1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug
= -1;
57 module_param(debug
, int, 0);
58 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info
*e1000_info_tbl
[] = {
61 [board_82571
] = &e1000_82571_info
,
62 [board_82572
] = &e1000_82572_info
,
63 [board_82573
] = &e1000_82573_info
,
64 [board_82574
] = &e1000_82574_info
,
65 [board_82583
] = &e1000_82583_info
,
66 [board_80003es2lan
] = &e1000_es2_info
,
67 [board_ich8lan
] = &e1000_ich8_info
,
68 [board_ich9lan
] = &e1000_ich9_info
,
69 [board_ich10lan
] = &e1000_ich10_info
,
70 [board_pchlan
] = &e1000_pch_info
,
71 [board_pch2lan
] = &e1000_pch2_info
,
72 [board_pch_lpt
] = &e1000_pch_lpt_info
,
73 [board_pch_spt
] = &e1000_pch_spt_info
,
76 struct e1000_reg_info
{
81 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
82 /* General Registers */
84 {E1000_STATUS
, "STATUS"},
85 {E1000_CTRL_EXT
, "CTRL_EXT"},
87 /* Interrupt Registers */
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
96 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH
, "RDFH"},
101 {E1000_RDFT
, "RDFT"},
102 {E1000_RDFHS
, "RDFHS"},
103 {E1000_RDFTS
, "RDFTS"},
104 {E1000_RDFPC
, "RDFPC"},
107 {E1000_TCTL
, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV
, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV
, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH
, "TDFH"},
118 {E1000_TDFT
, "TDFT"},
119 {E1000_TDFHS
, "TDFHS"},
120 {E1000_TDFTS
, "TDFTS"},
121 {E1000_TDFPC
, "TDFPC"},
123 /* List Terminator */
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
139 s32
__ew32_prepare(struct e1000_hw
*hw
)
141 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
143 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
149 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
151 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
154 writel(val
, hw
->hw_addr
+ reg
);
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
162 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
168 switch (reginfo
->ofs
) {
169 case E1000_RXDCTL(0):
170 for (n
= 0; n
< 2; n
++)
171 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
173 case E1000_TXDCTL(0):
174 for (n
= 0; n
< 2; n
++)
175 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
178 for (n
= 0; n
< 2; n
++)
179 regs
[n
] = __er32(hw
, E1000_TARC(n
));
182 pr_info("%-15s %08x\n",
183 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
187 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
191 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
192 struct e1000_buffer
*bi
)
195 struct e1000_ps_page
*ps_page
;
197 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
198 ps_page
= &bi
->ps_pages
[i
];
201 pr_info("packet dump for ps_page %d:\n", i
);
202 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
203 16, 1, page_address(ps_page
->page
),
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
213 static void e1000e_dump(struct e1000_adapter
*adapter
)
215 struct net_device
*netdev
= adapter
->netdev
;
216 struct e1000_hw
*hw
= &adapter
->hw
;
217 struct e1000_reg_info
*reginfo
;
218 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
219 struct e1000_tx_desc
*tx_desc
;
224 struct e1000_buffer
*buffer_info
;
225 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
226 union e1000_rx_desc_packet_split
*rx_desc_ps
;
227 union e1000_rx_desc_extended
*rx_desc
;
237 if (!netif_msg_hw(adapter
))
240 /* Print netdevice Info */
242 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
243 pr_info("Device Name state trans_start last_rx\n");
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev
->name
,
245 netdev
->state
, netdev
->trans_start
, netdev
->last_rx
);
248 /* Print Registers */
249 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
252 reginfo
->name
; reginfo
++) {
253 e1000_regdump(hw
, reginfo
);
256 /* Print Tx Ring Summary */
257 if (!netdev
|| !netif_running(netdev
))
260 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
265 (unsigned long long)buffer_info
->dma
,
267 buffer_info
->next_to_watch
,
268 (unsigned long long)buffer_info
->time_stamp
);
271 if (!netif_msg_tx_done(adapter
))
272 goto rx_ring_summary
;
274 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
307 const char *next_desc
;
308 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
309 buffer_info
= &tx_ring
->buffer_info
[i
];
310 u0
= (struct my_u0
*)tx_desc
;
311 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
312 next_desc
= " NTC/U";
313 else if (i
== tx_ring
->next_to_use
)
315 else if (i
== tx_ring
->next_to_clean
)
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')),
323 (unsigned long long)le64_to_cpu(u0
->a
),
324 (unsigned long long)le64_to_cpu(u0
->b
),
325 (unsigned long long)buffer_info
->dma
,
326 buffer_info
->length
, buffer_info
->next_to_watch
,
327 (unsigned long long)buffer_info
->time_stamp
,
328 buffer_info
->skb
, next_desc
);
330 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
331 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
332 16, 1, buffer_info
->skb
->data
,
333 buffer_info
->skb
->len
, true);
336 /* Print Rx Ring Summary */
338 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
344 if (!netif_msg_rx_status(adapter
))
347 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
348 switch (adapter
->rx_ps_pages
) {
352 /* [Extended] Packet Split Receive Descriptor Format
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i
= 0; i
< rx_ring
->count
; i
++) {
378 const char *next_desc
;
379 buffer_info
= &rx_ring
->buffer_info
[i
];
380 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
381 u1
= (struct my_u1
*)rx_desc_ps
;
383 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
385 if (i
== rx_ring
->next_to_use
)
387 else if (i
== rx_ring
->next_to_clean
)
392 if (staterr
& E1000_RXD_STAT_DD
) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 (unsigned long long)le64_to_cpu(u1
->a
),
397 (unsigned long long)le64_to_cpu(u1
->b
),
398 (unsigned long long)le64_to_cpu(u1
->c
),
399 (unsigned long long)le64_to_cpu(u1
->d
),
400 buffer_info
->skb
, next_desc
);
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 (unsigned long long)le64_to_cpu(u1
->a
),
405 (unsigned long long)le64_to_cpu(u1
->b
),
406 (unsigned long long)le64_to_cpu(u1
->c
),
407 (unsigned long long)le64_to_cpu(u1
->d
),
408 (unsigned long long)buffer_info
->dma
,
409 buffer_info
->skb
, next_desc
);
411 if (netif_msg_pktdata(adapter
))
412 e1000e_dump_ps_pages(adapter
,
419 /* Extended Receive Descriptor (Read) Format
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
425 * +-----------------------------------------------------+
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443 for (i
= 0; i
< rx_ring
->count
; i
++) {
444 const char *next_desc
;
446 buffer_info
= &rx_ring
->buffer_info
[i
];
447 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
448 u1
= (struct my_u1
*)rx_desc
;
449 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
451 if (i
== rx_ring
->next_to_use
)
453 else if (i
== rx_ring
->next_to_clean
)
458 if (staterr
& E1000_RXD_STAT_DD
) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 (unsigned long long)le64_to_cpu(u1
->a
),
463 (unsigned long long)le64_to_cpu(u1
->b
),
464 buffer_info
->skb
, next_desc
);
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 (unsigned long long)le64_to_cpu(u1
->a
),
469 (unsigned long long)le64_to_cpu(u1
->b
),
470 (unsigned long long)buffer_info
->dma
,
471 buffer_info
->skb
, next_desc
);
473 if (netif_msg_pktdata(adapter
) &&
475 print_hex_dump(KERN_INFO
, "",
476 DUMP_PREFIX_ADDRESS
, 16,
478 buffer_info
->skb
->data
,
479 adapter
->rx_buffer_len
,
487 * e1000_desc_unused - calculate if we have unused descriptors
489 static int e1000_desc_unused(struct e1000_ring
*ring
)
491 if (ring
->next_to_clean
> ring
->next_to_use
)
492 return ring
->next_to_clean
- ring
->next_to_use
- 1;
494 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
512 struct skb_shared_hwtstamps
*hwtstamps
,
518 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
519 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
520 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
522 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
523 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
536 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
539 struct e1000_hw
*hw
= &adapter
->hw
;
542 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
543 !(status
& E1000_RXDEXT_STATERR_TST
) ||
544 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
554 rxstmp
= (u64
)er32(RXSTMPL
);
555 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
556 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
558 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
568 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
569 struct net_device
*netdev
, struct sk_buff
*skb
,
570 u32 staterr
, __le16 vlan
)
572 u16 tag
= le16_to_cpu(vlan
);
574 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
576 skb
->protocol
= eth_type_trans(skb
, netdev
);
578 if (staterr
& E1000_RXD_STAT_VP
)
579 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
581 napi_gro_receive(&adapter
->napi
, skb
);
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
591 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
594 u16 status
= (u16
)status_err
;
595 u8 errors
= (u8
)(status_err
>> 24);
597 skb_checksum_none_assert(skb
);
599 /* Rx checksum disabled */
600 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
603 /* Ignore Checksum bit is set */
604 if (status
& E1000_RXD_STAT_IXSM
)
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
609 /* let the stack verify checksum errors */
610 adapter
->hw_csum_err
++;
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
620 adapter
->hw_csum_good
++;
623 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
625 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
626 struct e1000_hw
*hw
= &adapter
->hw
;
627 s32 ret_val
= __ew32_prepare(hw
);
629 writel(i
, rx_ring
->tail
);
631 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
632 u32 rctl
= er32(RCTL
);
634 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter
->reset_task
);
640 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
642 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
643 struct e1000_hw
*hw
= &adapter
->hw
;
644 s32 ret_val
= __ew32_prepare(hw
);
646 writel(i
, tx_ring
->tail
);
648 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
649 u32 tctl
= er32(TCTL
);
651 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter
->reset_task
);
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
661 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
662 int cleaned_count
, gfp_t gfp
)
664 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
665 struct net_device
*netdev
= adapter
->netdev
;
666 struct pci_dev
*pdev
= adapter
->pdev
;
667 union e1000_rx_desc_extended
*rx_desc
;
668 struct e1000_buffer
*buffer_info
;
671 unsigned int bufsz
= adapter
->rx_buffer_len
;
673 i
= rx_ring
->next_to_use
;
674 buffer_info
= &rx_ring
->buffer_info
[i
];
676 while (cleaned_count
--) {
677 skb
= buffer_info
->skb
;
683 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
685 /* Better luck next round */
686 adapter
->alloc_rx_buff_failed
++;
690 buffer_info
->skb
= skb
;
692 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
693 adapter
->rx_buffer_len
,
695 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
696 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
697 adapter
->rx_dma_failed
++;
701 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
702 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
704 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
711 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
712 e1000e_update_rdt_wa(rx_ring
, i
);
714 writel(i
, rx_ring
->tail
);
717 if (i
== rx_ring
->count
)
719 buffer_info
= &rx_ring
->buffer_info
[i
];
722 rx_ring
->next_to_use
= i
;
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
730 int cleaned_count
, gfp_t gfp
)
732 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
733 struct net_device
*netdev
= adapter
->netdev
;
734 struct pci_dev
*pdev
= adapter
->pdev
;
735 union e1000_rx_desc_packet_split
*rx_desc
;
736 struct e1000_buffer
*buffer_info
;
737 struct e1000_ps_page
*ps_page
;
741 i
= rx_ring
->next_to_use
;
742 buffer_info
= &rx_ring
->buffer_info
[i
];
744 while (cleaned_count
--) {
745 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
747 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
748 ps_page
= &buffer_info
->ps_pages
[j
];
749 if (j
>= adapter
->rx_ps_pages
) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc
->read
.buffer_addr
[j
+ 1] =
755 if (!ps_page
->page
) {
756 ps_page
->page
= alloc_page(gfp
);
757 if (!ps_page
->page
) {
758 adapter
->alloc_rx_buff_failed
++;
761 ps_page
->dma
= dma_map_page(&pdev
->dev
,
765 if (dma_mapping_error(&pdev
->dev
,
767 dev_err(&adapter
->pdev
->dev
,
768 "Rx DMA page map failed\n");
769 adapter
->rx_dma_failed
++;
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
777 rx_desc
->read
.buffer_addr
[j
+ 1] =
778 cpu_to_le64(ps_page
->dma
);
781 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
785 adapter
->alloc_rx_buff_failed
++;
789 buffer_info
->skb
= skb
;
790 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
791 adapter
->rx_ps_bsize0
,
793 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
794 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
795 adapter
->rx_dma_failed
++;
797 dev_kfree_skb_any(skb
);
798 buffer_info
->skb
= NULL
;
802 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
804 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
811 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
812 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
814 writel(i
<< 1, rx_ring
->tail
);
818 if (i
== rx_ring
->count
)
820 buffer_info
= &rx_ring
->buffer_info
[i
];
824 rx_ring
->next_to_use
= i
;
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
834 int cleaned_count
, gfp_t gfp
)
836 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
837 struct net_device
*netdev
= adapter
->netdev
;
838 struct pci_dev
*pdev
= adapter
->pdev
;
839 union e1000_rx_desc_extended
*rx_desc
;
840 struct e1000_buffer
*buffer_info
;
843 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
845 i
= rx_ring
->next_to_use
;
846 buffer_info
= &rx_ring
->buffer_info
[i
];
848 while (cleaned_count
--) {
849 skb
= buffer_info
->skb
;
855 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
856 if (unlikely(!skb
)) {
857 /* Better luck next round */
858 adapter
->alloc_rx_buff_failed
++;
862 buffer_info
->skb
= skb
;
864 /* allocate a new page if necessary */
865 if (!buffer_info
->page
) {
866 buffer_info
->page
= alloc_page(gfp
);
867 if (unlikely(!buffer_info
->page
)) {
868 adapter
->alloc_rx_buff_failed
++;
873 if (!buffer_info
->dma
) {
874 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
875 buffer_info
->page
, 0,
