Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / net / ethernet / amd / au1000_eth.c
blobd3977d032b488e8a571f37e633cd012b04e7e7d4
1 /*
3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, see <http://www.gnu.org/licenses/>.
32 * ########################################################################
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
70 #include "au1000_eth.h"
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK)
82 #define DRV_NAME "au1000_eth"
83 #define DRV_VERSION "1.7"
84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
92 /* AU1000 MAC registers and bits */
93 #define MAC_CONTROL 0x0
94 # define MAC_RX_ENABLE (1 << 2)
95 # define MAC_TX_ENABLE (1 << 3)
96 # define MAC_DEF_CHECK (1 << 5)
97 # define MAC_SET_BL(X) (((X) & 0x3) << 6)
98 # define MAC_AUTO_PAD (1 << 8)
99 # define MAC_DISABLE_RETRY (1 << 10)
100 # define MAC_DISABLE_BCAST (1 << 11)
101 # define MAC_LATE_COL (1 << 12)
102 # define MAC_HASH_MODE (1 << 13)
103 # define MAC_HASH_ONLY (1 << 15)
104 # define MAC_PASS_ALL (1 << 16)
105 # define MAC_INVERSE_FILTER (1 << 17)
106 # define MAC_PROMISCUOUS (1 << 18)
107 # define MAC_PASS_ALL_MULTI (1 << 19)
108 # define MAC_FULL_DUPLEX (1 << 20)
109 # define MAC_NORMAL_MODE 0
110 # define MAC_INT_LOOPBACK (1 << 21)
111 # define MAC_EXT_LOOPBACK (1 << 22)
112 # define MAC_DISABLE_RX_OWN (1 << 23)
113 # define MAC_BIG_ENDIAN (1 << 30)
114 # define MAC_RX_ALL (1 << 31)
115 #define MAC_ADDRESS_HIGH 0x4
116 #define MAC_ADDRESS_LOW 0x8
117 #define MAC_MCAST_HIGH 0xC
118 #define MAC_MCAST_LOW 0x10
119 #define MAC_MII_CNTRL 0x14
120 # define MAC_MII_BUSY (1 << 0)
121 # define MAC_MII_READ 0
122 # define MAC_MII_WRITE (1 << 1)
123 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125 #define MAC_MII_DATA 0x18
126 #define MAC_FLOW_CNTRL 0x1C
127 # define MAC_FLOW_CNTRL_BUSY (1 << 0)
128 # define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129 # define MAC_PASS_CONTROL (1 << 2)
130 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
131 #define MAC_VLAN1_TAG 0x20
132 #define MAC_VLAN2_TAG 0x24
134 /* Ethernet Controller Enable */
135 # define MAC_EN_CLOCK_ENABLE (1 << 0)
136 # define MAC_EN_RESET0 (1 << 1)
137 # define MAC_EN_TOSS (0 << 2)
138 # define MAC_EN_CACHEABLE (1 << 3)
139 # define MAC_EN_RESET1 (1 << 4)
140 # define MAC_EN_RESET2 (1 << 5)
141 # define MAC_DMA_RESET (1 << 6)
143 /* Ethernet Controller DMA Channels */
144 /* offsets from MAC_TX_RING_ADDR address */
145 #define MAC_TX_BUFF0_STATUS 0x0
146 # define TX_FRAME_ABORTED (1 << 0)
147 # define TX_JAB_TIMEOUT (1 << 1)
148 # define TX_NO_CARRIER (1 << 2)
149 # define TX_LOSS_CARRIER (1 << 3)
150 # define TX_EXC_DEF (1 << 4)
151 # define TX_LATE_COLL_ABORT (1 << 5)
152 # define TX_EXC_COLL (1 << 6)
153 # define TX_UNDERRUN (1 << 7)
154 # define TX_DEFERRED (1 << 8)
155 # define TX_LATE_COLL (1 << 9)
156 # define TX_COLL_CNT_MASK (0xF << 10)
157 # define TX_PKT_RETRY (1 << 31)
158 #define MAC_TX_BUFF0_ADDR 0x4
159 # define TX_DMA_ENABLE (1 << 0)
160 # define TX_T_DONE (1 << 1)
161 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
162 #define MAC_TX_BUFF0_LEN 0x8
163 #define MAC_TX_BUFF1_STATUS 0x10
164 #define MAC_TX_BUFF1_ADDR 0x14
165 #define MAC_TX_BUFF1_LEN 0x18
166 #define MAC_TX_BUFF2_STATUS 0x20
167 #define MAC_TX_BUFF2_ADDR 0x24
168 #define MAC_TX_BUFF2_LEN 0x28
169 #define MAC_TX_BUFF3_STATUS 0x30
170 #define MAC_TX_BUFF3_ADDR 0x34
171 #define MAC_TX_BUFF3_LEN 0x38
173 /* offsets from MAC_RX_RING_ADDR */
174 #define MAC_RX_BUFF0_STATUS 0x0
175 # define RX_FRAME_LEN_MASK 0x3fff
176 # define RX_WDOG_TIMER (1 << 14)
177 # define RX_RUNT (1 << 15)
178 # define RX_OVERLEN (1 << 16)
179 # define RX_COLL (1 << 17)
180 # define RX_ETHER (1 << 18)
181 # define RX_MII_ERROR (1 << 19)
182 # define RX_DRIBBLING (1 << 20)
183 # define RX_CRC_ERROR (1 << 21)
184 # define RX_VLAN1 (1 << 22)
185 # define RX_VLAN2 (1 << 23)
186 # define RX_LEN_ERROR (1 << 24)
187 # define RX_CNTRL_FRAME (1 << 25)
188 # define RX_U_CNTRL_FRAME (1 << 26)
189 # define RX_MCAST_FRAME (1 << 27)
190 # define RX_BCAST_FRAME (1 << 28)
191 # define RX_FILTER_FAIL (1 << 29)
192 # define RX_PACKET_FILTER (1 << 30)
193 # define RX_MISSED_FRAME (1 << 31)
195 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
196 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198 #define MAC_RX_BUFF0_ADDR 0x4
199 # define RX_DMA_ENABLE (1 << 0)
200 # define RX_T_DONE (1 << 1)
201 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
202 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
203 #define MAC_RX_BUFF1_STATUS 0x10
204 #define MAC_RX_BUFF1_ADDR 0x14
205 #define MAC_RX_BUFF2_STATUS 0x20
206 #define MAC_RX_BUFF2_ADDR 0x24
207 #define MAC_RX_BUFF3_STATUS 0x30
208 #define MAC_RX_BUFF3_ADDR 0x34
211 * Theory of operation
