external target array */
4230 tmpdevice->external =
4231 figure_external_status(h, raid_ctlr_position, i,
4232 nphysicals, nlocal_logicals);
4234 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4235 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4236 this_device = currentsd[ncurrent];
4238 /* Turn on discovery_polling if there are ext target devices.
4239 * Event-based change notification is unreliable for those.
4241 if (!h->discovery_polling) {
4242 if (tmpdevice->external) {
4243 h->discovery_polling = 1;
4244 dev_info(&h->pdev->dev,
4245 "External target, activate discovery polling.\n");
4250 *this_device = *tmpdevice;
4251 this_device->physical_device = physical_device;
4254 * Expose all devices except for physical devices that
4255 * are masked.
4257 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4258 this_device->expose_device = 0;
4259 else
4260 this_device->expose_device = 1;
4264 * Get the SAS address for physical devices that are exposed.
4266 if (this_device->physical_device && this_device->expose_device)
4267 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4269 switch (this_device->devtype) {
4270 case TYPE_ROM:
4271 /* We don't *really* support actual CD-ROM devices,
4272 * just "One Button Disaster Recovery" tape drive
4273 * which temporarily pretends to be a CD-ROM drive.
4274 * So we check that the device is really an OBDR tape
4275 * device by checking for "$DR-10" in bytes 43-48 of
4276 * the inquiry data.
4278 if (is_OBDR)
4279 ncurrent++;
4280 break;
4281 case TYPE_DISK:
4282 case TYPE_ZBC:
4283 if (this_device->physical_device) {
4284 /* The disk is in HBA mode. */
4285 /* Never use RAID mapper in HBA mode. */
4286 this_device->offload_enabled = 0;
4287 hpsa_get_ioaccel_drive_info(h, this_device,
4288 physdev_list, phys_dev_index, id_phys);
4289 hpsa_get_path_info(this_device,
4290 physdev_list, phys_dev_index, id_phys);
4292 ncurrent++;
4293 break;
4294 case TYPE_TAPE:
4295 case TYPE_MEDIUM_CHANGER:
4296 ncurrent++;
4297 break;
4298 case TYPE_ENCLOSURE:
4299 if (!this_device->external)
4300 hpsa_get_enclosure_info(h, lunaddrbytes,
4301 physdev_list, phys_dev_index,
4302 this_device);
4303 ncurrent++;
4304 break;
4305 case TYPE_RAID:
4306 /* Only present the Smartarray HBA as a RAID controller.
4307 * If it's a RAID controller other than the HBA itself
4308 * (an external RAID controller, MSA500 or similar)
4309 * don't present it.
4311 if (!is_hba_lunid(lunaddrbytes))
4312 break;
4313 ncurrent++;
4314 break;
4315 default:
4316 break;
4318 if (ncurrent >= HPSA_MAX_DEVICES)
4319 break;
4322 if (h->sas_host == NULL) {
4323 int rc = 0;
4325 rc = hpsa_add_sas_host(h);
4326 if (rc) {
4327 dev_warn(&h->pdev->dev,
4328 "Could not add sas host %d\n", rc);
4329 goto out;
4333 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4334 out:
4335 kfree(tmpdevice);
4336 for (i = 0; i < ndev_allocated; i++)
4337 kfree(currentsd[i]);
4338 kfree(currentsd);
4339 kfree(physdev_list);
4340 kfree(logdev_list);
4341 kfree(id_ctlr);
4342 kfree(id_phys);
4345 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4346 struct scatterlist *sg)
4348 u64 addr64 = (u64) sg_dma_address(sg);
4349 unsigned int len = sg_dma_len(sg);
4351 desc->Addr = cpu_to_le64(addr64);
4352 desc->Len = cpu_to_le32(len);
4353 desc->Ext = 0;
4357 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4358 * dma mapping and fills in the scatter gather entries of the
4359 * hpsa command, cp.
4361 static int hpsa_scatter_gather(struct ctlr_info *h,
4362 struct CommandList *cp,
4363 struct scsi_cmnd *cmd)
4365 struct scatterlist *sg;
4366 int use_sg, i, sg_limit, chained, last_sg;
4367 struct SGDescriptor *curr_sg;
4369 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4371 use_sg = scsi_dma_map(cmd);
4372 if (use_sg < 0)
4373 return use_sg;
4375 if (!use_sg)
4376 goto sglist_finished;
4379 * If the number of entries is greater than the max for a single list,
4380 * then we have a chained list; we will set up all but one entry in the
4381 * first list (the last entry is saved for link information);
4382 * otherwise, we don't have a chained list and we'll set up at each of
4383 * the entries in the one list.
4385 curr_sg = cp->SG;
4386 chained = use_sg > h->max_cmd_sg_entries;
4387 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4388 last_sg = scsi_sg_count(cmd) - 1;
4389 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4390 hpsa_set_sg_descriptor(curr_sg, sg);
4391 curr_sg++;
4394 if (chained) {
4396 * Continue with the chained list. Set curr_sg to the chained
4397 * list. Modify the limit to the total count less the entries
4398 * we've already set up. Resume the scan at the list entry
4399 * where the previous loop left off.
4401 curr_sg = h->cmd_sg_list[cp->cmdindex];
4402 sg_limit = use_sg - sg_limit;
4403 for_each_sg(sg, sg, sg_limit, i) {
4404 hpsa_set_sg_descriptor(curr_sg, sg);
4405 curr_sg++;
4409 /* Back the pointer up to the last entry and mark it as "last". */
4410 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4412 if (use_sg + chained > h->maxSG)
4413 h->maxSG = use_sg + chained;
4415 if (chained) {
4416 cp->Header.SGList = h->max_cmd_sg_entries;
4417 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4418 if (hpsa_map_sg_chain_block(h, cp)) {
4419 scsi_dma_unmap(cmd);
4420 return -1;
4422 return 0;
4425 sglist_finished:
4427 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4428 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4429 return 0;
4432 #define IO_ACCEL_INELIGIBLE (1)
4433 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4435 int is_write = 0;
4436 u32 block;
4437 u32 block_cnt;
4439 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4440 switch (cdb[0]) {
4441 case WRITE_6:
4442 case WRITE_12:
4443 is_write = 1;
4444 case READ_6:
4445 case READ_12:
4446 if (*cdb_len == 6) {
4447 block = get_unaligned_be16(&cdb[2]);
4448 block_cnt = cdb[4];
4449 if (block_cnt == 0)
4450 block_cnt = 256;
4451 } else {
4452 BUG_ON(*cdb_len != 12);
4453 block = get_unaligned_be32(&cdb[2]);
4454 block_cnt = get_unaligned_be32(&cdb[6]);
4456 if (block_cnt > 0xffff)
4457 return IO_ACCEL_INELIGIBLE;
4459 cdb[0] = is_write ? WRITE_10 : READ_10;
4460 cdb[1] = 0;
4461 cdb[2] = (u8) (block >> 24);
4462 cdb[3] = (u8) (block >> 16);
4463 cdb[4] = (u8) (block >> 8);
4464 cdb[5] = (u8) (block);
4465 cdb[6] = 0;
4466 cdb[7] = (u8) (block_cnt >> 8);
4467 cdb[8] = (u8) (block_cnt);
4468 cdb[9] = 0;
4469 *cdb_len = 10;
4470 break;
4472 return 0;
4475 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4476 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4477 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4479 struct scsi_cmnd *cmd = c->scsi_cmd;
4480 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4481 unsigned int len;
4482 unsigned int total_len = 0;
4483 struct scatterlist *sg;
4484 u64 addr64;
4485 int use_sg, i;
4486 struct SGDescriptor *curr_sg;
4487 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4489 /* TODO: implement chaining support */
4490 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4491 atomic_dec(&phys_disk->ioaccel_cmds_out);
4492 return IO_ACCEL_INELIGIBLE;
4495 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4497 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4498 atomic_dec(&phys_disk->ioaccel_cmds_out);
4499 return IO_ACCEL_INELIGIBLE;
4502 c->cmd_type = CMD_IOACCEL1;
4504 /* Adjust the DMA address to point to the accelerated command buffer */
4505 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4506 (c->cmdindex * sizeof(*cp));
4507 BUG_ON(c->busaddr & 0x0000007F);
4509 use_sg = scsi_dma_map(cmd);
4510 if (use_sg < 0) {
4511 atomic_dec(&phys_disk->ioaccel_cmds_out);
4512 return use_sg;
4515 if (use_sg) {
4516 curr_sg = cp->SG;
4517 scsi_for_each_sg(cmd, sg, use_sg, i) {
4518 addr64 = (u64) sg_dma_address(sg);
4519 len = sg_dma_len(sg);
4520 total_len += len;
4521 curr_sg->Addr = cpu_to_le64(addr64);
4522 curr_sg->Len = cpu_to_le32(len);
4523 curr_sg->Ext = cpu_to_le32(0);
4524 curr_sg++;
4526 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4528 switch (cmd->sc_data_direction) {
4529 case DMA_TO_DEVICE:
4530 control |= IOACCEL1_CONTROL_DATA_OUT;
4531 break;
4532 case DMA_FROM_DEVICE:
4533 control |= IOACCEL1_CONTROL_DATA_IN;
4534 break;
4535 case DMA_NONE:
4536 control |= IOACCEL1_CONTROL_NODATAXFER;
4537 break;
4538 default:
4539 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4540 cmd->sc_data_direction);
4541 BUG();
4542 break;
4544 } else {
4545 control |= IOACCEL1_CONTROL_NODATAXFER;
4548 c->Header.SGList = use_sg;
4549 /* Fill out the command structure to submit */
4550 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4551 cp->transfer_len = cpu_to_le32(total_len);
4552 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4553 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4554 cp->control = cpu_to_le32(control);
4555 memcpy(cp->CDB, cdb, cdb_len);
4556 memcpy(cp->CISS_LUN, scsi3addr, 8);
4557 /* Tag was already set at init time. */
4558 enqueue_cmd_and_start_io(h, c);
4559 return 0;
4563 * Queue a command directly to a device behind the controller using the
4564 * I/O accelerator path.
4566 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4567 struct CommandList *c)
4569 struct scsi_cmnd *cmd = c->scsi_cmd;
4570 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4572 c->phys_disk = dev;
4574 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4575 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4579 * Set encryption parameters for the ioaccel2 request
4581 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4582 struct CommandList *c, struct io_accel2_cmd *cp)
4584 struct scsi_cmnd *cmd = c->scsi_cmd;
4585 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4586 struct raid_map_data *map = &dev->raid_map;
4587 u64 first_block;
4589 /* Are we doing encryption on this device */
4590 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4591 return;
4592 /* Set the data encryption key index. */
4593 cp->dekindex = map->dekindex;
4595 /* Set the encryption enable flag, encoded into direction field. */
4596 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4598 /* Set encryption tweak values based on logical block address
4599 * If block size is 512, tweak value is LBA.
4600 * For other block sizes, tweak is (LBA * block size)/ 512)
4602 switch (cmd->cmnd[0]) {
4603 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4604 case WRITE_6:
4605 case READ_6:
4606 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4607 break;
4608 case WRITE_10:
4609 case READ_10:
4610 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4611 case WRITE_12:
4612 case READ_12:
4613 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4614 break;
4615 case WRITE_16:
4616 case READ_16:
4617 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4618 break;
4619 default:
4620 dev_err(&h->pdev->dev,
4621 "ERROR: %s: size (0x%x) not supported for encryption\n",
4622 __func__, cmd->cmnd[0]);
4623 BUG();
4624 break;
4627 if (le32_to_cpu(map->volume_blk_size) != 512)
4628 first_block = first_block *
4629 le32_to_cpu(map->volume_blk_size)/512;
4631 cp->tweak_lower = cpu_to_le32(first_block);
4632 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4635 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4636 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4637 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4639 struct scsi_cmnd *cmd = c->scsi_cmd;
4640 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4641 struct ioaccel2_sg_element *curr_sg;
4642 int use_sg, i;
4643 struct scatterlist *sg;
4644 u64 addr64;
4645 u32 len;
4646 u32 total_len = 0;
4648 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4650 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4651 atomic_dec(&phys_disk->ioaccel_cmds_out);
4652 return IO_ACCEL_INELIGIBLE;
4655 c->cmd_type = CMD_IOACCEL2;
4656 /* Adjust the DMA address to point to the accelerated command buffer */
4657 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4658 (c->cmdindex * sizeof(*cp));
4659 BUG_ON(c->busaddr & 0x0000007F);
4661 memset(cp, 0, sizeof(*cp));
4662 cp->IU_type = IOACCEL2_IU_TYPE;
4664 use_sg = scsi_dma_map(cmd);
4665 if (use_sg < 0) {
4666 atomic_dec(&phys_disk->ioaccel_cmds_out);
4667 return use_sg;
4670 if (use_sg) {
4671 curr_sg = cp->sg;
4672 if (use_sg > h->ioaccel_maxsg) {
4673 addr64 = le64_to_cpu(
4674 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4675 curr_sg->address = cpu_to_le64(addr64);
4676 curr_sg->length = 0;
4677 curr_sg->reserved[0] = 0;
4678 curr_sg->reserved[1] = 0;
4679 curr_sg->reserved[2] = 0;
4680 curr_sg->chain_indicator = 0x80;
4682 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4684 scsi_for_each_sg(cmd, sg, use_sg, i) {
4685 addr64 = (u64) sg_dma_address(sg);
4686 len = sg_dma_len(sg);
4687 total_len += len;
4688 curr_sg->address = cpu_to_le64(addr64);
4689 curr_sg->length = cpu_to_le32(len);
4690 curr_sg->reserved[0] = 0;
4691 curr_sg->reserved[1] = 0;
4692 curr_sg->reserved[2] = 0;
4693 curr_sg->chain_indicator = 0;
4694 curr_sg++;
4697 switch (cmd->sc_data_direction) {
4698 case DMA_TO_DEVICE:
4699 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4700 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4701 break;
4702 case DMA_FROM_DEVICE:
4703 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4704 cp->direction |= IOACCEL2_DIR_DATA_IN;
4705 break;
4706 case DMA_NONE:
4707 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4708 cp->direction |= IOACCEL2_DIR_NO_DATA;
4709 break;
4710 default:
4711 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4712 cmd->sc_data_direction);
4713 BUG();
4714 break;
4716 } else {
4717 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4718 cp->direction |= IOACCEL2_DIR_NO_DATA;
4721 /* Set encryption parameters, if necessary */
4722 set_encrypt_ioaccel2(h, c, cp);
4724 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4725 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4726 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4728 cp->data_len = cpu_to_le32(total_len);
4729 cp->err_ptr = cpu_to_le64(c->busaddr +
4730 offsetof(struct io_accel2_cmd, error_data));
4731 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4733 /* fill in sg elements */
4734 if (use_sg > h->ioaccel_maxsg) {
4735 cp->sg_count = 1;
4736 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4737 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4738 atomic_dec(&phys_disk->ioaccel_cmds_out);
4739 scsi_dma_unmap(cmd);
4740 return -1;
4742 } else
4743 cp->sg_count = (u8) use_sg;
4745 enqueue_cmd_and_start_io(h, c);
4746 return 0;
4750 * Queue a command to the correct I/O accelerator path.
4752 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4753 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4754 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4756 /* Try to honor the device's queue depth */
4757 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4758 phys_disk->queue_depth) {
4759 atomic_dec(&phys_disk->ioaccel_cmds_out);
4760 return IO_ACCEL_INELIGIBLE;
4762 if (h->transMethod & CFGTBL_Trans_io_accel1)
4763 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4764 cdb, cdb_len, scsi3addr,
4765 phys_disk);
4766 else
4767 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4768 cdb, cdb_len, scsi3addr,
4769 phys_disk);
4772 static void raid_map_helper(struct raid_map_data *map,
4773 int offload_to_mirror, u32 *map_index, u32 *current_group)
4775 if (offload_to_mirror == 0) {
4776 /* use physical disk in the first mirrored group. */
4777 *map_index %= le16_to_cpu(map->data_disks_per_row);
4778 return;
4780 do {
4781 /* determine mirror group that *map_index indicates */
4782 *current_group = *map_index /
4783 le16_to_cpu(map->data_disks_per_row);
4784 if (offload_to_mirror == *current_group)
4785 continue;
4786 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4787 /* select map index from next group */
4788 *map_index += le16_to_cpu(map->data_disks_per_row);
4789 (*current_group)++;
4790 } else {
4791 /* select map index from first group */
4792 *map_index %= le16_to_cpu(map->data_disks_per_row);
4793 *current_group = 0;
4795 } while (offload_to_mirror != *current_group);
4799 * Attempt to perform offload RAID mapping for a logical volume I/O.
4801 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4802 struct CommandList *c)
4804 struct scsi_cmnd *cmd = c->scsi_cmd;
4805 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4806 struct raid_map_data *map = &dev->raid_map;
4807 struct raid_map_disk_data *dd = &map->data[0];
4808 int is_write = 0;
4809 u32 map_index;
4810 u64 first_block, last_block;
4811 u32 block_cnt;
4812 u32 blocks_per_row;
4813 u64 first_row, last_row;
4814 u32 first_row_offset, last_row_offset;
4815 u32 first_column, last_column;
4816 u64 r0_first_row, r0_last_row;
4817 u32 r5or6_blocks_per_row;
4818 u64 r5or6_first_row, r5or6_last_row;
4819 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4820 u32 r5or6_first_column, r5or6_last_column;
4821 u32 total_disks_per_row;
4822 u32 stripesize;
4823 u32 first_group, last_group, current_group;
4824 u32 map_row;
4825 u32 disk_handle;
4826 u64 disk_block;
4827 u32 disk_block_cnt;
4828 u8 cdb[16];
4829 u8 cdb_len;
4830 u16 strip_size;
4831 #if BITS_PER_LONG == 32
4832 u64 tmpdiv;
4833 #endif
4834 int offload_to_mirror;
4836 /* check for valid opcode, get LBA and block count */
4837 switch (cmd->cmnd[0]) {
4838 case WRITE_6:
4839 is_write = 1;
4840 case READ_6:
4841 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4842 block_cnt = cmd->cmnd[4];
4843 if (block_cnt == 0)
4844 block_cnt = 256;
4845 break;
4846 case WRITE_10:
4847 is_write = 1;
4848 case READ_10:
4849 first_block =
4850 (((u64) cmd->cmnd[2]) << 24) |
4851 (((u64) cmd->cmnd[3]) << 16) |
4852 (((u64) cmd->cmnd[4]) << 8) |
4853 cmd->cmnd[5];
4854 block_cnt =
4855 (((u32) cmd->cmnd[7]) << 8) |
4856 cmd->cmnd[8];
4857 break;
4858 case WRITE_12:
4859 is_write = 1;
4860 case READ_12:
4861 first_block =
4862 (((u64) cmd->cmnd[2]) << 24) |
4863 (((u64) cmd->cmnd[3]) << 16) |
4864 (((u64) cmd->cmnd[4]) << 8) |
4865 cmd->cmnd[5];
4866 block_cnt =
4867 (((u32) cmd->cmnd[6]) << 24) |
4868 (((u32) cmd->cmnd[7]) << 16) |
4869 (((u32) cmd->cmnd[8]) << 8) |
4870 cmd->cmnd[9];
4871 break;
4872 case WRITE_16:
4873 is_write = 1;
4874 case READ_16:
4875 first_block =
4876 (((u64) cmd->cmnd[2]) << 56) |
4877 (((u64) cmd->cmnd[3]) << 48) |
4878 (((u64) cmd->cmnd[4]) << 40) |
4879 (((u64) cmd->cmnd[5]) << 32) |
4880 (((u64) cmd->cmnd[6]) << 24) |
4881 (((u64) cmd->cmnd[7]) << 16) |
4882 (((u64) cmd->cmnd[8]) << 8) |
4883 cmd->cmnd[9];
4884 block_cnt =
4885 (((u32) cmd->cmnd[10]) << 24) |
4886 (((u32) cmd->cmnd[11]) << 16) |
4887 (((u32) cmd->cmnd[12]) << 8) |
4888 cmd->cmnd[13];
4889 break;
4890 default:
4891 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4893 last_block = first_block + block_cnt - 1;
4895 /* check for write to non-RAID-0 */
4896 if (is_write && dev->raid_level != 0)
4897 return IO_ACCEL_INELIGIBLE;
4899 /* check for invalid block or wraparound */
4900 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4901 last_block < first_block)
4902 return IO_ACCEL_INELIGIBLE;
4904 /* calculate stripe information for the request */
4905 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4906 le16_to_cpu(map->strip_size);
4907 strip_size = le16_to_cpu(map->strip_size);
4908 #if BITS_PER_LONG == 32
4909 tmpdiv = first_block;
4910 (void) do_div(tmpdiv, blocks_per_row);
4911 first_row = tmpdiv;
4912 tmpdiv = last_block;
4913 (void) do_div(tmpdiv, blocks_per_row);
4914 last_row = tmpdiv;
4915 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4916 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4917 tmpdiv = first_row_offset;
4918 (void) do_div(tmpdiv, strip_size);
4919 first_column = tmpdiv;
4920 tmpdiv = last_row_offset;
4921 (void) do_div(tmpdiv, strip_size);
4922 last_column = tmpdiv;
4923 #else
4924 first_row = first_block / blocks_per_row;
4925 last_row = last_block / blocks_per_row;
4926 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4927 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4928 first_column = first_row_offset / strip_size;
4929 last_column = last_row_offset / strip_size;
4930 #endif
4932 /* if this isn't a single row/column then give to the controller */
4933 if ((first_row != last_row) || (first_column != last_column))
4934 return IO_ACCEL_INELIGIBLE;
4936 /* proceeding with driver mapping */
4937 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4938 le16_to_cpu(map->metadata_disks_per_row);
4939 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4940 le16_to_cpu(map->row_cnt);
4941 map_index = (map_row * total_disks_per_row) + first_column;
4943 switch (dev->raid_level) {
4944 case HPSA_RAID_0:
4945 break; /* nothing special to do */
4946 case HPSA_RAID_1:
4947 /* Handles load balance across RAID 1 members.