878 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
879 adapter
->alloc_rx_buff_failed
++;
884 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
885 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
887 if (unlikely(++i
== rx_ring
->count
))
889 buffer_info
= &rx_ring
->buffer_info
[i
];
892 if (likely(rx_ring
->next_to_use
!= i
)) {
893 rx_ring
->next_to_use
= i
;
894 if (unlikely(i
-- == 0))
895 i
= (rx_ring
->count
- 1);
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
903 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
904 e1000e_update_rdt_wa(rx_ring
, i
);
906 writel(i
, rx_ring
->tail
);
910 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
913 if (netdev
->features
& NETIF_F_RXHASH
)
914 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
924 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
927 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
928 struct net_device
*netdev
= adapter
->netdev
;
929 struct pci_dev
*pdev
= adapter
->pdev
;
930 struct e1000_hw
*hw
= &adapter
->hw
;
931 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
932 struct e1000_buffer
*buffer_info
, *next_buffer
;
935 int cleaned_count
= 0;
936 bool cleaned
= false;
937 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
939 i
= rx_ring
->next_to_clean
;
940 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
941 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
942 buffer_info
= &rx_ring
->buffer_info
[i
];
944 while (staterr
& E1000_RXD_STAT_DD
) {
947 if (*work_done
>= work_to_do
)
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952 skb
= buffer_info
->skb
;
953 buffer_info
->skb
= NULL
;
955 prefetch(skb
->data
- NET_IP_ALIGN
);
958 if (i
== rx_ring
->count
)
960 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
963 next_buffer
= &rx_ring
->buffer_info
[i
];
967 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
968 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
969 buffer_info
->dma
= 0;
971 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
979 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
980 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
982 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
986 buffer_info
->skb
= skb
;
987 if (staterr
& E1000_RXD_STAT_EOP
)
988 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
992 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
993 !(netdev
->features
& NETIF_F_RXALL
))) {
995 buffer_info
->skb
= skb
;
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1005 if (netdev
->features
& NETIF_F_RXFCS
)
1006 total_rx_bytes
-= 4;
1011 total_rx_bytes
+= length
;
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1018 if (length
< copybreak
) {
1019 struct sk_buff
*new_skb
=
1020 napi_alloc_skb(&adapter
->napi
, length
);
1022 skb_copy_to_linear_data_offset(new_skb
,
1028 /* save the skb in buffer_info as good */
1029 buffer_info
->skb
= skb
;
1032 /* else just continue with the old one */
1034 /* end copybreak code */
1035 skb_put(skb
, length
);
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter
, staterr
, skb
);
1040 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1042 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1043 rx_desc
->wb
.upper
.vlan
);
1046 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1050 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1055 /* use prefetched values */
1057 buffer_info
= next_buffer
;
1059 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1061 rx_ring
->next_to_clean
= i
;
1063 cleaned_count
= e1000_desc_unused(rx_ring
);
1065 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1067 adapter
->total_rx_bytes
+= total_rx_bytes
;
1068 adapter
->total_rx_packets
+= total_rx_packets
;
1072 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1073 struct e1000_buffer
*buffer_info
)
1075 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1077 if (buffer_info
->dma
) {
1078 if (buffer_info
->mapped_as_page
)
1079 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1080 buffer_info
->length
, DMA_TO_DEVICE
);
1082 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1083 buffer_info
->length
, DMA_TO_DEVICE
);
1084 buffer_info
->dma
= 0;
1086 if (buffer_info
->skb
) {
1087 dev_kfree_skb_any(buffer_info
->skb
);
1088 buffer_info
->skb
= NULL
;
1090 buffer_info
->time_stamp
= 0;
1093 static void e1000_print_hw_hang(struct work_struct
*work
)
1095 struct e1000_adapter
*adapter
= container_of(work
,
1096 struct e1000_adapter
,
1098 struct net_device
*netdev
= adapter
->netdev
;
1099 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1100 unsigned int i
= tx_ring
->next_to_clean
;
1101 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1102 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1103 struct e1000_hw
*hw
= &adapter
->hw
;
1104 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1107 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1110 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1114 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1115 /* execute the writes immediately */
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1120 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1121 /* execute the writes immediately */
1123 adapter
->tx_hang_recheck
= true;
1126 adapter
->tx_hang_recheck
= false;
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1133 /* Real hang detected */
1134 netif_stop_queue(netdev
);
1136 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1137 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1138 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1140 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1152 " next_to_watch.status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1159 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1160 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1161 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1163 e1000e_dump(adapter
);
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1178 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1180 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1182 struct e1000_hw
*hw
= &adapter
->hw
;
1184 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1185 struct skb_shared_hwtstamps shhwtstamps
;
1188 txstmp
= er32(TXSTMPL
);
1189 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1191 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1193 skb_tstamp_tx(adapter
->tx_hwtstamp_skb
, &shhwtstamps
);
1194 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1195 adapter
->tx_hwtstamp_skb
= NULL
;
1196 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1197 + adapter
->tx_timeout_factor
* HZ
)) {
1198 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1199 adapter
->tx_hwtstamp_skb
= NULL
;
1200 adapter
->tx_hwtstamp_timeouts
++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter
->tx_hwtstamp_work
);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1217 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1218 struct net_device
*netdev
= adapter
->netdev
;
1219 struct e1000_hw
*hw
= &adapter
->hw
;
1220 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1221 struct e1000_buffer
*buffer_info
;
1222 unsigned int i
, eop
;
1223 unsigned int count
= 0;
1224 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1225 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1227 i
= tx_ring
->next_to_clean
;
1228 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1229 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1231 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1232 (count
< tx_ring
->count
)) {
1233 bool cleaned
= false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned
; count
++) {
1237 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1238 buffer_info
= &tx_ring
->buffer_info
[i
];
1239 cleaned
= (i
== eop
);
1242 total_tx_packets
+= buffer_info
->segs
;
1243 total_tx_bytes
+= buffer_info
->bytecount
;
1244 if (buffer_info
->skb
) {
1245 bytes_compl
+= buffer_info
->skb
->len
;
1250 e1000_put_txbuf(tx_ring
, buffer_info
);
1251 tx_desc
->upper
.data
= 0;
1254 if (i
== tx_ring
->count
)
1258 if (i
== tx_ring
->next_to_use
)
1260 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1261 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1264 tx_ring
->next_to_clean
= i
;
1266 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count
&& netif_carrier_ok(netdev
) &&
1270 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev
) &&
1277 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1278 netif_wake_queue(netdev
);
1279 ++adapter
->restart_queue
;
1283 if (adapter
->detect_tx_hung
) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter
->detect_tx_hung
= false;
1288 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1289 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1290 + (adapter
->tx_timeout_factor
* HZ
)) &&
1291 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1292 schedule_work(&adapter
->print_hang_task
);
1294 adapter
->tx_hang_recheck
= false;
1296 adapter
->total_tx_bytes
+= total_tx_bytes
;
1297 adapter
->total_tx_packets
+= total_tx_packets
;
1298 return count
< tx_ring
->count
;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1311 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1312 struct e1000_hw
*hw
= &adapter
->hw
;
1313 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1314 struct net_device
*netdev
= adapter
->netdev
;
1315 struct pci_dev
*pdev
= adapter
->pdev
;
1316 struct e1000_buffer
*buffer_info
, *next_buffer
;
1317 struct e1000_ps_page
*ps_page
;
1318 struct sk_buff
*skb
;
1320 u32 length
, staterr
;
1321 int cleaned_count
= 0;
1322 bool cleaned
= false;
1323 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1325 i
= rx_ring
->next_to_clean
;
1326 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1327 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1328 buffer_info
= &rx_ring
->buffer_info
[i
];
1330 while (staterr
& E1000_RXD_STAT_DD
) {
1331 if (*work_done
>= work_to_do
)
1334 skb
= buffer_info
->skb
;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1337 /* in the packet split case this is header only */
1338 prefetch(skb
->data
- NET_IP_ALIGN
);
1341 if (i
== rx_ring
->count
)
1343 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1346 next_buffer
= &rx_ring
->buffer_info
[i
];
1350 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1351 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1352 buffer_info
->dma
= 0;
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr
& E1000_RXD_STAT_EOP
))
1356 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1358 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb
);
1361 if (staterr
& E1000_RXD_STAT_EOP
)
1362 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1366 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1367 !(netdev
->features
& NETIF_F_RXALL
))) {
1368 dev_kfree_skb_irq(skb
);
1372 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb
);
1381 skb_put(skb
, length
);
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1387 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1394 if (l1
&& (l1
<= copybreak
) &&
1395 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1398 ps_page
= &buffer_info
->ps_pages
[0];
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1404 dma_sync_single_for_cpu(&pdev
->dev
,
1408 vaddr
= kmap_atomic(ps_page
->page
);
1409 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1410 kunmap_atomic(vaddr
);
1411 dma_sync_single_for_device(&pdev
->dev
,
1416 /* remove the CRC */
1417 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1418 if (!(netdev
->features
& NETIF_F_RXFCS
))
1427 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1428 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1432 ps_page
= &buffer_info
->ps_pages
[j
];
1433 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1436 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1437 ps_page
->page
= NULL
;
1439 skb
->data_len
+= length
;
1440 skb
->truesize
+= PAGE_SIZE
;
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1446 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1447 if (!(netdev
->features
& NETIF_F_RXFCS
))
1448 pskb_trim(skb
, skb
->len
- 4);
1452 total_rx_bytes
+= skb
->len
;
1455 e1000_rx_checksum(adapter
, staterr
, skb
);
1457 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1459 if (rx_desc
->wb
.upper
.header_status
&
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1461 adapter
->rx_hdr_split
++;
1463 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1464 rx_desc
->wb
.middle
.vlan
);
1467 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1468 buffer_info
->skb
= NULL
;
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1472 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1477 /* use prefetched values */
1479 buffer_info
= next_buffer
;
1481 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1483 rx_ring
->next_to_clean
= i
;
1485 cleaned_count
= e1000_desc_unused(rx_ring
);
1487 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1489 adapter
->total_rx_bytes
+= total_rx_bytes
;
1490 adapter
->total_rx_packets
+= total_rx_packets
;
1495 * e1000_consume_page - helper function
1497 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1502 skb
->data_len
+= length
;
1503 skb
->truesize
+= PAGE_SIZE
;
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1516 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1517 struct net_device
*netdev
= adapter
->netdev
;
1518 struct pci_dev
*pdev
= adapter
->pdev
;
1519 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1520 struct e1000_buffer
*buffer_info
, *next_buffer
;
1521 u32 length
, staterr
;
1523 int cleaned_count
= 0;
1524 bool cleaned
= false;
1525 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1526 struct skb_shared_info
*shinfo
;
1528 i
= rx_ring
->next_to_clean
;
1529 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1530 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1531 buffer_info
= &rx_ring
->buffer_info
[i
];
1533 while (staterr
& E1000_RXD_STAT_DD
) {
1534 struct sk_buff
*skb
;
1536 if (*work_done
>= work_to_do
)
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1541 skb
= buffer_info
->skb
;
1542 buffer_info
->skb
= NULL
;
1545 if (i
== rx_ring
->count
)
1547 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1550 next_buffer
= &rx_ring
->buffer_info
[i
];
1554 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1556 buffer_info
->dma
= 0;
1558 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1562 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1563 !(netdev
->features
& NETIF_F_RXALL
)))) {
1564 /* recycle both page and skb */
1565 buffer_info
->skb
= skb
;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring
->rx_skb_top
)
1568 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1569 rx_ring
->rx_skb_top
= NULL
;
1572 #define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1574 /* this descriptor is only the beginning (or middle) */