213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214 * There are four receive and four transmit descriptors. These
215 * descriptors are not in memory; rather, they are just a set of
216 * hardware registers.
218 * Since the Au1000 has a coherent data cache, the receive and
219 * transmit buffers are allocated from the KSEG0 segment. The
220 * hardware registers, however, are still mapped at KSEG1 to
221 * make sure there's no out-of-order writes, and that all writes
222 * complete immediately.
226 * board-specific configurations
228 * PHY detection algorithm
230 * If phy_static_config is undefined, the PHY setup is
231 * autodetected:
233 * mii_probe() first searches the current MAC's MII bus for a PHY,
234 * selecting the first (or last, if phy_search_highest_addr is
235 * defined) PHY address not already claimed by another netdev.
237 * If nothing was found that way when searching for the 2nd ethernet
238 * controller's PHY and phy1_search_mac0 is defined, then
239 * the first MII bus is searched as well for an unclaimed PHY; this is
240 * needed in case of a dual-PHY accessible only through the MAC0's MII
241 * bus.
243 * Finally, if no PHY is found, then the corresponding ethernet
244 * controller is not registered to the network subsystem.
247 /* autodetection defaults: phy1_search_mac0 */
249 /* static PHY setup
251 * most boards PHY setup should be detectable properly with the
252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253 * you have a switch attached, or want to use the PHY's interrupt
254 * notification capabilities) you can provide a static PHY
255 * configuration here
257 * IRQs may only be set, if a PHY address was configured
258 * If a PHY address is given, also a bus id is required to be set
260 * ps: make sure the used irqs are configured properly in the board
261 * specific irq-map
264 static void au1000_enable_mac(struct net_device *dev, int force_reset)
266 unsigned long flags;
267 struct au1000_private *aup = netdev_priv(dev);
269 spin_lock_irqsave(&aup->lock, flags);
271 if (force_reset || (!aup->mac_enabled)) {
272 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273 wmb(); /* drain writebuffer */
274 mdelay(2);
275 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276 | MAC_EN_CLOCK_ENABLE), aup->enable);
277 wmb(); /* drain writebuffer */
278 mdelay(2);
280 aup->mac_enabled = 1;
283 spin_unlock_irqrestore(&aup->lock, flags);
287 * MII operations
289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
291 struct au1000_private *aup = netdev_priv(dev);
292 u32 *const mii_control_reg = &aup->mac->mii_control;
293 u32 *const mii_data_reg = &aup->mac->mii_data;
294 u32 timedout = 20;
295 u32 mii_control;
297 while (readl(mii_control_reg) & MAC_MII_BUSY) {
298 mdelay(1);
299 if (--timedout == 0) {
300 netdev_err(dev, "read_MII busy timeout!!\n");
301 return -1;
305 mii_control = MAC_SET_MII_SELECT_REG(reg) |
306 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
308 writel(mii_control, mii_control_reg);
310 timedout = 20;
311 while (readl(mii_control_reg) & MAC_MII_BUSY) {
312 mdelay(1);
313 if (--timedout == 0) {
314 netdev_err(dev, "mdio_read busy timeout!!\n");
315 return -1;
318 return readl(mii_data_reg);
321 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322 int reg, u16 value)
324 struct au1000_private *aup = netdev_priv(dev);
325 u32 *const mii_control_reg = &aup->mac->mii_control;
326 u32 *const mii_data_reg = &aup->mac->mii_data;
327 u32 timedout = 20;
328 u32 mii_control;
330 while (readl(mii_control_reg) & MAC_MII_BUSY) {
331 mdelay(1);
332 if (--timedout == 0) {
333 netdev_err(dev, "mdio_write busy timeout!!\n");
334 return;
338 mii_control = MAC_SET_MII_SELECT_REG(reg) |
339 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
341 writel(value, mii_data_reg);
342 writel(mii_control, mii_control_reg);
345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
347 struct net_device *const dev = bus->priv;
349 /* make sure the MAC associated with this
350 * mii_bus is enabled
352 au1000_enable_mac(dev, 0);
354 return au1000_mdio_read(dev, phy_addr, regnum);
357 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
358 u16 value)
360 struct net_device *const dev = bus->priv;
362 /* make sure the MAC associated with this
363 * mii_bus is enabled
365 au1000_enable_mac(dev, 0);
367 au1000_mdio_write(dev, phy_addr, regnum, value);
368 return 0;
371 static int au1000_mdiobus_reset(struct mii_bus *bus)
373 struct net_device *const dev = bus->priv;
375 /* make sure the MAC associated with this
376 * mii_bus is enabled
378 au1000_enable_mac(dev, 0);
380 return 0;
383 static void au1000_hard_stop(struct net_device *dev)
385 struct au1000_private *aup = netdev_priv(dev);
386 u32 reg;
388 netif_dbg(aup, drv, dev, "hard stop\n");
