2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
43 #include <asm/delay.h>
49 /* Board/System/Debug information/definition ---------------- */
51 #define DM9000_PHY 0x40 /* PHY address 0x01 */
53 #define CARDNAME "dm9000"
54 #define DRV_VERSION "1.31"
57 * Transmit timeout, default 5 seconds.
59 static int watchdog
= 5000;
60 module_param(watchdog
, int, 0400);
61 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
64 * Debug messages level
67 module_param(debug
, int, 0644);
68 MODULE_PARM_DESC(debug
, "dm9000 debug level (0-4)");
70 /* DM9000 register address locking.
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
88 /* The driver supports the original DM9000E, and now the two newer
89 * devices, DM9000A and DM9000B.
93 TYPE_DM9000E
, /* original DM9000 */
98 /* Structure/enum declaration ------------------------------- */
101 void __iomem
*io_addr
; /* Register I/O base address */
102 void __iomem
*io_data
; /* Data I/O address */
107 u16 queue_start_addr
;
110 u8 io_mode
; /* 0:word, 2:byte */
115 unsigned int in_timeout
:1;
116 unsigned int in_suspend
:1;
117 unsigned int wake_supported
:1;
119 enum dm9000_type type
;
121 void (*inblk
)(void __iomem
*port
, void *data
, int length
);
122 void (*outblk
)(void __iomem
*port
, void *data
, int length
);
123 void (*dumpblk
)(void __iomem
*port
, int length
);
125 struct device
*dev
; /* parent device */
127 struct resource
*addr_res
; /* resources found */
128 struct resource
*data_res
;
129 struct resource
*addr_req
; /* resources requested */
130 struct resource
*data_req
;
134 struct mutex addr_lock
; /* phy and eeprom access lock */
136 struct delayed_work phy_poll
;
137 struct net_device
*ndev
;
141 struct mii_if_info mii
;
150 #define dm9000_dbg(db, lev, msg...) do { \
151 if ((lev) < debug) { \
152 dev_dbg(db->dev, msg); \
156 static inline struct board_info
*to_dm9000_board(struct net_device
*dev
)
158 return netdev_priv(dev
);
161 /* DM9000 network board routine ---------------------------- */
164 * Read a byte from I/O port
167 ior(struct board_info
*db
, int reg
)
169 writeb(reg
, db
->io_addr
);
170 return readb(db
->io_data
);
174 * Write a byte to I/O port
178 iow(struct board_info
*db
, int reg
, int value
)
180 writeb(reg
, db
->io_addr
);
181 writeb(value
, db
->io_data
);
185 dm9000_reset(struct board_info
*db
)
187 dev_dbg(db
->dev
, "resetting device\n");
189 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
190 * The essential point is that we have to do a double reset, and the
191 * instruction is to set LBK into MAC internal loopback mode.
193 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
194 udelay(100); /* Application note says at least 20 us */
195 if (ior(db
, DM9000_NCR
) & 1)
196 dev_err(db
->dev
, "dm9000 did not respond to first reset\n");
198 iow(db
, DM9000_NCR
, 0);
199 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
201 if (ior(db
, DM9000_NCR
) & 1)
202 dev_err(db
->dev
, "dm9000 did not respond to second reset\n");
205 /* routines for sending block to chip */
207 static void dm9000_outblk_8bit(void __iomem
*reg
, void *data
, int count
)
209 iowrite8_rep(reg
, data
, count
);
212 static void dm9000_outblk_16bit(void __iomem
*reg
, void *data
, int count
)
214 iowrite16_rep(reg
, data
, (count
+1) >> 1);
217 static void dm9000_outblk_32bit(void __iomem
*reg
, void *data
, int count
)
219 iowrite32_rep(reg
, data
, (count
+3) >> 2);
222 /* input block from chip to memory */
224 static void dm9000_inblk_8bit(void __iomem
*reg
, void *data
, int count
)
226 ioread8_rep(reg
, data
, count
);
230 static void dm9000_inblk_16bit(void __iomem
*reg
, void *data
, int count
)
232 ioread16_rep(reg
, data
, (count
+1) >> 1);
235 static void dm9000_inblk_32bit(void __iomem
*reg
, void *data
, int count
)
237 ioread32_rep(reg
, data
, (count
+3) >> 2);
240 /* dump block from chip to null */
242 static void dm9000_dumpblk_8bit(void __iomem
*reg
, int count
)
247 for (i
= 0; i
< count
; i
++)
251 static void dm9000_dumpblk_16bit(void __iomem
*reg
, int count
)
256 count
= (count
+ 1) >> 1;
258 for (i
= 0; i
< count
; i
++)
262 static void dm9000_dumpblk_32bit(void __iomem
*reg
, int count
)
267 count
= (count
+ 3) >> 2;
269 for (i
= 0; i
< count
; i
++)
274 * Sleep, either by using msleep() or if we are suspending, then
275 * use mdelay() to sleep.