1576 /* this is the beginning of a chain */
1578 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1581 /* this is the middle of a chain */
1582 shinfo
= skb_shinfo(rxtop
);
1583 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1584 buffer_info
->page
, 0,
1586 /* re-use the skb, only consumed the page */
1587 buffer_info
->skb
= skb
;
1589 e1000_consume_page(buffer_info
, rxtop
, length
);
1593 /* end of the chain */
1594 shinfo
= skb_shinfo(rxtop
);
1595 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1596 buffer_info
->page
, 0,
1598 /* re-use the current skb, we only consumed the
1601 buffer_info
->skb
= skb
;
1604 e1000_consume_page(buffer_info
, skb
, length
);
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1609 if (length
<= copybreak
&&
1610 skb_tailroom(skb
) >= length
) {
1612 vaddr
= kmap_atomic(buffer_info
->page
);
1613 memcpy(skb_tail_pointer(skb
), vaddr
,
1615 kunmap_atomic(vaddr
);
1616 /* re-use the page, so don't erase
1619 skb_put(skb
, length
);
1621 skb_fill_page_desc(skb
, 0,
1622 buffer_info
->page
, 0,
1624 e1000_consume_page(buffer_info
, skb
,
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter
, staterr
, skb
);
1633 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes
+= skb
->len
;
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb
);
1646 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1647 rx_desc
->wb
.upper
.vlan
);
1650 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1654 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1659 /* use prefetched values */
1661 buffer_info
= next_buffer
;
1663 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1665 rx_ring
->next_to_clean
= i
;
1667 cleaned_count
= e1000_desc_unused(rx_ring
);
1669 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1671 adapter
->total_rx_bytes
+= total_rx_bytes
;
1672 adapter
->total_rx_packets
+= total_rx_packets
;
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1680 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1682 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1683 struct e1000_buffer
*buffer_info
;
1684 struct e1000_ps_page
*ps_page
;
1685 struct pci_dev
*pdev
= adapter
->pdev
;
1688 /* Free all the Rx ring sk_buffs */
1689 for (i
= 0; i
< rx_ring
->count
; i
++) {
1690 buffer_info
= &rx_ring
->buffer_info
[i
];
1691 if (buffer_info
->dma
) {
1692 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1693 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1694 adapter
->rx_buffer_len
,
1696 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1697 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1698 PAGE_SIZE
, DMA_FROM_DEVICE
);
1699 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1700 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1701 adapter
->rx_ps_bsize0
,
1703 buffer_info
->dma
= 0;
1706 if (buffer_info
->page
) {
1707 put_page(buffer_info
->page
);
1708 buffer_info
->page
= NULL
;
1711 if (buffer_info
->skb
) {
1712 dev_kfree_skb(buffer_info
->skb
);
1713 buffer_info
->skb
= NULL
;
1716 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1717 ps_page
= &buffer_info
->ps_pages
[j
];
1720 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1723 put_page(ps_page
->page
);
1724 ps_page
->page
= NULL
;
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring
->rx_skb_top
) {
1730 dev_kfree_skb(rx_ring
->rx_skb_top
);
1731 rx_ring
->rx_skb_top
= NULL
;
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1737 rx_ring
->next_to_clean
= 0;
1738 rx_ring
->next_to_use
= 0;
1739 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1742 static void e1000e_downshift_workaround(struct work_struct
*work
)
1744 struct e1000_adapter
*adapter
= container_of(work
,
1745 struct e1000_adapter
,
1748 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1751 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1759 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1761 struct net_device
*netdev
= data
;
1762 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1763 struct e1000_hw
*hw
= &adapter
->hw
;
1764 u32 icr
= er32(ICR
);
1766 /* read ICR disables interrupts using IAM */
1767 if (icr
& E1000_ICR_LSC
) {
1768 hw
->mac
.get_link_status
= true;
1769 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770 * disconnect (LSC) before accessing any PHY registers
1772 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1773 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1774 schedule_work(&adapter
->downshift_task
);
1776 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777 * link down event; disable receives here in the ISR and reset
1778 * adapter in watchdog
1780 if (netif_carrier_ok(netdev
) &&
1781 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1782 /* disable receives */
1783 u32 rctl
= er32(RCTL
);
1785 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1786 adapter
->flags
|= FLAG_RESTART_NOW
;
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1790 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1793 /* Reset on uncorrectable ECC error */
1794 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1795 (hw
->mac
.type
== e1000_pch_spt
))) {
1796 u32 pbeccsts
= er32(PBECCSTS
);
1798 adapter
->corr_errors
+=
1799 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1800 adapter
->uncorr_errors
+=
1801 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1802 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1804 /* Do the reset outside of interrupt context */
1805 schedule_work(&adapter
->reset_task
);
1807 /* return immediately since reset is imminent */
1811 if (napi_schedule_prep(&adapter
->napi
)) {
1812 adapter
->total_tx_bytes
= 0;
1813 adapter
->total_tx_packets
= 0;
1814 adapter
->total_rx_bytes
= 0;
1815 adapter
->total_rx_packets
= 0;
1816 __napi_schedule(&adapter
->napi
);
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1827 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1829 struct net_device
*netdev
= data
;
1830 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1831 struct e1000_hw
*hw
= &adapter
->hw
;
1832 u32 rctl
, icr
= er32(ICR
);
1834 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1835 return IRQ_NONE
; /* Not our interrupt */
1837 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838 * not set, then the adapter didn't send an interrupt
1840 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1843 /* Interrupt Auto-Mask...upon reading ICR,
1844 * interrupts are masked. No need for the
1848 if (icr
& E1000_ICR_LSC
) {
1849 hw
->mac
.get_link_status
= true;
1850 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851 * disconnect (LSC) before accessing any PHY registers
1853 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1854 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1855 schedule_work(&adapter
->downshift_task
);
1857 /* 80003ES2LAN workaround--
1858 * For packet buffer work-around on link down event;
1859 * disable receives here in the ISR and
1860 * reset adapter in watchdog
1862 if (netif_carrier_ok(netdev
) &&
1863 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1864 /* disable receives */
1866 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1867 adapter
->flags
|= FLAG_RESTART_NOW
;
1869 /* guard against interrupt when we're going down */
1870 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1871 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1874 /* Reset on uncorrectable ECC error */
1875 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1876 (hw
->mac
.type
== e1000_pch_spt
))) {
1877 u32 pbeccsts
= er32(PBECCSTS
);
1879 adapter
->corr_errors
+=
1880 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1881 adapter
->uncorr_errors
+=
1882 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1883 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1885 /* Do the reset outside of interrupt context */
1886 schedule_work(&adapter
->reset_task
);
1888 /* return immediately since reset is imminent */
1892 if (napi_schedule_prep(&adapter
->napi
)) {
1893 adapter
->total_tx_bytes
= 0;
1894 adapter
->total_tx_packets
= 0;
1895 adapter
->total_rx_bytes
= 0;
1896 adapter
->total_rx_packets
= 0;
1897 __napi_schedule(&adapter
->napi
);
1903 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1905 struct net_device
*netdev
= data
;
1906 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1907 struct e1000_hw
*hw
= &adapter
->hw
;
1909 hw
->mac
.get_link_status
= true;
1911 /* guard against interrupt when we're going down */
1912 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
1913 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1914 ew32(IMS
, E1000_IMS_OTHER
);
1920 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1922 struct net_device
*netdev
= data
;
1923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1924 struct e1000_hw
*hw
= &adapter
->hw
;
1925 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1927 adapter
->total_tx_bytes
= 0;
1928 adapter
->total_tx_packets
= 0;
1930 if (!e1000_clean_tx_irq(tx_ring
))
1931 /* Ring was not completely cleaned, so fire another interrupt */
1932 ew32(ICS
, tx_ring
->ims_val
);
1934 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1935 ew32(IMS
, adapter
->tx_ring
->ims_val
);
1940 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1942 struct net_device
*netdev
= data
;
1943 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1944 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1946 /* Write the ITR value calculated at the end of the
1947 * previous interrupt.
1949 if (rx_ring
->set_itr
) {
1950 u32 itr
= rx_ring
->itr_val
?
1951 1000000000 / (rx_ring
->itr_val
* 256) : 0;
1953 writel(itr
, rx_ring
->itr_register
);
1954 rx_ring
->set_itr
= 0;
1957 if (napi_schedule_prep(&adapter
->napi
)) {
1958 adapter
->total_rx_bytes
= 0;
1959 adapter
->total_rx_packets
= 0;
1960 __napi_schedule(&adapter
->napi
);
1966 * e1000_configure_msix - Configure MSI-X hardware
1968 * e1000_configure_msix sets up the hardware to properly
1969 * generate MSI-X interrupts.
1971 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1973 struct e1000_hw
*hw
= &adapter
->hw
;
1974 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1975 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1977 u32 ctrl_ext
, ivar
= 0;
1979 adapter
->eiac_mask
= 0;
1981 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982 if (hw
->mac
.type
== e1000_82574
) {
1983 u32 rfctl
= er32(RFCTL
);
1985 rfctl
|= E1000_RFCTL_ACK_DIS
;
1989 /* Configure Rx vector */
1990 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1991 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1992 if (rx_ring
->itr_val
)
1993 writel(1000000000 / (rx_ring
->itr_val
* 256),
1994 rx_ring
->itr_register
);
1996 writel(1, rx_ring
->itr_register
);
1997 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1999 /* Configure Tx vector */
2000 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
2002 if (tx_ring
->itr_val
)
2003 writel(1000000000 / (tx_ring
->itr_val
* 256),
2004 tx_ring
->itr_register
);
2006 writel(1, tx_ring
->itr_register
);
2007 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2008 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2010 /* set vector for Other Causes, e.g. link changes */
2012 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2013 if (rx_ring
->itr_val
)
2014 writel(1000000000 / (rx_ring
->itr_val
* 256),
2015 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2017 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2018 adapter
->eiac_mask
|= E1000_IMS_OTHER
;
2020 /* Cause Tx interrupts on every write back */
2025 /* enable MSI-X PBA support */
2026 ctrl_ext
= er32(CTRL_EXT
) & ~E1000_CTRL_EXT_IAME
;
2027 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
| E1000_CTRL_EXT_EIAME
;
2028 ew32(CTRL_EXT
, ctrl_ext
);
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2034 if (adapter
->msix_entries
) {
2035 pci_disable_msix(adapter
->pdev
);
2036 kfree(adapter
->msix_entries
);
2037 adapter
->msix_entries
= NULL
;
2038 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2039 pci_disable_msi(adapter
->pdev
);
2040 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2047 * Attempt to configure interrupts using the best available
2048 * capabilities of the hardware and kernel.
2050 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2055 switch (adapter
->int_mode
) {
2056 case E1000E_INT_MODE_MSIX
:
2057 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2058 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2059 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2063 if (adapter
->msix_entries
) {
2064 struct e1000_adapter
*a
= adapter
;
2066 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2067 adapter
->msix_entries
[i
].entry
= i
;
2069 err
= pci_enable_msix_range(a
->pdev
,
2076 /* MSI-X failed, so fall through and try MSI */
2077 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2078 e1000e_reset_interrupt_capability(adapter
);
2080 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2082 case E1000E_INT_MODE_MSI
:
2083 if (!pci_enable_msi(adapter
->pdev
)) {
2084 adapter
->flags
|= FLAG_MSI_ENABLED
;
2086 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2087 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2090 case E1000E_INT_MODE_LEGACY
:
2091 /* Don't do anything; this is the system default */
2095 /* store the number of vectors being used */
2096 adapter
->num_vectors
= 1;
2100 * e1000_request_msix - Initialize MSI-X interrupts
2102 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2105 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2107 struct net_device
*netdev
= adapter
->netdev
;
2108 int err
= 0, vector
= 0;
2110 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2111 snprintf(adapter
->rx_ring
->name
,
2112 sizeof(adapter
->rx_ring
->name
) - 1,
2113 "%s-rx-0", netdev
->name
);
2115 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2116 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2117 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2121 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2122 E1000_EITR_82574(vector
);
2123 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2126 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2127 snprintf(adapter
->tx_ring
->name
,
2128 sizeof(adapter
->tx_ring
->name
) - 1,
2129 "%s-tx-0", netdev
->name
);
2131 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2132 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2133 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2137 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2138 E1000_EITR_82574(vector
);
2139 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2142 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2143 e1000_msix_other
, 0, netdev
->name
, netdev
);
2147 e1000_configure_msix(adapter
);
2153 * e1000_request_irq - initialize interrupts
2155 * Attempts to configure interrupts using the best available
2156 * capabilities of the hardware and kernel.