390 reg = readl(&aup->mac->control);
391 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
392 writel(reg, &aup->mac->control);
393 wmb(); /* drain writebuffer */
394 mdelay(10);
397 static void au1000_enable_rx_tx(struct net_device *dev)
399 struct au1000_private *aup = netdev_priv(dev);
400 u32 reg;
402 netif_dbg(aup, hw, dev, "enable_rx_tx\n");
404 reg = readl(&aup->mac->control);
405 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
406 writel(reg, &aup->mac->control);
407 wmb(); /* drain writebuffer */
408 mdelay(10);
411 static void
412 au1000_adjust_link(struct net_device *dev)
414 struct au1000_private *aup = netdev_priv(dev);
415 struct phy_device *phydev = aup->phy_dev;
416 unsigned long flags;
417 u32 reg;
419 int status_change = 0;
421 BUG_ON(!aup->phy_dev);
423 spin_lock_irqsave(&aup->lock, flags);
425 if (phydev->link && (aup->old_speed != phydev->speed)) {
426 /* speed changed */
428 switch (phydev->speed) {
429 case SPEED_10:
430 case SPEED_100:
431 break;
432 default:
433 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
434 phydev->speed);
435 break;
438 aup->old_speed = phydev->speed;
440 status_change = 1;
443 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
444 /* duplex mode changed */
446 /* switching duplex mode requires to disable rx and tx! */
447 au1000_hard_stop(dev);
449 reg = readl(&aup->mac->control);
450 if (DUPLEX_FULL == phydev->duplex) {
451 reg |= MAC_FULL_DUPLEX;
452 reg &= ~MAC_DISABLE_RX_OWN;
453 } else {
454 reg &= ~MAC_FULL_DUPLEX;
455 reg |= MAC_DISABLE_RX_OWN;
457 writel(reg, &aup->mac->control);
458 wmb(); /* drain writebuffer */
459 mdelay(1);
461 au1000_enable_rx_tx(dev);
462 aup->old_duplex = phydev->duplex;
464 status_change = 1;
467 if (phydev->link != aup->old_link) {
468 /* link state changed */
470 if (!phydev->link) {
471 /* link went down */
472 aup->old_speed = 0;
473 aup->old_duplex = -1;
476 aup->old_link = phydev->link;
477 status_change = 1;
480 spin_unlock_irqrestore(&aup->lock, flags);
482 if (status_change) {
483 if (phydev->link)
484 netdev_info(dev, "link up (%d/%s)\n",
485 phydev->speed,
486 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
487 else
488 netdev_info(dev, "link down\n");
492 static int au1000_mii_probe(struct net_device *dev)
494 struct au1000_private *const aup = netdev_priv(dev);
495 struct phy_device *phydev = NULL;
496 int phy_addr;
498 if (aup->phy_static_config) {
499 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
501 if (aup->phy_addr)
502 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
503 else
504 netdev_info(dev, "using PHY-less setup\n");
505 return 0;
508 /* find the first (lowest address) PHY
509 * on the current MAC's MII bus
511 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
512 if (mdiobus_get_phy(aup->mii_bus, aup->phy_addr)) {
513 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
514 if (!aup->phy_search_highest_addr)
515 /* break out with first one found */
516 break;
519 if (aup->phy1_search_mac0) {
520 /* try harder to find a PHY */
521 if (!phydev && (aup->mac_id == 1)) {
522 /* no PHY found, maybe we have a dual PHY? */
523 dev_info(&dev->dev, ": no PHY found on MAC1, "
524 "let's see if it's attached to MAC0...\n");
526 /* find the first (lowest address) non-attached
527 * PHY on the MAC0 MII bus
529 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
530 struct phy_device *const tmp_phydev =
531 mdiobus_get_phy(aup->mii_bus,
532 phy_addr);
534 if (aup->mac_id == 1)
535 break;
537 /* no PHY here... */
538 if (!tmp_phydev)
539 continue;
541 /* already claimed by MAC0 */
542 if (tmp_phydev->attached_dev)
543 continue;
545 phydev = tmp_phydev;
546 break; /* found it */
551 if (!phydev) {
552 netdev_err(dev, "no PHY found\n");
553 return -1;
556 /* now we are supposed to have a proper phydev, to attach to... */
557 BUG_ON(phydev->attached_dev);
559 phydev = phy_connect(dev, phydev_name(phydev),
560 &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
562 if (IS_ERR(phydev)) {
563 netdev_err(dev, "Could not attach to PHY\n");
564 return PTR_ERR(phydev);
567 /* mask with MAC supported features */
568 phydev->supported &= (SUPPORTED_10baseT_Half
569 | SUPPORTED_10baseT_Full
570 | SUPPORTED_100baseT_Half
571 | SUPPORTED_100baseT_Full
572 | SUPPORTED_Autoneg
573 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
574 | SUPPORTED_MII
575 | SUPPORTED_TP);
577 phydev->advertising = phydev->supported;
579 aup->old_link = 0;
580 aup->old_speed = 0;
581 aup->old_duplex = -1;
582 aup->phy_dev = phydev;
584 phy_attached_info(phydev);
586 return 0;
591 * Buffer allocation/deallocation routines. The buffer descriptor returned
592 * has the virtual and dma address of a buffer suitable for
593 * both, receive and transmit operations.