277 static void dm9000_msleep(struct board_info
*db
, unsigned int ms
)
279 if (db
->in_suspend
|| db
->in_timeout
)
285 /* Read a word from phyxcer */
287 dm9000_phy_read(struct net_device
*dev
, int phy_reg_unused
, int reg
)
289 struct board_info
*db
= netdev_priv(dev
);
291 unsigned int reg_save
;
294 mutex_lock(&db
->addr_lock
);
296 spin_lock_irqsave(&db
->lock
, flags
);
298 /* Save previous register address */
299 reg_save
= readb(db
->io_addr
);
301 /* Fill the phyxcer register into REG_0C */
302 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
304 /* Issue phyxcer read command */
305 iow(db
, DM9000_EPCR
, EPCR_ERPRR
| EPCR_EPOS
);
307 writeb(reg_save
, db
->io_addr
);
308 spin_unlock_irqrestore(&db
->lock
, flags
);
310 dm9000_msleep(db
, 1); /* Wait read complete */
312 spin_lock_irqsave(&db
->lock
, flags
);
313 reg_save
= readb(db
->io_addr
);
315 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer read command */
317 /* The read data keeps on REG_0D & REG_0E */
318 ret
= (ior(db
, DM9000_EPDRH
) << 8) | ior(db
, DM9000_EPDRL
);
320 /* restore the previous address */
321 writeb(reg_save
, db
->io_addr
);
322 spin_unlock_irqrestore(&db
->lock
, flags
);
324 mutex_unlock(&db
->addr_lock
);
326 dm9000_dbg(db
, 5, "phy_read[%02x] -> %04x\n", reg
, ret
);
330 /* Write a word to phyxcer */
332 dm9000_phy_write(struct net_device
*dev
,
333 int phyaddr_unused
, int reg
, int value
)
335 struct board_info
*db
= netdev_priv(dev
);
337 unsigned long reg_save
;
339 dm9000_dbg(db
, 5, "phy_write[%02x] = %04x\n", reg
, value
);
341 mutex_lock(&db
->addr_lock
);
343 spin_lock_irqsave(&db
->lock
, flags
);
345 /* Save previous register address */
346 reg_save
= readb(db
->io_addr
);
348 /* Fill the phyxcer register into REG_0C */
349 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
351 /* Fill the written data into REG_0D & REG_0E */
352 iow(db
, DM9000_EPDRL
, value
);
353 iow(db
, DM9000_EPDRH
, value
>> 8);
355 /* Issue phyxcer write command */
356 iow(db
, DM9000_EPCR
, EPCR_EPOS
| EPCR_ERPRW
);
358 writeb(reg_save
, db
->io_addr
);
359 spin_unlock_irqrestore(&db
->lock
, flags
);
361 dm9000_msleep(db
, 1); /* Wait write complete */
363 spin_lock_irqsave(&db
->lock
, flags
);
364 reg_save
= readb(db
->io_addr
);
366 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer write command */
368 /* restore the previous address */
369 writeb(reg_save
, db
->io_addr
);
371 spin_unlock_irqrestore(&db
->lock
, flags
);
373 mutex_unlock(&db
->addr_lock
);
378 * select the specified set of io routines to use with the
382 static void dm9000_set_io(struct board_info
*db
, int byte_width
)
384 /* use the size of the data resource to work out what IO
385 * routines we want to use
388 switch (byte_width
) {
390 db
->dumpblk
= dm9000_dumpblk_8bit
;
391 db
->outblk
= dm9000_outblk_8bit
;
392 db
->inblk
= dm9000_inblk_8bit
;
397 dev_dbg(db
->dev
, ": 3 byte IO, falling back to 16bit\n");
399 db
->dumpblk
= dm9000_dumpblk_16bit
;
400 db
->outblk
= dm9000_outblk_16bit
;
401 db
->inblk
= dm9000_inblk_16bit
;
406 db
->dumpblk
= dm9000_dumpblk_32bit
;
407 db
->outblk
= dm9000_outblk_32bit
;
408 db
->inblk
= dm9000_inblk_32bit
;
413 static void dm9000_schedule_poll(struct board_info
*db
)
415 if (db
->type
== TYPE_DM9000E
)
416 schedule_delayed_work(&db
->phy_poll
, HZ
* 2);
419 static int dm9000_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
421 struct board_info
*dm
= to_dm9000_board(dev
);
423 if (!netif_running(dev
))
426 return generic_mii_ioctl(&dm
->mii
, if_mii(req
), cmd
, NULL
);
430 dm9000_read_locked(struct board_info
*db
, int reg
)
435 spin_lock_irqsave(&db
->lock
, flags
);
437 spin_unlock_irqrestore(&db
->lock
, flags
);
442 static int dm9000_wait_eeprom(struct board_info
*db
)
445 int timeout
= 8; /* wait max 8msec */
447 /* The DM9000 data sheets say we should be able to
448 * poll the ERRE bit in EPCR to wait for the EEPROM
449 * operation. From testing several chips, this bit
450 * does not seem to work.
452 * We attempt to use the bit, but fall back to the
453 * timeout (which is why we do not return an error
454 * on expiry) to say that the EEPROM operation has
459 status
= dm9000_read_locked(db
, DM9000_EPCR
);
461 if ((status
& EPCR_ERRE
) == 0)
467 dev_dbg(db
->dev
, "timeout waiting EEPROM\n");
476 * Read a word data from EEPROM
479 dm9000_read_eeprom(struct board_info
*db
, int offset
, u8
*to
)
483 if (db
->flags
& DM9000_PLATF_NO_EEPROM
) {
489 mutex_lock(&db
->addr_lock
);
491 spin_lock_irqsave(&db
->lock
, flags
);
493 iow(db
, DM9000_EPAR
, offset
);
494 iow(db
, DM9000_EPCR
, EPCR_ERPRR
);
496 spin_unlock_irqrestore(&db
->lock
, flags
);
498 dm9000_wait_eeprom(db
);
500 /* delay for at-least 150uS */
503 spin_lock_irqsave(&db
->lock
, flags
);
505 iow(db
, DM9000_EPCR
, 0x0);
507 to
[0] = ior(db
, DM9000_EPDRL
);
508 to
[1] = ior(db
, DM9000_EPDRH
);
510 spin_unlock_irqrestore(&db
->lock
, flags
);
512 mutex_unlock(&db
->addr_lock
);
516 * Write a word data to SROM
519 dm9000_write_eeprom(struct board_info
*db
, int offset
, u8
*data
)
523 if (db
->flags
& DM9000_PLATF_NO_EEPROM
)
526 mutex_lock(&db
->addr_lock
);
528 spin_lock_irqsave(&db
->lock
, flags
);
529 iow(db
, DM9000_EPAR
, offset
);
530 iow(db
, DM9000_EPDRH
, data
[1]);
531 iow(db
, DM9000_EPDRL
, data
[0]);
532 iow(db
, DM9000_EPCR
, EPCR_WEP
| EPCR_ERPRW
);
533 spin_unlock_irqrestore(&db
->lock
, flags
);
535 dm9000_wait_eeprom(db
);