2158 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2160 struct net_device
*netdev
= adapter
->netdev
;
2163 if (adapter
->msix_entries
) {
2164 err
= e1000_request_msix(adapter
);
2167 /* fall back to MSI */
2168 e1000e_reset_interrupt_capability(adapter
);
2169 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2170 e1000e_set_interrupt_capability(adapter
);
2172 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2173 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2174 netdev
->name
, netdev
);
2178 /* fall back to legacy interrupt */
2179 e1000e_reset_interrupt_capability(adapter
);
2180 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2183 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2184 netdev
->name
, netdev
);
2186 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2191 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2193 struct net_device
*netdev
= adapter
->netdev
;
2195 if (adapter
->msix_entries
) {
2198 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2201 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2204 /* Other Causes interrupt vector */
2205 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2209 free_irq(adapter
->pdev
->irq
, netdev
);
2213 * e1000_irq_disable - Mask off interrupt generation on the NIC
2215 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2217 struct e1000_hw
*hw
= &adapter
->hw
;
2220 if (adapter
->msix_entries
)
2221 ew32(EIAC_82574
, 0);
2224 if (adapter
->msix_entries
) {
2227 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2228 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2230 synchronize_irq(adapter
->pdev
->irq
);
2235 * e1000_irq_enable - Enable default interrupt generation settings
2237 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2239 struct e1000_hw
*hw
= &adapter
->hw
;
2241 if (adapter
->msix_entries
) {
2242 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2243 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_LSC
);
2244 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
2245 (hw
->mac
.type
== e1000_pch_spt
)) {
2246 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2248 ew32(IMS
, IMS_ENABLE_MASK
);
2254 * e1000e_get_hw_control - get control of the h/w from f/w
2255 * @adapter: address of board private structure
2257 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258 * For ASF and Pass Through versions of f/w this means that
2259 * the driver is loaded. For AMT version (only with 82573)
2260 * of the f/w this means that the network i/f is open.
2262 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2264 struct e1000_hw
*hw
= &adapter
->hw
;
2268 /* Let firmware know the driver has taken over */
2269 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2271 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2272 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2273 ctrl_ext
= er32(CTRL_EXT
);
2274 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2279 * e1000e_release_hw_control - release control of the h/w to f/w
2280 * @adapter: address of board private structure
2282 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283 * For ASF and Pass Through versions of f/w this means that the
2284 * driver is no longer loaded. For AMT version (only with 82573) i
2285 * of the f/w this means that the network i/f is closed.
2288 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2290 struct e1000_hw
*hw
= &adapter
->hw
;
2294 /* Let firmware taken over control of h/w */
2295 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2297 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2298 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2299 ctrl_ext
= er32(CTRL_EXT
);
2300 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2305 * e1000_alloc_ring_dma - allocate memory for a ring structure
2307 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2308 struct e1000_ring
*ring
)
2310 struct pci_dev
*pdev
= adapter
->pdev
;
2312 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2324 * Return 0 on success, negative on failure
2326 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2328 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2329 int err
= -ENOMEM
, size
;
2331 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2332 tx_ring
->buffer_info
= vzalloc(size
);
2333 if (!tx_ring
->buffer_info
)
2336 /* round up to nearest 4K */
2337 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2338 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2340 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2344 tx_ring
->next_to_use
= 0;
2345 tx_ring
->next_to_clean
= 0;
2349 vfree(tx_ring
->buffer_info
);
2350 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2358 * Returns 0 on success, negative on failure
2360 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2362 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2363 struct e1000_buffer
*buffer_info
;
2364 int i
, size
, desc_len
, err
= -ENOMEM
;
2366 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2367 rx_ring
->buffer_info
= vzalloc(size
);
2368 if (!rx_ring
->buffer_info
)
2371 for (i
= 0; i
< rx_ring
->count
; i
++) {
2372 buffer_info
= &rx_ring
->buffer_info
[i
];
2373 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2374 sizeof(struct e1000_ps_page
),
2376 if (!buffer_info
->ps_pages
)
2380 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2382 /* Round up to nearest 4K */
2383 rx_ring
->size
= rx_ring
->count
* desc_len
;
2384 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2386 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2390 rx_ring
->next_to_clean
= 0;
2391 rx_ring
->next_to_use
= 0;
2392 rx_ring
->rx_skb_top
= NULL
;
2397 for (i
= 0; i
< rx_ring
->count
; i
++) {
2398 buffer_info
= &rx_ring
->buffer_info
[i
];
2399 kfree(buffer_info
->ps_pages
);
2402 vfree(rx_ring
->buffer_info
);
2403 e_err("Unable to allocate memory for the receive descriptor ring\n");
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2411 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2413 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2414 struct e1000_buffer
*buffer_info
;
2418 for (i
= 0; i
< tx_ring
->count
; i
++) {
2419 buffer_info
= &tx_ring
->buffer_info
[i
];
2420 e1000_put_txbuf(tx_ring
, buffer_info
);
2423 netdev_reset_queue(adapter
->netdev
);
2424 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2425 memset(tx_ring
->buffer_info
, 0, size
);
2427 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2429 tx_ring
->next_to_use
= 0;
2430 tx_ring
->next_to_clean
= 0;
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2437 * Free all transmit software resources
2439 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2441 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2442 struct pci_dev
*pdev
= adapter
->pdev
;
2444 e1000_clean_tx_ring(tx_ring
);
2446 vfree(tx_ring
->buffer_info
);
2447 tx_ring
->buffer_info
= NULL
;
2449 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2451 tx_ring
->desc
= NULL
;
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2458 * Free all receive software resources
2460 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2462 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2463 struct pci_dev
*pdev
= adapter
->pdev
;
2466 e1000_clean_rx_ring(rx_ring
);
2468 for (i
= 0; i
< rx_ring
->count
; i
++)
2469 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2471 vfree(rx_ring
->buffer_info
);
2472 rx_ring
->buffer_info
= NULL
;
2474 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2476 rx_ring
->desc
= NULL
;
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @adapter: pointer to adapter
2482 * @itr_setting: current adapter->itr
2483 * @packets: the number of packets during this measurement interval
2484 * @bytes: the number of bytes during this measurement interval
2486 * Stores a new ITR value based on packets and byte
2487 * counts during the last interrupt. The advantage of per interrupt
2488 * computation is faster updates and more accurate ITR for the current
2489 * traffic pattern. Constants in this function were computed
2490 * based on theoretical maximum wire speed and thresholds were set based
2491 * on testing data as well as attempting to minimize response time
2492 * while increasing bulk throughput. This functionality is controlled
2493 * by the InterruptThrottleRate module parameter.
2495 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2497 unsigned int retval
= itr_setting
;
2502 switch (itr_setting
) {
2503 case lowest_latency
:
2504 /* handle TSO and jumbo frames */
2505 if (bytes
/ packets
> 8000)
2506 retval
= bulk_latency
;
2507 else if ((packets
< 5) && (bytes
> 512))
2508 retval
= low_latency
;
2510 case low_latency
: /* 50 usec aka 20000 ints/s */
2511 if (bytes
> 10000) {
2512 /* this if handles the TSO accounting */
2513 if (bytes
/ packets
> 8000)
2514 retval
= bulk_latency
;
2515 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2516 retval
= bulk_latency
;
2517 else if ((packets
> 35))
2518 retval
= lowest_latency
;
2519 } else if (bytes
/ packets
> 2000) {
2520 retval
= bulk_latency
;
2521 } else if (packets
<= 2 && bytes
< 512) {
2522 retval
= lowest_latency
;
2525 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2526 if (bytes
> 25000) {
2528 retval
= low_latency
;
2529 } else if (bytes
< 6000) {
2530 retval
= low_latency
;
2538 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2541 u32 new_itr
= adapter
->itr
;
2543 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2544 if (adapter
->link_speed
!= SPEED_1000
) {
2550 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2555 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2556 adapter
->total_tx_packets
,
2557 adapter
->total_tx_bytes
);
2558 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2560 adapter
->tx_itr
= low_latency
;
2562 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2563 adapter
->total_rx_packets
,
2564 adapter
->total_rx_bytes
);
2565 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2567 adapter
->rx_itr
= low_latency
;
2569 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2571 /* counts and packets in update_itr are dependent on these numbers */
2572 switch (current_itr
) {
2573 case lowest_latency
:
2577 new_itr
= 20000; /* aka hwitr = ~200 */
2587 if (new_itr
!= adapter
->itr
) {
2588 /* this attempts to bias the interrupt rate towards Bulk
2589 * by adding intermediate steps when interrupt rate is
2592 new_itr
= new_itr
> adapter
->itr
?
2593 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2594 adapter
->itr
= new_itr
;
2595 adapter
->rx_ring
->itr_val
= new_itr
;
2596 if (adapter
->msix_entries
)
2597 adapter
->rx_ring
->set_itr
= 1;
2599 e1000e_write_itr(adapter
, new_itr
);
2604 * e1000e_write_itr - write the ITR value to the appropriate registers
2605 * @adapter: address of board private structure
2606 * @itr: new ITR value to program
2608 * e1000e_write_itr determines if the adapter is in MSI-X mode
2609 * and, if so, writes the EITR registers with the ITR value.
2610 * Otherwise, it writes the ITR value into the ITR register.
2612 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2614 struct e1000_hw
*hw
= &adapter
->hw
;
2615 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2617 if (adapter
->msix_entries
) {
2620 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2621 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2628 * e1000_alloc_queues - Allocate memory for all rings
2629 * @adapter: board private structure to initialize
2631 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2633 int size
= sizeof(struct e1000_ring
);
2635 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2636 if (!adapter
->tx_ring
)
2638 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2639 adapter
->tx_ring
->adapter
= adapter
;
2641 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2642 if (!adapter
->rx_ring
)
2644 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2645 adapter
->rx_ring
->adapter
= adapter
;
2649 e_err("Unable to allocate memory for queues\n");
2650 kfree(adapter
->rx_ring
);
2651 kfree(adapter
->tx_ring
);
2656 * e1000e_poll - NAPI Rx polling callback
2657 * @napi: struct associated with this polling callback
2658 * @weight: number of packets driver is allowed to process this poll
2660 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2662 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2664 struct e1000_hw
*hw
= &adapter
->hw
;
2665 struct net_device
*poll_dev
= adapter
->netdev
;
2666 int tx_cleaned
= 1, work_done
= 0;
2668 adapter
= netdev_priv(poll_dev
);
2670 if (!adapter
->msix_entries
||
2671 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2672 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2674 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2679 /* If weight not fully consumed, exit the polling mode */
2680 if (work_done
< weight
) {
2681 if (adapter
->itr_setting
& 3)
2682 e1000_set_itr(adapter
);
2683 napi_complete_done(napi
, work_done
);
2684 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2685 if (adapter
->msix_entries
)
2686 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2688 e1000_irq_enable(adapter
);
2695 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2696 __always_unused __be16 proto
, u16 vid
)
2698 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2699 struct e1000_hw
*hw
= &adapter
->hw
;
2702 /* don't update vlan cookie if already programmed */
2703 if ((adapter
->hw
.mng_cookie
.status
&
2704 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2705 (vid
== adapter
->mng_vlan_id
))
2708 /* add VID to filter table */
2709 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2710 index
= (vid
>> 5) & 0x7F;
2711 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2712 vfta
|= (1 << (vid
& 0x1F));
2713 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2716 set_bit(vid
, adapter
->active_vlans
);
2721 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2722 __always_unused __be16 proto
, u16 vid
)
2724 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2725 struct e1000_hw
*hw
= &adapter
->hw
;
2728 if ((adapter
->hw
.mng_cookie
.status
&
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2730 (vid
== adapter
->mng_vlan_id
)) {
2731 /* release control to f/w */
2732 e1000e_release_hw_control(adapter
);
2736 /* remove VID from filter table */
2737 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2738 index
= (vid
>> 5) & 0x7F;
2739 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2740 vfta
&= ~(1 << (vid
& 0x1F));
2741 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2744 clear_bit(vid
, adapter
->active_vlans
);
2750 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751 * @adapter: board private structure to initialize
2753 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2755 struct net_device
*netdev
= adapter
->netdev
;
2756 struct e1000_hw
*hw
= &adapter
->hw
;
2759 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2760 /* disable VLAN receive filtering */
2762 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2765 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2766 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2767 adapter
->mng_vlan_id
);
2768 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2774 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775 * @adapter: board private structure to initialize
2777 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2779 struct e1000_hw
*hw
= &adapter
->hw
;
2782 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2783 /* enable VLAN receive filtering */
2785 rctl
|= E1000_RCTL_VFE
;
2786 rctl
&= ~E1000_RCTL_CFIEN
;
2792 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2795 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2797 struct e1000_hw
*hw
= &adapter
->hw
;
2800 /* disable VLAN tag insert/strip */
2802 ctrl
&= ~E1000_CTRL_VME
;
2807 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2810 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2812 struct e1000_hw
*hw
= &adapter
->hw
;
2815 /* enable VLAN tag insert/strip */
2817 ctrl
|= E1000_CTRL_VME
;
2821 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2823 struct net_device
*netdev
= adapter
->netdev
;
2824 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2825 u16 old_vid
= adapter
->mng_vlan_id
;
2827 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2828 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2829 adapter
->mng_vlan_id
= vid
;
2832 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2833 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2836 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2840 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2842 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2843 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2846 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2848 struct e1000_hw
*hw
= &adapter
->hw
;
2849 u32 manc
, manc2h
, mdef
, i
, j
;
2851 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2856 /* enable receiving management packets to the host. this will probably
2857 * generate destination unreachable messages from the host OS, but
2858 * the packets will be handled on SMBUS
2860 manc
|= E1000_MANC_EN_MNG2HOST
;
2861 manc2h
= er32(MANC2H
);
2863 switch (hw
->mac
.type
) {
2865 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2869 /* Check if IPMI pass-through decision filter already exists;
2872 for (i
= 0, j
= 0; i
< 8; i
++) {
2873 mdef
= er32(MDEF(i
));
2875 /* Ignore filters with anything other than IPMI ports */
2876 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2879 /* Enable this decision filter in MANC2H */
2886 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2889 /* Create new decision filter in an empty filter */
2890 for (i
= 0, j
= 0; i
< 8; i
++)
2891 if (er32(MDEF(i
)) == 0) {
2892 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2893 E1000_MDEF_PORT_664
));
2900 e_warn("Unable to create IPMI pass-through filter\n");
2904 ew32(MANC2H
, manc2h
);
2909 * e1000_configure_tx - Configure Transmit Unit after Reset
2910 * @adapter: board private structure
2912 * Configure the Tx unit of the MAC after a reset.