595 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
597 struct db_dest *pDB;
598 pDB = aup->pDBfree;
600 if (pDB)
601 aup->pDBfree = pDB->pnext;
603 return pDB;
606 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
608 struct db_dest *pDBfree = aup->pDBfree;
609 if (pDBfree)
610 pDBfree->pnext = pDB;
611 aup->pDBfree = pDB;
614 static void au1000_reset_mac_unlocked(struct net_device *dev)
616 struct au1000_private *const aup = netdev_priv(dev);
617 int i;
619 au1000_hard_stop(dev);
621 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
622 wmb(); /* drain writebuffer */
623 mdelay(2);
624 writel(0, aup->enable);
625 wmb(); /* drain writebuffer */
626 mdelay(2);
628 aup->tx_full = 0;
629 for (i = 0; i < NUM_RX_DMA; i++) {
630 /* reset control bits */
631 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
633 for (i = 0; i < NUM_TX_DMA; i++) {
634 /* reset control bits */
635 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
638 aup->mac_enabled = 0;
642 static void au1000_reset_mac(struct net_device *dev)
644 struct au1000_private *const aup = netdev_priv(dev);
645 unsigned long flags;
647 netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
648 (unsigned)aup);
650 spin_lock_irqsave(&aup->lock, flags);
652 au1000_reset_mac_unlocked(dev);
654 spin_unlock_irqrestore(&aup->lock, flags);
658 * Setup the receive and transmit "rings". These pointers are the addresses
659 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
660 * these are not descriptors sitting in memory.
662 static void
663 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
665 int i;
667 for (i = 0; i < NUM_RX_DMA; i++) {
668 aup->rx_dma_ring[i] = (struct rx_dma *)
669 (tx_base + 0x100 + sizeof(struct rx_dma) * i);
671 for (i = 0; i < NUM_TX_DMA; i++) {
672 aup->tx_dma_ring[i] = (struct tx_dma *)
673 (tx_base + sizeof(struct tx_dma) * i);
678 * ethtool operations
681 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
683 struct au1000_private *aup = netdev_priv(dev);
685 if (aup->phy_dev)
686 return phy_ethtool_gset(aup->phy_dev, cmd);
688 return -EINVAL;
691 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
693 struct au1000_private *aup = netdev_priv(dev);
695 if (!capable(CAP_NET_ADMIN))
696 return -EPERM;
698 if (aup->phy_dev)
699 return phy_ethtool_sset(aup->phy_dev, cmd);
701 return -EINVAL;
704 static void
705 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
707 struct au1000_private *aup = netdev_priv(dev);
709 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
710 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
711 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
712 aup->mac_id);
715 static void au1000_set_msglevel(struct net_device *dev, u32 value)
717 struct au1000_private *aup = netdev_priv(dev);
718 aup->msg_enable = value;
721 static u32 au1000_get_msglevel(struct net_device *dev)
723 struct au1000_private *aup = netdev_priv(dev);
724 return aup->msg_enable;
727 static const struct ethtool_ops au1000_ethtool_ops = {
728 .get_settings = au1000_get_settings,
729 .set_settings = au1000_set_settings,
730 .get_drvinfo = au1000_get_drvinfo,
731 .get_link = ethtool_op_get_link,
732 .get_msglevel = au1000_get_msglevel,
733 .set_msglevel = au1000_set_msglevel,
738 * Initialize the interface.
740 * When the device powers up, the clocks are disabled and the
741 * mac is in reset state. When the interface is closed, we
742 * do the same -- reset the device and disable the clocks to
743 * conserve power. Thus, whenever au1000_init() is called,
744 * the device should already be in reset state.