4948 * (2-drive R1 and R10 with even # of drives.)
4949 * Appropriate for SSDs, not optimal for HDDs
4951 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4952 if (dev->offload_to_mirror)
4953 map_index += le16_to_cpu(map->data_disks_per_row);
4954 dev->offload_to_mirror = !dev->offload_to_mirror;
4955 break;
4956 case HPSA_RAID_ADM:
4957 /* Handles N-way mirrors (R1-ADM)
4958 * and R10 with # of drives divisible by 3.)
4960 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4962 offload_to_mirror = dev->offload_to_mirror;
4963 raid_map_helper(map, offload_to_mirror,
4964 &map_index, &current_group);
4965 /* set mirror group to use next time */
4966 offload_to_mirror =
4967 (offload_to_mirror >=
4968 le16_to_cpu(map->layout_map_count) - 1)
4969 ? 0 : offload_to_mirror + 1;
4970 dev->offload_to_mirror = offload_to_mirror;
4971 /* Avoid direct use of dev->offload_to_mirror within this
4972 * function since multiple threads might simultaneously
4973 * increment it beyond the range of dev->layout_map_count -1.
4975 break;
4976 case HPSA_RAID_5:
4977 case HPSA_RAID_6:
4978 if (le16_to_cpu(map->layout_map_count) <= 1)
4979 break;
4981 /* Verify first and last block are in same RAID group */
4982 r5or6_blocks_per_row =
4983 le16_to_cpu(map->strip_size) *
4984 le16_to_cpu(map->data_disks_per_row);
4985 BUG_ON(r5or6_blocks_per_row == 0);
4986 stripesize = r5or6_blocks_per_row *
4987 le16_to_cpu(map->layout_map_count);
4988 #if BITS_PER_LONG == 32
4989 tmpdiv = first_block;
4990 first_group = do_div(tmpdiv, stripesize);
4991 tmpdiv = first_group;
4992 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4993 first_group = tmpdiv;
4994 tmpdiv = last_block;
4995 last_group = do_div(tmpdiv, stripesize);
4996 tmpdiv = last_group;
4997 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4998 last_group = tmpdiv;
4999 #else
5000 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5001 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5002 #endif
5003 if (first_group != last_group)
5004 return IO_ACCEL_INELIGIBLE;
5006 /* Verify request is in a single row of RAID 5/6 */
5007 #if BITS_PER_LONG == 32
5008 tmpdiv = first_block;
5009 (void) do_div(tmpdiv, stripesize);
5010 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5011 tmpdiv = last_block;
5012 (void) do_div(tmpdiv, stripesize);
5013 r5or6_last_row = r0_last_row = tmpdiv;
5014 #else
5015 first_row = r5or6_first_row = r0_first_row =
5016 first_block / stripesize;
5017 r5or6_last_row = r0_last_row = last_block / stripesize;
5018 #endif
5019 if (r5or6_first_row != r5or6_last_row)
5020 return IO_ACCEL_INELIGIBLE;
5023 /* Verify request is in a single column */
5024 #if BITS_PER_LONG == 32
5025 tmpdiv = first_block;
5026 first_row_offset = do_div(tmpdiv, stripesize);
5027 tmpdiv = first_row_offset;
5028 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5029 r5or6_first_row_offset = first_row_offset;
5030 tmpdiv = last_block;
5031 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5032 tmpdiv = r5or6_last_row_offset;
5033 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5034 tmpdiv = r5or6_first_row_offset;
5035 (void) do_div(tmpdiv, map->strip_size);
5036 first_column = r5or6_first_column = tmpdiv;
5037 tmpdiv = r5or6_last_row_offset;
5038 (void) do_div(tmpdiv, map->strip_size);
5039 r5or6_last_column = tmpdiv;
5040 #else
5041 first_row_offset = r5or6_first_row_offset =
5042 (u32)((first_block % stripesize) %
5043 r5or6_blocks_per_row);
5045 r5or6_last_row_offset =
5046 (u32)((last_block % stripesize) %
5047 r5or6_blocks_per_row);
5049 first_column = r5or6_first_column =
5050 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5051 r5or6_last_column =
5052 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5053 #endif
5054 if (r5or6_first_column != r5or6_last_column)
5055 return IO_ACCEL_INELIGIBLE;
5057 /* Request is eligible */
5058 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5059 le16_to_cpu(map->row_cnt);
5061 map_index = (first_group *
5062 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5063 (map_row * total_disks_per_row) + first_column;
5064 break;
5065 default:
5066 return IO_ACCEL_INELIGIBLE;
5069 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5070 return IO_ACCEL_INELIGIBLE;
5072 c->phys_disk = dev->phys_disk[map_index];
5073 if (!c->phys_disk)
5074 return IO_ACCEL_INELIGIBLE;
5076 disk_handle = dd[map_index].ioaccel_handle;
5077 disk_block = le64_to_cpu(map->disk_starting_blk) +
5078 first_row * le16_to_cpu(map->strip_size) +
5079 (first_row_offset - first_column *
5080 le16_to_cpu(map->strip_size));
5081 disk_block_cnt = block_cnt;
5083 /* handle differing logical/physical block sizes */
5084 if (map->phys_blk_shift) {
5085 disk_block <<= map->phys_blk_shift;
5086 disk_block_cnt <<= map->phys_blk_shift;
5088 BUG_ON(disk_block_cnt > 0xffff);
5090 /* build the new CDB for the physical disk I/O */
5091 if (disk_block > 0xffffffff) {
5092 cdb[0] = is_write ? WRITE_16 : READ_16;
5093 cdb[1] = 0;
5094 cdb[2] = (u8) (disk_block >> 56);
5095 cdb[3] = (u8) (disk_block >> 48);
5096 cdb[4] = (u8) (disk_block >> 40);
5097 cdb[5] = (u8) (disk_block >> 32);
5098 cdb[6] = (u8) (disk_block >> 24);
5099 cdb[7] = (u8) (disk_block >> 16);
5100 cdb[8] = (u8) (disk_block >> 8);
5101 cdb[9] = (u8) (disk_block);
5102 cdb[10] = (u8) (disk_block_cnt >> 24);
5103 cdb[11] = (u8) (disk_block_cnt >> 16);
5104 cdb[12] = (u8) (disk_block_cnt >> 8);
5105 cdb[13] = (u8) (disk_block_cnt);
5106 cdb[14] = 0;
5107 cdb[15] = 0;
5108 cdb_len = 16;
5109 } else {
5110 cdb[0] = is_write ? WRITE_10 : READ_10;
5111 cdb[1] = 0;
5112 cdb[2] = (u8) (disk_block >> 24);
5113 cdb[3] = (u8) (disk_block >> 16);
5114 cdb[4] = (u8) (disk_block >> 8);
5115 cdb[5] = (u8) (disk_block);
5116 cdb[6] = 0;
5117 cdb[7] = (u8) (disk_block_cnt >> 8);
5118 cdb[8] = (u8) (disk_block_cnt);
5119 cdb[9] = 0;
5120 cdb_len = 10;
5122 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5123 dev->scsi3addr,
5124 dev->phys_disk[map_index]);
5128 * Submit commands down the "normal" RAID stack path
5129 * All callers to hpsa_ciss_submit must check lockup_detected
5130 * beforehand, before (opt.) and after calling cmd_alloc
5132 static int hpsa_ciss_submit(struct ctlr_info *h,
5133 struct CommandList *c, struct scsi_cmnd *cmd,
5134 unsigned char scsi3addr[])
5136 cmd->host_scribble = (unsigned char *) c;
5137 c->cmd_type = CMD_SCSI;
5138 c->scsi_cmd = cmd;
5139 c->Header.ReplyQueue = 0; /* unused in simple mode */
5140 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5141 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5143 /* Fill in the request block... */
5145 c->Request.Timeout = 0;
5146 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5147 c->Request.CDBLen = cmd->cmd_len;
5148 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5149 switch (cmd->sc_data_direction) {
5150 case DMA_TO_DEVICE:
5151 c->Request.type_attr_dir =
5152 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5153 break;
5154 case DMA_FROM_DEVICE:
5155 c->Request.type_attr_dir =
5156 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5157 break;
5158 case DMA_NONE:
5159 c->Request.type_attr_dir =
5160 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5161 break;
5162 case DMA_BIDIRECTIONAL:
5163 /* This can happen if a buggy application does a scsi passthru
5164 * and sets both inlen and outlen to non-zero. ( see
5165 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5168 c->Request.type_attr_dir =
5169 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5170 /* This is technically wrong, and hpsa controllers should
5171 * reject it with CMD_INVALID, which is the most correct
5172 * response, but non-fibre backends appear to let it
5173 * slide by, and give the same results as if this field
5174 * were set correctly. Either way is acceptable for
5175 * our purposes here.
5178 break;
5180 default:
5181 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5182 cmd->sc_data_direction);
5183 BUG();
5184 break;
5187 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5188 hpsa_cmd_resolve_and_free(h, c);
5189 return SCSI_MLQUEUE_HOST_BUSY;
5191 enqueue_cmd_and_start_io(h, c);
5192 /* the cmd'll come back via intr handler in complete_scsi_command() */
5193 return 0;
5196 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5197 struct CommandList *c)
5199 dma_addr_t cmd_dma_handle, err_dma_handle;
5201 /* Zero out all of commandlist except the last field, refcount */
5202 memset(c, 0, offsetof(struct CommandList, refcount));
5203 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5204 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5205 c->err_info = h->errinfo_pool + index;
5206 memset(c->err_info, 0, sizeof(*c->err_info));
5207 err_dma_handle = h->errinfo_pool_dhandle
5208 + index * sizeof(*c->err_info);
5209 c->cmdindex = index;
5210 c->busaddr = (u32) cmd_dma_handle;
5211 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5212 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5213 c->h = h;
5214 c->scsi_cmd = SCSI_CMD_IDLE;
5217 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5219 int i;
5221 for (i = 0; i < h->nr_cmds; i++) {
5222 struct CommandList *c = h->cmd_pool + i;
5224 hpsa_cmd_init(h, i, c);
5225 atomic_set(&c->refcount, 0);
5229 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5230 struct CommandList *c)
5232 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5234 BUG_ON(c->cmdindex != index);
5236 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5237 memset(c->err_info, 0, sizeof(*c->err_info));
5238 c->busaddr = (u32) cmd_dma_handle;
5241 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5242 struct CommandList *c, struct scsi_cmnd *cmd,
5243 unsigned char *scsi3addr)
5245 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5246 int rc = IO_ACCEL_INELIGIBLE;
5248 cmd->host_scribble = (unsigned char *) c;
5250 if (dev->offload_enabled) {
5251 hpsa_cmd_init(h, c->cmdindex, c);
5252 c->cmd_type = CMD_SCSI;
5253 c->scsi_cmd = cmd;
5254 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5255 if (rc < 0) /* scsi_dma_map failed. */
5256 rc = SCSI_MLQUEUE_HOST_BUSY;
5257 } else if (dev->hba_ioaccel_enabled) {
5258 hpsa_cmd_init(h, c->cmdindex, c);
5259 c->cmd_type = CMD_SCSI;
5260 c->scsi_cmd = cmd;
5261 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5262 if (rc < 0) /* scsi_dma_map failed. */
5263 rc = SCSI_MLQUEUE_HOST_BUSY;
5265 return rc;
5268 static void hpsa_command_resubmit_worker(struct work_struct *work)
5270 struct scsi_cmnd *cmd;
5271 struct hpsa_scsi_dev_t *dev;
5272 struct CommandList *c = container_of(work, struct CommandList, work);
5274 cmd = c->scsi_cmd;
5275 dev = cmd->device->hostdata;
5276 if (!dev) {
5277 cmd->result = DID_NO_CONNECT << 16;
5278 return hpsa_cmd_free_and_done(c->h, c, cmd);
5280 if (c->reset_pending)
5281 return hpsa_cmd_resolve_and_free(c->h, c);
5282 if (c->abort_pending)
5283 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5284 if (c->cmd_type == CMD_IOACCEL2) {
5285 struct ctlr_info *h = c->h;
5286 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5287 int rc;
5289 if (c2->error_data.serv_response ==
5290 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5291 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5292 if (rc == 0)
5293 return;
5294 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5296 * If we get here, it means dma mapping failed.
5297 * Try again via scsi mid layer, which will
5298 * then get SCSI_MLQUEUE_HOST_BUSY.
5300 cmd->result = DID_IMM_RETRY << 16;
5301 return hpsa_cmd_free_and_done(h, c, cmd);
5303 /* else, fall thru and resubmit down CISS path */
5306 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5307 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5309 * If we get here, it means dma mapping failed. Try
5310 * again via scsi mid layer, which will then get
5311 * SCSI_MLQUEUE_HOST_BUSY.
5313 * hpsa_ciss_submit will have already freed c
5314 * if it encountered a dma mapping failure.
5316 cmd->result = DID_IMM_RETRY << 16;
5317 cmd->scsi_done(cmd);
5321 /* Running in struct Scsi_Host->host_lock less mode */
5322 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5324 struct ctlr_info *h;
5325 struct hpsa_scsi_dev_t *dev;
5326 unsigned char scsi3addr[8];
5327 struct CommandList *c;
5328 int rc = 0;
5330 /* Get the ptr to our adapter structure out of cmd->host. */
5331 h = sdev_to_hba(cmd->device);
5333 BUG_ON(cmd->request->tag < 0);
5335 dev = cmd->device->hostdata;
5336 if (!dev) {
5337 cmd->result = NOT_READY << 16; /* host byte */
5338 cmd->scsi_done(cmd);
5339 return 0;
5342 if (dev->removed) {
5343 cmd->result = DID_NO_CONNECT << 16;
5344 cmd->scsi_done(cmd);
5345 return 0;
5348 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5350 if (unlikely(lockup_detected(h))) {
5351 cmd->result = DID_NO_CONNECT << 16;
5352 cmd->scsi_done(cmd);
5353 return 0;
5355 c = cmd_tagged_alloc(h, cmd);
5358 * Call alternate submit routine for I/O accelerated commands.
5359 * Retries always go down the normal I/O path.
5361 if (likely(cmd->retries == 0 &&
5362 cmd->request->cmd_type == REQ_TYPE_FS &&
5363 h->acciopath_status)) {
5364 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5365 if (rc == 0)
5366 return 0;
5367 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5368 hpsa_cmd_resolve_and_free(h, c);
5369 return SCSI_MLQUEUE_HOST_BUSY;
5372 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5375 static void hpsa_scan_complete(struct ctlr_info *h)
5377 unsigned long flags;
5379 spin_lock_irqsave(&h->scan_lock, flags);
5380 h->scan_finished = 1;
5381 wake_up_all(&h->scan_wait_queue);
5382 spin_unlock_irqrestore(&h->scan_lock, flags);
5385 static void hpsa_scan_start(struct Scsi_Host *sh)
5387 struct ctlr_info *h = shost_to_hba(sh);
5388 unsigned long flags;
5391 * Don't let rescans be initiated on a controller known to be locked
5392 * up. If the controller locks up *during* a rescan, that thread is
5393 * probably hosed, but at least we can prevent new rescan threads from
5394 * piling up on a locked up controller.
5396 if (unlikely(lockup_detected(h)))
5397 return hpsa_scan_complete(h);
5399 /* wait until any scan already in progress is finished. */
5400 while (1) {
5401 spin_lock_irqsave(&h->scan_lock, flags);
5402 if (h->scan_finished)
5403 break;
5404 spin_unlock_irqrestore(&h->scan_lock, flags);
5405 wait_event(h->scan_wait_queue, h->scan_finished);
5406 /* Note: We don't need to worry about a race between this
5407 * thread and driver unload because the midlayer will
5408 * have incremented the reference count, so unload won't
5409 * happen if we're in here.
5412 h->scan_finished = 0; /* mark scan as in progress */
5413 spin_unlock_irqrestore(&h->scan_lock, flags);
5415 if (unlikely(lockup_detected(h)))
5416 return hpsa_scan_complete(h);
5418 hpsa_update_scsi_devices(h);
5420 hpsa_scan_complete(h);
5423 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5425 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5427 if (!logical_drive)
5428 return -ENODEV;
5430 if (qdepth < 1)
5431 qdepth = 1;
5432 else if (qdepth > logical_drive->queue_depth)
5433 qdepth = logical_drive->queue_depth;
5435 return scsi_change_queue_depth(sdev, qdepth);
5438 static int hpsa_scan_finished(struct Scsi_Host *sh,
5439 unsigned long elapsed_time)
5441 struct ctlr_info *h = shost_to_hba(sh);
5442 unsigned long flags;
5443 int finished;
5445 spin_lock_irqsave(&h->scan_lock, flags);
5446 finished = h->scan_finished;
5447 spin_unlock_irqrestore(&h->scan_lock, flags);
5448 return finished;
5451 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5453 struct Scsi_Host *sh;
5455 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5456 if (sh == NULL) {
5457 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5458 return -ENOMEM;
5461 sh->io_port = 0;
5462 sh->n_io_port = 0;
5463 sh->this_id = -1;
5464 sh->max_channel = 3;
5465 sh->max_cmd_len = MAX_COMMAND_SIZE;
5466 sh->max_lun = HPSA_MAX_LUN;
5467 sh->max_id = HPSA_MAX_LUN;
5468 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5469 sh->cmd_per_lun = sh->can_queue;
5470 sh->sg_tablesize = h->maxsgentries;
5471 sh->transportt = hpsa_sas_transport_template;
5472 sh->hostdata[0] = (unsigned long) h;
5473 sh->irq = h->intr[h->intr_mode];
5474 sh->unique_id = sh->irq;
5476 h->scsi_host = sh;
5477 return 0;
5480 static int hpsa_scsi_add_host(struct ctlr_info *h)
5482 int rv;
5484 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5485 if (rv) {
5486 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5487 return rv;
5489 scsi_scan_host(h->scsi_host);
5490 return 0;
5494 * The block layer has already gone to the trouble of picking out a unique,
5495 * small-integer tag for this request. We use an offset from that value as
5496 * an index to select our command block. (The offset allows us to reserve the
5497 * low-numbered entries for our own uses.)
5499 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5501 int idx = scmd->request->tag;
5503 if (idx < 0)
5504 return idx;
5506 /* Offset to leave space for internal cmds. */
5507 return idx += HPSA_NRESERVED_CMDS;
5511 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5512 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5514 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5515 struct CommandList *c, unsigned char lunaddr[],
5516 int reply_queue)
5518 int rc;
5520 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5521 (void) fill_cmd(c, TEST_UNIT_READY, h,
5522 NULL, 0, 0, lunaddr, TYPE_CMD);
5523 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5524 if (rc)
5525 return rc;
5526 /* no unmap needed here because no data xfer. */
5528 /* Check if the unit is already ready. */
5529 if (c->err_info->CommandStatus == CMD_SUCCESS)
5530 return 0;
5533 * The first command sent after reset will receive "unit attention" to
5534 * indicate that the LUN has been reset...this is actually what we're
5535 * looking for (but, success is good too).
5537 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5538 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5539 (c->err_info->SenseInfo[2] == NO_SENSE ||
5540 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5541 return 0;
5543 return 1;
5547 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5548 * returns zero when the unit is ready, and non-zero when giving up.
5550 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5551 struct CommandList *c,
5552 unsigned char lunaddr[], int reply_queue)
5554 int rc;
5555 int count = 0;
5556 int waittime = 1; /* seconds */
5558 /* Send test unit ready until device ready, or give up. */
5559 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5562 * Wait for a bit. do this first, because if we send
5563 * the TUR right away, the reset will just abort it.