2914 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2916 struct e1000_hw
*hw
= &adapter
->hw
;
2917 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2919 u32 tdlen
, tctl
, tarc
;
2921 /* Setup the HW Tx Head and Tail descriptor pointers */
2922 tdba
= tx_ring
->dma
;
2923 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2924 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2925 ew32(TDBAH(0), (tdba
>> 32));
2926 ew32(TDLEN(0), tdlen
);
2929 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2930 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2932 writel(0, tx_ring
->head
);
2933 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2934 e1000e_update_tdt_wa(tx_ring
, 0);
2936 writel(0, tx_ring
->tail
);
2938 /* Set the Tx Interrupt Delay register */
2939 ew32(TIDV
, adapter
->tx_int_delay
);
2940 /* Tx irq moderation */
2941 ew32(TADV
, adapter
->tx_abs_int_delay
);
2943 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2944 u32 txdctl
= er32(TXDCTL(0));
2946 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2947 E1000_TXDCTL_WTHRESH
);
2948 /* set up some performance related parameters to encourage the
2949 * hardware to use the bus more efficiently in bursts, depends
2950 * on the tx_int_delay to be enabled,
2951 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952 * hthresh = 1 ==> prefetch when one or more available
2953 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954 * BEWARE: this seems to work but should be considered first if
2955 * there are Tx hangs or other Tx related bugs
2957 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2958 ew32(TXDCTL(0), txdctl
);
2960 /* erratum work around: set txdctl the same for both queues */
2961 ew32(TXDCTL(1), er32(TXDCTL(0)));
2963 /* Program the Transmit Control Register */
2965 tctl
&= ~E1000_TCTL_CT
;
2966 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2967 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2969 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2970 tarc
= er32(TARC(0));
2971 /* set the speed mode bit, we'll clear it if we're not at
2972 * gigabit link later
2974 #define SPEED_MODE_BIT (1 << 21)
2975 tarc
|= SPEED_MODE_BIT
;
2976 ew32(TARC(0), tarc
);
2979 /* errata: program both queues to unweighted RR */
2980 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2981 tarc
= er32(TARC(0));
2983 ew32(TARC(0), tarc
);
2984 tarc
= er32(TARC(1));
2986 ew32(TARC(1), tarc
);
2989 /* Setup Transmit Descriptor Settings for eop descriptor */
2990 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2992 /* only set IDE if we are delaying interrupts using the timers */
2993 if (adapter
->tx_int_delay
)
2994 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2996 /* enable Report Status bit */
2997 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
3001 hw
->mac
.ops
.config_collision_dist(hw
);
3003 /* SPT Si errata workaround to avoid data corruption */
3004 if (hw
->mac
.type
== e1000_pch_spt
) {
3007 reg_val
= er32(IOSFPC
);
3008 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3009 ew32(IOSFPC
, reg_val
);
3011 reg_val
= er32(TARC(0));
3012 reg_val
|= E1000_TARC0_CB_MULTIQ_3_REQ
;
3013 ew32(TARC(0), reg_val
);
3018 * e1000_setup_rctl - configure the receive control registers
3019 * @adapter: Board private structure
3021 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3025 struct e1000_hw
*hw
= &adapter
->hw
;
3029 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3030 * If jumbo frames not set, program related MAC/PHY registers
3033 if (hw
->mac
.type
>= e1000_pch2lan
) {
3036 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3037 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3039 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3042 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 /* Program MC offset vector base */
3047 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3048 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3049 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3050 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3052 /* Do not Store bad packets */
3053 rctl
&= ~E1000_RCTL_SBP
;
3055 /* Enable Long Packet receive */
3056 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3057 rctl
&= ~E1000_RCTL_LPE
;
3059 rctl
|= E1000_RCTL_LPE
;
3061 /* Some systems expect that the CRC is included in SMBUS traffic. The
3062 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063 * host memory when this is enabled
3065 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3066 rctl
|= E1000_RCTL_SECRC
;
3068 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3072 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3074 phy_data
|= (1 << 2);
3075 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3077 e1e_rphy(hw
, 22, &phy_data
);
3079 phy_data
|= (1 << 14);
3080 e1e_wphy(hw
, 0x10, 0x2823);
3081 e1e_wphy(hw
, 0x11, 0x0003);
3082 e1e_wphy(hw
, 22, phy_data
);
3085 /* Setup buffer sizes */
3086 rctl
&= ~E1000_RCTL_SZ_4096
;
3087 rctl
|= E1000_RCTL_BSEX
;
3088 switch (adapter
->rx_buffer_len
) {
3091 rctl
|= E1000_RCTL_SZ_2048
;
3092 rctl
&= ~E1000_RCTL_BSEX
;
3095 rctl
|= E1000_RCTL_SZ_4096
;
3098 rctl
|= E1000_RCTL_SZ_8192
;
3101 rctl
|= E1000_RCTL_SZ_16384
;
3105 /* Enable Extended Status in all Receive Descriptors */
3106 rfctl
= er32(RFCTL
);
3107 rfctl
|= E1000_RFCTL_EXTEN
;
3110 /* 82571 and greater support packet-split where the protocol
3111 * header is placed in skb->data and the packet data is
3112 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113 * In the case of a non-split, skb->data is linearly filled,
3114 * followed by the page buffers. Therefore, skb->data is
3115 * sized to hold the largest protocol header.
3117 * allocations using alloc_page take too long for regular MTU
3118 * so only enable packet split for jumbo frames
3120 * Using pages when the page size is greater than 16k wastes
3121 * a lot of memory, since we allocate 3 pages at all times
3124 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3125 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3126 adapter
->rx_ps_pages
= pages
;
3128 adapter
->rx_ps_pages
= 0;
3130 if (adapter
->rx_ps_pages
) {
3133 /* Enable Packet split descriptors */
3134 rctl
|= E1000_RCTL_DTYP_PS
;
3136 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3138 switch (adapter
->rx_ps_pages
) {
3140 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3143 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3146 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3150 ew32(PSRCTL
, psrctl
);
3153 /* This is useful for sniffing bad packets. */
3154 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3155 /* UPE and MPE will be handled by normal PROMISC logic
3156 * in e1000e_set_rx_mode
3158 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3159 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3160 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3162 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3163 E1000_RCTL_DPF
| /* Allow filtered pause */
3164 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3165 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166 * and that breaks VLANs.
3171 /* just started the receive unit, no need to restart */
3172 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3176 * e1000_configure_rx - Configure Receive Unit after Reset
3177 * @adapter: board private structure
3179 * Configure the Rx unit of the MAC after a reset.
3181 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3183 struct e1000_hw
*hw
= &adapter
->hw
;
3184 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3186 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3188 if (adapter
->rx_ps_pages
) {
3189 /* this is a 32 byte descriptor */
3190 rdlen
= rx_ring
->count
*
3191 sizeof(union e1000_rx_desc_packet_split
);
3192 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3193 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3194 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3195 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3196 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3197 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3199 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3200 adapter
->clean_rx
= e1000_clean_rx_irq
;
3201 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3204 /* disable receives while setting up the descriptors */
3206 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3207 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3209 usleep_range(10000, 20000);
3211 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3212 /* set the writeback threshold (only takes effect if the RDTR
3213 * is set). set GRAN=1 and write back up to 0x4 worth, and
3214 * enable prefetching of 0x20 Rx descriptors
3220 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3221 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3223 /* override the delay timers for enabling bursting, only if
3224 * the value was not set by the user via module options
3226 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3227 adapter
->rx_int_delay
= BURST_RDTR
;
3228 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3229 adapter
->rx_abs_int_delay
= BURST_RADV
;
3232 /* set the Receive Delay Timer Register */
3233 ew32(RDTR
, adapter
->rx_int_delay
);
3235 /* irq moderation */
3236 ew32(RADV
, adapter
->rx_abs_int_delay
);
3237 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3238 e1000e_write_itr(adapter
, adapter
->itr
);
3240 ctrl_ext
= er32(CTRL_EXT
);
3241 /* Auto-Mask interrupts upon ICR access */
3242 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3243 ew32(IAM
, 0xffffffff);
3244 ew32(CTRL_EXT
, ctrl_ext
);
3247 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3248 * the Base and Length of the Rx Descriptor Ring
3250 rdba
= rx_ring
->dma
;
3251 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3252 ew32(RDBAH(0), (rdba
>> 32));
3253 ew32(RDLEN(0), rdlen
);
3256 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3257 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3259 writel(0, rx_ring
->head
);
3260 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3261 e1000e_update_rdt_wa(rx_ring
, 0);
3263 writel(0, rx_ring
->tail
);
3265 /* Enable Receive Checksum Offload for TCP and UDP */
3266 rxcsum
= er32(RXCSUM
);
3267 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3268 rxcsum
|= E1000_RXCSUM_TUOFL
;
3270 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3271 ew32(RXCSUM
, rxcsum
);
3273 /* With jumbo frames, excessive C-state transition latencies result
3274 * in dropped transactions.
3276 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3278 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3279 adapter
->max_frame_size
) * 8 / 1000;
3281 if (adapter
->flags
& FLAG_IS_ICH
) {
3282 u32 rxdctl
= er32(RXDCTL(0));
3284 ew32(RXDCTL(0), rxdctl
| 0x3);
3287 pm_qos_update_request(&adapter
->pm_qos_req
, lat
);
3289 pm_qos_update_request(&adapter
->pm_qos_req
,
3290 PM_QOS_DEFAULT_VALUE
);
3293 /* Enable Receives */
3298 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3299 * @netdev: network interface device structure
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 * 0 on no addresses written
3304 * X on writing X addresses to MTA
3306 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3308 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3309 struct e1000_hw
*hw
= &adapter
->hw
;
3310 struct netdev_hw_addr
*ha
;
3314 if (netdev_mc_empty(netdev
)) {
3315 /* nothing to program, so clear mc list */
3316 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3320 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3324 /* update_mc_addr_list expects a packed array of only addresses. */
3326 netdev_for_each_mc_addr(ha
, netdev
)
3327 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3329 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3332 return netdev_mc_count(netdev
);
3336 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3337 * @netdev: network interface device structure
3339 * Writes unicast address list to the RAR table.