537 mdelay(1); /* wait at least 150uS to clear */
539 spin_lock_irqsave(&db
->lock
, flags
);
540 iow(db
, DM9000_EPCR
, 0);
541 spin_unlock_irqrestore(&db
->lock
, flags
);
543 mutex_unlock(&db
->addr_lock
);
548 static void dm9000_get_drvinfo(struct net_device
*dev
,
549 struct ethtool_drvinfo
*info
)
551 struct board_info
*dm
= to_dm9000_board(dev
);
553 strlcpy(info
->driver
, CARDNAME
, sizeof(info
->driver
));
554 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
555 strlcpy(info
->bus_info
, to_platform_device(dm
->dev
)->name
,
556 sizeof(info
->bus_info
));
559 static u32
dm9000_get_msglevel(struct net_device
*dev
)
561 struct board_info
*dm
= to_dm9000_board(dev
);
563 return dm
->msg_enable
;
566 static void dm9000_set_msglevel(struct net_device
*dev
, u32 value
)
568 struct board_info
*dm
= to_dm9000_board(dev
);
570 dm
->msg_enable
= value
;
573 static int dm9000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
575 struct board_info
*dm
= to_dm9000_board(dev
);
577 mii_ethtool_gset(&dm
->mii
, cmd
);
581 static int dm9000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
583 struct board_info
*dm
= to_dm9000_board(dev
);
585 return mii_ethtool_sset(&dm
->mii
, cmd
);
588 static int dm9000_nway_reset(struct net_device
*dev
)
590 struct board_info
*dm
= to_dm9000_board(dev
);
591 return mii_nway_restart(&dm
->mii
);
594 static int dm9000_set_features(struct net_device
*dev
,
595 netdev_features_t features
)
597 struct board_info
*dm
= to_dm9000_board(dev
);
598 netdev_features_t changed
= dev
->features
^ features
;
601 if (!(changed
& NETIF_F_RXCSUM
))
604 spin_lock_irqsave(&dm
->lock
, flags
);
605 iow(dm
, DM9000_RCSR
, (features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
606 spin_unlock_irqrestore(&dm
->lock
, flags
);
611 static u32
dm9000_get_link(struct net_device
*dev
)
613 struct board_info
*dm
= to_dm9000_board(dev
);
616 if (dm
->flags
& DM9000_PLATF_EXT_PHY
)
617 ret
= mii_link_ok(&dm
->mii
);
619 ret
= dm9000_read_locked(dm
, DM9000_NSR
) & NSR_LINKST
? 1 : 0;
624 #define DM_EEPROM_MAGIC (0x444D394B)
626 static int dm9000_get_eeprom_len(struct net_device
*dev
)
631 static int dm9000_get_eeprom(struct net_device
*dev
,
632 struct ethtool_eeprom
*ee
, u8
*data
)
634 struct board_info
*dm
= to_dm9000_board(dev
);
635 int offset
= ee
->offset
;
639 /* EEPROM access is aligned to two bytes */
641 if ((len
& 1) != 0 || (offset
& 1) != 0)
644 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
647 ee
->magic
= DM_EEPROM_MAGIC
;
649 for (i
= 0; i
< len
; i
+= 2)
650 dm9000_read_eeprom(dm
, (offset
+ i
) / 2, data
+ i
);
655 static int dm9000_set_eeprom(struct net_device
*dev
,
656 struct ethtool_eeprom
*ee
, u8
*data
)
658 struct board_info
*dm
= to_dm9000_board(dev
);
659 int offset
= ee
->offset
;
663 /* EEPROM access is aligned to two bytes */
665 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
668 if (ee
->magic
!= DM_EEPROM_MAGIC
)
672 if (len
& 1 || offset
& 1) {
673 int which
= offset
& 1;
676 dm9000_read_eeprom(dm
, offset
/ 2, tmp
);
678 dm9000_write_eeprom(dm
, offset
/ 2, tmp
);
682 dm9000_write_eeprom(dm
, offset
/ 2, data
);
694 static void dm9000_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
696 struct board_info
*dm
= to_dm9000_board(dev
);
698 memset(w
, 0, sizeof(struct ethtool_wolinfo
));
700 /* note, we could probably support wake-phy too */
701 w
->supported
= dm
->wake_supported
? WAKE_MAGIC
: 0;
702 w
->wolopts
= dm
->wake_state
;
705 static int dm9000_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
707 struct board_info
*dm
= to_dm9000_board(dev
);
709 u32 opts
= w
->wolopts
;
712 if (!dm
->wake_supported
)
715 if (opts
& ~WAKE_MAGIC
)
718 if (opts
& WAKE_MAGIC
)
721 mutex_lock(&dm
->addr_lock
);
723 spin_lock_irqsave(&dm
->lock
, flags
);
724 iow(dm
, DM9000_WCR
, wcr
);
725 spin_unlock_irqrestore(&dm
->lock
, flags
);
727 mutex_unlock(&dm
->addr_lock
);
729 if (dm
->wake_state
!= opts
) {
730 /* change in wol state, update IRQ state */
733 irq_set_irq_wake(dm
->irq_wake
, 1);
734 else if (dm
->wake_state
&& !opts
)
735 irq_set_irq_wake(dm
->irq_wake
, 0);
738 dm
->wake_state
= opts
;
742 static const struct ethtool_ops dm9000_ethtool_ops
= {
743 .get_drvinfo
= dm9000_get_drvinfo
,
744 .get_settings
= dm9000_get_settings
,
745 .set_settings
= dm9000_set_settings
,
746 .get_msglevel
= dm9000_get_msglevel
,
747 .set_msglevel
= dm9000_set_msglevel
,
748 .nway_reset
= dm9000_nway_reset
,
749 .get_link
= dm9000_get_link
,
750 .get_wol
= dm9000_get_wol
,
751 .set_wol
= dm9000_set_wol
,
752 .get_eeprom_len
= dm9000_get_eeprom_len
,
753 .get_eeprom
= dm9000_get_eeprom
,
754 .set_eeprom
= dm9000_set_eeprom
,
757 static void dm9000_show_carrier(struct board_info
*db
,
758 unsigned carrier
, unsigned nsr
)
761 struct net_device
*ndev
= db
->ndev
;
762 struct mii_if_info
*mii
= &db
->mii
;
763 unsigned ncr
= dm9000_read_locked(db
, DM9000_NCR
);
766 lpa
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_LPA
);
768 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
769 ndev
->name
, (nsr
& NSR_SPEED
) ? 10 : 100,
770 (ncr
& NCR_FDX
) ? "full" : "half", lpa
);
772 dev_info(db
->dev
, "%s: link down\n", ndev
->name
);
777 dm9000_poll_work(struct work_struct
*w
)
779 struct delayed_work
*dw
= to_delayed_work(w
);
780 struct board_info
*db
= container_of(dw
, struct board_info
, phy_poll
);
781 struct net_device
*ndev
= db
->ndev
;
783 if (db
->flags
& DM9000_PLATF_SIMPLE_PHY
&&
784 !(db