5565 msleep(1000 * waittime);
5567 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5568 if (!rc)
5569 break;
5571 /* Increase wait time with each try, up to a point. */
5572 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5573 waittime *= 2;
5575 dev_warn(&h->pdev->dev,
5576 "waiting %d secs for device to become ready.\n",
5577 waittime);
5580 return rc;
5583 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5584 unsigned char lunaddr[],
5585 int reply_queue)
5587 int first_queue;
5588 int last_queue;
5589 int rq;
5590 int rc = 0;
5591 struct CommandList *c;
5593 c = cmd_alloc(h);
5596 * If no specific reply queue was requested, then send the TUR
5597 * repeatedly, requesting a reply on each reply queue; otherwise execute
5598 * the loop exactly once using only the specified queue.
5600 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5601 first_queue = 0;
5602 last_queue = h->nreply_queues - 1;
5603 } else {
5604 first_queue = reply_queue;
5605 last_queue = reply_queue;
5608 for (rq = first_queue; rq <= last_queue; rq++) {
5609 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5610 if (rc)
5611 break;
5614 if (rc)
5615 dev_warn(&h->pdev->dev, "giving up on device.\n");
5616 else
5617 dev_warn(&h->pdev->dev, "device is ready.\n");
5619 cmd_free(h, c);
5620 return rc;
5623 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5624 * complaining. Doing a host- or bus-reset can't do anything good here.
5626 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5628 int rc;
5629 struct ctlr_info *h;
5630 struct hpsa_scsi_dev_t *dev;
5631 u8 reset_type;
5632 char msg[48];
5634 /* find the controller to which the command to be aborted was sent */
5635 h = sdev_to_hba(scsicmd->device);
5636 if (h == NULL) /* paranoia */
5637 return FAILED;
5639 if (lockup_detected(h))
5640 return FAILED;
5642 dev = scsicmd->device->hostdata;
5643 if (!dev) {
5644 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5645 return FAILED;
5648 /* if controller locked up, we can guarantee command won't complete */
5649 if (lockup_detected(h)) {
5650 snprintf(msg, sizeof(msg),
5651 "cmd %d RESET FAILED, lockup detected",
5652 hpsa_get_cmd_index(scsicmd));
5653 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5654 return FAILED;
5657 /* this reset request might be the result of a lockup; check */
5658 if (detect_controller_lockup(h)) {
5659 snprintf(msg, sizeof(msg),
5660 "cmd %d RESET FAILED, new lockup detected",
5661 hpsa_get_cmd_index(scsicmd));
5662 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5663 return FAILED;
5666 /* Do not attempt on controller */
5667 if (is_hba_lunid(dev->scsi3addr))
5668 return SUCCESS;
5670 if (is_logical_dev_addr_mode(dev->scsi3addr))
5671 reset_type = HPSA_DEVICE_RESET_MSG;
5672 else
5673 reset_type = HPSA_PHYS_TARGET_RESET;
5675 sprintf(msg, "resetting %s",
5676 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5677 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5679 h->reset_in_progress = 1;
5681 /* send a reset to the SCSI LUN which the command was sent to */
5682 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5683 DEFAULT_REPLY_QUEUE);
5684 sprintf(msg, "reset %s %s",
5685 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5686 rc == 0 ? "completed successfully" : "failed");
5687 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5688 h->reset_in_progress = 0;
5689 return rc == 0 ? SUCCESS : FAILED;
5692 static void swizzle_abort_tag(u8 *tag)
5694 u8 original_tag[8];
5696 memcpy(original_tag, tag, 8);
5697 tag[0] = original_tag[3];
5698 tag[1] = original_tag[2];
5699 tag[2] = original_tag[1];
5700 tag[3] = original_tag[0];
5701 tag[4] = original_tag[7];
5702 tag[5] = original_tag[6];
5703 tag[6] = original_tag[5];
5704 tag[7] = original_tag[4];
5707 static void hpsa_get_tag(struct ctlr_info *h,
5708 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5710 u64 tag;
5711 if (c->cmd_type == CMD_IOACCEL1) {
5712 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5713 &h->ioaccel_cmd_pool[c->cmdindex];
5714 tag = le64_to_cpu(cm1->tag);
5715 *tagupper = cpu_to_le32(tag >> 32);
5716 *taglower = cpu_to_le32(tag);
5717 return;
5719 if (c->cmd_type == CMD_IOACCEL2) {
5720 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5721 &h->ioaccel2_cmd_pool[c->cmdindex];
5722 /* upper tag not used in ioaccel2 mode */
5723 memset(tagupper, 0, sizeof(*tagupper));
5724 *taglower = cm2->Tag;
5725 return;
5727 tag = le64_to_cpu(c->Header.tag);
5728 *tagupper = cpu_to_le32(tag >> 32);
5729 *taglower = cpu_to_le32(tag);
5732 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5733 struct CommandList *abort, int reply_queue)
5735 int rc = IO_OK;
5736 struct CommandList *c;
5737 struct ErrorInfo *ei;
5738 __le32 tagupper, taglower;
5740 c = cmd_alloc(h);
5742 /* fill_cmd can't fail here, no buffer to map */
5743 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5744 0, 0, scsi3addr, TYPE_MSG);
5745 if (h->needs_abort_tags_swizzled)
5746 swizzle_abort_tag(&c->Request.CDB[4]);
5747 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5748 hpsa_get_tag(h, abort, &taglower, &tagupper);
5749 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5750 __func__, tagupper, taglower);
5751 /* no unmap needed here because no data xfer. */
5753 ei = c->err_info;
5754 switch (ei->CommandStatus) {
5755 case CMD_SUCCESS:
5756 break;
5757 case CMD_TMF_STATUS:
5758 rc = hpsa_evaluate_tmf_status(h, c);
5759 break;
5760 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5761 rc = -1;
5762 break;
5763 default:
5764 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5765 __func__, tagupper, taglower);
5766 hpsa_scsi_interpret_error(h, c);
5767 rc = -1;
5768 break;
5770 cmd_free(h, c);
5771 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5772 __func__, tagupper, taglower);
5773 return rc;
5776 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5777 struct CommandList *command_to_abort, int reply_queue)
5779 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5780 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5781 struct io_accel2_cmd *c2a =
5782 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5783 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5784 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5787 * We're overlaying struct hpsa_tmf_struct on top of something which
5788 * was allocated as a struct io_accel2_cmd, so we better be sure it
5789 * actually fits, and doesn't overrun the error info space.
5791 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5792 sizeof(struct io_accel2_cmd));
5793 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5794 offsetof(struct hpsa_tmf_struct, error_len) +
5795 sizeof(ac->error_len));
5797 c->cmd_type = IOACCEL2_TMF;
5798 c->scsi_cmd = SCSI_CMD_BUSY;
5800 /* Adjust the DMA address to point to the accelerated command buffer */
5801 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5802 (c->cmdindex * sizeof(struct io_accel2_cmd));
5803 BUG_ON(c->busaddr & 0x0000007F);
5805 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5806 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5807 ac->reply_queue = reply_queue;
5808 ac->tmf = IOACCEL2_TMF_ABORT;
5809 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5810 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5811 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5812 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5813 ac->error_ptr = cpu_to_le64(c->busaddr +
5814 offsetof(struct io_accel2_cmd, error_data));
5815 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5818 /* ioaccel2 path firmware cannot handle abort task requests.
5819 * Change abort requests to physical target reset, and send to the
5820 * address of the physical disk used for the ioaccel 2 command.
5821 * Return 0 on success (IO_OK)
5822 * -1 on failure
5825 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5826 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5828 int rc = IO_OK;
5829 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5830 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5831 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5832 unsigned char *psa = &phys_scsi3addr[0];
5834 /* Get a pointer to the hpsa logical device. */
5835 scmd = abort->scsi_cmd;
5836 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5837 if (dev == NULL) {
5838 dev_warn(&h->pdev->dev,
5839 "Cannot abort: no device pointer for command.\n");
5840 return -1; /* not abortable */
5843 if (h->raid_offload_debug > 0)
5844 dev_info(&h->pdev->dev,
5845 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5846 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5847 "Reset as abort",
5848 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5849 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5851 if (!dev->offload_enabled) {
5852 dev_warn(&h->pdev->dev,
5853 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5854 return -1; /* not abortable */
5857 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5858 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5859 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5860 return -1; /* not abortable */
5863 /* send the reset */
5864 if (h->raid_offload_debug > 0)
5865 dev_info(&h->pdev->dev,
5866 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5867 psa[0], psa[1], psa[2], psa[3],
5868 psa[4], psa[5], psa[6], psa[7]);
5869 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5870 if (rc != 0) {
5871 dev_warn(&h->pdev->dev,
5872 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5873 psa[0], psa[1], psa[2], psa[3],
5874 psa[4], psa[5], psa[6], psa[7]);
5875 return rc; /* failed to reset */
5878 /* wait for device to recover */
5879 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5880 dev_warn(&h->pdev->dev,
5881 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5882 psa[0], psa[1], psa[2], psa[3],
5883 psa[4], psa[5], psa[6], psa[7]);
5884 return -1; /* failed to recover */
5887 /* device recovered */
5888 dev_info(&h->pdev->dev,
5889 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5890 psa[0], psa[1], psa[2], psa[3],
5891 psa[4], psa[5], psa[6], psa[7]);
5893 return rc; /* success */
5896 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5897 struct CommandList *abort, int reply_queue)
5899 int rc = IO_OK;
5900 struct CommandList *c;
5901 __le32 taglower, tagupper;
5902 struct hpsa_scsi_dev_t *dev;
5903 struct io_accel2_cmd *c2;
5905 dev = abort->scsi_cmd->device->hostdata;
5906 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5907 return -1;
5909 c = cmd_alloc(h);
5910 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5911 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5912 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5913 hpsa_get_tag(h, abort, &taglower, &tagupper);
5914 dev_dbg(&h->pdev->dev,
5915 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5916 __func__, tagupper, taglower);
5917 /* no unmap needed here because no data xfer. */
5919 dev_dbg(&h->pdev->dev,
5920 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5921 __func__, tagupper, taglower, c2->error_data.serv_response);
5922 switch (c2->error_data.serv_response) {
5923 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5924 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5925 rc = 0;
5926 break;
5927 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5928 case IOACCEL2_SERV_RESPONSE_FAILURE:
5929 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5930 rc = -1;
5931 break;
5932 default:
5933 dev_warn(&h->pdev->dev,
5934 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5935 __func__, tagupper, taglower,
5936 c2->error_data.serv_response);
5937 rc = -1;
5939 cmd_free(h, c);
5940 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5941 tagupper, taglower);
5942 return rc;
5945 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5946 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5949 * ioccelerator mode 2 commands should be aborted via the
5950 * accelerated path, since RAID path is unaware of these commands,
5951 * but not all underlying firmware can handle abort TMF.
5952 * Change abort to physical device reset when abort TMF is unsupported.
5954 if (abort->cmd_type == CMD_IOACCEL2) {
5955 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5956 dev->physical_device)
5957 return hpsa_send_abort_ioaccel2(h, abort,
5958 reply_queue);
5959 else
5960 return hpsa_send_reset_as_abort_ioaccel2(h,
5961 dev->scsi3addr,
5962 abort, reply_queue);
5964 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5967 /* Find out which reply queue a command was meant to return on */
5968 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5969 struct CommandList *c)
5971 if (c->cmd_type == CMD_IOACCEL2)
5972 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5973 return c->Header.ReplyQueue;
5977 * Limit concurrency of abort commands to prevent
5978 * over-subscription of commands
5980 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5982 #define ABORT_CMD_WAIT_MSECS 5000
5983 return !wait_event_timeout(h->abort_cmd_wait_queue,
5984 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5985 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5988 /* Send an abort for the specified command.
5989 * If the device and controller support it,
5990 * send a task abort request.
5992 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5995 int rc;
5996 struct ctlr_info *h;
5997 struct hpsa_scsi_dev_t *dev;
5998 struct CommandList *abort; /* pointer to command to be aborted */
5999 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
6000 char msg[256]; /* For debug messaging. */
6001 int ml = 0;
6002 __le32 tagupper, taglower;
6003 int refcount, reply_queue;
6005 if (sc == NULL)
6006 return FAILED;
6008 if (sc->device == NULL)
6009 return FAILED;
6011 /* Find the controller of the command to be aborted */
6012 h = sdev_to_hba(sc->device);
6013 if (h == NULL)
6014 return FAILED;
6016 /* Find the device of the command to be aborted */
6017 dev = sc->device->hostdata;
6018 if (!dev) {
6019 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6020 msg);
6021 return FAILED;
6024 /* If controller locked up, we can guarantee command won't complete */
6025 if (lockup_detected(h)) {
6026 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6027 "ABORT FAILED, lockup detected");
6028 return FAILED;
6031 /* This is a good time to check if controller lockup has occurred */
6032 if (detect_controller_lockup(h)) {
6033 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6034 "ABORT FAILED, new lockup detected");
6035 return FAILED;
6038 /* Check that controller supports some kind of task abort */
6039 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6040 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6041 return FAILED;
6043 memset(msg, 0, sizeof(msg));
6044 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6045 h->scsi_host->host_no, sc->device->channel,
6046 sc->device->id, sc->device->lun,
6047 "Aborting command", sc);
6049 /* Get SCSI command to be aborted */
6050 abort = (struct CommandList *) sc->host_scribble;
6051 if (abort == NULL) {
6052 /* This can happen if the command already completed. */
6053 return SUCCESS;
6055 refcount = atomic_inc_return(&abort->refcount);
6056 if (refcount == 1) { /* Command is done already. */
6057 cmd_free(h, abort);
6058 return SUCCESS;
6061 /* Don't bother trying the abort if we know it won't work. */
6062 if (abort->cmd_type != CMD_IOACCEL2 &&
6063 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6064 cmd_free(h, abort);
6065 return FAILED;
6069 * Check that we're aborting the right command.
6070 * It's possible the CommandList already completed and got re-used.
6072 if (abort->scsi_cmd != sc) {
6073 cmd_free(h, abort);
6074 return SUCCESS;
6077 abort->abort_pending = true;
6078 hpsa_get_tag(h, abort, &taglower, &tagupper);
6079 reply_queue = hpsa_extract_reply_queue(h, abort);
6080 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6081 as = abort->scsi_cmd;
6082 if (as != NULL)
6083 ml += sprintf(msg+ml,
6084 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6085 as->cmd_len, as->cmnd[0], as->cmnd[1],
6086 as->serial_number);
6087 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6088 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6091 * Command is in flight, or possibly already completed
6092 * by the firmware (but not to the scsi mid layer) but we can't
6093 * distinguish which. Send the abort down.
6095 if (wait_for_available_abort_cmd(h)) {
6096 dev_warn(&h->pdev->dev,
6097 "%s FAILED, timeout waiting for an abort command to become available.\n",
6098 msg);
6099 cmd_free(h, abort);
6100 return FAILED;
6102 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6103 atomic_inc(&h->abort_cmds_available);
6104 wake_up_all(&h->abort_cmd_wait_queue);
6105 if (rc != 0) {
6106 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6107 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6108 "FAILED to abort command");
6109 cmd_free(h, abort);
6110 return FAILED;
6112 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6113 wait_event(h->event_sync_wait_queue,
6114 abort->scsi_cmd != sc || lockup_detected(h));
6115 cmd_free(h, abort);
6116 return !lockup_detected(h) ? SUCCESS : FAILED;
6120 * For operations with an associated SCSI command, a command block is allocated
6121 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6122 * block request tag as an index into a table of entries. cmd_tagged_free() is
6123 * the complement, although cmd_free() may be called instead.
6125 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6126 struct scsi_cmnd *scmd)
6128 int idx = hpsa_get_cmd_index(scmd);
6129 struct CommandList *c = h->cmd_pool + idx;
6131 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6132 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6133 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6134 /* The index value comes from the block layer, so if it's out of
6135 * bounds, it's probably not our bug.
6137 BUG();
6140 atomic_inc(&c->refcount);
6141 if (unlikely(!hpsa_is_cmd_idle(c))) {
6143 * We expect that the SCSI layer will hand us a unique tag
6144 * value. Thus, there should never be a collision here between
6145 * two requests...because if the selected command isn't idle
6146 * then someone is going to be very disappointed.
6148 dev_err(&h->pdev->dev,
6149 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6150 idx);
6151 if (c->scsi_cmd != NULL)
6152 scsi_print_command(c->scsi_cmd);
6153 scsi_print_command(scmd);
6156 hpsa_cmd_partial_init(h, idx, c);
6157 return c;
6160 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6163 * Release our reference to the block. We don't need to do anything
6164 * else to free it, because it is accessed by index. (There's no point
6165 * in checking the result of the decrement, since we cannot guarantee
6166 * that there isn't a concurrent abort which is also accessing it.)
6168 (void)atomic_dec(&c->refcount);
6172 * For operations that cannot sleep, a command block is allocated at init,
6173 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6174 * which ones are free or in use. Lock must be held when calling this.
6175 * cmd_free() is the complement.
6176 * This function never gives up and returns NULL. If it hangs,
6177 * another thread must call cmd_free() to free some tags.
6180 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6182 struct CommandList *c;
6183 int refcount, i;
6184 int offset = 0;
6187 * There is some *extremely* small but non-zero chance that that
6188 * multiple threads could get in here, and one thread could
6189 * be scanning through the list of bits looking for a free
6190 * one, but the free ones are always behind him, and other
6191 * threads sneak in behind him and eat them before he can
6192 * get to them, so that while there is always a free one, a
6193 * very unlucky thread might be starved anyway, never able to
6194 * beat the other threads. In reality, this happens so
6195 * infrequently as to be indistinguishable from never.
6197 * Note that we start allocating commands before the SCSI host structure
6198 * is initialized. Since the search starts at bit zero, this
6199 * all works, since we have at least one command structure available;
6200 * however, it means that the structures with the low indexes have to be
6201 * reserved for driver-initiated requests, while requests from the block
6202 * layer will use the higher indexes.
6205 for (;;) {
6206 i = find_next_zero_bit(h->cmd_pool_bits,
6207 HPSA_NRESERVED_CMDS,
6208 offset);
6209 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6210 offset = 0;
6211 continue;
6213 c = h->cmd_pool + i;
6214 refcount = atomic_inc_return(&c->refcount);
6215 if (unlikely(refcount > 1)) {
6216 cmd_free(h, c); /* already in use */
6217 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6218 continue;
6220 set_bit(i & (BITS_PER_LONG - 1),
6221 h->cmd_pool_bits + (i / BITS_PER_LONG));
6222 break; /* it's ours now. */
6224 hpsa_cmd_partial_init(h, i, c);
6225 return c;
6229 * This is the complementary operation to cmd_alloc(). Note, however, in some
6230 * corner cases it may also be used to free blocks allocated by
6231 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6232 * the clear-bit is harmless.