3340 * Returns: -ENOMEM on failure/insufficient address space
3341 * 0 on no addresses written
3342 * X on writing X addresses to the RAR table
3344 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3346 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3347 struct e1000_hw
*hw
= &adapter
->hw
;
3348 unsigned int rar_entries
;
3351 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3353 /* save a rar entry for our hardware address */
3356 /* save a rar entry for the LAA workaround */
3357 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3360 /* return ENOMEM indicating insufficient memory for addresses */
3361 if (netdev_uc_count(netdev
) > rar_entries
)
3364 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3365 struct netdev_hw_addr
*ha
;
3367 /* write the addresses in reverse order to avoid write
3370 netdev_for_each_uc_addr(ha
, netdev
) {
3375 rval
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3382 /* zero out the remaining RAR entries not used above */
3383 for (; rar_entries
> 0; rar_entries
--) {
3384 ew32(RAH(rar_entries
), 0);
3385 ew32(RAL(rar_entries
), 0);
3393 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3394 * @netdev: network interface device structure
3396 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3397 * address list or the network interface flags are updated. This routine is
3398 * responsible for configuring the hardware for proper unicast, multicast,
3399 * promiscuous mode, and all-multi behavior.
3401 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3403 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3404 struct e1000_hw
*hw
= &adapter
->hw
;
3407 if (pm_runtime_suspended(netdev
->dev
.parent
))
3410 /* Check for Promiscuous and All Multicast modes */
3413 /* clear the affected bits */
3414 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3416 if (netdev
->flags
& IFF_PROMISC
) {
3417 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3418 /* Do not hardware filter VLANs in promisc mode */
3419 e1000e_vlan_filter_disable(adapter
);
3423 if (netdev
->flags
& IFF_ALLMULTI
) {
3424 rctl
|= E1000_RCTL_MPE
;
3426 /* Write addresses to the MTA, if the attempt fails
3427 * then we should just turn on promiscuous mode so
3428 * that we can at least receive multicast traffic
3430 count
= e1000e_write_mc_addr_list(netdev
);
3432 rctl
|= E1000_RCTL_MPE
;
3434 e1000e_vlan_filter_enable(adapter
);
3435 /* Write addresses to available RAR registers, if there is not
3436 * sufficient space to store all the addresses then enable
3437 * unicast promiscuous mode
3439 count
= e1000e_write_uc_addr_list(netdev
);
3441 rctl
|= E1000_RCTL_UPE
;
3446 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3447 e1000e_vlan_strip_enable(adapter
);
3449 e1000e_vlan_strip_disable(adapter
);
3452 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3454 struct e1000_hw
*hw
= &adapter
->hw
;
3459 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3460 for (i
= 0; i
< 10; i
++)
3461 ew32(RSSRK(i
), rss_key
[i
]);
3463 /* Direct all traffic to queue 0 */
3464 for (i
= 0; i
< 32; i
++)
3467 /* Disable raw packet checksumming so that RSS hash is placed in
3468 * descriptor on writeback.
3470 rxcsum
= er32(RXCSUM
);
3471 rxcsum
|= E1000_RXCSUM_PCSD
;
3473 ew32(RXCSUM
, rxcsum
);
3475 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3476 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3477 E1000_MRQC_RSS_FIELD_IPV6
|
3478 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3479 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3485 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3486 * @adapter: board private structure
3487 * @timinca: pointer to returned time increment attributes
3489 * Get attributes for incrementing the System Time Register SYSTIML/H at
3490 * the default base frequency, and set the cyclecounter shift value.
3492 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3494 struct e1000_hw
*hw
= &adapter
->hw
;
3495 u32 incvalue
, incperiod
, shift
;
3497 /* Make sure clock is enabled on I217/I218/I219 before checking
3500 if (((hw
->mac
.type
== e1000_pch_lpt
) ||
3501 (hw
->mac
.type
== e1000_pch_spt
)) &&
3502 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3503 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3504 u32 fextnvm7
= er32(FEXTNVM7
);
3506 if (!(fextnvm7
& (1 << 0))) {
3507 ew32(FEXTNVM7
, fextnvm7
| (1 << 0));
3512 switch (hw
->mac
.type
) {
3515 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3516 /* Stable 96MHz frequency */
3517 incperiod
= INCPERIOD_96MHz
;
3518 incvalue
= INCVALUE_96MHz
;
3519 shift
= INCVALUE_SHIFT_96MHz
;
3520 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHz
;
3522 /* Stable 25MHz frequency */
3523 incperiod
= INCPERIOD_25MHz
;
3524 incvalue
= INCVALUE_25MHz
;
3525 shift
= INCVALUE_SHIFT_25MHz
;
3526 adapter
->cc
.shift
= shift
;
3530 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3531 /* Stable 24MHz frequency */
3532 incperiod
= INCPERIOD_24MHz
;
3533 incvalue
= INCVALUE_24MHz
;
3534 shift
= INCVALUE_SHIFT_24MHz
;
3535 adapter
->cc
.shift
= shift
;
3541 /* Stable 25MHz frequency */
3542 incperiod
= INCPERIOD_25MHz
;
3543 incvalue
= INCVALUE_25MHz
;
3544 shift
= INCVALUE_SHIFT_25MHz
;
3545 adapter
->cc
.shift
= shift
;
3551 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3552 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3558 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3559 * @adapter: board private structure
3561 * Outgoing time stamping can be enabled and disabled. Play nice and
3562 * disable it when requested, although it shouldn't cause any overhead
3563 * when no packet needs it. At most one packet in the queue may be
3564 * marked for time stamping, otherwise it would be impossible to tell
3565 * for sure to which packet the hardware time stamp belongs.
3567 * Incoming time stamping has to be configured via the hardware filters.
3568 * Not all combinations are supported, in particular event type has to be
3569 * specified. Matching the kind of event packet is not supported, with the
3570 * exception of "all V2 events regardless of level 2 or 4".
3572 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3573 struct hwtstamp_config
*config
)
3575 struct e1000_hw
*hw
= &adapter
->hw
;
3576 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3577 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3585 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3588 /* flags reserved for future extensions - must be zero */
3592 switch (config
->tx_type
) {
3593 case HWTSTAMP_TX_OFF
:
3596 case HWTSTAMP_TX_ON
:
3602 switch (config
->rx_filter
) {
3603 case HWTSTAMP_FILTER_NONE
:
3606 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3607 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3608 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3611 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3612 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3613 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3616 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3617 /* Also time stamps V2 L2 Path Delay Request/Response */
3618 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3619 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3622 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3623 /* Also time stamps V2 L2 Path Delay Request/Response. */
3624 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3625 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3628 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3629 /* Hardware cannot filter just V2 L4 Sync messages;
3630 * fall-through to V2 (both L2 and L4) Sync.
3632 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3633 /* Also time stamps V2 Path Delay Request/Response. */
3634 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3635 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3639 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3640 /* Hardware cannot filter just V2 L4 Delay Request messages;
3641 * fall-through to V2 (both L2 and L4) Delay Request.
3643 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3644 /* Also time stamps V2 Path Delay Request/Response. */
3645 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3646 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3650 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3651 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3652 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3653 * fall-through to all V2 (both L2 and L4) Events.
3655 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3656 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3657 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3661 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3662 /* For V1, the hardware can only filter Sync messages or
3663 * Delay Request messages but not both so fall-through to
3664 * time stamp all packets.
3666 case HWTSTAMP_FILTER_ALL
:
3669 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3670 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3676 adapter
->hwtstamp_config
= *config
;
3678 /* enable/disable Tx h/w time stamping */
3679 regval
= er32(TSYNCTXCTL
);
3680 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3681 regval
|= tsync_tx_ctl
;
3682 ew32(TSYNCTXCTL
, regval
);
3683 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3684 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3685 e_err("Timesync Tx Control register not set as expected\n");
3689 /* enable/disable Rx h/w time stamping */
3690 regval
= er32(TSYNCRXCTL
);
3691 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3692 regval
|= tsync_rx_ctl
;
3693 ew32(TSYNCRXCTL
, regval
);
3694 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3695 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3696 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3697 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3698 e_err("Timesync Rx Control register not set as expected\n");
3702 /* L2: define ethertype filter for time stamped packets */
3704 rxmtrl
|= ETH_P_1588
;
3706 /* define which PTP packets get time stamped */
3707 ew32(RXMTRL
, rxmtrl
);
3709 /* Filter by destination port */
3711 rxudp
= PTP_EV_PORT
;
3712 cpu_to_be16s(&rxudp
);
3718 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3722 /* Get and set the System Time Register SYSTIM base frequency */
3723 ret_val
= e1000e_get_base_timinca(adapter
, ®val
);
3726 ew32(TIMINCA
, regval
);
3728 /* reset the ns time counter */
3729 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3730 ktime_to_ns(ktime_get_real()));
3736 * e1000_configure - configure the hardware for Rx and Tx
3737 * @adapter: private board structure
3739 static void e1000_configure(struct e1000_adapter
*adapter
)
3741 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3743 e1000e_set_rx_mode(adapter
->netdev
);
3745 e1000_restore_vlan(adapter
);
3746 e1000_init_manageability_pt(adapter
);
3748 e1000_configure_tx(adapter
);
3750 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3751 e1000e_setup_rss_hash(adapter
);
3752 e1000_setup_rctl(adapter
);
3753 e1000_configure_rx(adapter
);
3754 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3758 * e1000e_power_up_phy - restore link in case the phy was powered down
3759 * @adapter: address of board private structure
3761 * The phy may be powered down to save power and turn off link when the
3762 * driver is unloaded and wake on lan is not enabled (among others)
3763 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3767 if (adapter
->hw
.phy
.ops
.power_up
)
3768 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3770 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3774 * e1000_power_down_phy - Power down the PHY
3776 * Power down the PHY so no link is implied when interface is down.
3777 * The PHY cannot be powered down if management or WoL is active.
3779 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3781 if (adapter
->hw
.phy
.ops
.power_down
)
3782 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3786 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3788 * We want to clear all pending descriptors from the TX ring.
3789 * zeroing happens when the HW reads the regs. We assign the ring itself as
3790 * the data of the next descriptor. We don't care about the data we are about
3793 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3795 struct e1000_hw
*hw
= &adapter
->hw
;
3796 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3797 struct e1000_tx_desc
*tx_desc
= NULL
;
3798 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3802 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3804 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3805 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3806 tx_desc
->buffer_addr
= tx_ring
->dma
;
3808 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3809 tx_desc
->upper
.data
= 0;
3810 /* flush descriptors to memory before notifying the HW */
3812 tx_ring
->next_to_use
++;
3813 if (tx_ring
->next_to_use
== tx_ring
->count
)
3814 tx_ring
->next_to_use
= 0;
3815 ew32(TDT(0), tx_ring
->next_to_use
);
3817 usleep_range(200, 250);
3821 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3823 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3825 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3828 struct e1000_hw
*hw
= &adapter
->hw
;
3831 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3833 usleep_range(100, 150);
3835 rxdctl
= er32(RXDCTL(0));
3836 /* zero the lower 14 bits (prefetch and host thresholds) */
3837 rxdctl
&= 0xffffc000;
3839 /* update thresholds: prefetch threshold to 31, host threshold to 1
3840 * and make sure the granularity is "descriptors" and not "cache lines"
3842 rxdctl
|= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3844 ew32(RXDCTL(0), rxdctl
);
3845 /* momentarily enable the RX ring for the changes to take effect */
3846 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3848 usleep_range(100, 150);
3849 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3853 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3855 * In i219, the descriptor rings must be emptied before resetting the HW
3856 * or before changing the device state to D3 during runtime (runtime PM).
3858 * Failure to do this will cause the HW to enter a unit hang state which can
3859 * only be released by PCI reset on the device
3863 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3866 u32 fext_nvm11
, tdlen
;
3867 struct e1000_hw
*hw
= &adapter
->hw
;
3869 /* First, disable MULR fix in FEXTNVM11 */
3870 fext_nvm11
= er32(FEXTNVM11
);
3871 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3872 ew32(FEXTNVM11
, fext_nvm11
);
3873 /* do nothing if we're not in faulty state, or if the queue is empty */
3874 tdlen
= er32(TDLEN(0));
3875 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3877 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3879 e1000_flush_tx_ring(adapter
);
3880 /* recheck, maybe the fault is caused by the rx ring */
3881 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3883 if (hang_state
& FLUSH_DESC_REQUIRED
)
3884 e1000_flush_rx_ring(adapter
);
3888 * e1000e_reset - bring the hardware into a known good state
3890 * This function boots the hardware and enables some settings that
3891 * require a configuration cycle of the hardware - those cannot be
3892 * set/changed during runtime. After reset the device needs to be
3893 * properly configured for Rx, Tx etc.