->flags
& DM9000_PLATF_EXT_PHY
)) {
785 unsigned nsr
= dm9000_read_locked(db
, DM9000_NSR
);
786 unsigned old_carrier
= netif_carrier_ok(ndev
) ? 1 : 0;
787 unsigned new_carrier
;
789 new_carrier
= (nsr
& NSR_LINKST
) ? 1 : 0;
791 if (old_carrier
!= new_carrier
) {
792 if (netif_msg_link(db
))
793 dm9000_show_carrier(db
, new_carrier
, nsr
);
796 netif_carrier_off(ndev
);
798 netif_carrier_on(ndev
);
801 mii_check_media(&db
->mii
, netif_msg_link(db
), 0);
803 if (netif_running(ndev
))
804 dm9000_schedule_poll(db
);
807 /* dm9000_release_board
809 * release a board, and any mapped resources
813 dm9000_release_board(struct platform_device
*pdev
, struct board_info
*db
)
815 /* unmap our resources */
817 iounmap(db
->io_addr
);
818 iounmap(db
->io_data
);
820 /* release the resources */
823 release_resource(db
->data_req
);
827 release_resource(db
->addr_req
);
831 static unsigned char dm9000_type_to_char(enum dm9000_type type
)
834 case TYPE_DM9000E
: return 'e';
835 case TYPE_DM9000A
: return 'a';
836 case TYPE_DM9000B
: return 'b';
843 * Set DM9000 multicast address
846 dm9000_hash_table_unlocked(struct net_device
*dev
)
848 struct board_info
*db
= netdev_priv(dev
);
849 struct netdev_hw_addr
*ha
;
852 u16 hash_table
[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
853 u8 rcr
= RCR_DIS_LONG
| RCR_DIS_CRC
| RCR_RXEN
;
855 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
857 for (i
= 0, oft
= DM9000_PAR
; i
< 6; i
++, oft
++)
858 iow(db
, oft
, dev
->dev_addr
[i
]);
860 if (dev
->flags
& IFF_PROMISC
)
863 if (dev
->flags
& IFF_ALLMULTI
)
866 /* the multicast address in Hash Table : 64 bits */
867 netdev_for_each_mc_addr(ha
, dev
) {
868 hash_val
= ether_crc_le(6, ha
->addr
) & 0x3f;
869 hash_table
[hash_val
/ 16] |= (u16
) 1 << (hash_val
% 16);
872 /* Write the hash table to MAC MD table */
873 for (i
= 0, oft
= DM9000_MAR
; i
< 4; i
++) {
874 iow(db
, oft
++, hash_table
[i
]);
875 iow(db
, oft
++, hash_table
[i
] >> 8);
878 iow(db
, DM9000_RCR
, rcr
);
882 dm9000_hash_table(struct net_device
*dev
)
884 struct board_info
*db
= netdev_priv(dev
);
887 spin_lock_irqsave(&db
->lock
, flags
);
888 dm9000_hash_table_unlocked(dev
);
889 spin_unlock_irqrestore(&db
->lock
, flags
);
893 dm9000_mask_interrupts(struct board_info
*db
)
895 iow(db
, DM9000_IMR
, IMR_PAR
);
899 dm9000_unmask_interrupts(struct board_info
*db
)
901 iow(db
, DM9000_IMR
, db
->imr_all
);
905 * Initialize dm9000 board
908 dm9000_init_dm9000(struct net_device
*dev
)
910 struct board_info
*db
= netdev_priv(dev
);
914 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
917 dm9000_mask_interrupts(db
);
920 db
->io_mode
= ior(db
, DM9000_ISR
) >> 6; /* ISR bit7:6 keeps I/O mode */
923 if (dev
->hw_features
& NETIF_F_RXCSUM
)
925 (dev
->features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
927 iow(db
, DM9000_GPCR
, GPCR_GEP_CNTL
); /* Let GPIO0 output */
928 iow(db
, DM9000_GPR
, 0);
930 /* If we are dealing with DM9000B, some extra steps are required: a
931 * manual phy reset, and setting init params.
933 if (db
->type
== TYPE_DM9000B
) {
934 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
);
935 dm9000_phy_write(dev
, 0, MII_DM_DSPCR
, DSPCR_INIT_PARAM
);
938 ncr
= (db
->flags
& DM9000_PLATF_EXT_PHY
) ? NCR_EXT_PHY
: 0;
940 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
941 * up dumping the wake events if we disable this. There is already
942 * a wake-mask in DM9000_WCR */
943 if (db
->wake_supported
)
946 iow(db
, DM9000_NCR
, ncr
);
948 /* Program operating register */
949 iow(db
, DM9000_TCR
, 0); /* TX Polling clear */
950 iow(db
, DM9000_BPTR
, 0x3f); /* Less 3Kb, 200us */
951 iow(db
, DM9000_FCR
, 0xff); /* Flow Control */
952 iow(db
, DM9000_SMCR
, 0); /* Special Mode */
953 /* clear TX status */
954 iow(db
, DM9000_NSR
, NSR_WAKEST
| NSR_TX2END
| NSR_TX1END
);
955 iow(db
, DM9000_ISR
, ISR_CLR_STATUS
); /* Clear interrupt status */
957 /* Set address filter table */
958 dm9000_hash_table_unlocked(dev
);
960 imr
= IMR_PAR
| IMR_PTM
| IMR_PRM
;
961 if (db
->type
!= TYPE_DM9000E
)
966 /* Init Driver variable */
968 db
->queue_pkt_len
= 0;
969 dev
->trans_start
= jiffies
;
972 /* Our watchdog timed out. Called by the networking layer */
973 static void dm9000_timeout(struct net_device
*dev
)
975 struct board_info
*db
= netdev_priv(dev
);
979 /* Save previous register address */
980 spin_lock_irqsave(&db
->lock
, flags
);
982 reg_save
= readb(db
->io_addr
);
984 netif_stop_queue(dev
);
985 dm9000_init_dm9000(dev
);
986 dm9000_unmask_interrupts(db
);
987 /* We can accept TX packets again */
988 dev
->trans_start
= jiffies
; /* prevent tx timeout */
989 netif_wake_queue(dev
);
991 /* Restore previous register address */
992 writeb(reg_save
, db
->io_addr
);
994 spin_unlock_irqrestore(&db
->lock
, flags
);
997 static void dm9000_send_packet(struct net_device
*dev
,
1001 struct board_info
*dm
= to_dm9000_board(dev
);
1003 /* The DM9000 is not smart enough to leave fragmented packets alone. */
1004 if (dm
->ip_summed
!= ip_summed
) {
1005 if (ip_summed
== CHECKSUM_NONE
)
1006 iow(dm
, DM9000_TCCR
, 0);
1008 iow(dm
, DM9000_TCCR
, TCCR_IP
| TCCR_UDP
| TCCR_TCP
);
1009 dm
->ip_summed
= ip_summed
;
1012 /* Set TX length to DM9000 */
1013 iow(dm
, DM9000_TXPLL
, pkt_len
);
1014 iow(dm
, DM9000_TXPLH
, pkt_len
>> 8);
1016 /* Issue TX polling command */
1017 iow(dm
, DM9000_TCR
, TCR_TXREQ
); /* Cleared after TX complete */
1021 * Hardware start transmission.