6234 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6236 if (atomic_dec_and_test(&c->refcount)) {
6237 int i;
6239 i = c - h->cmd_pool;
6240 clear_bit(i & (BITS_PER_LONG - 1),
6241 h->cmd_pool_bits + (i / BITS_PER_LONG));
6245 #ifdef CONFIG_COMPAT
6247 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6248 void __user *arg)
6250 IOCTL32_Command_struct __user *arg32 =
6251 (IOCTL32_Command_struct __user *) arg;
6252 IOCTL_Command_struct arg64;
6253 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6254 int err;
6255 u32 cp;
6257 memset(&arg64, 0, sizeof(arg64));
6258 err = 0;
6259 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6260 sizeof(arg64.LUN_info));
6261 err |= copy_from_user(&arg64.Request, &arg32->Request,
6262 sizeof(arg64.Request));
6263 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6264 sizeof(arg64.error_info));
6265 err |= get_user(arg64.buf_size, &arg32->buf_size);
6266 err |= get_user(cp, &arg32->buf);
6267 arg64.buf = compat_ptr(cp);
6268 err |= copy_to_user(p, &arg64, sizeof(arg64));
6270 if (err)
6271 return -EFAULT;
6273 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6274 if (err)
6275 return err;
6276 err |= copy_in_user(&arg32->error_info, &p->error_info,
6277 sizeof(arg32->error_info));
6278 if (err)
6279 return -EFAULT;
6280 return err;
6283 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6284 int cmd, void __user *arg)
6286 BIG_IOCTL32_Command_struct __user *arg32 =
6287 (BIG_IOCTL32_Command_struct __user *) arg;
6288 BIG_IOCTL_Command_struct arg64;
6289 BIG_IOCTL_Command_struct __user *p =
6290 compat_alloc_user_space(sizeof(arg64));
6291 int err;
6292 u32 cp;
6294 memset(&arg64, 0, sizeof(arg64));
6295 err = 0;
6296 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6297 sizeof(arg64.LUN_info));
6298 err |= copy_from_user(&arg64.Request, &arg32->Request,
6299 sizeof(arg64.Request));
6300 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6301 sizeof(arg64.error_info));
6302 err |= get_user(arg64.buf_size, &arg32->buf_size);
6303 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6304 err |= get_user(cp, &arg32->buf);
6305 arg64.buf = compat_ptr(cp);
6306 err |= copy_to_user(p, &arg64, sizeof(arg64));
6308 if (err)
6309 return -EFAULT;
6311 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6312 if (err)
6313 return err;
6314 err |= copy_in_user(&arg32->error_info, &p->error_info,
6315 sizeof(arg32->error_info));
6316 if (err)
6317 return -EFAULT;
6318 return err;
6321 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6323 switch (cmd) {
6324 case CCISS_GETPCIINFO:
6325 case CCISS_GETINTINFO:
6326 case CCISS_SETINTINFO:
6327 case CCISS_GETNODENAME:
6328 case CCISS_SETNODENAME:
6329 case CCISS_GETHEARTBEAT:
6330 case CCISS_GETBUSTYPES:
6331 case CCISS_GETFIRMVER:
6332 case CCISS_GETDRIVVER:
6333 case CCISS_REVALIDVOLS:
6334 case CCISS_DEREGDISK:
6335 case CCISS_REGNEWDISK:
6336 case CCISS_REGNEWD:
6337 case CCISS_RESCANDISK:
6338 case CCISS_GETLUNINFO:
6339 return hpsa_ioctl(dev, cmd, arg);
6341 case CCISS_PASSTHRU32:
6342 return hpsa_ioctl32_passthru(dev, cmd, arg);
6343 case CCISS_BIG_PASSTHRU32:
6344 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6346 default:
6347 return -ENOIOCTLCMD;
6350 #endif
6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6354 struct hpsa_pci_info pciinfo;
6356 if (!argp)
6357 return -EINVAL;
6358 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6359 pciinfo.bus = h->pdev->bus->number;
6360 pciinfo.dev_fn = h->pdev->devfn;
6361 pciinfo.board_id = h->board_id;
6362 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6363 return -EFAULT;
6364 return 0;
6367 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6369 DriverVer_type DriverVer;
6370 unsigned char vmaj, vmin, vsubmin;
6371 int rc;
6373 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6374 &vmaj, &vmin, &vsubmin);
6375 if (rc != 3) {
6376 dev_info(&h->pdev->dev, "driver version string '%s' "
6377 "unrecognized.", HPSA_DRIVER_VERSION);
6378 vmaj = 0;
6379 vmin = 0;
6380 vsubmin = 0;
6382 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6383 if (!argp)
6384 return -EINVAL;
6385 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6386 return -EFAULT;
6387 return 0;
6390 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6392 IOCTL_Command_struct iocommand;
6393 struct CommandList *c;
6394 char *buff = NULL;
6395 u64 temp64;
6396 int rc = 0;
6398 if (!argp)
6399 return -EINVAL;
6400 if (!capable(CAP_SYS_RAWIO))
6401 return -EPERM;
6402 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6403 return -EFAULT;
6404 if ((iocommand.buf_size < 1) &&
6405 (iocommand.Request.Type.Direction != XFER_NONE)) {
6406 return -EINVAL;
6408 if (iocommand.buf_size > 0) {
6409 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6410 if (buff == NULL)
6411 return -ENOMEM;
6412 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6413 /* Copy the data into the buffer we created */
6414 if (copy_from_user(buff, iocommand.buf,
6415 iocommand.buf_size)) {
6416 rc = -EFAULT;
6417 goto out_kfree;
6419 } else {
6420 memset(buff, 0, iocommand.buf_size);
6423 c = cmd_alloc(h);
6425 /* Fill in the command type */
6426 c->cmd_type = CMD_IOCTL_PEND;
6427 c->scsi_cmd = SCSI_CMD_BUSY;
6428 /* Fill in Command Header */
6429 c->Header.ReplyQueue = 0; /* unused in simple mode */
6430 if (iocommand.buf_size > 0) { /* buffer to fill */
6431 c->Header.SGList = 1;
6432 c->Header.SGTotal = cpu_to_le16(1);
6433 } else { /* no buffers to fill */
6434 c->Header.SGList = 0;
6435 c->Header.SGTotal = cpu_to_le16(0);
6437 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6439 /* Fill in Request block */
6440 memcpy(&c->Request, &iocommand.Request,
6441 sizeof(c->Request));
6443 /* Fill in the scatter gather information */
6444 if (iocommand.buf_size > 0) {
6445 temp64 = pci_map_single(h->pdev, buff,
6446 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6447 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6448 c->SG[0].Addr = cpu_to_le64(0);
6449 c->SG[0].Len = cpu_to_le32(0);
6450 rc = -ENOMEM;
6451 goto out;
6453 c->SG[0].Addr = cpu_to_le64(temp64);
6454 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6455 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6457 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6458 DEFAULT_TIMEOUT);
6459 if (iocommand.buf_size > 0)
6460 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6461 check_ioctl_unit_attention(h, c);
6462 if (rc) {
6463 rc = -EIO;
6464 goto out;
6467 /* Copy the error information out */
6468 memcpy(&iocommand.error_info, c->err_info,
6469 sizeof(iocommand.error_info));
6470 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6471 rc = -EFAULT;
6472 goto out;
6474 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6475 iocommand.buf_size > 0) {
6476 /* Copy the data out of the buffer we created */
6477 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6478 rc = -EFAULT;
6479 goto out;
6482 out:
6483 cmd_free(h, c);
6484 out_kfree:
6485 kfree(buff);
6486 return rc;
6489 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6491 BIG_IOCTL_Command_struct *ioc;
6492 struct CommandList *c;
6493 unsigned char **buff = NULL;
6494 int *buff_size = NULL;
6495 u64 temp64;
6496 BYTE sg_used = 0;
6497 int status = 0;
6498 u32 left;
6499 u32 sz;
6500 BYTE __user *data_ptr;
6502 if (!argp)
6503 return -EINVAL;
6504 if (!capable(CAP_SYS_RAWIO))
6505 return -EPERM;
6506 ioc = (BIG_IOCTL_Command_struct *)
6507 kmalloc(sizeof(*ioc), GFP_KERNEL);
6508 if (!ioc) {
6509 status = -ENOMEM;
6510 goto cleanup1;
6512 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6513 status = -EFAULT;
6514 goto cleanup1;
6516 if ((ioc->buf_size < 1) &&
6517 (ioc->Request.Type.Direction != XFER_NONE)) {
6518 status = -EINVAL;
6519 goto cleanup1;
6521 /* Check kmalloc limits using all SGs */
6522 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6523 status = -EINVAL;
6524 goto cleanup1;
6526 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6527 status = -EINVAL;
6528 goto cleanup1;
6530 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6531 if (!buff) {
6532 status = -ENOMEM;
6533 goto cleanup1;
6535 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6536 if (!buff_size) {
6537 status = -ENOMEM;
6538 goto cleanup1;
6540 left = ioc->buf_size;
6541 data_ptr = ioc->buf;
6542 while (left) {
6543 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6544 buff_size[sg_used] = sz;
6545 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6546 if (buff[sg_used] == NULL) {
6547 status = -ENOMEM;
6548 goto cleanup1;
6550 if (ioc->Request.Type.Direction & XFER_WRITE) {
6551 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6552 status = -EFAULT;
6553 goto cleanup1;
6555 } else
6556 memset(buff[sg_used], 0, sz);
6557 left -= sz;
6558 data_ptr += sz;
6559 sg_used++;
6561 c = cmd_alloc(h);
6563 c->cmd_type = CMD_IOCTL_PEND;
6564 c->scsi_cmd = SCSI_CMD_BUSY;
6565 c->Header.ReplyQueue = 0;
6566 c->Header.SGList = (u8) sg_used;
6567 c->Header.SGTotal = cpu_to_le16(sg_used);
6568 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6569 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6570 if (ioc->buf_size > 0) {
6571 int i;
6572 for (i = 0; i < sg_used; i++) {
6573 temp64 = pci_map_single(h->pdev, buff[i],
6574 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6575 if (dma_mapping_error(&h->pdev->dev,
6576 (dma_addr_t) temp64)) {
6577 c->SG[i].Addr = cpu_to_le64(0);
6578 c->SG[i].Len = cpu_to_le32(0);
6579 hpsa_pci_unmap(h->pdev, c, i,
6580 PCI_DMA_BIDIRECTIONAL);
6581 status = -ENOMEM;
6582 goto cleanup0;
6584 c->SG[i].Addr = cpu_to_le64(temp64);
6585 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6586 c->SG[i].Ext = cpu_to_le32(0);
6588 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6590 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6591 DEFAULT_TIMEOUT);
6592 if (sg_used)
6593 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6594 check_ioctl_unit_attention(h, c);
6595 if (status) {
6596 status = -EIO;
6597 goto cleanup0;
6600 /* Copy the error information out */
6601 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6602 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6603 status = -EFAULT;
6604 goto cleanup0;
6606 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6607 int i;
6609 /* Copy the data out of the buffer we created */
6610 BYTE __user *ptr = ioc->buf;
6611 for (i = 0; i < sg_used; i++) {
6612 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6613 status = -EFAULT;
6614 goto cleanup0;
6616 ptr += buff_size[i];
6619 status = 0;
6620 cleanup0:
6621 cmd_free(h, c);
6622 cleanup1:
6623 if (buff) {
6624 int i;
6626 for (i = 0; i < sg_used; i++)
6627 kfree(buff[i]);
6628 kfree(buff);
6630 kfree(buff_size);
6631 kfree(ioc);
6632 return status;
6635 static void check_ioctl_unit_attention(struct ctlr_info *h,
6636 struct CommandList *c)
6638 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6639 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6640 (void) check_for_unit_attention(h, c);
6644 * ioctl
6646 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6648 struct ctlr_info *h;
6649 void __user *argp = (void __user *)arg;
6650 int rc;
6652 h = sdev_to_hba(dev);
6654 switch (cmd) {
6655 case CCISS_DEREGDISK:
6656 case CCISS_REGNEWDISK:
6657 case CCISS_REGNEWD:
6658 hpsa_scan_start(h->scsi_host);
6659 return 0;
6660 case CCISS_GETPCIINFO:
6661 return hpsa_getpciinfo_ioctl(h, argp);
6662 case CCISS_GETDRIVVER:
6663 return hpsa_getdrivver_ioctl(h, argp);
6664 case CCISS_PASSTHRU:
6665 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6666 return -EAGAIN;
6667 rc = hpsa_passthru_ioctl(h, argp);
6668 atomic_inc(&h->passthru_cmds_avail);
6669 return rc;
6670 case CCISS_BIG_PASSTHRU:
6671 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6672 return -EAGAIN;
6673 rc = hpsa_big_passthru_ioctl(h, argp);
6674 atomic_inc(&h->passthru_cmds_avail);
6675 return rc;
6676 default:
6677 return -ENOTTY;
6681 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6682 u8 reset_type)
6684 struct CommandList *c;
6686 c = cmd_alloc(h);
6688 /* fill_cmd can't fail here, no data buffer to map */
6689 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6690 RAID_CTLR_LUNID, TYPE_MSG);
6691 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6692 c->waiting = NULL;
6693 enqueue_cmd_and_start_io(h, c);
6694 /* Don't wait for completion, the reset won't complete. Don't free
6695 * the command either. This is the last command we will send before
6696 * re-initializing everything, so it doesn't matter and won't leak.
6698 return;
6701 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6702 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6703 int cmd_type)
6705 int pci_dir = XFER_NONE;
6706 u64 tag; /* for commands to be aborted */
6708 c->cmd_type = CMD_IOCTL_PEND;
6709 c->scsi_cmd = SCSI_CMD_BUSY;
6710 c->Header.ReplyQueue = 0;
6711 if (buff != NULL && size > 0) {
6712 c->Header.SGList = 1;
6713 c->Header.SGTotal = cpu_to_le16(1);
6714 } else {
6715 c->Header.SGList = 0;
6716 c->Header.SGTotal = cpu_to_le16(0);
6718 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6720 if (cmd_type == TYPE_CMD) {
6721 switch (cmd) {
6722 case HPSA_INQUIRY:
6723 /* are we trying to read a vital product page */
6724 if (page_code & VPD_PAGE) {
6725 c->Request.CDB[1] = 0x01;
6726 c->Request.CDB[2] = (page_code & 0xff);
6728 c->Request.CDBLen = 6;
6729 c->Request.type_attr_dir =
6730 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731 c->Request.Timeout = 0;
6732 c->Request.CDB[0] = HPSA_INQUIRY;
6733 c->Request.CDB[4] = size & 0xFF;
6734 break;
6735 case HPSA_REPORT_LOG:
6736 case HPSA_REPORT_PHYS:
6737 /* Talking to controller so It's a physical command
6738 mode = 00 target = 0. Nothing to write.
6740 c->Request.CDBLen = 12;
6741 c->Request.type_attr_dir =
6742 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6743 c->Request.Timeout = 0;
6744 c->Request.CDB[0] = cmd;
6745 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6746 c->Request.CDB[7] = (size >> 16) & 0xFF;
6747 c->Request.CDB[8] = (size >> 8) & 0xFF;
6748 c->Request.CDB[9] = size & 0xFF;
6749 break;
6750 case BMIC_SENSE_DIAG_OPTIONS:
6751 c->Request.CDBLen = 16;
6752 c->Request.type_attr_dir =
6753 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754 c->Request.Timeout = 0;
6755 /* Spec says this should be BMIC_WRITE */
6756 c->Request.CDB[0] = BMIC_READ;
6757 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6758 break;
6759 case BMIC_SET_DIAG_OPTIONS:
6760 c->Request.CDBLen = 16;
6761 c->Request.type_attr_dir =
6762 TYPE_ATTR_DIR(cmd_type,
6763 ATTR_SIMPLE, XFER_WRITE);
6764 c->Request.Timeout = 0;
6765 c->Request.CDB[0] = BMIC_WRITE;
6766 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6767 break;
6768 case HPSA_CACHE_FLUSH:
6769 c->Request.CDBLen = 12;
6770 c->Request.type_attr_dir =
6771 TYPE_ATTR_DIR(cmd_type,
6772 ATTR_SIMPLE, XFER_WRITE);
6773 c->Request.Timeout = 0;
6774 c->Request.CDB[0] = BMIC_WRITE;
6775 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6776 c->Request.CDB[7] = (size >> 8) & 0xFF;
6777 c->Request.CDB[8] = size & 0xFF;
6778 break;
6779 case TEST_UNIT_READY:
6780 c->Request.CDBLen = 6;
6781 c->Request.type_attr_dir =
6782 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6783 c->Request.Timeout = 0;
6784 break;
6785 case HPSA_GET_RAID_MAP:
6786 c->Request.CDBLen = 12;
6787 c->Request.type_attr_dir =
6788 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6789 c->Request.Timeout = 0;
6790 c->Request.CDB[0] = HPSA_CISS_READ;
6791 c->Request.CDB[1] = cmd;
6792 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6793 c->Request.CDB[7] = (size >> 16) & 0xFF;
6794 c->Request.CDB[8] = (size >> 8) & 0xFF;
6795 c->Request.CDB[9] = size & 0xFF;
6796 break;
6797 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6798 c->Request.CDBLen = 10;
6799 c->Request.type_attr_dir =
6800 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6801 c->Request.Timeout = 0;
6802 c->Request.CDB[0] = BMIC_READ;
6803 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6804 c->Request.CDB[7] = (size >> 16) & 0xFF;
6805 c->Request.CDB[8] = (size >> 8) & 0xFF;
6806 break;
6807 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6808 c->Request.CDBLen = 10;
6809 c->Request.type_attr_dir =
6810 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6811 c->Request.Timeout = 0;
6812 c->Request.CDB[0] = BMIC_READ;
6813 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6814 c->Request.CDB[7] = (size >> 16) & 0xFF;
6815 c->Request.CDB[8] = (size >> 8) & 0XFF;
6816 break;
6817 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6818 c->Request.CDBLen = 10;
6819 c->Request.type_attr_dir =
6820 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6821 c->Request.Timeout = 0;
6822 c->Request.CDB[0] = BMIC_READ;
6823 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6824 c->Request.CDB[7] = (size >> 16) & 0xFF;
6825 c->Request.CDB[8] = (size >> 8) & 0XFF;
6826 break;
6827 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6828 c->Request.CDBLen = 10;
6829 c->Request.type_attr_dir =
6830 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6831 c->Request.Timeout = 0;
6832 c->Request.CDB[0] = BMIC_READ;
6833 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6834 c->Request.CDB[7] = (size >> 16) & 0xFF;
6835 c->Request.CDB[8] = (size >> 8) & 0XFF;
6836 break;
6837 case BMIC_IDENTIFY_CONTROLLER:
6838 c->Request.CDBLen = 10;
6839 c->Request.type_attr_dir =
6840 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6841 c->Request.Timeout = 0;
6842 c->Request.CDB[0] = BMIC_READ;
6843 c->Request.CDB[1] = 0;
6844 c->Request.CDB[2] = 0;
6845 c->Request.CDB[3] = 0;
6846 c->Request.CDB[4] = 0;
6847 c->Request.CDB[5] = 0;
6848 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6849 c->Request.CDB[7] = (size >> 16) & 0xFF;
6850 c->Request.CDB[8] = (size >> 8) & 0XFF;
6851 c->Request.CDB[9] = 0;
6852 break;
6853 default:
6854 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6855 BUG();
6856 return -1;
6858 } else if (cmd_type == TYPE_MSG) {
6859 switch (cmd) {
6861 case HPSA_PHYS_TARGET_RESET:
6862 c->Request.CDBLen = 16;
6863 c->Request.type_attr_dir =
6864 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6865 c->Request.Timeout = 0; /* Don't time out */
6866 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6867 c->Request.CDB[0] = HPSA_RESET;
6868 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6869 /* Physical target reset needs no control bytes 4-7*/
6870 c->Request.CDB[4] = 0x00;
6871 c->Request.CDB[5] = 0x00;
6872 c->Request.CDB[6] = 0x00;
6873 c->Request.CDB[7] = 0x00;
6874 break;
6875 case HPSA_DEVICE_RESET_MSG:
6876 c->Request.CDBLen = 16;
6877 c->Request.type_attr_dir =
6878 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6879 c->Request.Timeout = 0; /* Don't time out */
6880 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6881 c->Request.CDB[0] = cmd;
6882 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6883 /* If bytes 4-7 are zero, it means reset the */
6884 /* LunID device */
6885 c->Request.CDB[4] = 0x00;
6886 c->Request.CDB[5] = 0x00;
6887 c->Request.CDB[6] = 0x00;
6888 c->Request.CDB[7] = 0x00;
6889 break;
6890 case HPSA_ABORT_MSG:
6891 memcpy(&tag, buff, sizeof(tag));
6892 dev_dbg(&h->pdev->dev,
6893 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6894 tag, c->Header.tag);
6895 c->Request.CDBLen = 16;
6896 c->Request.type_attr_dir =
6897 TYPE_ATTR_DIR(cmd_type,
6898 ATTR_SIMPLE, XFER_WRITE);
6899 c->Request.Timeout = 0; /* Don't time out */
6900 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6901 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6902 c->Request.CDB[2] = 0x00; /* reserved */
6903 c->Request.CDB[3] = 0x00; /* reserved */
6904 /* Tag to abort goes in CDB[4]-CDB[11] */
6905 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6906 c->Request.CDB[12] = 0x00; /* reserved */
6907 c->Request.CDB[13] = 0x00; /* reserved */
6908 c->Request.CDB[14] = 0x00; /* reserved */
6909 c->Request.CDB[15] = 0x00; /* reserved */
6910 break;
6911 default:
6912 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6913 cmd);
6914 BUG();
6916 } else {
6917 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6918 BUG();
6921 switch (GET_DIR(c->Request.type_attr_dir)) {
6922 case XFER_READ:
6923 pci_dir = PCI_DMA_FROMDEVICE;
6924 break;
6925 case XFER_WRITE:
6926 pci_dir = PCI_DMA_TODEVICE;
6927 break;
6928 case XFER_NONE:
6929 pci_dir = PCI_DMA_NONE;
6930 break;
6931 default:
6932 pci_dir = PCI_DMA_BIDIRECTIONAL;
6934 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6935 return -1;
6936 return 0;
6940 * Map (physical) PCI mem into (virtual) kernel space
6942 static void __iomem *remap_pci_mem(ulong base, ulong size)
6944 ulong page_base = ((ulong) base) & PAGE_MASK;
6945 ulong page_offs = ((ulong) base) - page_base;
6946 void __iomem *page_remapped = ioremap_nocache(page_base,
6947 page_offs + size);
6949 return page_remapped ? (page_remapped + page_offs) : NULL;
6952 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6954 return h->access.command_completed(h, q);
6957 static inline bool interrupt_pending(struct ctlr_info *h)
6959 return h->access.intr_pending(h);
6962 static inline long interrupt_not_for_us(struct ctlr_info *h)
6964 return (h->access.intr_pending(h) == 0) ||
6965 (h->interrupts_enabled == 0);
6968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6969 u32 raw_tag)
6971 if (unlikely(tag_index >= h->nr_cmds)) {
6972 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6973 return 1;
6975 return 0;
6978 static inline void finish_cmd(struct CommandList *c)
6980 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6981 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6982 || c->cmd_type == CMD_IOACCEL2))
6983 complete_scsi_command(c);
6984 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6985 complete(c->waiting);
6988 /* process completion of an indexed ("direct lookup") command */
6989 static inline void process_indexed_cmd(struct ctlr_info *h,
6990 u32 raw_tag)
6992 u32 tag_index;
6993 struct CommandList *c;
6995 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6996 if (!bad_tag(h, tag_index, raw_tag)) {
6997 c = h->cmd_pool + tag_index;
6998 finish_cmd(c);
7002 /* Some controllers, like p400, will give us one interrupt
7003 * after a soft reset, even if we turned interrupts off.