3895 void e1000e_reset(struct e1000_adapter
*adapter
)
3897 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3898 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3899 struct e1000_hw
*hw
= &adapter
->hw
;
3900 u32 tx_space
, min_tx_space
, min_rx_space
;
3901 u32 pba
= adapter
->pba
;
3904 /* reset Packet Buffer Allocation to default */
3907 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3908 /* To maintain wire speed transmits, the Tx FIFO should be
3909 * large enough to accommodate two full transmit packets,
3910 * rounded up to the next 1KB and expressed in KB. Likewise,
3911 * the Rx FIFO should be large enough to accommodate at least
3912 * one full receive packet and is similarly rounded up and
3916 /* upper 16 bits has Tx packet buffer allocation size in KB */
3917 tx_space
= pba
>> 16;
3918 /* lower 16 bits has Rx packet buffer allocation size in KB */
3920 /* the Tx fifo also stores 16 bytes of information about the Tx
3921 * but don't include ethernet FCS because hardware appends it
3923 min_tx_space
= (adapter
->max_frame_size
+
3924 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3925 min_tx_space
= ALIGN(min_tx_space
, 1024);
3926 min_tx_space
>>= 10;
3927 /* software strips receive CRC, so leave room for it */
3928 min_rx_space
= adapter
->max_frame_size
;
3929 min_rx_space
= ALIGN(min_rx_space
, 1024);
3930 min_rx_space
>>= 10;
3932 /* If current Tx allocation is less than the min Tx FIFO size,
3933 * and the min Tx FIFO size is less than the current Rx FIFO
3934 * allocation, take space away from current Rx allocation
3936 if ((tx_space
< min_tx_space
) &&
3937 ((min_tx_space
- tx_space
) < pba
)) {
3938 pba
-= min_tx_space
- tx_space
;
3940 /* if short on Rx space, Rx wins and must trump Tx
3943 if (pba
< min_rx_space
)
3950 /* flow control settings
3952 * The high water mark must be low enough to fit one full frame
3953 * (or the size used for early receive) above it in the Rx FIFO.
3954 * Set it to the lower of:
3955 * - 90% of the Rx FIFO size, and
3956 * - the full Rx FIFO size minus one full frame
3958 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3959 fc
->pause_time
= 0xFFFF;
3961 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3962 fc
->send_xon
= true;
3963 fc
->current_mode
= fc
->requested_mode
;
3965 switch (hw
->mac
.type
) {
3967 case e1000_ich10lan
:
3968 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3971 fc
->high_water
= 0x2800;
3972 fc
->low_water
= fc
->high_water
- 8;
3977 hwm
= min(((pba
<< 10) * 9 / 10),
3978 ((pba
<< 10) - adapter
->max_frame_size
));
3980 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3981 fc
->low_water
= fc
->high_water
- 8;
3984 /* Workaround PCH LOM adapter hangs with certain network
3985 * loads. If hangs persist, try disabling Tx flow control.
3987 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3988 fc
->high_water
= 0x3500;
3989 fc
->low_water
= 0x1500;
3991 fc
->high_water
= 0x5000;
3992 fc
->low_water
= 0x3000;
3994 fc
->refresh_time
= 0x1000;
3999 fc
->refresh_time
= 0x0400;
4001 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4002 fc
->high_water
= 0x05C20;
4003 fc
->low_water
= 0x05048;
4004 fc
->pause_time
= 0x0650;
4010 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4011 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4015 /* Alignment of Tx data is on an arbitrary byte boundary with the
4016 * maximum size per Tx descriptor limited only to the transmit
4017 * allocation of the packet buffer minus 96 bytes with an upper
4018 * limit of 24KB due to receive synchronization limitations.
4020 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4023 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4024 * fit in receive buffer.
4026 if (adapter
->itr_setting
& 0x3) {
4027 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4028 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4029 dev_info(&adapter
->pdev
->dev
,
4030 "Interrupt Throttle Rate off\n");
4031 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4032 e1000e_write_itr(adapter
, 0);
4034 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4035 dev_info(&adapter
->pdev
->dev
,
4036 "Interrupt Throttle Rate on\n");
4037 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4038 adapter
->itr
= 20000;
4039 e1000e_write_itr(adapter
, adapter
->itr
);
4043 if (hw
->mac
.type
== e1000_pch_spt
)
4044 e1000_flush_desc_rings(adapter
);
4045 /* Allow time for pending master requests to run */
4046 mac
->ops
.reset_hw(hw
);
4048 /* For parts with AMT enabled, let the firmware know
4049 * that the network interface is in control
4051 if (adapter
->flags
& FLAG_HAS_AMT
)
4052 e1000e_get_hw_control(adapter
);
4056 if (mac
->ops
.init_hw(hw
))
4057 e_err("Hardware Error\n");
4059 e1000_update_mng_vlan(adapter
);
4061 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4062 ew32(VET
, ETH_P_8021Q
);
4064 e1000e_reset_adaptive(hw
);
4066 /* initialize systim and reset the ns time counter */
4067 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
4069 /* Set EEE advertisement as appropriate */
4070 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4074 switch (hw
->phy
.type
) {
4075 case e1000_phy_82579
:
4076 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4078 case e1000_phy_i217
:
4079 adv_addr
= I217_EEE_ADVERTISEMENT
;
4082 dev_err(&adapter
->pdev
->dev
,
4083 "Invalid PHY type setting EEE advertisement\n");
4087 ret_val
= hw
->phy
.ops
.acquire(hw
);
4089 dev_err(&adapter
->pdev
->dev
,
4090 "EEE advertisement - unable to acquire PHY\n");
4094 e1000_write_emi_reg_locked(hw
, adv_addr
,
4095 hw
->dev_spec
.ich8lan
.eee_disable
?
4096 0 : adapter
->eee_advert
);
4098 hw
->phy
.ops
.release(hw
);
4101 if (!netif_running(adapter
->netdev
) &&
4102 !test_bit(__E1000_TESTING
, &adapter
->state
))
4103 e1000_power_down_phy(adapter
);
4105 e1000_get_phy_info(hw
);
4107 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4108 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4110 /* speed up time to link by disabling smart power down, ignore
4111 * the return value of this function because there is nothing
4112 * different we would do if it failed
4114 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4115 phy_data
&= ~IGP02E1000_PM_SPD
;
4116 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4118 if (hw
->mac
.type
== e1000_pch_spt
&& adapter
->int_mode
== 0) {
4121 /* Fextnvm7 @ 0xe4[2] = 1 */
4122 reg
= er32(FEXTNVM7
);
4123 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4124 ew32(FEXTNVM7
, reg
);
4125 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4126 reg
= er32(FEXTNVM9
);
4127 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4128 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4129 ew32(FEXTNVM9
, reg
);
4135 * e1000e_trigger_lsc - trigger an LSC interrupt
4138 * Fire a link status change interrupt to start the watchdog.
4140 static void e1000e_trigger_lsc(struct e1000_adapter
*adapter
)
4142 struct e1000_hw
*hw
= &adapter
->hw
;
4144 if (adapter
->msix_entries
)
4145 ew32(ICS
, E1000_ICS_OTHER
);
4147 ew32(ICS
, E1000_ICS_LSC
);
4150 void e1000e_up(struct e1000_adapter
*adapter
)
4152 /* hardware has been reset, we need to reload some things */
4153 e1000_configure(adapter
);
4155 clear_bit(__E1000_DOWN
, &adapter
->state
);
4157 if (adapter
->msix_entries
)
4158 e1000_configure_msix(adapter
);
4159 e1000_irq_enable(adapter
);
4161 netif_start_queue(adapter
->netdev
);
4163 e1000e_trigger_lsc(adapter
);
4166 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4168 struct e1000_hw
*hw
= &adapter
->hw
;
4170 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4173 /* flush pending descriptor writebacks to memory */
4174 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4175 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4177 /* execute the writes immediately */
4180 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4181 * write is successful
4183 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4184 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4186 /* execute the writes immediately */
4190 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4193 * e1000e_down - quiesce the device and optionally reset the hardware
4194 * @adapter: board private structure
4195 * @reset: boolean flag to reset the hardware or not
4197 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4199 struct net_device
*netdev
= adapter
->netdev
;
4200 struct e1000_hw
*hw
= &adapter
->hw
;
4203 /* signal that we're down so the interrupt handler does not
4204 * reschedule our watchdog timer
4206 set_bit(__E1000_DOWN
, &adapter
->state
);
4208 netif_carrier_off(netdev
);
4210 /* disable receives in the hardware */
4212 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4213 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4214 /* flush and sleep below */
4216 netif_stop_queue(netdev
);
4218 /* disable transmits in the hardware */
4220 tctl
&= ~E1000_TCTL_EN
;
4223 /* flush both disables and wait for them to finish */
4225 usleep_range(10000, 20000);
4227 e1000_irq_disable(adapter
);
4229 napi_synchronize(&adapter
->napi
);
4231 del_timer_sync(&adapter
->watchdog_timer
);
4232 del_timer_sync(&adapter
->phy_info_timer
);
4234 spin_lock(&adapter
->stats64_lock
);
4235 e1000e_update_stats(adapter
);
4236 spin_unlock(&adapter
->stats64_lock
);
4238 e1000e_flush_descriptors(adapter
);
4240 adapter
->link_speed
= 0;
4241 adapter
->link_duplex
= 0;
4243 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4244 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4245 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4246 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4247 e_dbg("failed to disable jumbo frame workaround mode\n");
4249 if (!pci_channel_offline(adapter
->pdev
)) {
4251 e1000e_reset(adapter
);
4252 else if (hw
->mac
.type
== e1000_pch_spt
)
4253 e1000_flush_desc_rings(adapter
);
4255 e1000_clean_tx_ring(adapter
->tx_ring
);
4256 e1000_clean_rx_ring(adapter
->rx_ring
);
4259 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4262 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4263 usleep_range(1000, 2000);
4264 e1000e_down(adapter
, true);
4266 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4270 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4271 * @cc: cyclecounter structure
4273 static cycle_t
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4275 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4277 struct e1000_hw
*hw
= &adapter
->hw
;
4278 u32 systimel_1
, systimel_2
, systimeh
;
4279 cycle_t systim
, systim_next
;
4280 /* SYSTIMH latching upon SYSTIML read does not work well.
4281 * This means that if SYSTIML overflows after we read it but before
4282 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4283 * will experience a huge non linear increment in the systime value
4284 * to fix that we test for overflow and if true, we re-read systime.
4286 systimel_1
= er32(SYSTIML
);
4287 systimeh
= er32(SYSTIMH
);
4288 systimel_2
= er32(SYSTIML
);
4289 /* Check for overflow. If there was no overflow, use the values */
4290 if (systimel_1
< systimel_2
) {
4291 systim
= (cycle_t
)systimel_1
;
4292 systim
|= (cycle_t
)systimeh
<< 32;
4294 /* There was an overflow, read again SYSTIMH, and use
4297 systimeh
= er32(SYSTIMH
);
4298 systim
= (cycle_t
)systimel_2
;
4299 systim
|= (cycle_t
)systimeh
<< 32;
4302 if ((hw
->mac
.type
== e1000_82574
) || (hw
->mac
.type
== e1000_82583
)) {
4303 u64 incvalue
, time_delta
, rem
, temp
;
4306 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4307 * check to see that the time is incrementing at a reasonable
4308 * rate and is a multiple of incvalue
4310 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4311 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4312 /* latch SYSTIMH on read of SYSTIML */
4313 systim_next
= (cycle_t
)er32(SYSTIML
);
4314 systim_next
|= (cycle_t
)er32(SYSTIMH
) << 32;
4316 time_delta
= systim_next
- systim
;
4318 rem
= do_div(temp
, incvalue
);
4320 systim
= systim_next
;
4322 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) &&
4331 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4332 * @adapter: board private structure to initialize
4334 * e1000_sw_init initializes the Adapter private data structure.
4335 * Fields are initialized based on PCI device information and
4336 * OS network device settings (MTU size).