1022 * Send a packet to media from the upper layer.
1025 dm9000_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1027 unsigned long flags
;
1028 struct board_info
*db
= netdev_priv(dev
);
1030 dm9000_dbg(db
, 3, "%s:\n", __func__
);
1032 if (db
->tx_pkt_cnt
> 1)
1033 return NETDEV_TX_BUSY
;
1035 spin_lock_irqsave(&db
->lock
, flags
);
1037 /* Move data to DM9000 TX RAM */
1038 writeb(DM9000_MWCMD
, db
->io_addr
);
1040 (db
->outblk
)(db
->io_data
, skb
->data
, skb
->len
);
1041 dev
->stats
.tx_bytes
+= skb
->len
;
1044 /* TX control: First packet immediately send, second packet queue */
1045 if (db
->tx_pkt_cnt
== 1) {
1046 dm9000_send_packet(dev
, skb
->ip_summed
, skb
->len
);
1049 db
->queue_pkt_len
= skb
->len
;
1050 db
->queue_ip_summed
= skb
->ip_summed
;
1051 netif_stop_queue(dev
);
1054 spin_unlock_irqrestore(&db
->lock
, flags
);
1057 dev_consume_skb_any(skb
);
1059 return NETDEV_TX_OK
;
1063 * DM9000 interrupt handler
1064 * receive the packet to upper layer, free the transmitted packet
1067 static void dm9000_tx_done(struct net_device
*dev
, struct board_info
*db
)
1069 int tx_status
= ior(db
, DM9000_NSR
); /* Got TX status */
1071 if (tx_status
& (NSR_TX2END
| NSR_TX1END
)) {
1072 /* One packet sent complete */
1074 dev
->stats
.tx_packets
++;
1076 if (netif_msg_tx_done(db
))
1077 dev_dbg(db
->dev
, "tx done, NSR %02x\n", tx_status
);
1079 /* Queue packet check & send */
1080 if (db
->tx_pkt_cnt
> 0)
1081 dm9000_send_packet(dev
, db
->queue_ip_summed
,
1083 netif_wake_queue(dev
);
1087 struct dm9000_rxhdr
{
1094 * Received a packet and pass to upper layer
1097 dm9000_rx(struct net_device
*dev
)
1099 struct board_info
*db
= netdev_priv(dev
);
1100 struct dm9000_rxhdr rxhdr
;
1101 struct sk_buff
*skb
;
1106 /* Check packet ready or not */
1108 ior(db
, DM9000_MRCMDX
); /* Dummy read */
1110 /* Get most updated data */
1111 rxbyte
= readb(db
->io_data
);
1113 /* Status check: this byte must be 0 or 1 */
1114 if (rxbyte
& DM9000_PKT_ERR
) {
1115 dev_warn(db
->dev
, "status check fail: %d\n", rxbyte
);
1116 iow(db
, DM9000_RCR
, 0x00); /* Stop Device */
1120 if (!(rxbyte
& DM9000_PKT_RDY
))
1123 /* A packet ready now & Get status/length */
1125 writeb(DM9000_MRCMD
, db
->io_addr
);
1127 (db
->inblk
)(db
->io_data
, &rxhdr
, sizeof(rxhdr
));
1129 RxLen
= le16_to_cpu(rxhdr
.RxLen
);
1131 if (netif_msg_rx_status(db
))
1132 dev_dbg(db
->dev
, "RX: status %02x, length %04x\n",
1133 rxhdr
.RxStatus
, RxLen
);
1135 /* Packet Status check */
1138 if (netif_msg_rx_err(db
))
1139 dev_dbg(db
->dev
, "RX: Bad Packet (runt)\n");
1142 if (RxLen
> DM9000_PKT_MAX
) {
1143 dev_dbg(db
->dev
, "RST: RX Len:%x\n", RxLen
);
1146 /* rxhdr.RxStatus is identical to RSR register. */
1147 if (rxhdr
.RxStatus
& (RSR_FOE
| RSR_CE
| RSR_AE
|
1148 RSR_PLE
| RSR_RWTO
|
1149 RSR_LCS
| RSR_RF
)) {
1151 if (rxhdr
.RxStatus
& RSR_FOE
) {
1152 if (netif_msg_rx_err(db
))
1153 dev_dbg(db
->dev
, "fifo error\n");
1154 dev
->stats
.rx_fifo_errors
++;
1156 if (rxhdr
.RxStatus
& RSR_CE
) {
1157 if (netif_msg_rx_err(db
))
1158 dev_dbg(db
->dev
, "crc error\n");
1159 dev
->stats
.rx_crc_errors
++;
1161 if (rxhdr
.RxStatus
& RSR_RF
) {
1162 if (netif_msg_rx_err(db
))
1163 dev_dbg(db
->dev
, "length error\n");
1164 dev
->stats
.rx_length_errors
++;
1168 /* Move data from DM9000 */
1170 ((skb
= netdev_alloc_skb(dev
, RxLen
+ 4)) != NULL
)) {
1171 skb_reserve(skb
, 2);
1172 rdptr
= (u8
*) skb_put(skb
, RxLen
- 4);
1174 /* Read received packet from RX SRAM */
1176 (db
->inblk
)(db
->io_data
, rdptr
, RxLen
);
1177 dev
->stats
.rx_bytes
+= RxLen
;
1179 /* Pass to upper layer */
1180 skb
->protocol
= eth_type_trans(skb
, dev
);
1181 if (dev
->features
& NETIF_F_RXCSUM
) {
1182 if ((((rxbyte
& 0x1c) << 3) & rxbyte
) == 0)
1183 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1185 skb_checksum_none_assert(skb
);
1188 dev
->stats
.rx_packets
++;
1191 /* need to dump the packet's data */
1193 (db
->dumpblk
)(db
->io_data
, RxLen
);