7004 * Only need to check for this in the hpsa_xxx_discard_completions
7005 * functions.
7007 static int ignore_bogus_interrupt(struct ctlr_info *h)
7009 if (likely(!reset_devices))
7010 return 0;
7012 if (likely(h->interrupts_enabled))
7013 return 0;
7015 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7016 "(known firmware bug.) Ignoring.\n");
7018 return 1;
7022 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7023 * Relies on (h-q[x] == x) being true for x such that
7024 * 0 <= x < MAX_REPLY_QUEUES.
7026 static struct ctlr_info *queue_to_hba(u8 *queue)
7028 return container_of((queue - *queue), struct ctlr_info, q[0]);
7031 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7033 struct ctlr_info *h = queue_to_hba(queue);
7034 u8 q = *(u8 *) queue;
7035 u32 raw_tag;
7037 if (ignore_bogus_interrupt(h))
7038 return IRQ_NONE;
7040 if (interrupt_not_for_us(h))
7041 return IRQ_NONE;
7042 h->last_intr_timestamp = get_jiffies_64();
7043 while (interrupt_pending(h)) {
7044 raw_tag = get_next_completion(h, q);
7045 while (raw_tag != FIFO_EMPTY)
7046 raw_tag = next_command(h, q);
7048 return IRQ_HANDLED;
7051 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7053 struct ctlr_info *h = queue_to_hba(queue);
7054 u32 raw_tag;
7055 u8 q = *(u8 *) queue;
7057 if (ignore_bogus_interrupt(h))
7058 return IRQ_NONE;
7060 h->last_intr_timestamp = get_jiffies_64();
7061 raw_tag = get_next_completion(h, q);
7062 while (raw_tag != FIFO_EMPTY)
7063 raw_tag = next_command(h, q);
7064 return IRQ_HANDLED;
7067 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7069 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7070 u32 raw_tag;
7071 u8 q = *(u8 *) queue;
7073 if (interrupt_not_for_us(h))
7074 return IRQ_NONE;
7075 h->last_intr_timestamp = get_jiffies_64();
7076 while (interrupt_pending(h)) {
7077 raw_tag = get_next_completion(h, q);
7078 while (raw_tag != FIFO_EMPTY) {
7079 process_indexed_cmd(h, raw_tag);
7080 raw_tag = next_command(h, q);
7083 return IRQ_HANDLED;
7086 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7088 struct ctlr_info *h = queue_to_hba(queue);
7089 u32 raw_tag;
7090 u8 q = *(u8 *) queue;
7092 h->last_intr_timestamp = get_jiffies_64();
7093 raw_tag = get_next_completion(h, q);
7094 while (raw_tag != FIFO_EMPTY) {
7095 process_indexed_cmd(h, raw_tag);
7096 raw_tag = next_command(h, q);
7098 return IRQ_HANDLED;
7101 /* Send a message CDB to the firmware. Careful, this only works
7102 * in simple mode, not performant mode due to the tag lookup.
7103 * We only ever use this immediately after a controller reset.
7105 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7106 unsigned char type)
7108 struct Command {
7109 struct CommandListHeader CommandHeader;
7110 struct RequestBlock Request;
7111 struct ErrDescriptor ErrorDescriptor;
7113 struct Command *cmd;
7114 static const size_t cmd_sz = sizeof(*cmd) +
7115 sizeof(cmd->ErrorDescriptor);
7116 dma_addr_t paddr64;
7117 __le32 paddr32;
7118 u32 tag;
7119 void __iomem *vaddr;
7120 int i, err;
7122 vaddr = pci_ioremap_bar(pdev, 0);
7123 if (vaddr == NULL)
7124 return -ENOMEM;
7126 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7127 * CCISS commands, so they must be allocated from the lower 4GiB of
7128 * memory.
7130 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7131 if (err) {
7132 iounmap(vaddr);
7133 return err;
7136 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7137 if (cmd == NULL) {
7138 iounmap(vaddr);
7139 return -ENOMEM;
7142 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7143 * although there's no guarantee, we assume that the address is at
7144 * least 4-byte aligned (most likely, it's page-aligned).
7146 paddr32 = cpu_to_le32(paddr64);
7148 cmd->CommandHeader.ReplyQueue = 0;
7149 cmd->CommandHeader.SGList = 0;
7150 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7151 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7152 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7154 cmd->Request.CDBLen = 16;
7155 cmd->Request.type_attr_dir =
7156 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7157 cmd->Request.Timeout = 0; /* Don't time out */
7158 cmd->Request.CDB[0] = opcode;
7159 cmd->Request.CDB[1] = type;
7160 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7161 cmd->ErrorDescriptor.Addr =
7162 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7163 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7165 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7167 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7168 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7169 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7170 break;
7171 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7174 iounmap(vaddr);
7176 /* we leak the DMA buffer here ... no choice since the controller could
7177 * still complete the command.
7179 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7180 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7181 opcode, type);
7182 return -ETIMEDOUT;
7185 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7187 if (tag & HPSA_ERROR_BIT) {
7188 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7189 opcode, type);
7190 return -EIO;
7193 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7194 opcode, type);
7195 return 0;
7198 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7200 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7201 void __iomem *vaddr, u32 use_doorbell)
7204 if (use_doorbell) {
7205 /* For everything after the P600, the PCI power state method
7206 * of resetting the controller doesn't work, so we have this
7207 * other way using the doorbell register.
7209 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7210 writel(use_doorbell, vaddr + SA5_DOORBELL);
7212 /* PMC hardware guys tell us we need a 10 second delay after
7213 * doorbell reset and before any attempt to talk to the board
7214 * at all to ensure that this actually works and doesn't fall
7215 * over in some weird corner cases.
7217 msleep(10000);
7218 } else { /* Try to do it the PCI power state way */
7220 /* Quoting from the Open CISS Specification: "The Power
7221 * Management Control/Status Register (CSR) controls the power
7222 * state of the device. The normal operating state is D0,
7223 * CSR=00h. The software off state is D3, CSR=03h. To reset
7224 * the controller, place the interface device in D3 then to D0,
7225 * this causes a secondary PCI reset which will reset the
7226 * controller." */
7228 int rc = 0;
7230 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7232 /* enter the D3hot power management state */
7233 rc = pci_set_power_state(pdev, PCI_D3hot);
7234 if (rc)
7235 return rc;
7237 msleep(500);
7239 /* enter the D0 power management state */
7240 rc = pci_set_power_state(pdev, PCI_D0);
7241 if (rc)
7242 return rc;
7245 * The P600 requires a small delay when changing states.
7246 * Otherwise we may think the board did not reset and we bail.
7247 * This for kdump only and is particular to the P600.
7249 msleep(500);
7251 return 0;
7254 static void init_driver_version(char *driver_version, int len)
7256 memset(driver_version, 0, len);
7257 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7260 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7262 char *driver_version;
7263 int i, size = sizeof(cfgtable->driver_version);
7265 driver_version = kmalloc(size, GFP_KERNEL);
7266 if (!driver_version)
7267 return -ENOMEM;
7269 init_driver_version(driver_version, size);
7270 for (i = 0; i < size; i++)
7271 writeb(driver_version[i], &cfgtable->driver_version[i]);
7272 kfree(driver_version);
7273 return 0;
7276 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7277 unsigned char *driver_ver)
7279 int i;
7281 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7282 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7285 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7288 char *driver_ver, *old_driver_ver;
7289 int rc, size = sizeof(cfgtable->driver_version);
7291 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7292 if (!old_driver_ver)
7293 return -ENOMEM;
7294 driver_ver = old_driver_ver + size;
7296 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7297 * should have been changed, otherwise we know the reset failed.
7299 init_driver_version(old_driver_ver, size);
7300 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7301 rc = !memcmp(driver_ver, old_driver_ver, size);
7302 kfree(old_driver_ver);
7303 return rc;
7305 /* This does a hard reset of the controller using PCI power management
7306 * states or the using the doorbell register.
7308 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7310 u64 cfg_offset;
7311 u32 cfg_base_addr;
7312 u64 cfg_base_addr_index;
7313 void __iomem *vaddr;
7314 unsigned long paddr;
7315 u32 misc_fw_support;
7316 int rc;
7317 struct CfgTable __iomem *cfgtable;
7318 u32 use_doorbell;
7319 u16 command_register;
7321 /* For controllers as old as the P600, this is very nearly
7322 * the same thing as
7324 * pci_save_state(pci_dev);
7325 * pci_set_power_state(pci_dev, PCI_D3hot);
7326 * pci_set_power_state(pci_dev, PCI_D0);
7327 * pci_restore_state(pci_dev);
7329 * For controllers newer than the P600, the pci power state
7330 * method of resetting doesn't work so we have another way
7331 * using the doorbell register.
7334 if (!ctlr_is_resettable(board_id)) {
7335 dev_warn(&pdev->dev, "Controller not resettable\n");
7336 return -ENODEV;
7339 /* if controller is soft- but not hard resettable... */
7340 if (!ctlr_is_hard_resettable(board_id))
7341 return -ENOTSUPP; /* try soft reset later. */
7343 /* Save the PCI command register */
7344 pci_read_config_word(pdev, 4, &command_register);
7345 pci_save_state(pdev);
7347 /* find the first memory BAR, so we can find the cfg table */
7348 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7349 if (rc)
7350 return rc;
7351 vaddr = remap_pci_mem(paddr, 0x250);
7352 if (!vaddr)
7353 return -ENOMEM;
7355 /* find cfgtable in order to check if reset via doorbell is supported */
7356 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7357 &cfg_base_addr_index, &cfg_offset);
7358 if (rc)
7359 goto unmap_vaddr;
7360 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7361 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7362 if (!cfgtable) {
7363 rc = -ENOMEM;
7364 goto unmap_vaddr;
7366 rc = write_driver_ver_to_cfgtable(cfgtable);
7367 if (rc)
7368 goto unmap_cfgtable;
7370 /* If reset via doorbell register is supported, use that.
7371 * There are two such methods. Favor the newest method.
7373 misc_fw_support = readl(&cfgtable->misc_fw_support);
7374 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7375 if (use_doorbell) {
7376 use_doorbell = DOORBELL_CTLR_RESET2;
7377 } else {
7378 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7379 if (use_doorbell) {
7380 dev_warn(&pdev->dev,
7381 "Soft reset not supported. Firmware update is required.\n");
7382 rc = -ENOTSUPP; /* try soft reset */
7383 goto unmap_cfgtable;
7387 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7388 if (rc)
7389 goto unmap_cfgtable;
7391 pci_restore_state(pdev);
7392 pci_write_config_word(pdev, 4, command_register);
7394 /* Some devices (notably the HP Smart Array 5i Controller)
7395 need a little pause here */
7396 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7398 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7399 if (rc) {
7400 dev_warn(&pdev->dev,
7401 "Failed waiting for board to become ready after hard reset\n");
7402 goto unmap_cfgtable;
7405 rc = controller_reset_failed(vaddr);
7406 if (rc < 0)
7407 goto unmap_cfgtable;
7408 if (rc) {
7409 dev_warn(&pdev->dev, "Unable to successfully reset "
7410 "controller. Will try soft reset.\n");
7411 rc = -ENOTSUPP;
7412 } else {
7413 dev_info(&pdev->dev, "board ready after hard reset.\n");
7416 unmap_cfgtable:
7417 iounmap(cfgtable);
7419 unmap_vaddr:
7420 iounmap(vaddr);
7421 return rc;
7425 * We cannot read the structure directly, for portability we must use
7426 * the io functions.
7427 * This is for debug only.
7429 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7431 #ifdef HPSA_DEBUG
7432 int i;
7433 char temp_name[17];
7435 dev_info(dev, "Controller Configuration information\n");
7436 dev_info(dev, "------------------------------------\n");
7437 for (i = 0; i < 4; i++)
7438 temp_name[i] = readb(&(tb->Signature[i]));
7439 temp_name[4] = '\0';
7440 dev_info(dev, " Signature = %s\n", temp_name);
7441 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7442 dev_info(dev, " Transport methods supported = 0x%x\n",
7443 readl(&(tb->TransportSupport)));
7444 dev_info(dev, " Transport methods active = 0x%x\n",
7445 readl(&(tb->TransportActive)));
7446 dev_info(dev, " Requested transport Method = 0x%x\n",
7447 readl(&(tb->HostWrite.TransportRequest)));
7448 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7449 readl(&(tb->HostWrite.CoalIntDelay)));
7450 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7451 readl(&(tb->HostWrite.CoalIntCount)));
7452 dev_info(dev, " Max outstanding commands = %d\n",
7453 readl(&(tb->CmdsOutMax)));
7454 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7455 for (i = 0; i < 16; i++)
7456 temp_name[i] = readb(&(tb->ServerName[i]));
7457 temp_name[16] = '\0';
7458 dev_info(dev, " Server Name = %s\n", temp_name);
7459 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7460 readl(&(tb->HeartBeat)));
7461 #endif /* HPSA_DEBUG */
7464 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7466 int i, offset, mem_type, bar_type;
7468 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7469 return 0;
7470 offset = 0;
7471 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7472 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7473 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7474 offset += 4;
7475 else {
7476 mem_type = pci_resource_flags(pdev, i) &
7477 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7478 switch (mem_type) {
7479 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7480 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7481 offset += 4; /* 32 bit */
7482 break;
7483 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7484 offset += 8;
7485 break;
7486 default: /* reserved in PCI 2.2 */
7487 dev_warn(&pdev->dev,
7488 "base address is invalid\n");
7489 return -1;
7490 break;
7493 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7494 return i + 1;
7496 return -1;
7499 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7501 if (h->msix_vector) {
7502 if (h->pdev->msix_enabled)
7503 pci_disable_msix(h->pdev);
7504 h->msix_vector = 0;
7505 } else if (h->msi_vector) {
7506 if (h->pdev->msi_enabled)
7507 pci_disable_msi(h->pdev);
7508 h->msi_vector = 0;
7512 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7513 * controllers that are capable. If not, we use legacy INTx mode.
7515 static void hpsa_interrupt_mode(struct ctlr_info *h)
7517 #ifdef CONFIG_PCI_MSI
7518 int err, i;
7519 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7521 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7522 hpsa_msix_entries[i].vector = 0;
7523 hpsa_msix_entries[i].entry = i;
7526 /* Some boards advertise MSI but don't really support it */
7527 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7528 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7529 goto default_int_mode;
7530 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7531 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7532 h->msix_vector = MAX_REPLY_QUEUES;
7533 if (h->msix_vector > num_online_cpus())
7534 h->msix_vector = num_online_cpus();
7535 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7536 1, h->msix_vector);
7537 if (err < 0) {
7538 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7539 h->msix_vector = 0;
7540 goto single_msi_mode;
7541 } else if (err < h->msix_vector) {
7542 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7543 "available\n", err);
7545 h->msix_vector = err;
7546 for (i = 0; i < h->msix_vector; i++)
7547 h->intr[i] = hpsa_msix_entries[i].vector;
7548 return;
7550 single_msi_mode:
7551 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7552 dev_info(&h->pdev->dev, "MSI capable controller\n");
7553 if (!pci_enable_msi(h->pdev))
7554 h->msi_vector = 1;
7555 else
7556 dev_warn(&h->pdev->dev, "MSI init failed\n");
7558 default_int_mode:
7559 #endif /* CONFIG_PCI_MSI */
7560 /* if we get here we're going to use the default interrupt mode */
7561 h->intr[h->intr_mode] = h->pdev->irq;
7564 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7566 int i;
7567 u32 subsystem_vendor_id, subsystem_device_id;
7569 subsystem_vendor_id = pdev->subsystem_vendor;
7570 subsystem_device_id = pdev->subsystem_device;
7571 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7572 subsystem_vendor_id;
7574 for (i = 0; i < ARRAY_SIZE(products); i++)
7575 if (*board_id == products[i].board_id)
7576 return i;
7578 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7579 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7580 !hpsa_allow_any) {
7581 dev_warn(&pdev->dev, "unrecognized board ID: "
7582 "0x%08x, ignoring.\n", *board_id);
7583 return -ENODEV;
7585 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7588 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7589 unsigned long *memory_bar)
7591 int i;
7593 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7594 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7595 /* addressing mode bits already removed */
7596 *memory_bar = pci_resource_start(pdev, i);
7597 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7598 *memory_bar);
7599 return 0;
7601 dev_warn(&pdev->dev, "no memory BAR found\n");
7602 return -ENODEV;
7605 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7606 int wait_for_ready)
7608 int i, iterations;
7609 u32 scratchpad;
7610 if (wait_for_ready)
7611 iterations = HPSA_BOARD_READY_ITERATIONS;
7612 else
7613 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7615 for (i = 0; i < iterations; i++) {
7616 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7617 if (wait_for_ready) {
7618 if (scratchpad == HPSA_FIRMWARE_READY)
7619 return 0;
7620 } else {
7621 if (scratchpad != HPSA_FIRMWARE_READY)
7622 return 0;
7624 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7626 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7627 return -ENODEV;
7630 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7631 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7632 u64 *cfg_offset)
7634 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7635 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7636 *cfg_base_addr &= (u32) 0x0000ffff;
7637 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7638 if (*cfg_base_addr_index == -1) {
7639 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7640 return -ENODEV;
7642 return 0;
7645 static void hpsa_free_cfgtables(struct ctlr_info *h)
7647 if (h->transtable) {
7648 iounmap(h->transtable);
7649 h->transtable = NULL;
7651 if (h->cfgtable) {
7652 iounmap(h->cfgtable);
7653 h->cfgtable = NULL;
7657 /* Find and map CISS config table and transfer table
7658 + * several items must be unmapped (freed) later
7659 + * */
7660 static int hpsa_find_cfgtables(struct ctlr_info *h)
7662 u64 cfg_offset;
7663 u32 cfg_base_addr;
7664 u64 cfg_base_addr_index;
7665 u32 trans_offset;
7666 int rc;
7668 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7669 &cfg_base_addr_index, &cfg_offset);
7670 if (rc)
7671 return rc;
7672 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7673 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7674 if (!h->cfgtable) {
7675 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7676 return -ENOMEM;
7678 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7679 if (rc)
7680 return rc;
7681 /* Find performant mode table. */
7682 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7683 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7684 cfg_base_addr_index)+cfg_offset+trans_offset,
7685 sizeof(*h->transtable));
7686 if (!h->transtable) {
7687 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7688 hpsa_free_cfgtables(h);
7689 return -ENOMEM;
7691 return 0;
7694 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7696 #define MIN_MAX_COMMANDS 16
7697 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7699 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7701 /* Limit commands in memory limited kdump scenario. */
7702 if (reset_devices && h->max_commands > 32)
7703 h->max_commands = 32;
7705 if (h->max_commands < MIN_MAX_COMMANDS) {
7706 dev_warn(&h->pdev->dev,
7707 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7708 h->max_commands,
7709 MIN_MAX_COMMANDS);
7710 h->max_commands = MIN_MAX_COMMANDS;
7714 /* If the controller reports that the total max sg entries is greater than 512,
7715 * then we know that chained SG blocks work. (Original smart arrays did not
7716 * support chained SG blocks and would return zero for max sg entries.)
7718 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7720 return h->maxsgentries > 512;
7723 /* Interrogate the hardware for some limits:
7724 * max commands, max SG elements without chaining, and with chaining,
7725 * SG chain block size, etc.