746 static int au1000_init(struct net_device *dev)
748 struct au1000_private *aup = netdev_priv(dev);
749 unsigned long flags;
750 int i;
751 u32 control;
753 netif_dbg(aup, hw, dev, "au1000_init\n");
755 /* bring the device out of reset */
756 au1000_enable_mac(dev, 1);
758 spin_lock_irqsave(&aup->lock, flags);
760 writel(0, &aup->mac->control);
761 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
762 aup->tx_tail = aup->tx_head;
763 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
765 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
766 &aup->mac->mac_addr_high);
767 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
768 dev->dev_addr[1]<<8 | dev->dev_addr[0],
769 &aup->mac->mac_addr_low);
772 for (i = 0; i < NUM_RX_DMA; i++)
773 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
775 wmb(); /* drain writebuffer */
777 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
778 #ifndef CONFIG_CPU_LITTLE_ENDIAN
779 control |= MAC_BIG_ENDIAN;
780 #endif
781 if (aup->phy_dev) {
782 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
783 control |= MAC_FULL_DUPLEX;
784 else
785 control |= MAC_DISABLE_RX_OWN;
786 } else { /* PHY-less op, assume full-duplex */
787 control |= MAC_FULL_DUPLEX;
790 writel(control, &aup->mac->control);
791 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
792 wmb(); /* drain writebuffer */
794 spin_unlock_irqrestore(&aup->lock, flags);
795 return 0;
798 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
800 struct net_device_stats *ps = &dev->stats;
802 ps->rx_packets++;
803 if (status & RX_MCAST_FRAME)
804 ps->multicast++;
806 if (status & RX_ERROR) {
807 ps->rx_errors++;
808 if (status & RX_MISSED_FRAME)
809 ps->rx_missed_errors++;
810 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
811 ps->rx_length_errors++;
812 if (status & RX_CRC_ERROR)
813 ps->rx_crc_errors++;
814 if (status & RX_COLL)
815 ps->collisions++;
816 } else
817 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
822 * Au1000 receive routine.
824 static int au1000_rx(struct net_device *dev)
826 struct au1000_private *aup = netdev_priv(dev);
827 struct sk_buff *skb;
828 struct rx_dma *prxd;
829 u32 buff_stat, status;
830 struct db_dest *pDB;
831 u32 frmlen;
833 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
835 prxd = aup->rx_dma_ring[aup->rx_head];
836 buff_stat = prxd->buff_stat;
837 while (buff_stat & RX_T_DONE) {
838 status = prxd->status;
839 pDB = aup->rx_db_inuse[aup->rx_head];
840 au1000_update_rx_stats(dev, status);
841 if (!(status & RX_ERROR)) {
843 /* good frame */
844 frmlen = (status & RX_FRAME_LEN_MASK);
845 frmlen -= 4; /* Remove FCS */
846 skb = netdev_alloc_skb(dev, frmlen + 2);
847 if (skb == NULL) {
848 dev->stats.rx_dropped++;
849 continue;
851 skb_reserve(skb, 2); /* 16 byte IP header align */
852 skb_copy_to_linear_data(skb,
853 (unsigned char *)pDB->vaddr, frmlen);
854 skb_put(skb, frmlen);
855 skb->protocol = eth_type_trans(skb, dev);
856 netif_rx(skb); /* pass the packet to upper layers */
857 } else {
858 if (au1000_debug > 4) {
859 pr_err("rx_error(s):");
860 if (status & RX_MISSED_FRAME)
861 pr_cont(" miss");
862 if (status & RX_WDOG_TIMER)
863 pr_cont(" wdog");
864 if (status & RX_RUNT)
865 pr_cont(" runt");
866 if (status & RX_OVERLEN)
867 pr_cont(" overlen");
868 if (status & RX_COLL)
869 pr_cont(" coll");
870 if (status & RX_MII_ERROR)
871 pr_cont(" mii error");
872 if (status & RX_CRC_ERROR)
873 pr_cont(" crc error");
874 if (status & RX_LEN_ERROR)
875 pr_cont(" len error");
876 if (status & RX_U_CNTRL_FRAME)
877 pr_cont(" u control frame");
878 pr_cont("\n");
881 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
882 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
883 wmb(); /* drain writebuffer */
885 /* next descriptor */
886 prxd = aup->rx_dma_ring[aup->rx_head];
887 buff_stat = prxd->buff_stat;
889 return 0;
892 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
894 struct au1000_private *aup = netdev_priv(dev);
895 struct net_device_stats *ps = &dev->stats;
897 if (status & TX_FRAME_ABORTED) {
898 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
899 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
900 /* any other tx errors are only valid
901 * in half duplex mode
903 ps->tx_errors++;
904 ps->tx_aborted_errors++;
906 } else {
907 ps->tx_errors++;
908 ps->tx_aborted_errors++;
909 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
910 ps->tx_carrier_errors++;
916 * Called from the interrupt service routine to acknowledge
917 * the TX DONE bits. This is a must if the irq is setup as
918 * edge triggered.