1195 } while (rxbyte
& DM9000_PKT_RDY
);
1198 static irqreturn_t
dm9000_interrupt(int irq
, void *dev_id
)
1200 struct net_device
*dev
= dev_id
;
1201 struct board_info
*db
= netdev_priv(dev
);
1203 unsigned long flags
;
1206 dm9000_dbg(db
, 3, "entering %s\n", __func__
);
1208 /* A real interrupt coming */
1210 /* holders of db->lock must always block IRQs */
1211 spin_lock_irqsave(&db
->lock
, flags
);
1213 /* Save previous register address */
1214 reg_save
= readb(db
->io_addr
);
1216 dm9000_mask_interrupts(db
);
1217 /* Got DM9000 interrupt status */
1218 int_status
= ior(db
, DM9000_ISR
); /* Got ISR */
1219 iow(db
, DM9000_ISR
, int_status
); /* Clear ISR status */
1221 if (netif_msg_intr(db
))
1222 dev_dbg(db
->dev
, "interrupt status %02x\n", int_status
);
1224 /* Received the coming packet */
1225 if (int_status
& ISR_PRS
)
1228 /* Transmit Interrupt check */
1229 if (int_status
& ISR_PTS
)
1230 dm9000_tx_done(dev
, db
);
1232 if (db
->type
!= TYPE_DM9000E
) {
1233 if (int_status
& ISR_LNKCHNG
) {
1234 /* fire a link-change request */
1235 schedule_delayed_work(&db
->phy_poll
, 1);
1239 dm9000_unmask_interrupts(db
);
1240 /* Restore previous register address */
1241 writeb(reg_save
, db
->io_addr
);
1243 spin_unlock_irqrestore(&db
->lock
, flags
);
1248 static irqreturn_t
dm9000_wol_interrupt(int irq
, void *dev_id
)
1250 struct net_device
*dev
= dev_id
;
1251 struct board_info
*db
= netdev_priv(dev
);
1252 unsigned long flags
;
1255 spin_lock_irqsave(&db
->lock
, flags
);
1257 nsr
= ior(db
, DM9000_NSR
);
1258 wcr
= ior(db
, DM9000_WCR
);
1260 dev_dbg(db
->dev
, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__
, nsr
, wcr
);
1262 if (nsr
& NSR_WAKEST
) {
1263 /* clear, so we can avoid */
1264 iow(db
, DM9000_NSR
, NSR_WAKEST
);
1266 if (wcr
& WCR_LINKST
)
1267 dev_info(db
->dev
, "wake by link status change\n");
1268 if (wcr
& WCR_SAMPLEST
)
1269 dev_info(db
->dev
, "wake by sample packet\n");
1270 if (wcr
& WCR_MAGICST
)
1271 dev_info(db
->dev
, "wake by magic packet\n");
1272 if (!(wcr
& (WCR_LINKST
| WCR_SAMPLEST
| WCR_MAGICST
)))
1273 dev_err(db
->dev
, "wake signalled with no reason? "
1274 "NSR=0x%02x, WSR=0x%02x\n", nsr
, wcr
);
1277 spin_unlock_irqrestore(&db
->lock
, flags
);
1279 return (nsr
& NSR_WAKEST
) ? IRQ_HANDLED
: IRQ_NONE
;
1282 #ifdef CONFIG_NET_POLL_CONTROLLER
1286 static void dm9000_poll_controller(struct net_device
*dev
)
1288 disable_irq(dev
->irq
);
1289 dm9000_interrupt(dev
->irq
, dev
);
1290 enable_irq(dev
->irq
);
1295 * Open the interface.
1296 * The interface is opened whenever "ifconfig" actives it.
1299 dm9000_open(struct net_device
*dev
)
1301 struct board_info
*db
= netdev_priv(dev
);
1303 if (netif_msg_ifup(db
))
1304 dev_dbg(db
->dev
, "enabling %s\n", dev
->name
);
1306 /* If there is no IRQ type specified, tell the user that this is a
1309 if (irq_get_trigger_type(dev
->irq
) == IRQF_TRIGGER_NONE
)
1310 dev_warn(db
->dev
, "WARNING: no IRQ resource flags set.\n");
1312 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1313 iow(db
, DM9000_GPR
, 0); /* REG_1F bit0 activate phyxcer */
1314 mdelay(1); /* delay needs by DM9000B */
1316 /* Initialize DM9000 board */
1317 dm9000_init_dm9000(dev
);
1319 if (request_irq(dev
->irq
, dm9000_interrupt
, IRQF_SHARED
,
1322 /* Now that we have an interrupt handler hooked up we can unmask
1325 dm9000_unmask_interrupts(db
);
1327 /* Init driver variable */
1330 mii_check_media(&db
->mii
, netif_msg_link(db
), 1);
1331 netif_start_queue(dev
);
1333 /* Poll initial link status */
1334 schedule_delayed_work(&db
->phy_poll
, 1);
1340 dm9000_shutdown(struct net_device
*dev
)
1342 struct board_info
*db
= netdev_priv(dev
);
1345 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
); /* PHY RESET */
1346 iow(db
, DM9000_GPR
, 0x01); /* Power-Down PHY */
1347 dm9000_mask_interrupts(db
);
1348 iow(db
, DM9000_RCR
, 0x00); /* Disable RX */
1352 * Stop the interface.
1353 * The interface is stopped when it is brought.