7727 static void hpsa_find_board_params(struct ctlr_info *h)
7729 hpsa_get_max_perf_mode_cmds(h);
7730 h->nr_cmds = h->max_commands;
7731 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7732 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7733 if (hpsa_supports_chained_sg_blocks(h)) {
7734 /* Limit in-command s/g elements to 32 save dma'able memory. */
7735 h->max_cmd_sg_entries = 32;
7736 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7737 h->maxsgentries--; /* save one for chain pointer */
7738 } else {
7740 * Original smart arrays supported at most 31 s/g entries
7741 * embedded inline in the command (trying to use more
7742 * would lock up the controller)
7744 h->max_cmd_sg_entries = 31;
7745 h->maxsgentries = 31; /* default to traditional values */
7746 h->chainsize = 0;
7749 /* Find out what task management functions are supported and cache */
7750 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7751 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7752 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7753 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7754 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7755 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7756 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7759 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7761 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7762 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7763 return false;
7765 return true;
7768 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7770 u32 driver_support;
7772 driver_support = readl(&(h->cfgtable->driver_support));
7773 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7774 #ifdef CONFIG_X86
7775 driver_support |= ENABLE_SCSI_PREFETCH;
7776 #endif
7777 driver_support |= ENABLE_UNIT_ATTN;
7778 writel(driver_support, &(h->cfgtable->driver_support));
7781 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7782 * in a prefetch beyond physical memory.
7784 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7786 u32 dma_prefetch;
7788 if (h->board_id != 0x3225103C)
7789 return;
7790 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7791 dma_prefetch |= 0x8000;
7792 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7795 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7797 int i;
7798 u32 doorbell_value;
7799 unsigned long flags;
7800 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7801 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7802 spin_lock_irqsave(&h->lock, flags);
7803 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7804 spin_unlock_irqrestore(&h->lock, flags);
7805 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7806 goto done;
7807 /* delay and try again */
7808 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7810 return -ENODEV;
7811 done:
7812 return 0;
7815 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7817 int i;
7818 u32 doorbell_value;
7819 unsigned long flags;
7821 /* under certain very rare conditions, this can take awhile.
7822 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7823 * as we enter this code.)
7825 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7826 if (h->remove_in_progress)
7827 goto done;
7828 spin_lock_irqsave(&h->lock, flags);
7829 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7830 spin_unlock_irqrestore(&h->lock, flags);
7831 if (!(doorbell_value & CFGTBL_ChangeReq))
7832 goto done;
7833 /* delay and try again */
7834 msleep(MODE_CHANGE_WAIT_INTERVAL);
7836 return -ENODEV;
7837 done:
7838 return 0;
7841 /* return -ENODEV or other reason on error, 0 on success */
7842 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7844 u32 trans_support;
7846 trans_support = readl(&(h->cfgtable->TransportSupport));
7847 if (!(trans_support & SIMPLE_MODE))
7848 return -ENOTSUPP;
7850 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7852 /* Update the field, and then ring the doorbell */
7853 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7854 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7855 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7856 if (hpsa_wait_for_mode_change_ack(h))
7857 goto error;
7858 print_cfg_table(&h->pdev->dev, h->cfgtable);
7859 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7860 goto error;
7861 h->transMethod = CFGTBL_Trans_Simple;
7862 return 0;
7863 error:
7864 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7865 return -ENODEV;
7868 /* free items allocated or mapped by hpsa_pci_init */
7869 static void hpsa_free_pci_init(struct ctlr_info *h)
7871 hpsa_free_cfgtables(h); /* pci_init 4 */
7872 iounmap(h->vaddr); /* pci_init 3 */
7873 h->vaddr = NULL;
7874 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7876 * call pci_disable_device before pci_release_regions per
7877 * Documentation/PCI/pci.txt
7879 pci_disable_device(h->pdev); /* pci_init 1 */
7880 pci_release_regions(h->pdev); /* pci_init 2 */
7883 /* several items must be freed later */
7884 static int hpsa_pci_init(struct ctlr_info *h)
7886 int prod_index, err;
7888 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7889 if (prod_index < 0)
7890 return prod_index;
7891 h->product_name = products[prod_index].product_name;
7892 h->access = *(products[prod_index].access);
7894 h->needs_abort_tags_swizzled =
7895 ctlr_needs_abort_tags_swizzled(h->board_id);
7897 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7898 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7900 err = pci_enable_device(h->pdev);
7901 if (err) {
7902 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7903 pci_disable_device(h->pdev);
7904 return err;
7907 err = pci_request_regions(h->pdev, HPSA);
7908 if (err) {
7909 dev_err(&h->pdev->dev,
7910 "failed to obtain PCI resources\n");
7911 pci_disable_device(h->pdev);
7912 return err;
7915 pci_set_master(h->pdev);
7917 hpsa_interrupt_mode(h);
7918 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7919 if (err)
7920 goto clean2; /* intmode+region, pci */
7921 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7922 if (!h->vaddr) {
7923 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7924 err = -ENOMEM;
7925 goto clean2; /* intmode+region, pci */
7927 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7928 if (err)
7929 goto clean3; /* vaddr, intmode+region, pci */
7930 err = hpsa_find_cfgtables(h);
7931 if (err)
7932 goto clean3; /* vaddr, intmode+region, pci */
7933 hpsa_find_board_params(h);
7935 if (!hpsa_CISS_signature_present(h)) {
7936 err = -ENODEV;
7937 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7939 hpsa_set_driver_support_bits(h);
7940 hpsa_p600_dma_prefetch_quirk(h);
7941 err = hpsa_enter_simple_mode(h);
7942 if (err)
7943 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7944 return 0;
7946 clean4: /* cfgtables, vaddr, intmode+region, pci */
7947 hpsa_free_cfgtables(h);
7948 clean3: /* vaddr, intmode+region, pci */
7949 iounmap(h->vaddr);
7950 h->vaddr = NULL;
7951 clean2: /* intmode+region, pci */
7952 hpsa_disable_interrupt_mode(h);
7954 * call pci_disable_device before pci_release_regions per
7955 * Documentation/PCI/pci.txt
7957 pci_disable_device(h->pdev);
7958 pci_release_regions(h->pdev);
7959 return err;
7962 static void hpsa_hba_inquiry(struct ctlr_info *h)
7964 int rc;
7966 #define HBA_INQUIRY_BYTE_COUNT 64
7967 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7968 if (!h->hba_inquiry_data)
7969 return;
7970 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7971 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7972 if (rc != 0) {
7973 kfree(h->hba_inquiry_data);
7974 h->hba_inquiry_data = NULL;
7978 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7980 int rc, i;
7981 void __iomem *vaddr;
7983 if (!reset_devices)
7984 return 0;
7986 /* kdump kernel is loading, we don't know in which state is
7987 * the pci interface. The dev->enable_cnt is equal zero
7988 * so we call enable+disable, wait a while and switch it on.
7990 rc = pci_enable_device(pdev);
7991 if (rc) {
7992 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7993 return -ENODEV;
7995 pci_disable_device(pdev);
7996 msleep(260); /* a randomly chosen number */
7997 rc = pci_enable_device(pdev);
7998 if (rc) {
7999 dev_warn(&pdev->dev, "failed to enable device.\n");
8000 return -ENODEV;
8003 pci_set_master(pdev);
8005 vaddr = pci_ioremap_bar(pdev, 0);
8006 if (vaddr == NULL) {
8007 rc = -ENOMEM;
8008 goto out_disable;
8010 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8011 iounmap(vaddr);
8013 /* Reset the controller with a PCI power-cycle or via doorbell */
8014 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8016 /* -ENOTSUPP here means we cannot reset the controller
8017 * but it's already (and still) up and running in
8018 * "performant mode". Or, it might be 640x, which can't reset
8019 * due to concerns about shared bbwc between 6402/6404 pair.
8021 if (rc)
8022 goto out_disable;
8024 /* Now try to get the controller to respond to a no-op */
8025 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8026 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8027 if (hpsa_noop(pdev) == 0)
8028 break;
8029 else
8030 dev_warn(&pdev->dev, "no-op failed%s\n",
8031 (i < 11 ? "; re-trying" : ""));
8034 out_disable:
8036 pci_disable_device(pdev);
8037 return rc;
8040 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8042 kfree(h->cmd_pool_bits);
8043 h->cmd_pool_bits = NULL;
8044 if (h->cmd_pool) {
8045 pci_free_consistent(h->pdev,
8046 h->nr_cmds * sizeof(struct CommandList),
8047 h->cmd_pool,
8048 h->cmd_pool_dhandle);
8049 h->cmd_pool = NULL;
8050 h->cmd_pool_dhandle = 0;
8052 if (h->errinfo_pool) {
8053 pci_free_consistent(h->pdev,
8054 h->nr_cmds * sizeof(struct ErrorInfo),
8055 h->errinfo_pool,
8056 h->errinfo_pool_dhandle);
8057 h->errinfo_pool = NULL;
8058 h->errinfo_pool_dhandle = 0;
8062 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8064 h->cmd_pool_bits = kzalloc(
8065 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8066 sizeof(unsigned long), GFP_KERNEL);
8067 h->cmd_pool = pci_alloc_consistent(h->pdev,
8068 h->nr_cmds * sizeof(*h->cmd_pool),
8069 &(h->cmd_pool_dhandle));
8070 h->errinfo_pool = pci_alloc_consistent(h->pdev,
8071 h->nr_cmds * sizeof(*h->errinfo_pool),
8072 &(h->errinfo_pool_dhandle));
8073 if ((h->cmd_pool_bits == NULL)
8074 || (h->cmd_pool == NULL)
8075 || (h->errinfo_pool == NULL)) {
8076 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8077 goto clean_up;
8079 hpsa_preinitialize_commands(h);
8080 return 0;
8081 clean_up:
8082 hpsa_free_cmd_pool(h);
8083 return -ENOMEM;
8086 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8088 int i, cpu;
8090 cpu = cpumask_first(cpu_online_mask);
8091 for (i = 0; i < h->msix_vector; i++) {
8092 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8093 cpu = cpumask_next(cpu, cpu_online_mask);
8097 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8098 static void hpsa_free_irqs(struct ctlr_info *h)
8100 int i;
8102 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8103 /* Single reply queue, only one irq to free */
8104 i = h->intr_mode;
8105 irq_set_affinity_hint(h->intr[i], NULL);
8106 free_irq(h->intr[i], &h->q[i]);
8107 h->q[i] = 0;
8108 return;
8111 for (i = 0; i < h->msix_vector; i++) {
8112 irq_set_affinity_hint(h->intr[i], NULL);
8113 free_irq(h->intr[i], &h->q[i]);
8114 h->q[i] = 0;
8116 for (; i < MAX_REPLY_QUEUES; i++)
8117 h->q[i] = 0;
8120 /* returns 0 on success; cleans up and returns -Enn on error */
8121 static int hpsa_request_irqs(struct ctlr_info *h,
8122 irqreturn_t (*msixhandler)(int, void *),
8123 irqreturn_t (*intxhandler)(int, void *))
8125 int rc, i;
8128 * initialize h->q[x] = x so that interrupt handlers know which
8129 * queue to process.
8131 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8132 h->q[i] = (u8) i;
8134 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8135 /* If performant mode and MSI-X, use multiple reply queues */
8136 for (i = 0; i < h->msix_vector; i++) {
8137 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8138 rc = request_irq(h->intr[i], msixhandler,
8139 0, h->intrname[i],
8140 &h->q[i]);
8141 if (rc) {
8142 int j;
8144 dev_err(&h->pdev->dev,
8145 "failed to get irq %d for %s\n",
8146 h->intr[i], h->devname);
8147 for (j = 0; j < i; j++) {
8148 free_irq(h->intr[j], &h->q[j]);
8149 h->q[j] = 0;
8151 for (; j < MAX_REPLY_QUEUES; j++)
8152 h->q[j] = 0;
8153 return rc;
8156 hpsa_irq_affinity_hints(h);
8157 } else {
8158 /* Use single reply pool */
8159 if (h->msix_vector > 0 || h->msi_vector) {
8160 if (h->msix_vector)
8161 sprintf(h->intrname[h->intr_mode],
8162 "%s-msix", h->devname);
8163 else
8164 sprintf(h->intrname[h->intr_mode],
8165 "%s-msi", h->devname);
8166 rc = request_irq(h->intr[h->intr_mode],
8167 msixhandler, 0,
8168 h->intrname[h->intr_mode],
8169 &h->q[h->intr_mode]);
8170 } else {
8171 sprintf(h->intrname[h->intr_mode],
8172 "%s-intx", h->devname);
8173 rc = request_irq(h->intr[h->intr_mode],
8174 intxhandler, IRQF_SHARED,
8175 h->intrname[h->intr_mode],
8176 &h->q[h->intr_mode]);
8178 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8180 if (rc) {
8181 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8182 h->intr[h->intr_mode], h->devname);
8183 hpsa_free_irqs(h);
8184 return -ENODEV;
8186 return 0;
8189 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8191 int rc;
8192 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8194 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8195 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8196 if (rc) {
8197 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8198 return rc;
8201 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8202 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8203 if (rc) {
8204 dev_warn(&h->pdev->dev, "Board failed to become ready "
8205 "after soft reset.\n");
8206 return rc;
8209 return 0;
8212 static void hpsa_free_reply_queues(struct ctlr_info *h)
8214 int i;
8216 for (i = 0; i < h->nreply_queues; i++) {
8217 if (!h->reply_queue[i].head)
8218 continue;
8219 pci_free_consistent(h->pdev,
8220 h->reply_queue_size,
8221 h->reply_queue[i].head,
8222 h->reply_queue[i].busaddr);
8223 h->reply_queue[i].head = NULL;
8224 h->reply_queue[i].busaddr = 0;
8226 h->reply_queue_size = 0;
8229 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8231 hpsa_free_performant_mode(h); /* init_one 7 */
8232 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8233 hpsa_free_cmd_pool(h); /* init_one 5 */
8234 hpsa_free_irqs(h); /* init_one 4 */
8235 scsi_host_put(h->scsi_host); /* init_one 3 */
8236 h->scsi_host = NULL; /* init_one 3 */
8237 hpsa_free_pci_init(h); /* init_one 2_5 */
8238 free_percpu(h->lockup_detected); /* init_one 2 */
8239 h->lockup_detected = NULL; /* init_one 2 */
8240 if (h->resubmit_wq) {
8241 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8242 h->resubmit_wq = NULL;
8244 if (h->rescan_ctlr_wq) {
8245 destroy_workqueue(h->rescan_ctlr_wq);
8246 h->rescan_ctlr_wq = NULL;
8248 kfree(h); /* init_one 1 */
8251 /* Called when controller lockup detected. */
8252 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8254 int i, refcount;
8255 struct CommandList *c;
8256 int failcount = 0;
8258 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8259 for (i = 0; i < h->nr_cmds; i++) {
8260 c = h->cmd_pool + i;
8261 refcount = atomic_inc_return(&c->refcount);
8262 if (refcount > 1) {
8263 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8264 finish_cmd(c);
8265 atomic_dec(&h->commands_outstanding);
8266 failcount++;
8268 cmd_free(h, c);
8270 dev_warn(&h->pdev->dev,
8271 "failed %d commands in fail_all\n", failcount);
8274 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8276 int cpu;
8278 for_each_online_cpu(cpu) {
8279 u32 *lockup_detected;
8280 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8281 *lockup_detected = value;
8283 wmb(); /* be sure the per-cpu variables are out to memory */
8286 static void controller_lockup_detected(struct ctlr_info *h)
8288 unsigned long flags;
8289 u32 lockup_detected;
8291 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8292 spin_lock_irqsave(&h->lock, flags);
8293 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8294 if (!lockup_detected) {
8295 /* no heartbeat, but controller gave us a zero. */
8296 dev_warn(&h->pdev->dev,
8297 "lockup detected after %d but scratchpad register is zero\n",
8298 h->heartbeat_sample_interval / HZ);
8299 lockup_detected = 0xffffffff;
8301 set_lockup_detected_for_all_cpus(h, lockup_detected);
8302 spin_unlock_irqrestore(&h->lock, flags);
8303 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8304 lockup_detected, h->heartbeat_sample_interval / HZ);
8305 pci_disable_device(h->pdev);
8306 fail_all_outstanding_cmds(h);
8309 static int detect_controller_lockup(struct ctlr_info *h)
8311 u64 now;
8312 u32 heartbeat;
8313 unsigned long flags;
8315 now = get_jiffies_64();
8316 /* If we've received an interrupt recently, we're ok. */
8317 if (time_after64(h->last_intr_timestamp +
8318 (h->heartbeat_sample_interval), now))
8319 return false;
8322 * If we've already checked the heartbeat recently, we're ok.
8323 * This could happen if someone sends us a signal. We
8324 * otherwise don't care about signals in this thread.
8326 if (time_after64(h->last_heartbeat_timestamp +
8327 (h->heartbeat_sample_interval), now))
8328 return false;
8330 /* If heartbeat has not changed since we last looked, we're not ok. */
8331 spin_lock_irqsave(&h->lock, flags);
8332 heartbeat = readl(&h->cfgtable->HeartBeat);
8333 spin_unlock_irqrestore(&h->lock, flags);
8334 if (h->last_heartbeat == heartbeat) {
8335 controller_lockup_detected(h);
8336 return true;
8339 /* We're ok. */
8340 h->last_heartbeat = heartbeat;
8341 h->last_heartbeat_timestamp = now;
8342 return false;
8345 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8347 int i;
8348 char *event_type;
8350 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8351 return;
8353 /* Ask the controller to clear the events we're handling. */
8354 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8355 | CFGTBL_Trans_io_accel2)) &&
8356 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8357 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8359 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8360 event_type = "state change";
8361 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8362 event_type = "configuration change";
8363 /* Stop sending new RAID offload reqs via the IO accelerator */
8364 scsi_block_requests(h->scsi_host);
8365 for (i = 0; i < h->ndevices; i++) {
8366 h->dev[i]->offload_enabled = 0;
8367 h->dev[i]->offload_to_be_enabled = 0;
8369 hpsa_drain_accel_commands(h);
8370 /* Set 'accelerator path config change' bit */
8371 dev_warn(&h->pdev->dev,
8372 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373 h->events, event_type);
8374 writel(h->events, &(h->cfgtable->clear_event_notify));
8375 /* Set the "clear event notify field update" bit 6 */
8376 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378 hpsa_wait_for_clear_event_notify_ack(h);
8379 scsi_unblock_requests(h->scsi_host);
8380 } else {
8381 /* Acknowledge controller notification events. */
8382 writel(h->events, &(h->cfgtable->clear_event_notify));
8383 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384 hpsa_wait_for_clear_event_notify_ack(h);
8385 #if 0
8386 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8387 hpsa_wait_for_mode_change_ack(h);
8388 #endif
8390 return;
8393 /* Check a register on the controller to see if there are configuration
8394 * changes (added/changed/removed logical drives, etc.) which mean that
8395 * we should rescan the controller for devices.
8396 * Also check flag for driver-initiated rescan.
8398 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8400 if (h->drv_req_rescan) {
8401 h->drv_req_rescan = 0;
8402 return 1;
8405 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8406 return 0;
8408 h->events = readl(&(h->cfgtable->event_notify));
8409 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8413 * Check if any of the offline devices have become ready
8415 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8417 unsigned long flags;
8418 struct offline_device_entry *d;
8419 struct list_head *this, *tmp;
8421 spin_lock_irqsave(&h->offline_device_lock, flags);
8422 list_for_each_safe(this, tmp, &h->offline_device_list) {
8423 d = list_entry(this, struct offline_device_entry,
8424 offline_list);
8425 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8427 spin_lock_irqsave(&h->offline_device_lock, flags);
8428 list_del(&d->offline_list);
8429 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8430 return 1;
8432 spin_lock_irqsave(&h->offline_device_lock, flags);
8434 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8435 return 0;
8438 static int hpsa_luns_changed(struct ctlr_info *h)
8440 int rc = 1; /* assume there are changes */
8441 struct ReportLUNdata *logdev = NULL;
8443 /* if we can't find out if lun data has changed,
8444 * assume that it has.