920 static void au1000_tx_ack(struct net_device *dev)
922 struct au1000_private *aup = netdev_priv(dev);
923 struct tx_dma *ptxd;
925 ptxd = aup->tx_dma_ring[aup->tx_tail];
927 while (ptxd->buff_stat & TX_T_DONE) {
928 au1000_update_tx_stats(dev, ptxd->status);
929 ptxd->buff_stat &= ~TX_T_DONE;
930 ptxd->len = 0;
931 wmb(); /* drain writebuffer */
933 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
934 ptxd = aup->tx_dma_ring[aup->tx_tail];
936 if (aup->tx_full) {
937 aup->tx_full = 0;
938 netif_wake_queue(dev);
944 * Au1000 interrupt service routine.
946 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
948 struct net_device *dev = dev_id;
950 /* Handle RX interrupts first to minimize chance of overrun */
952 au1000_rx(dev);
953 au1000_tx_ack(dev);
954 return IRQ_RETVAL(1);
957 static int au1000_open(struct net_device *dev)
959 int retval;
960 struct au1000_private *aup = netdev_priv(dev);
962 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
964 retval = request_irq(dev->irq, au1000_interrupt, 0,
965 dev->name, dev);
966 if (retval) {
967 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
968 return retval;
971 retval = au1000_init(dev);
972 if (retval) {
973 netdev_err(dev, "error in au1000_init\n");
974 free_irq(dev->irq, dev);
975 return retval;
978 if (aup->phy_dev) {
979 /* cause the PHY state machine to schedule a link state check */
980 aup->phy_dev->state = PHY_CHANGELINK;
981 phy_start(aup->phy_dev);
984 netif_start_queue(dev);
986 netif_dbg(aup, drv, dev, "open: Initialization done.\n");
988 return 0;
991 static int au1000_close(struct net_device *dev)
993 unsigned long flags;
994 struct au1000_private *const aup = netdev_priv(dev);
996 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
998 if (aup->phy_dev)
999 phy_stop(aup->phy_dev);
1001 spin_lock_irqsave(&aup->lock, flags);
1003 au1000_reset_mac_unlocked(dev);
1005 /* stop the device */
1006 netif_stop_queue(dev);
1008 /* disable the interrupt */
1009 free_irq(dev->irq, dev);
1010 spin_unlock_irqrestore(&aup->lock, flags);
1012 return 0;
1016 * Au1000 transmit routine.
1018 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
1020 struct au1000_private *aup = netdev_priv(dev);
1021 struct net_device_stats *ps = &dev->stats;
1022 struct tx_dma *ptxd;
1023 u32 buff_stat;
1024 struct db_dest *pDB;
1025 int i;
1027 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1028 (unsigned)aup, skb->len,
1029 skb->data, aup->tx_head);
1031 ptxd = aup->tx_dma_ring[aup->tx_head];
1032 buff_stat = ptxd->buff_stat;
1033 if (buff_stat & TX_DMA_ENABLE) {
1034 /* We've wrapped around and the transmitter is still busy */
1035 netif_stop_queue(dev);
1036 aup->tx_full = 1;
1037 return NETDEV_TX_BUSY;
1038 } else if (buff_stat & TX_T_DONE) {
1039 au1000_update_tx_stats(dev, ptxd->status);
1040 ptxd->len = 0;
1043 if (aup->tx_full) {
1044 aup->tx_full = 0;
1045 netif_wake_queue(dev);
1048 pDB = aup->tx_db_inuse[aup->tx_head];
1049 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1050 if (skb->len < ETH_ZLEN) {
1051 for (i = skb->len; i < ETH_ZLEN; i++)
1052 ((char *)pDB->vaddr)[i] = 0;
1054 ptxd->len = ETH_ZLEN;
1055 } else
1056 ptxd->len = skb->len;
1058 ps->tx_packets++;
1059 ps->tx_bytes += ptxd->len;
1061 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1062 wmb(); /* drain writebuffer */
1063 dev_kfree_skb(skb);
1064 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1065 return NETDEV_TX_OK;
1069 * The Tx ring has been full longer than the watchdog timeout
1070 * value. The transmitter must be hung?