1356 dm9000_stop(struct net_device
*ndev
)
1358 struct board_info
*db
= netdev_priv(ndev
);
1360 if (netif_msg_ifdown(db
))
1361 dev_dbg(db
->dev
, "shutting down %s\n", ndev
->name
);
1363 cancel_delayed_work_sync(&db
->phy_poll
);
1365 netif_stop_queue(ndev
);
1366 netif_carrier_off(ndev
);
1368 /* free interrupt */
1369 free_irq(ndev
->irq
, ndev
);
1371 dm9000_shutdown(ndev
);
1376 static const struct net_device_ops dm9000_netdev_ops
= {
1377 .ndo_open
= dm9000_open
,
1378 .ndo_stop
= dm9000_stop
,
1379 .ndo_start_xmit
= dm9000_start_xmit
,
1380 .ndo_tx_timeout
= dm9000_timeout
,
1381 .ndo_set_rx_mode
= dm9000_hash_table
,
1382 .ndo_do_ioctl
= dm9000_ioctl
,
1383 .ndo_change_mtu
= eth_change_mtu
,
1384 .ndo_set_features
= dm9000_set_features
,
1385 .ndo_validate_addr
= eth_validate_addr
,
1386 .ndo_set_mac_address
= eth_mac_addr
,
1387 #ifdef CONFIG_NET_POLL_CONTROLLER
1388 .ndo_poll_controller
= dm9000_poll_controller
,
1392 static struct dm9000_plat_data
*dm9000_parse_dt(struct device
*dev
)
1394 struct dm9000_plat_data
*pdata
;
1395 struct device_node
*np
= dev
->of_node
;
1396 const void *mac_addr
;
1398 if (!IS_ENABLED(CONFIG_OF
) || !np
)
1399 return ERR_PTR(-ENXIO
);
1401 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
1403 return ERR_PTR(-ENOMEM
);
1405 if (of_find_property(np
, "davicom,ext-phy", NULL
))
1406 pdata
->flags
|= DM9000_PLATF_EXT_PHY
;
1407 if (of_find_property(np
, "davicom,no-eeprom", NULL
))
1408 pdata
->flags
|= DM9000_PLATF_NO_EEPROM
;
1410 mac_addr
= of_get_mac_address(np
);
1412 memcpy(pdata
->dev_addr
, mac_addr
, sizeof(pdata
->dev_addr
));
1418 * Search DM9000 board, allocate space and register it
1421 dm9000_probe(struct platform_device
*pdev
)
1423 struct dm9000_plat_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1424 struct board_info
*db
; /* Point a board information structure */
1425 struct net_device
*ndev
;
1426 struct device
*dev
= &pdev
->dev
;
1427 const unsigned char *mac_src
;
1433 enum of_gpio_flags flags
;
1434 struct regulator
*power
;
1436 power
= devm_regulator_get(dev
, "vcc");
1437 if (IS_ERR(power
)) {
1438 if (PTR_ERR(power
) == -EPROBE_DEFER
)
1439 return -EPROBE_DEFER
;
1440 dev_dbg(dev
, "no regulator provided\n");
1442 ret
= regulator_enable(power
);
1445 "Failed to enable power regulator: %d\n", ret
);
1448 dev_dbg(dev
, "regulator enabled\n");
1451 reset_gpios
= of_get_named_gpio_flags(dev
->of_node
, "reset-gpios", 0,
1453 if (gpio_is_valid(reset_gpios
)) {
1454 ret
= devm_gpio_request_one(dev
, reset_gpios
, flags
,
1457 dev_err(dev
, "failed to request reset gpio %d: %d\n",
1462 /* According to manual PWRST# Low Period Min 1ms */
1464 gpio_set_value(reset_gpios
, 1);
1465 /* Needs 3ms to read eeprom when PWRST is deasserted */
1470 pdata
= dm9000_parse_dt(&pdev
->dev
);
1472 return PTR_ERR(pdata
);
1475 /* Init network device */
1476 ndev
= alloc_etherdev(sizeof(struct board_info
));
1480 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1482 dev_dbg(&pdev
->dev
, "dm9000_probe()\n");
1484 /* setup board info structure */
1485 db
= netdev_priv(ndev
);
1487 db
->dev
= &pdev
->dev
;
1490 spin_lock_init(&db
->lock
);
1491 mutex_init(&db
->addr_lock
);
1493 INIT_DELAYED_WORK(&db
->phy_poll
, dm9000_poll_work
);
1495 db
->addr_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1496 db
->data_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1498 if (!db
->addr_res
|| !db
->data_res
) {
1499 dev_err(db
->dev
, "insufficient resources addr=%p data=%p\n",
1500 db
->addr_res
, db
->data_res
);
1505 ndev
->irq
= platform_get_irq(pdev
, 0);
1506 if (ndev
->irq
< 0) {
1507 dev_err(db
->dev
, "interrupt resource unavailable: %d\n",
1513 db
->irq_wake
= platform_get_irq(pdev
, 1);
1514 if (db
->irq_wake
>= 0) {
1515 dev_dbg(db
->dev
, "wakeup irq %d\n", db
->irq_wake
);
1517 ret
= request_irq(db
->irq_wake
, dm9000_wol_interrupt
,
1518 IRQF_SHARED
, dev_name(db
->dev
), ndev
);
1520 dev_err(db
->dev
, "cannot get wakeup irq (%d)\n", ret
);
1523 /* test to see if irq is really wakeup capable */
1524 ret
= irq_set_irq_wake(db
->irq_wake
, 1);
1526 dev_err(db
->dev
, "irq %d cannot set wakeup (%d)\n",
1530 irq_set_irq_wake(db
->irq_wake
, 0);
1531 db
->wake_supported
= 1;
1536 iosize
= resource_size(db
->addr_res
);
1537 db
->addr_req
= request_mem_region(db
->addr_res
->start
, iosize
,
1540 if (db
->addr_req
== NULL
) {
1541 dev_err(db
->dev
, "cannot claim address reg area\n");
1546 db
->io_addr
= ioremap(db
->addr_res
->start
, iosize
);
1548 if (db
->io_addr
== NULL
) {
1549 dev_err(db
->dev
, "failed to ioremap address reg\n");
1554 iosize
= resource_size(db
->data_res
);
1555 db
->data_req
= request_mem_region(db
->data_res
->start
, iosize
,
1558 if (db
->data_req
== NULL
) {
1559 dev_err(db
->dev
, "cannot claim data reg area\n");
1564 db
->io_data
= ioremap(db
->data_res
->start
, iosize
);
1566 if (db
->io_data
== NULL
) {
1567 dev_err(db
->dev
, "failed to ioremap data reg\n");
1572 /* fill in parameters for net-dev structure */
1573 ndev
->base_addr
= (unsigned long)db
->io_addr
;
1575 /* ensure at least we have a default set of IO routines */
1576 dm9000_set_io(db
, iosize
);
1578 /* check to see if anything is being over-ridden */
1579 if (pdata