8447 if (!h->lastlogicals)
8448 goto out;
8450 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8451 if (!logdev) {
8452 dev_warn(&h->pdev->dev,
8453 "Out of memory, can't track lun changes.\n");
8454 goto out;
8456 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8457 dev_warn(&h->pdev->dev,
8458 "report luns failed, can't track lun changes.\n");
8459 goto out;
8461 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8462 dev_info(&h->pdev->dev,
8463 "Lun changes detected.\n");
8464 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8465 goto out;
8466 } else
8467 rc = 0; /* no changes detected. */
8468 out:
8469 kfree(logdev);
8470 return rc;
8473 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8475 unsigned long flags;
8476 struct ctlr_info *h = container_of(to_delayed_work(work),
8477 struct ctlr_info, rescan_ctlr_work);
8480 if (h->remove_in_progress)
8481 return;
8483 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8484 scsi_host_get(h->scsi_host);
8485 hpsa_ack_ctlr_events(h);
8486 hpsa_scan_start(h->scsi_host);
8487 scsi_host_put(h->scsi_host);
8488 } else if (h->discovery_polling) {
8489 hpsa_disable_rld_caching(h);
8490 if (hpsa_luns_changed(h)) {
8491 struct Scsi_Host *sh = NULL;
8493 dev_info(&h->pdev->dev,
8494 "driver discovery polling rescan.\n");
8495 sh = scsi_host_get(h->scsi_host);
8496 if (sh != NULL) {
8497 hpsa_scan_start(sh);
8498 scsi_host_put(sh);
8502 spin_lock_irqsave(&h->lock, flags);
8503 if (!h->remove_in_progress)
8504 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8505 h->heartbeat_sample_interval);
8506 spin_unlock_irqrestore(&h->lock, flags);
8509 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8511 unsigned long flags;
8512 struct ctlr_info *h = container_of(to_delayed_work(work),
8513 struct ctlr_info, monitor_ctlr_work);
8515 detect_controller_lockup(h);
8516 if (lockup_detected(h))
8517 return;
8519 spin_lock_irqsave(&h->lock, flags);
8520 if (!h->remove_in_progress)
8521 schedule_delayed_work(&h->monitor_ctlr_work,
8522 h->heartbeat_sample_interval);
8523 spin_unlock_irqrestore(&h->lock, flags);
8526 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8527 char *name)
8529 struct workqueue_struct *wq = NULL;
8531 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8532 if (!wq)
8533 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8535 return wq;
8538 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8540 int dac, rc;
8541 struct ctlr_info *h;
8542 int try_soft_reset = 0;
8543 unsigned long flags;
8544 u32 board_id;
8546 if (number_of_controllers == 0)
8547 printk(KERN_INFO DRIVER_NAME "\n");
8549 rc = hpsa_lookup_board_id(pdev, &board_id);
8550 if (rc < 0) {
8551 dev_warn(&pdev->dev, "Board ID not found\n");
8552 return rc;
8555 rc = hpsa_init_reset_devices(pdev, board_id);
8556 if (rc) {
8557 if (rc != -ENOTSUPP)
8558 return rc;
8559 /* If the reset fails in a particular way (it has no way to do
8560 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8561 * a soft reset once we get the controller configured up to the
8562 * point that it can accept a command.
8564 try_soft_reset = 1;
8565 rc = 0;
8568 reinit_after_soft_reset:
8570 /* Command structures must be aligned on a 32-byte boundary because
8571 * the 5 lower bits of the address are used by the hardware. and by
8572 * the driver. See comments in hpsa.h for more info.
8574 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8575 h = kzalloc(sizeof(*h), GFP_KERNEL);
8576 if (!h) {
8577 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8578 return -ENOMEM;
8581 h->pdev = pdev;
8583 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8584 INIT_LIST_HEAD(&h->offline_device_list);
8585 spin_lock_init(&h->lock);
8586 spin_lock_init(&h->offline_device_lock);
8587 spin_lock_init(&h->scan_lock);
8588 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8589 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8591 /* Allocate and clear per-cpu variable lockup_detected */
8592 h->lockup_detected = alloc_percpu(u32);
8593 if (!h->lockup_detected) {
8594 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8595 rc = -ENOMEM;
8596 goto clean1; /* aer/h */
8598 set_lockup_detected_for_all_cpus(h, 0);
8600 rc = hpsa_pci_init(h);
8601 if (rc)
8602 goto clean2; /* lu, aer/h */
8604 /* relies on h-> settings made by hpsa_pci_init, including
8605 * interrupt_mode h->intr */
8606 rc = hpsa_scsi_host_alloc(h);
8607 if (rc)
8608 goto clean2_5; /* pci, lu, aer/h */
8610 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8611 h->ctlr = number_of_controllers;
8612 number_of_controllers++;
8614 /* configure PCI DMA stuff */
8615 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8616 if (rc == 0) {
8617 dac = 1;
8618 } else {
8619 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8620 if (rc == 0) {
8621 dac = 0;
8622 } else {
8623 dev_err(&pdev->dev, "no suitable DMA available\n");
8624 goto clean3; /* shost, pci, lu, aer/h */
8628 /* make sure the board interrupts are off */
8629 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8631 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8632 if (rc)
8633 goto clean3; /* shost, pci, lu, aer/h */
8634 rc = hpsa_alloc_cmd_pool(h);
8635 if (rc)
8636 goto clean4; /* irq, shost, pci, lu, aer/h */
8637 rc = hpsa_alloc_sg_chain_blocks(h);
8638 if (rc)
8639 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8640 init_waitqueue_head(&h->scan_wait_queue);
8641 init_waitqueue_head(&h->abort_cmd_wait_queue);
8642 init_waitqueue_head(&h->event_sync_wait_queue);
8643 mutex_init(&h->reset_mutex);
8644 h->scan_finished = 1; /* no scan currently in progress */
8646 pci_set_drvdata(pdev, h);
8647 h->ndevices = 0;
8649 spin_lock_init(&h->devlock);
8650 rc = hpsa_put_ctlr_into_performant_mode(h);
8651 if (rc)
8652 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8654 /* create the resubmit workqueue */
8655 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8656 if (!h->rescan_ctlr_wq) {
8657 rc = -ENOMEM;
8658 goto clean7;
8661 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8662 if (!h->resubmit_wq) {
8663 rc = -ENOMEM;
8664 goto clean7; /* aer/h */
8668 * At this point, the controller is ready to take commands.
8669 * Now, if reset_devices and the hard reset didn't work, try
8670 * the soft reset and see if that works.
8672 if (try_soft_reset) {
8674 /* This is kind of gross. We may or may not get a completion
8675 * from the soft reset command, and if we do, then the value
8676 * from the fifo may or may not be valid. So, we wait 10 secs
8677 * after the reset throwing away any completions we get during
8678 * that time. Unregister the interrupt handler and register
8679 * fake ones to scoop up any residual completions.
8681 spin_lock_irqsave(&h->lock, flags);
8682 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683 spin_unlock_irqrestore(&h->lock, flags);
8684 hpsa_free_irqs(h);
8685 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8686 hpsa_intx_discard_completions);
8687 if (rc) {
8688 dev_warn(&h->pdev->dev,
8689 "Failed to request_irq after soft reset.\n");
8691 * cannot goto clean7 or free_irqs will be called
8692 * again. Instead, do its work
8694 hpsa_free_performant_mode(h); /* clean7 */
8695 hpsa_free_sg_chain_blocks(h); /* clean6 */
8696 hpsa_free_cmd_pool(h); /* clean5 */
8698 * skip hpsa_free_irqs(h) clean4 since that
8699 * was just called before request_irqs failed
8701 goto clean3;
8704 rc = hpsa_kdump_soft_reset(h);
8705 if (rc)
8706 /* Neither hard nor soft reset worked, we're hosed. */
8707 goto clean7;
8709 dev_info(&h->pdev->dev, "Board READY.\n");
8710 dev_info(&h->pdev->dev,
8711 "Waiting for stale completions to drain.\n");
8712 h->access.set_intr_mask(h, HPSA_INTR_ON);
8713 msleep(10000);
8714 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 rc = controller_reset_failed(h->cfgtable);
8717 if (rc)
8718 dev_info(&h->pdev->dev,
8719 "Soft reset appears to have failed.\n");
8721 /* since the controller's reset, we have to go back and re-init
8722 * everything. Easiest to just forget what we've done and do it
8723 * all over again.
8725 hpsa_undo_allocations_after_kdump_soft_reset(h);
8726 try_soft_reset = 0;
8727 if (rc)
8728 /* don't goto clean, we already unallocated */
8729 return -ENODEV;
8731 goto reinit_after_soft_reset;
8734 /* Enable Accelerated IO path at driver layer */
8735 h->acciopath_status = 1;
8736 /* Disable discovery polling.*/
8737 h->discovery_polling = 0;
8740 /* Turn the interrupts on so we can service requests */
8741 h->access.set_intr_mask(h, HPSA_INTR_ON);
8743 hpsa_hba_inquiry(h);
8745 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8746 if (!h->lastlogicals)
8747 dev_info(&h->pdev->dev,
8748 "Can't track change to report lun data\n");
8750 /* hook into SCSI subsystem */
8751 rc = hpsa_scsi_add_host(h);
8752 if (rc)
8753 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755 /* Monitor the controller for firmware lockups */
8756 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8757 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8758 schedule_delayed_work(&h->monitor_ctlr_work,
8759 h->heartbeat_sample_interval);
8760 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8761 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8762 h->heartbeat_sample_interval);
8763 return 0;
8765 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8766 hpsa_free_performant_mode(h);
8767 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8769 hpsa_free_sg_chain_blocks(h);
8770 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8771 hpsa_free_cmd_pool(h);
8772 clean4: /* irq, shost, pci, lu, aer/h */
8773 hpsa_free_irqs(h);
8774 clean3: /* shost, pci, lu, aer/h */
8775 scsi_host_put(h->scsi_host);
8776 h->scsi_host = NULL;
8777 clean2_5: /* pci, lu, aer/h */
8778 hpsa_free_pci_init(h);
8779 clean2: /* lu, aer/h */
8780 if (h->lockup_detected) {
8781 free_percpu(h->lockup_detected);
8782 h->lockup_detected = NULL;
8784 clean1: /* wq/aer/h */
8785 if (h->resubmit_wq) {
8786 destroy_workqueue(h->resubmit_wq);
8787 h->resubmit_wq = NULL;
8789 if (h->rescan_ctlr_wq) {
8790 destroy_workqueue(h->rescan_ctlr_wq);
8791 h->rescan_ctlr_wq = NULL;
8793 kfree(h);
8794 return rc;
8797 static void hpsa_flush_cache(struct ctlr_info *h)
8799 char *flush_buf;
8800 struct CommandList *c;
8801 int rc;
8803 if (unlikely(lockup_detected(h)))
8804 return;
8805 flush_buf = kzalloc(4, GFP_KERNEL);
8806 if (!flush_buf)
8807 return;
8809 c = cmd_alloc(h);
8811 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8812 RAID_CTLR_LUNID, TYPE_CMD)) {
8813 goto out;
8815 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8816 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8817 if (rc)
8818 goto out;
8819 if (c->err_info->CommandStatus != 0)
8820 out:
8821 dev_warn(&h->pdev->dev,
8822 "error flushing cache on controller\n");
8823 cmd_free(h, c);
8824 kfree(flush_buf);
8827 /* Make controller gather fresh report lun data each time we
8828 * send down a report luns request
8830 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8832 u32 *options;
8833 struct CommandList *c;
8834 int rc;
8836 /* Don't bother trying to set diag options if locked up */
8837 if (unlikely(h->lockup_detected))
8838 return;
8840 options = kzalloc(sizeof(*options), GFP_KERNEL);
8841 if (!options) {
8842 dev_err(&h->pdev->dev,
8843 "Error: failed to disable rld caching, during alloc.\n");
8844 return;
8847 c = cmd_alloc(h);
8849 /* first, get the current diag options settings */
8850 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8851 RAID_CTLR_LUNID, TYPE_CMD))
8852 goto errout;
8854 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8855 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8856 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8857 goto errout;
8859 /* Now, set the bit for disabling the RLD caching */
8860 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8862 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8863 RAID_CTLR_LUNID, TYPE_CMD))
8864 goto errout;
8866 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8867 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8868 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8869 goto errout;
8871 /* Now verify that it got set: */
8872 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8873 RAID_CTLR_LUNID, TYPE_CMD))
8874 goto errout;
8876 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8877 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8878 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8879 goto errout;
8881 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8882 goto out;
8884 errout:
8885 dev_err(&h->pdev->dev,
8886 "Error: failed to disable report lun data caching.\n");
8887 out:
8888 cmd_free(h, c);
8889 kfree(options);
8892 static void hpsa_shutdown(struct pci_dev *pdev)
8894 struct ctlr_info *h;
8896 h = pci_get_drvdata(pdev);
8897 /* Turn board interrupts off and send the flush cache command
8898 * sendcmd will turn off interrupt, and send the flush...
8899 * To write all data in the battery backed cache to disks
8901 hpsa_flush_cache(h);
8902 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903 hpsa_free_irqs(h); /* init_one 4 */
8904 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8907 static void hpsa_free_device_info(struct ctlr_info *h)
8909 int i;
8911 for (i = 0; i < h->ndevices; i++) {
8912 kfree(h->dev[i]);
8913 h->dev[i] = NULL;
8917 static void hpsa_remove_one(struct pci_dev *pdev)
8919 struct ctlr_info *h;
8920 unsigned long flags;
8922 if (pci_get_drvdata(pdev) == NULL) {
8923 dev_err(&pdev->dev, "unable to remove device\n");
8924 return;
8926 h = pci_get_drvdata(pdev);
8928 /* Get rid of any controller monitoring work items */
8929 spin_lock_irqsave(&h->lock, flags);
8930 h->remove_in_progress = 1;
8931 spin_unlock_irqrestore(&h->lock, flags);
8932 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8933 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8934 destroy_workqueue(h->rescan_ctlr_wq);
8935 destroy_workqueue(h->resubmit_wq);
8938 * Call before disabling interrupts.
8939 * scsi_remove_host can trigger I/O operations especially
8940 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8941 * operations which cannot complete and will hang the system.
8943 if (h->scsi_host)
8944 scsi_remove_host(h->scsi_host); /* init_one 8 */
8945 /* includes hpsa_free_irqs - init_one 4 */
8946 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8947 hpsa_shutdown(pdev);
8949 hpsa_free_device_info(h); /* scan */
8951 kfree(h->hba_inquiry_data); /* init_one 10 */
8952 h->hba_inquiry_data = NULL; /* init_one 10 */
8953 hpsa_free_ioaccel2_sg_chain_blocks(h);
8954 hpsa_free_performant_mode(h); /* init_one 7 */
8955 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8956 hpsa_free_cmd_pool(h); /* init_one 5 */
8957 kfree(h->lastlogicals);
8959 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8961 scsi_host_put(h->scsi_host); /* init_one 3 */
8962 h->scsi_host = NULL; /* init_one 3 */
8964 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8965 hpsa_free_pci_init(h); /* init_one 2.5 */
8967 free_percpu(h->lockup_detected); /* init_one 2 */
8968 h->lockup_detected = NULL; /* init_one 2 */
8969 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8971 hpsa_delete_sas_host(h);
8973 kfree(h); /* init_one 1 */
8976 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8977 __attribute__((unused)) pm_message_t state)
8979 return -ENOSYS;
8982 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8984 return -ENOSYS;
8987 static struct pci_driver hpsa_pci_driver = {
8988 .name = HPSA,
8989 .probe = hpsa_init_one,
8990 .remove = hpsa_remove_one,
8991 .id_table = hpsa_pci_device_id, /* id_table */
8992 .shutdown = hpsa_shutdown,
8993 .suspend = hpsa_suspend,
8994 .resume = hpsa_resume,
8997 /* Fill in bucket_map[], given nsgs (the max number of
8998 * scatter gather elements supported) and bucket[],
8999 * which is an array of 8 integers. The bucket[] array
9000 * contains 8 different DMA transfer sizes (in 16
9001 * byte increments) which the controller uses to fetch
9002 * commands. This function fills in bucket_map[], which
9003 * maps a given number of scatter gather elements to one of
9004 * the 8 DMA transfer sizes. The point of it is to allow the
9005 * controller to only do as much DMA as needed to fetch the
9006 * command, with the DMA transfer size encoded in the lower
9007 * bits of the command address.
9009 static void calc_bucket_map(int bucket[], int num_buckets,
9010 int nsgs, int min_blocks, u32 *bucket_map)
9012 int i, j, b, size;
9014 /* Note, bucket_map must have nsgs+1 entries. */
9015 for (i = 0; i <= nsgs; i++) {
9016 /* Compute size of a command with i SG entries */
9017 size = i + min_blocks;
9018 b = num_buckets; /* Assume the biggest bucket */
9019 /* Find the bucket that is just big enough */
9020 for (j = 0; j < num_buckets; j++) {
9021 if (bucket[j] >= size) {
9022 b = j;
9023 break;
9026 /* for a command with i SG entries, use bucket b. */
9027 bucket_map[i] = b;
9032 * return -ENODEV on err, 0 on success (or no action)
9033 * allocates numerous items that must be freed later
9035 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9037 int i;
9038 unsigned long register_value;
9039 unsigned long transMethod = CFGTBL_Trans_Performant |
9040 (trans_support & CFGTBL_Trans_use_short_tags) |
9041 CFGTBL_Trans_enable_directed_msix |
9042 (trans_support & (CFGTBL_Trans_io_accel1 |
9043 CFGTBL_Trans_io_accel2));
9044 struct access_method access = SA5_performant_access;
9046 /* This is a bit complicated. There are 8 registers on
9047 * the controller which we write to to tell it 8 different
9048 * sizes of commands which there may be. It's a way of
9049 * reducing the DMA done to fetch each command. Encoded into
9050 * each command's tag are 3 bits which communicate to the controller
9051 * which of the eight sizes that command fits within. The size of
9052 * each command depends on how many scatter gather entries there are.
9053 * Each SG entry requires 16 bytes. The eight registers are programmed
9054 * with the number of 16-byte blocks a command of that size requires.
9055 * The smallest command possible requires 5 such 16 byte blocks.
9056 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9057 * blocks. Note, this only extends to the SG entries contained
9058 * within the command block, and does not extend to chained blocks
9059 * of SG elements. bft[] contains the eight values we write to
9060 * the registers. They are not evenly distributed, but have more
9061 * sizes for small commands, and fewer sizes for larger commands.
9063 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9064 #define MIN_IOACCEL2_BFT_ENTRY 5
9065 #define HPSA_IOACCEL2_HEADER_SZ 4
9066 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9067 13, 14, 15, 16, 17, 18, 19,
9068 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9069 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9070 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9071 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9072 16 * MIN_IOACCEL2_BFT_ENTRY);
9073 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9074 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9075 /* 5 = 1 s/g entry or 4k
9076 * 6 = 2 s/g entry or 8k
9077 * 8 = 4 s/g entry or 16k
9078 * 10 = 6 s/g entry or 24k
9081 /* If the controller supports either ioaccel method then
9082 * we can also use the RAID stack submit path that does not
9083 * perform the superfluous readl() after each command submission.
9085 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9086 access = SA5_performant_access_no_read;
9088 /* Controller spec: zero out this buffer. */
9089 for (i = 0; i < h->nreply_queues; i++)
9090 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9092 bft[7] = SG_ENTRIES_IN_CMD + 4;
9093 calc_bucket_map(bft, ARRAY_SIZE(bft),
9094 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9095 for (i = 0; i < 8; i++)
9096 writel(bft[i], &h->transtable->BlockFetch[i]);
9098 /* size of controller ring buffer */
9099 writel(h->max_commands, &h->transtable->RepQSize);
9100 writel(h->nreply_queues, &h->transtable->RepQCount);
9101 writel(0, &h->transtable->RepQCtrAddrLow32);
9102 writel(0, &h->transtable->RepQCtrAddrHigh32);
9104 for (i = 0; i < h->nreply_queues; i++) {
9105 writel(0, &h->transtable->RepQAddr[i].upper);
9106 writel(h->reply_queue[i].busaddr,
9107 &h->transtable->RepQAddr[i].lower);
9110 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9111 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9113 * enable outbound interrupt coalescing in accelerator mode;
9115 if (trans_support & CFGTBL_Trans_io_accel1) {
9116 access = SA5_ioaccel_mode1_access;
9117 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9118 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9119 } else {
9120 if (trans_support & CFGTBL_Trans_io_accel2) {
9121 access = SA5_ioaccel_mode2_access;
9122 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9123 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9126 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9127 if (hpsa_wait_for_mode_change_ack(h)) {
9128 dev_err(&h->pdev->dev,
9129 "performant mode problem - doorbell timeout\n");
9130 return -ENODEV;
9132 register_value = readl(&(h->cfgtable->TransportActive));
9133 if (!(register_value & CFGTBL_Trans_Performant)) {
9134 dev_err(&h->pdev->dev,
9135 "performant mode problem - transport not active\n");
9136 return -ENODEV;
9138 /* Change the access methods to the performant access methods */
9139 h->access = access;
9140 h->transMethod = transMethod;
9142 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9143 (trans_support & CFGTBL_Trans_io_accel2)))
9144 return 0;
9146 if (trans_support & CFGTBL_Trans_io_accel1) {
9147 /* Set up I/O accelerator mode */
9148 for (i = 0; i < h->nreply_queues; i++) {
9149 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9150 h->reply_queue[i].current_entry =
9151 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9153 bft[7] = h->ioaccel_maxsg + 8;
9154 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9155 h->ioaccel1_blockFetchTable);
9157 /* initialize all reply queue entries to unused */
9158 for (i = 0; i < h->nreply_queues; i++)
9159 memset(h->reply_queue[i].head,
9160 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9161 h->reply_queue_size);
9163 /* set all the constant fields in the accelerator command
9164 * frames once at init time to save CPU cycles later.