1072 static void au1000_tx_timeout(struct net_device *dev)
1074 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1075 au1000_reset_mac(dev);
1076 au1000_init(dev);
1077 dev->trans_start = jiffies; /* prevent tx timeout */
1078 netif_wake_queue(dev);
1081 static void au1000_multicast_list(struct net_device *dev)
1083 struct au1000_private *aup = netdev_priv(dev);
1084 u32 reg;
1086 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1087 reg = readl(&aup->mac->control);
1088 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1089 reg |= MAC_PROMISCUOUS;
1090 } else if ((dev->flags & IFF_ALLMULTI) ||
1091 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1092 reg |= MAC_PASS_ALL_MULTI;
1093 reg &= ~MAC_PROMISCUOUS;
1094 netdev_info(dev, "Pass all multicast\n");
1095 } else {
1096 struct netdev_hw_addr *ha;
1097 u32 mc_filter[2]; /* Multicast hash filter */
1099 mc_filter[1] = mc_filter[0] = 0;
1100 netdev_for_each_mc_addr(ha, dev)
1101 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1102 (long *)mc_filter);
1103 writel(mc_filter[1], &aup->mac->multi_hash_high);
1104 writel(mc_filter[0], &aup->mac->multi_hash_low);
1105 reg &= ~MAC_PROMISCUOUS;
1106 reg |= MAC_HASH_MODE;
1108 writel(reg, &aup->mac->control);
1111 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1113 struct au1000_private *aup = netdev_priv(dev);
1115 if (!netif_running(dev))
1116 return -EINVAL;
1118 if (!aup->phy_dev)
1119 return -EINVAL; /* PHY not controllable */
1121 return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1124 static const struct net_device_ops au1000_netdev_ops = {
1125 .ndo_open = au1000_open,
1126 .ndo_stop = au1000_close,
1127 .ndo_start_xmit = au1000_tx,
1128 .ndo_set_rx_mode = au1000_multicast_list,
1129 .ndo_do_ioctl = au1000_ioctl,
1130 .ndo_tx_timeout = au1000_tx_timeout,
1131 .ndo_set_mac_address = eth_mac_addr,
1132 .ndo_validate_addr = eth_validate_addr,
1133 .ndo_change_mtu = eth_change_mtu,
1136 static int au1000_probe(struct platform_device *pdev)
1138 struct au1000_private *aup = NULL;
1139 struct au1000_eth_platform_data *pd;
1140 struct net_device *dev = NULL;
1141 struct db_dest *pDB, *pDBfree;
1142 int irq, i, err = 0;
1143 struct resource *base, *macen, *macdma;
1145 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1146 if (!base) {
1147 dev_err(&pdev->dev, "failed to retrieve base register\n");
1148 err = -ENODEV;
1149 goto out;
1152 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1153 if (!macen) {
1154 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1155 err = -ENODEV;
1156 goto out;
1159 irq = platform_get_irq(pdev, 0);
1160 if (irq < 0) {
1161 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1162 err = -ENODEV;
1163 goto out;
1166 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1167 if (!macdma) {
1168 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1169 err = -ENODEV;
1170 goto out;
1173 if (!request_mem_region(base->start, resource_size(base),
1174 pdev->name)) {
1175 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1176 err = -ENXIO;
1177 goto out;
1180 if (!request_mem_region(macen->start, resource_size(macen),
1181 pdev->name)) {
1182 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1183 err = -ENXIO;
1184 goto err_request;
1187 if (!request_mem_region(macdma->start, resource_size(macdma),
1188 pdev->name)) {
1189 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1190 err = -ENXIO;
1191 goto err_macdma;
1194 dev = alloc_etherdev(sizeof(struct au1000_private));
1195 if (!dev) {
1196 err = -ENOMEM;
1197 goto err_alloc;
1200 SET_NETDEV_DEV(dev, &pdev->dev);
1201 platform_set_drvdata(pdev, dev);
1202 aup = netdev_priv(dev);
1204 spin_lock_init(&aup->lock);
1205 aup->msg_enable = (au1000_debug < 4 ?
1206 AU1000_DEF_MSG_ENABLE : au1000_debug);
1208 /* Allocate the data buffers
1209 * Snooping works fine with eth on all au1xxx
1211 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1212 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1213 &aup->dma_addr, 0);
1214 if (!aup->vaddr) {
1215 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1216 err = -ENOMEM;
1217 goto err_vaddr;
1220 /* aup->mac is the base address of the MAC's registers */
1221 aup->mac = (struct mac_reg *)
1222 ioremap_nocache(base->start, resource_size(base));
1223 if (!aup->mac) {
1224 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1225 err = -ENXIO;
1226 goto err_remap1;
1229 /* Setup some variables for quick register address access */
1230 aup->enable = (u32 *)ioremap_nocache(macen->start,
1231 resource_size(macen));
1232 if (!aup->enable) {
1233 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1234 err = -ENXIO;
1235 goto err_remap2;
1237 aup->mac_id = pdev->id;
1239 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1240 if (!aup->macdma) {
1241 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1242 err = -ENXIO;
1243 goto err_remap3;
1246 au1000_setup_hw_rings(aup, aup->macdma);
1248 writel(0, aup->enable);
1249 aup->mac_enabled = 0;
1251 pd = dev_get_platdata(&pdev->dev);
1252 if (!pd) {
1253 dev_info(&pdev->dev, "no platform_data passed,"
1254 " PHY search on MAC0\n");
1255 aup->phy1_search_mac0 = 1;
1256 } else {
1257 if (is_valid_ether_addr(pd->mac)) {
1258 memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1259 } else {
1260 /* Set a random MAC since no valid provided by platform_data. */
1261 eth_hw_addr_random(dev);