!= NULL
) {
1580 /* check to see if the driver wants to over-ride the
1581 * default IO width */
1583 if (pdata
->flags
& DM9000_PLATF_8BITONLY
)
1584 dm9000_set_io(db
, 1);
1586 if (pdata
->flags
& DM9000_PLATF_16BITONLY
)
1587 dm9000_set_io(db
, 2);
1589 if (pdata
->flags
& DM9000_PLATF_32BITONLY
)
1590 dm9000_set_io(db
, 4);
1592 /* check to see if there are any IO routine
1595 if (pdata
->inblk
!= NULL
)
1596 db
->inblk
= pdata
->inblk
;
1598 if (pdata
->outblk
!= NULL
)
1599 db
->outblk
= pdata
->outblk
;
1601 if (pdata
->dumpblk
!= NULL
)
1602 db
->dumpblk
= pdata
->dumpblk
;
1604 db
->flags
= pdata
->flags
;
1607 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1608 db
->flags
|= DM9000_PLATF_SIMPLE_PHY
;
1613 /* try multiple times, DM9000 sometimes gets the read wrong */
1614 for (i
= 0; i
< 8; i
++) {
1615 id_val
= ior(db
, DM9000_VIDL
);
1616 id_val
|= (u32
)ior(db
, DM9000_VIDH
) << 8;
1617 id_val
|= (u32
)ior(db
, DM9000_PIDL
) << 16;
1618 id_val
|= (u32
)ior(db
, DM9000_PIDH
) << 24;
1620 if (id_val
== DM9000_ID
)
1622 dev_err(db
->dev
, "read wrong id 0x%08x\n", id_val
);
1625 if (id_val
!= DM9000_ID
) {
1626 dev_err(db
->dev
, "wrong id: 0x%08x\n", id_val
);
1631 /* Identify what type of DM9000 we are working on */
1633 id_val
= ior(db
, DM9000_CHIPR
);
1634 dev_dbg(db
->dev
, "dm9000 revision 0x%02x\n", id_val
);
1638 db
->type
= TYPE_DM9000A
;
1641 db
->type
= TYPE_DM9000B
;
1644 dev_dbg(db
->dev
, "ID %02x => defaulting to DM9000E\n", id_val
);
1645 db
->type
= TYPE_DM9000E
;
1648 /* dm9000a/b are capable of hardware checksum offload */
1649 if (db
->type
== TYPE_DM9000A
|| db
->type
== TYPE_DM9000B
) {
1650 ndev
->hw_features
= NETIF_F_RXCSUM
| NETIF_F_IP_CSUM
;
1651 ndev
->features
|= ndev
->hw_features
;
1654 /* from this point we assume that we have found a DM9000 */
1656 ndev
->netdev_ops
= &dm9000_netdev_ops
;
1657 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1658 ndev
->ethtool_ops
= &dm9000_ethtool_ops
;
1660 db
->msg_enable
= NETIF_MSG_LINK
;
1661 db
->mii
.phy_id_mask
= 0x1f;
1662 db
->mii
.reg_num_mask
= 0x1f;
1663 db
->mii
.force_media
= 0;
1664 db
->mii
.full_duplex
= 0;
1666 db
->mii
.mdio_read
= dm9000_phy_read
;
1667 db
->mii
.mdio_write
= dm9000_phy_write
;
1671 /* try reading the node address from the attached EEPROM */
1672 for (i
= 0; i
< 6; i
+= 2)
1673 dm9000_read_eeprom(db
, i
/ 2, ndev
->dev_addr
+i
);
1675 if (!is_valid_ether_addr(ndev
->dev_addr
) && pdata
!= NULL
) {
1676 mac_src
= "platform data";
1677 memcpy(ndev
->dev_addr
, pdata
->dev_addr
, ETH_ALEN
);
1680 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1681 /* try reading from mac */
1684 for (i
= 0; i
< 6; i
++)
1685 ndev
->dev_addr
[i
] = ior(db
, i
+DM9000_PAR
);
1688 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1689 dev_warn(db
->dev
, "%s: Invalid ethernet MAC address. Please "
1690 "set using ifconfig\n", ndev
->name
);
1692 eth_hw_addr_random(ndev
);
1697 platform_set_drvdata(pdev
, ndev
);
1698 ret
= register_netdev(ndev
);
1701 printk(KERN_INFO
"%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702 ndev
->name
, dm9000_type_to_char(db
->type
),
1703 db
->io_addr
, db
->io_data
, ndev
->irq
,
1704 ndev
->dev_addr
, mac_src
);
1708 dev_err(db
->dev
, "not found (%d).\n", ret
);
1710 dm9000_release_board(pdev
, db
);
1717 dm9000_drv_suspend(struct device
*dev
)
1719 struct platform_device
*pdev
= to_platform_device(dev
);
1720 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1721 struct board_info
*db
;
1724 db
= netdev_priv(ndev
);
1727 if (!netif_running(ndev
))
1730 netif_device_detach(ndev
);
1732 /* only shutdown if not using WoL */
1733 if (!db
->wake_state
)
1734 dm9000_shutdown(ndev
);
1740 dm9000_drv_resume(struct device
*dev
)
1742 struct platform_device
*pdev
= to_platform_device(dev
);
1743 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1744 struct board_info
*db
= netdev_priv(ndev
);
1747 if (netif_running(ndev
)) {
1748 /* reset if we were not in wake mode to ensure if
1749 * the device was powered off it is in a known state */
1750 if (!db
->wake_state
) {
1751 dm9000_init_dm9000(ndev
);
1752 dm9000_unmask_interrupts(db
);
1755 netif_device_attach(ndev
);
1763 static const struct dev_pm_ops dm9000_drv_pm_ops
= {
1764 .suspend
= dm9000_drv_suspend
,
1765 .resume
= dm9000_drv_resume
,
1769 dm9000_drv_remove(struct platform_device
*pdev
)
1771 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1773 unregister_netdev(ndev
);
1774 dm9000_release_board(pdev
, netdev_priv(ndev
));
1775 free_netdev(ndev
); /* free device structure */
1777 dev_dbg(&pdev
->dev
, "released and freed device\n");
1782 static const struct of_device_id dm9000_of_matches
[] = {
1783 { .compatible
= "davicom,dm9000", },
1786 MODULE_DEVICE_TABLE(of
, dm9000_of_matches
);
1789 static struct platform_driver dm9000_driver
= {
1792 .pm
= &dm9000_drv_pm_ops
,
1793 .of_match_table
= of_match_ptr(dm9000_of_matches
),
1795 .probe
= dm9000_probe
,
1796 .remove
= dm9000_drv_remove
,
1799 module_platform_driver(dm9000_driver
);
1801 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1802 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1803 MODULE_LICENSE("GPL");
1804 MODULE_ALIAS("platform:dm9000");