9166 for (i = 0; i < h->nr_cmds; i++) {
9167 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9169 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9170 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9171 (i * sizeof(struct ErrorInfo)));
9172 cp->err_info_len = sizeof(struct ErrorInfo);
9173 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9174 cp->host_context_flags =
9175 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9176 cp->timeout_sec = 0;
9177 cp->ReplyQueue = 0;
9178 cp->tag =
9179 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9180 cp->host_addr =
9181 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9182 (i * sizeof(struct io_accel1_cmd)));
9184 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9185 u64 cfg_offset, cfg_base_addr_index;
9186 u32 bft2_offset, cfg_base_addr;
9187 int rc;
9189 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9190 &cfg_base_addr_index, &cfg_offset);
9191 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9192 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9193 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9194 4, h->ioaccel2_blockFetchTable);
9195 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9196 BUILD_BUG_ON(offsetof(struct CfgTable,
9197 io_accel_request_size_offset) != 0xb8);
9198 h->ioaccel2_bft2_regs =
9199 remap_pci_mem(pci_resource_start(h->pdev,
9200 cfg_base_addr_index) +
9201 cfg_offset + bft2_offset,
9202 ARRAY_SIZE(bft2) *
9203 sizeof(*h->ioaccel2_bft2_regs));
9204 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9205 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9207 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9208 if (hpsa_wait_for_mode_change_ack(h)) {
9209 dev_err(&h->pdev->dev,
9210 "performant mode problem - enabling ioaccel mode\n");
9211 return -ENODEV;
9213 return 0;
9216 /* Free ioaccel1 mode command blocks and block fetch table */
9217 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9219 if (h->ioaccel_cmd_pool) {
9220 pci_free_consistent(h->pdev,
9221 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9222 h->ioaccel_cmd_pool,
9223 h->ioaccel_cmd_pool_dhandle);
9224 h->ioaccel_cmd_pool = NULL;
9225 h->ioaccel_cmd_pool_dhandle = 0;
9227 kfree(h->ioaccel1_blockFetchTable);
9228 h->ioaccel1_blockFetchTable = NULL;
9231 /* Allocate ioaccel1 mode command blocks and block fetch table */
9232 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9234 h->ioaccel_maxsg =
9235 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9236 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9237 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9239 /* Command structures must be aligned on a 128-byte boundary
9240 * because the 7 lower bits of the address are used by the
9241 * hardware.
9243 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9244 IOACCEL1_COMMANDLIST_ALIGNMENT);
9245 h->ioaccel_cmd_pool =
9246 pci_alloc_consistent(h->pdev,
9247 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9248 &(h->ioaccel_cmd_pool_dhandle));
9250 h->ioaccel1_blockFetchTable =
9251 kmalloc(((h->ioaccel_maxsg + 1) *
9252 sizeof(u32)), GFP_KERNEL);
9254 if ((h->ioaccel_cmd_pool == NULL) ||
9255 (h->ioaccel1_blockFetchTable == NULL))
9256 goto clean_up;
9258 memset(h->ioaccel_cmd_pool, 0,
9259 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9260 return 0;
9262 clean_up:
9263 hpsa_free_ioaccel1_cmd_and_bft(h);
9264 return -ENOMEM;
9267 /* Free ioaccel2 mode command blocks and block fetch table */
9268 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9270 hpsa_free_ioaccel2_sg_chain_blocks(h);
9272 if (h->ioaccel2_cmd_pool) {
9273 pci_free_consistent(h->pdev,
9274 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9275 h->ioaccel2_cmd_pool,
9276 h->ioaccel2_cmd_pool_dhandle);
9277 h->ioaccel2_cmd_pool = NULL;
9278 h->ioaccel2_cmd_pool_dhandle = 0;
9280 kfree(h->ioaccel2_blockFetchTable);
9281 h->ioaccel2_blockFetchTable = NULL;
9284 /* Allocate ioaccel2 mode command blocks and block fetch table */
9285 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9287 int rc;
9289 /* Allocate ioaccel2 mode command blocks and block fetch table */
9291 h->ioaccel_maxsg =
9292 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9293 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9294 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9296 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9297 IOACCEL2_COMMANDLIST_ALIGNMENT);
9298 h->ioaccel2_cmd_pool =
9299 pci_alloc_consistent(h->pdev,
9300 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9301 &(h->ioaccel2_cmd_pool_dhandle));
9303 h->ioaccel2_blockFetchTable =
9304 kmalloc(((h->ioaccel_maxsg + 1) *
9305 sizeof(u32)), GFP_KERNEL);
9307 if ((h->ioaccel2_cmd_pool == NULL) ||
9308 (h->ioaccel2_blockFetchTable == NULL)) {
9309 rc = -ENOMEM;
9310 goto clean_up;
9313 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9314 if (rc)
9315 goto clean_up;
9317 memset(h->ioaccel2_cmd_pool, 0,
9318 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9319 return 0;
9321 clean_up:
9322 hpsa_free_ioaccel2_cmd_and_bft(h);
9323 return rc;
9326 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9327 static void hpsa_free_performant_mode(struct ctlr_info *h)
9329 kfree(h->blockFetchTable);
9330 h->blockFetchTable = NULL;
9331 hpsa_free_reply_queues(h);
9332 hpsa_free_ioaccel1_cmd_and_bft(h);
9333 hpsa_free_ioaccel2_cmd_and_bft(h);
9336 /* return -ENODEV on error, 0 on success (or no action)
9337 * allocates numerous items that must be freed later
9339 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9341 u32 trans_support;
9342 unsigned long transMethod = CFGTBL_Trans_Performant |
9343 CFGTBL_Trans_use_short_tags;
9344 int i, rc;
9346 if (hpsa_simple_mode)
9347 return 0;
9349 trans_support = readl(&(h->cfgtable->TransportSupport));
9350 if (!(trans_support & PERFORMANT_MODE))
9351 return 0;
9353 /* Check for I/O accelerator mode support */
9354 if (trans_support & CFGTBL_Trans_io_accel1) {
9355 transMethod |= CFGTBL_Trans_io_accel1 |
9356 CFGTBL_Trans_enable_directed_msix;
9357 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9358 if (rc)
9359 return rc;
9360 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9361 transMethod |= CFGTBL_Trans_io_accel2 |
9362 CFGTBL_Trans_enable_directed_msix;
9363 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9364 if (rc)
9365 return rc;
9368 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9369 hpsa_get_max_perf_mode_cmds(h);
9370 /* Performant mode ring buffer and supporting data structures */
9371 h->reply_queue_size = h->max_commands * sizeof(u64);
9373 for (i = 0; i < h->nreply_queues; i++) {
9374 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9375 h->reply_queue_size,
9376 &(h->reply_queue[i].busaddr));
9377 if (!h->reply_queue[i].head) {
9378 rc = -ENOMEM;
9379 goto clean1; /* rq, ioaccel */
9381 h->reply_queue[i].size = h->max_commands;
9382 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9383 h->reply_queue[i].current_entry = 0;
9386 /* Need a block fetch table for performant mode */
9387 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9388 sizeof(u32)), GFP_KERNEL);
9389 if (!h->blockFetchTable) {
9390 rc = -ENOMEM;
9391 goto clean1; /* rq, ioaccel */
9394 rc = hpsa_enter_performant_mode(h, trans_support);
9395 if (rc)
9396 goto clean2; /* bft, rq, ioaccel */
9397 return 0;
9399 clean2: /* bft, rq, ioaccel */
9400 kfree(h->blockFetchTable);
9401 h->blockFetchTable = NULL;
9402 clean1: /* rq, ioaccel */
9403 hpsa_free_reply_queues(h);
9404 hpsa_free_ioaccel1_cmd_and_bft(h);
9405 hpsa_free_ioaccel2_cmd_and_bft(h);
9406 return rc;
9409 static int is_accelerated_cmd(struct CommandList *c)
9411 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9414 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9416 struct CommandList *c = NULL;
9417 int i, accel_cmds_out;
9418 int refcount;
9420 do { /* wait for all outstanding ioaccel commands to drain out */
9421 accel_cmds_out = 0;
9422 for (i = 0; i < h->nr_cmds; i++) {
9423 c = h->cmd_pool + i;
9424 refcount = atomic_inc_return(&c->refcount);
9425 if (refcount > 1) /* Command is allocated */
9426 accel_cmds_out += is_accelerated_cmd(c);
9427 cmd_free(h, c);
9429 if (accel_cmds_out <= 0)
9430 break;
9431 msleep(100);
9432 } while (1);
9435 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9436 struct hpsa_sas_port *hpsa_sas_port)
9438 struct hpsa_sas_phy *hpsa_sas_phy;
9439 struct sas_phy *phy;
9441 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9442 if (!hpsa_sas_phy)
9443 return NULL;
9445 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9446 hpsa_sas_port->next_phy_index);
9447 if (!phy) {
9448 kfree(hpsa_sas_phy);
9449 return NULL;
9452 hpsa_sas_port->next_phy_index++;
9453 hpsa_sas_phy->phy = phy;
9454 hpsa_sas_phy->parent_port = hpsa_sas_port;
9456 return hpsa_sas_phy;
9459 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9461 struct sas_phy *phy = hpsa_sas_phy->phy;
9463 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9464 sas_phy_free(phy);
9465 if (hpsa_sas_phy->added_to_port)
9466 list_del(&hpsa_sas_phy->phy_list_entry);
9467 kfree(hpsa_sas_phy);
9470 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9472 int rc;
9473 struct hpsa_sas_port *hpsa_sas_port;
9474 struct sas_phy *phy;
9475 struct sas_identify *identify;
9477 hpsa_sas_port = hpsa_sas_phy->parent_port;
9478 phy = hpsa_sas_phy->phy;
9480 identify = &phy->identify;
9481 memset(identify, 0, sizeof(*identify));
9482 identify->sas_address = hpsa_sas_port->sas_address;
9483 identify->device_type = SAS_END_DEVICE;
9484 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9485 identify->target_port_protocols = SAS_PROTOCOL_STP;
9486 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9487 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9488 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9489 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9490 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9492 rc = sas_phy_add(hpsa_sas_phy->phy);
9493 if (rc)
9494 return rc;
9496 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9497 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9498 &hpsa_sas_port->phy_list_head);
9499 hpsa_sas_phy->added_to_port = true;
9501 return 0;
9504 static int
9505 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9506 struct sas_rphy *rphy)
9508 struct sas_identify *identify;
9510 identify = &rphy->identify;
9511 identify->sas_address = hpsa_sas_port->sas_address;
9512 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9513 identify->target_port_protocols = SAS_PROTOCOL_STP;
9515 return sas_rphy_add(rphy);
9518 static struct hpsa_sas_port
9519 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9520 u64 sas_address)
9522 int rc;
9523 struct hpsa_sas_port *hpsa_sas_port;
9524 struct sas_port *port;
9526 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9527 if (!hpsa_sas_port)
9528 return NULL;
9530 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9531 hpsa_sas_port->parent_node = hpsa_sas_node;
9533 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9534 if (!port)
9535 goto free_hpsa_port;
9537 rc = sas_port_add(port);
9538 if (rc)
9539 goto free_sas_port;
9541 hpsa_sas_port->port = port;
9542 hpsa_sas_port->sas_address = sas_address;
9543 list_add_tail(&hpsa_sas_port->port_list_entry,
9544 &hpsa_sas_node->port_list_head);
9546 return hpsa_sas_port;
9548 free_sas_port:
9549 sas_port_free(port);
9550 free_hpsa_port:
9551 kfree(hpsa_sas_port);
9553 return NULL;
9556 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9558 struct hpsa_sas_phy *hpsa_sas_phy;
9559 struct hpsa_sas_phy *next;
9561 list_for_each_entry_safe(hpsa_sas_phy, next,
9562 &hpsa_sas_port->phy_list_head, phy_list_entry)
9563 hpsa_free_sas_phy(hpsa_sas_phy);
9565 sas_port_delete(hpsa_sas_port->port);
9566 list_del(&hpsa_sas_port->port_list_entry);
9567 kfree(hpsa_sas_port);
9570 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9572 struct hpsa_sas_node *hpsa_sas_node;
9574 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9575 if (hpsa_sas_node) {
9576 hpsa_sas_node->parent_dev = parent_dev;
9577 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9580 return hpsa_sas_node;
9583 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9585 struct hpsa_sas_port *hpsa_sas_port;
9586 struct hpsa_sas_port *next;
9588 if (!hpsa_sas_node)
9589 return;
9591 list_for_each_entry_safe(hpsa_sas_port, next,
9592 &hpsa_sas_node->port_list_head, port_list_entry)
9593 hpsa_free_sas_port(hpsa_sas_port);
9595 kfree(hpsa_sas_node);
9598 static struct hpsa_scsi_dev_t
9599 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9600 struct sas_rphy *rphy)
9602 int i;
9603 struct hpsa_scsi_dev_t *device;
9605 for (i = 0; i < h->ndevices; i++) {
9606 device = h->dev[i];
9607 if (!device->sas_port)
9608 continue;
9609 if (device->sas_port->rphy == rphy)
9610 return device;
9613 return NULL;
9616 static int hpsa_add_sas_host(struct ctlr_info *h)
9618 int rc;
9619 struct device *parent_dev;
9620 struct hpsa_sas_node *hpsa_sas_node;
9621 struct hpsa_sas_port *hpsa_sas_port;
9622 struct hpsa_sas_phy *hpsa_sas_phy;
9624 parent_dev = &h->scsi_host->shost_gendev;
9626 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9627 if (!hpsa_sas_node)
9628 return -ENOMEM;
9630 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9631 if (!hpsa_sas_port) {
9632 rc = -ENODEV;
9633 goto free_sas_node;
9636 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9637 if (!hpsa_sas_phy) {
9638 rc = -ENODEV;
9639 goto free_sas_port;
9642 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9643 if (rc)
9644 goto free_sas_phy;
9646 h->sas_host = hpsa_sas_node;
9648 return 0;
9650 free_sas_phy:
9651 hpsa_free_sas_phy(hpsa_sas_phy);
9652 free_sas_port:
9653 hpsa_free_sas_port(hpsa_sas_port);
9654 free_sas_node:
9655 hpsa_free_sas_node(hpsa_sas_node);
9657 return rc;
9660 static void hpsa_delete_sas_host(struct ctlr_info *h)
9662 hpsa_free_sas_node(h->sas_host);
9665 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9666 struct hpsa_scsi_dev_t *device)
9668 int rc;
9669 struct hpsa_sas_port *hpsa_sas_port;
9670 struct sas_rphy *rphy;
9672 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9673 if (!hpsa_sas_port)
9674 return -ENOMEM;
9676 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9677 if (!rphy) {
9678 rc = -ENODEV;
9679 goto free_sas_port;
9682 hpsa_sas_port->rphy = rphy;
9683 device->sas_port = hpsa_sas_port;
9685 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9686 if (rc)
9687 goto free_sas_port;
9689 return 0;
9691 free_sas_port:
9692 hpsa_free_sas_port(hpsa_sas_port);
9693 device->sas_port = NULL;
9695 return rc;
9698 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9700 if (device->sas_port) {
9701 hpsa_free_sas_port(device->sas_port);
9702 device->sas_port = NULL;
9706 static int
9707 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9709 return 0;
9712 static int
9713 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9715 *identifier = 0;
9716 return 0;
9719 static int
9720 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9722 return -ENXIO;
9725 static int
9726 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9728 return 0;
9731 static int
9732 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9734 return 0;
9737 static int
9738 hpsa_sas_phy_setup(struct sas_phy *phy)
9740 return 0;
9743 static void
9744 hpsa_sas_phy_release(struct sas_phy *phy)
9748 static int
9749 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9751 return -EINVAL;
9754 /* SMP = Serial Management Protocol */
9755 static int
9756 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9757 struct request *req)
9759 return -EINVAL;
9762 static struct sas_function_template hpsa_sas_transport_functions = {
9763 .get_linkerrors = hpsa_sas_get_linkerrors,
9764 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9765 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9766 .phy_reset = hpsa_sas_phy_reset,
9767 .phy_enable = hpsa_sas_phy_enable,
9768 .phy_setup = hpsa_sas_phy_setup,
9769 .phy_release = hpsa_sas_phy_release,
9770 .set_phy_speed = hpsa_sas_phy_speed,
9771 .smp_handler = hpsa_sas_smp_handler,
9775 * This is it. Register the PCI driver information for the cards we control
9776 * the OS will call our registered routines when it finds one of our cards.
9778 static int __init hpsa_init(void)
9780 int rc;
9782 hpsa_sas_transport_template =
9783 sas_attach_transport(&hpsa_sas_transport_functions);
9784 if (!hpsa_sas_transport_template)
9785 return -ENODEV;
9787 rc = pci_register_driver(&hpsa_pci_driver);
9789 if (rc)
9790 sas_release_transport(hpsa_sas_transport_template);
9792 return rc;
9795 static void __exit hpsa_cleanup(void)
9797 pci_unregister_driver(&hpsa_pci_driver);
9798 sas_release_transport(hpsa_sas_transport_template);
9801 static void __attribute__((unused)) verify_offsets(void)
9803 #define VERIFY_OFFSET(member, offset) \
9804 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9806 VERIFY_OFFSET(structure_size, 0);
9807 VERIFY_OFFSET(volume_blk_size, 4);
9808 VERIFY_OFFSET(volume_blk_cnt, 8);
9809 VERIFY_OFFSET(phys_blk_shift, 16);
9810 VERIFY_OFFSET(parity_rotation_shift, 17);
9811 VERIFY_OFFSET(strip_size, 18);
9812 VERIFY_OFFSET(disk_starting_blk, 20);
9813 VERIFY_OFFSET(disk_blk_cnt, 28);
9814 VERIFY_OFFSET(data_disks_per_row, 36);
9815 VERIFY_OFFSET(metadata_disks_per_row, 38);
9816 VERIFY_OFFSET(row_cnt, 40);
9817 VERIFY_OFFSET(layout_map_count, 42);
9818 VERIFY_OFFSET(flags, 44);
9819 VERIFY_OFFSET(dekindex, 46);
9820 /* VERIFY_OFFSET(reserved, 48 */
9821 VERIFY_OFFSET(data, 64);
9823 #undef VERIFY_OFFSET
9825 #define VERIFY_OFFSET(member, offset) \
9826 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9828 VERIFY_OFFSET(IU_type, 0);
9829 VERIFY_OFFSET(direction, 1);
9830 VERIFY_OFFSET(reply_queue, 2);
9831 /* VERIFY_OFFSET(reserved1, 3); */
9832 VERIFY_OFFSET(scsi_nexus, 4);
9833 VERIFY_OFFSET(Tag, 8);
9834 VERIFY_OFFSET(cdb, 16);
9835 VERIFY_OFFSET(cciss_lun, 32);
9836 VERIFY_OFFSET(data_len, 40);
9837 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9838 VERIFY_OFFSET(sg_count, 45);
9839 /* VERIFY_OFFSET(reserved3 */
9840 VERIFY_OFFSET(err_ptr, 48);
9841 VERIFY_OFFSET(err_len, 56);
9842 /* VERIFY_OFFSET(reserved4 */
9843 VERIFY_OFFSET(sg, 64);
9845 #undef VERIFY_OFFSET
9847 #define VERIFY_OFFSET(member, offset) \
9848 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9850 VERIFY_OFFSET(dev_handle, 0x00);
9851 VERIFY_OFFSET(reserved1, 0x02);
9852 VERIFY_OFFSET(function, 0x03);
9853 VERIFY_OFFSET(reserved2, 0x04);
9854 VERIFY_OFFSET(err_info, 0x0C);
9855 VERIFY_OFFSET(reserved3, 0x10);
9856 VERIFY_OFFSET(err_info_len, 0x12);
9857 VERIFY_OFFSET(reserved4, 0x13);
9858 VERIFY_OFFSET(sgl_offset, 0x14);
9859 VERIFY_OFFSET(reserved5, 0x15);
9860 VERIFY_OFFSET(transfer_len, 0x1C);
9861 VERIFY_OFFSET(reserved6, 0x20);
9862 VERIFY_OFFSET(io_flags, 0x24);
9863 VERIFY_OFFSET(reserved7, 0x26);
9864 VERIFY_OFFSET(LUN, 0x34);
9865 VERIFY_OFFSET(control, 0x3C);
9866 VERIFY_OFFSET(CDB, 0x40);
9867 VERIFY_OFFSET(reserved8, 0x50);
9868 VERIFY_OFFSET(host_context_flags, 0x60);
9869 VERIFY_OFFSET(timeout_sec, 0x62);
9870 VERIFY_OFFSET(ReplyQueue, 0x64);
9871 VERIFY_OFFSET(reserved9, 0x65);
9872 VERIFY_OFFSET(tag, 0x68);
9873 VERIFY_OFFSET(host_addr, 0x70);
9874 VERIFY_OFFSET(CISS_LUN, 0x78);
9875 VERIFY_OFFSET(SG, 0x78 + 8);
9876 #undef VERIFY_OFFSET
9879 module_init(hpsa_init);
9880 module_exit(hpsa_cleanup);