1264 aup->phy_static_config = pd->phy_static_config;
1265 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1266 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1267 aup->phy_addr = pd->phy_addr;
1268 aup->phy_busid = pd->phy_busid;
1269 aup->phy_irq = pd->phy_irq;
1272 if (aup->phy_busid && aup->phy_busid > 0) {
1273 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1274 err = -ENODEV;
1275 goto err_mdiobus_alloc;
1278 aup->mii_bus = mdiobus_alloc();
1279 if (aup->mii_bus == NULL) {
1280 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1281 err = -ENOMEM;
1282 goto err_mdiobus_alloc;
1285 aup->mii_bus->priv = dev;
1286 aup->mii_bus->read = au1000_mdiobus_read;
1287 aup->mii_bus->write = au1000_mdiobus_write;
1288 aup->mii_bus->reset = au1000_mdiobus_reset;
1289 aup->mii_bus->name = "au1000_eth_mii";
1290 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1291 pdev->name, aup->mac_id);
1293 /* if known, set corresponding PHY IRQs */
1294 if (aup->phy_static_config)
1295 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1296 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1298 err = mdiobus_register(aup->mii_bus);
1299 if (err) {
1300 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1301 goto err_mdiobus_reg;
1304 err = au1000_mii_probe(dev);
1305 if (err != 0)
1306 goto err_out;
1308 pDBfree = NULL;
1309 /* setup the data buffer descriptors and attach a buffer to each one */
1310 pDB = aup->db;
1311 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1312 pDB->pnext = pDBfree;
1313 pDBfree = pDB;
1314 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1315 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1316 pDB++;
1318 aup->pDBfree = pDBfree;
1320 err = -ENODEV;
1321 for (i = 0; i < NUM_RX_DMA; i++) {
1322 pDB = au1000_GetFreeDB(aup);
1323 if (!pDB)
1324 goto err_out;
1326 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1327 aup->rx_db_inuse[i] = pDB;
1330 err = -ENODEV;
1331 for (i = 0; i < NUM_TX_DMA; i++) {
1332 pDB = au1000_GetFreeDB(aup);
1333 if (!pDB)
1334 goto err_out;
1336 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1337 aup->tx_dma_ring[i]->len = 0;
1338 aup->tx_db_inuse[i] = pDB;
1341 dev->base_addr = base->start;
1342 dev->irq = irq;
1343 dev->netdev_ops = &au1000_netdev_ops;
1344 dev->ethtool_ops = &au1000_ethtool_ops;
1345 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1348 * The boot code uses the ethernet controller, so reset it to start
1349 * fresh. au1000_init() expects that the device is in reset state.
1351 au1000_reset_mac(dev);
1353 err = register_netdev(dev);
1354 if (err) {
1355 netdev_err(dev, "Cannot register net device, aborting.\n");
1356 goto err_out;
1359 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1360 (unsigned long)base->start, irq);
1362 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1364 return 0;
1366 err_out:
1367 if (aup->mii_bus != NULL)
1368 mdiobus_unregister(aup->mii_bus);
1370 /* here we should have a valid dev plus aup-> register addresses
1371 * so we can reset the mac properly.
1373 au1000_reset_mac(dev);
1375 for (i = 0; i < NUM_RX_DMA; i++) {
1376 if (aup->rx_db_inuse[i])
1377 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1379 for (i = 0; i < NUM_TX_DMA; i++) {
1380 if (aup->tx_db_inuse[i])
1381 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1383 err_mdiobus_reg:
1384 mdiobus_free(aup->mii_bus);
1385 err_mdiobus_alloc:
1386 iounmap(aup->macdma);
1387 err_remap3:
1388 iounmap(aup->enable);
1389 err_remap2:
1390 iounmap(aup->mac);
1391 err_remap1:
1392 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1393 (void *)aup->vaddr, aup->dma_addr);
1394 err_vaddr:
1395 free_netdev(dev);
1396 err_alloc:
1397 release_mem_region(macdma->start, resource_size(macdma));
1398 err_macdma:
1399 release_mem_region(macen->start, resource_size(macen));
1400 err_request:
1401 release_mem_region(base->start, resource_size(base));
1402 out:
1403 return err;
1406 static int au1000_remove(struct platform_device *pdev)
1408 struct net_device *dev = platform_get_drvdata(pdev);
1409 struct au1000_private *aup = netdev_priv(dev);
1410 int i;
1411 struct resource *base, *macen;
1413 unregister_netdev(dev);
1414 mdiobus_unregister(aup->mii_bus);
1415 mdiobus_free(aup->mii_bus);
1417 for (i = 0; i < NUM_RX_DMA; i++)
1418 if (aup->rx_db_inuse[i])
1419 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1421 for (i = 0; i < NUM_TX_DMA; i++)
1422 if (aup->tx_db_inuse[i])
1423 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1425 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1426 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1427 (void *)aup->vaddr, aup->dma_addr);
1429 iounmap(aup->macdma);
1430 iounmap(aup->mac);
1431 iounmap(aup->enable);
1433 base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1434 release_mem_region(base->start, resource_size(base));
1436 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1437 release_mem_region(base->start, resource_size(base));
1439 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1440 release_mem_region(macen->start, resource_size(macen));
1442 free_netdev(dev);
1444 return 0;
1447 static struct platform_driver au1000_eth_driver = {
1448 .probe = au1000_probe,
1449 .remove = au1000_remove,
1450 .driver = {
1451 .name = "au1000-eth",
1455 module_platform_driver(au1000_eth_driver);
1457 MODULE_ALIAS("platform:au1000-eth");