4338 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4340 struct net_device
*netdev
= adapter
->netdev
;
4342 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4343 adapter
->rx_ps_bsize0
= 128;
4344 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4345 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4346 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4347 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4349 spin_lock_init(&adapter
->stats64_lock
);
4351 e1000e_set_interrupt_capability(adapter
);
4353 if (e1000_alloc_queues(adapter
))
4356 /* Setup hardware time stamping cyclecounter */
4357 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4358 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4359 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4360 adapter
->cc
.mult
= 1;
4361 /* cc.shift set in e1000e_get_base_tininca() */
4363 spin_lock_init(&adapter
->systim_lock
);
4364 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4367 /* Explicitly disable IRQ since the NIC can be in any state. */
4368 e1000_irq_disable(adapter
);
4370 set_bit(__E1000_DOWN
, &adapter
->state
);
4375 * e1000_intr_msi_test - Interrupt Handler
4376 * @irq: interrupt number
4377 * @data: pointer to a network interface device structure
4379 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4381 struct net_device
*netdev
= data
;
4382 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4383 struct e1000_hw
*hw
= &adapter
->hw
;
4384 u32 icr
= er32(ICR
);
4386 e_dbg("icr is %08X\n", icr
);
4387 if (icr
& E1000_ICR_RXSEQ
) {
4388 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4389 /* Force memory writes to complete before acknowledging the
4390 * interrupt is handled.
4399 * e1000_test_msi_interrupt - Returns 0 for successful test
4400 * @adapter: board private struct
4402 * code flow taken from tg3.c
4404 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4406 struct net_device
*netdev
= adapter
->netdev
;
4407 struct e1000_hw
*hw
= &adapter
->hw
;
4410 /* poll_enable hasn't been called yet, so don't need disable */
4411 /* clear any pending events */
4414 /* free the real vector and request a test handler */
4415 e1000_free_irq(adapter
);
4416 e1000e_reset_interrupt_capability(adapter
);
4418 /* Assume that the test fails, if it succeeds then the test
4419 * MSI irq handler will unset this flag
4421 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4423 err
= pci_enable_msi(adapter
->pdev
);
4425 goto msi_test_failed
;
4427 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4428 netdev
->name
, netdev
);
4430 pci_disable_msi(adapter
->pdev
);
4431 goto msi_test_failed
;
4434 /* Force memory writes to complete before enabling and firing an
4439 e1000_irq_enable(adapter
);
4441 /* fire an unusual interrupt on the test handler */
4442 ew32(ICS
, E1000_ICS_RXSEQ
);
4446 e1000_irq_disable(adapter
);
4448 rmb(); /* read flags after interrupt has been fired */
4450 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4451 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4452 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4454 e_dbg("MSI interrupt test succeeded!\n");
4457 free_irq(adapter
->pdev
->irq
, netdev
);
4458 pci_disable_msi(adapter
->pdev
);
4461 e1000e_set_interrupt_capability(adapter
);
4462 return e1000_request_irq(adapter
);
4466 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4467 * @adapter: board private struct
4469 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4471 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4476 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4479 /* disable SERR in case the MSI write causes a master abort */
4480 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4481 if (pci_cmd
& PCI_COMMAND_SERR
)
4482 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4483 pci_cmd
& ~PCI_COMMAND_SERR
);
4485 err
= e1000_test_msi_interrupt(adapter
);
4487 /* re-enable SERR */
4488 if (pci_cmd
& PCI_COMMAND_SERR
) {
4489 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4490 pci_cmd
|= PCI_COMMAND_SERR
;
4491 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4498 * e1000_open - Called when a network interface is made active
4499 * @netdev: network interface device structure
4501 * Returns 0 on success, negative value on failure
4503 * The open entry point is called when a network interface is made
4504 * active by the system (IFF_UP). At this point all resources needed
4505 * for transmit and receive operations are allocated, the interrupt
4506 * handler is registered with the OS, the watchdog timer is started,
4507 * and the stack is notified that the interface is ready.
4509 static int e1000_open(struct net_device
*netdev
)
4511 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4512 struct e1000_hw
*hw
= &adapter
->hw
;
4513 struct pci_dev
*pdev
= adapter
->pdev
;
4516 /* disallow open during test */
4517 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4520 pm_runtime_get_sync(&pdev
->dev
);
4522 netif_carrier_off(netdev
);
4524 /* allocate transmit descriptors */
4525 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4529 /* allocate receive descriptors */
4530 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4534 /* If AMT is enabled, let the firmware know that the network
4535 * interface is now open and reset the part to a known state.
4537 if (adapter
->flags
& FLAG_HAS_AMT
) {
4538 e1000e_get_hw_control(adapter
);
4539 e1000e_reset(adapter
);
4542 e1000e_power_up_phy(adapter
);
4544 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4545 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4546 e1000_update_mng_vlan(adapter
);
4548 /* DMA latency requirement to workaround jumbo issue */
4549 pm_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4550 PM_QOS_DEFAULT_VALUE
);
4552 /* before we allocate an interrupt, we must be ready to handle it.
4553 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4554 * as soon as we call pci_request_irq, so we have to setup our
4555 * clean_rx handler before we do so.
4557 e1000_configure(adapter
);
4559 err
= e1000_request_irq(adapter
);
4563 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4564 * ignore e1000e MSI messages, which means we need to test our MSI
4567 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4568 err
= e1000_test_msi(adapter
);
4570 e_err("Interrupt allocation failed\n");
4575 /* From here on the code is the same as e1000e_up() */
4576 clear_bit(__E1000_DOWN
, &adapter
->state
);
4578 napi_enable(&adapter
->napi
);
4580 e1000_irq_enable(adapter
);
4582 adapter
->tx_hang_recheck
= false;
4583 netif_start_queue(netdev
);
4585 hw
->mac
.get_link_status
= true;
4586 pm_runtime_put(&pdev
->dev
);
4588 e1000e_trigger_lsc(adapter
);
4593 pm_qos_remove_request(&adapter
->pm_qos_req
);
4594 e1000e_release_hw_control(adapter
);
4595 e1000_power_down_phy(adapter
);
4596 e1000e_free_rx_resources(adapter
->rx_ring
);
4598 e1000e_free_tx_resources(adapter
->tx_ring
);
4600 e1000e_reset(adapter
);
4601 pm_runtime_put_sync(&pdev
->dev
);
4607 * e1000_close - Disables a network interface
4608 * @netdev: network interface device structure
4610 * Returns 0, this is not allowed to fail
4612 * The close entry point is called when an interface is de-activated
4613 * by the OS. The hardware is still under the drivers control, but
4614 * needs to be disabled. A global MAC reset is issued to stop the
4615 * hardware, and all transmit and receive resources are freed.
4617 static int e1000_close(struct net_device
*netdev
)
4619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4620 struct pci_dev
*pdev
= adapter
->pdev
;
4621 int count
= E1000_CHECK_RESET_COUNT
;
4623 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4624 usleep_range(10000, 20000);
4626 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4628 pm_runtime_get_sync(&pdev
->dev
);
4630 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4631 e1000e_down(adapter
, true);
4632 e1000_free_irq(adapter
);
4634 /* Link status message must follow this format */
4635 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4638 napi_disable(&adapter
->napi
);
4640 e1000e_free_tx_resources(adapter
->tx_ring
);
4641 e1000e_free_rx_resources(adapter
->rx_ring
);
4643 /* kill manageability vlan ID if supported, but not if a vlan with
4644 * the same ID is registered on the host OS (let 8021q kill it)
4646 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4647 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4648 adapter
->mng_vlan_id
);
4650 /* If AMT is enabled, let the firmware know that the network
4651 * interface is now closed
4653 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4654 !test_bit(__E1000_TESTING
, &adapter
->state
))
4655 e1000e_release_hw_control(adapter
);
4657 pm_qos_remove_request(&adapter
->pm_qos_req
);
4659 pm_runtime_put_sync(&pdev
->dev
);
4665 * e1000_set_mac - Change the Ethernet Address of the NIC
4666 * @netdev: network interface device structure
4667 * @p: pointer to an address structure
4669 * Returns 0 on success, negative on failure
4671 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4673 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4674 struct e1000_hw
*hw
= &adapter
->hw
;
4675 struct sockaddr
*addr
= p
;
4677 if (!is_valid_ether_addr(addr
->sa_data
))
4678 return -EADDRNOTAVAIL
;
4680 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4681 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4683 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4685 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4686 /* activate the work around */
4687 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4689 /* Hold a copy of the LAA in RAR[14] This is done so that
4690 * between the time RAR[0] gets clobbered and the time it
4691 * gets fixed (in e1000_watchdog), the actual LAA is in one
4692 * of the RARs and no incoming packets directed to this port
4693 * are dropped. Eventually the LAA will be in RAR[0] and
4696 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4697 adapter
->hw
.mac
.rar_entry_count
- 1);
4704 * e1000e_update_phy_task - work thread to update phy
4705 * @work: pointer to our work struct
4707 * this worker thread exists because we must acquire a
4708 * semaphore to read the phy, which we could msleep while
4709 * waiting for it, and we can't msleep in a timer.
4711 static void e1000e_update_phy_task(struct work_struct
*work
)
4713 struct e1000_adapter
*adapter
= container_of(work
,
4714 struct e1000_adapter
,
4716 struct e1000_hw
*hw
= &adapter
->hw
;
4718 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4721 e1000_get_phy_info(hw
);
4723 /* Enable EEE on 82579 after link up */
4724 if (hw
->phy
.type
>= e1000_phy_82579
)
4725 e1000_set_eee_pchlan(hw
);
4729 * e1000_update_phy_info - timre call-back to update PHY info
4730 * @data: pointer to adapter cast into an unsigned long
4732 * Need to wait a few seconds after link up to get diagnostic information from
4735 static void e1000_update_phy_info(unsigned long data
)
4737 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
4739 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4742 schedule_work(&adapter
->update_phy_task
);
4746 * e1000e_update_phy_stats - Update the PHY statistics counters
4747 * @adapter: board private structure
4749 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4751 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4753 struct e1000_hw
*hw
= &adapter
->hw
;
4757 ret_val
= hw
->phy
.ops
.acquire(hw
);
4761 /* A page set is expensive so check if already on desired page.
4762 * If not, set to the page with the PHY status registers.
4765 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4769 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4770 ret_val
= hw
->phy
.ops
.set_page(hw
,
4771 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4776 /* Single Collision Count */
4777 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4778 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4780 adapter
->stats
.scc
+= phy_data
;
4782 /* Excessive Collision Count */
4783 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4784 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4786 adapter
->stats
.ecol
+= phy_data
;
4788 /* Multiple Collision Count */
4789 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4790 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4792 adapter
->stats
.mcc
+= phy_data
;
4794 /* Late Collision Count */
4795 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4796 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4798 adapter
->stats
.latecol
+= phy_data
;
4800 /* Collision Count - also used for adaptive IFS */
4801 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4802 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4804 hw
->mac
.collision_delta
= phy_data
;
4807 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4808 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4810 adapter
->stats
.dc
+= phy_data
;
4812 /* Transmit with no CRS */
4813 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4814 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4816 adapter
->stats
.tncrs
+= phy_data
;
4819 hw
->phy
.ops
.release(hw
);
4823 * e1000e_update_stats - Update the board statistics counters
4824 * @adapter: board private structure
4826 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4828 struct net_device
*netdev
= adapter
->netdev
;
4829 struct e1000_hw
*hw
= &adapter
->hw
;
4830 struct pci_dev
*pdev
= adapter
->pdev
;
4832 /* Prevent stats update while adapter is being reset, or if the pci
4833 * connection is down.
4835 if (adapter
->link_speed
== 0)
4837 if (pci_channel_offline(pdev
))
4840 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4841 adapter
->stats
.gprc
+= er32(GPRC
);
4842 adapter
->stats
.gorc
+= er32(GORCL
);
4843 er32(GORCH
); /* Clear gorc */
4844 adapter
->stats
.bprc
+= er32(BPRC
);
4845 adapter
->stats
.mprc
+= er32(MPRC
);
4846 adapter
->stats
.roc
+= er32(ROC
);
4848 adapter
->stats
.mpc
+= er32(MPC
);
4850 /* Half-duplex statistics */
4851 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4852 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4853 e1000e_update_phy_stats(adapter
);
4855 adapter
->stats
.scc
+= er32(SCC
);
4856 adapter
->stats
.ecol
+= er32(ECOL
);
4857 adapter
->stats
.mcc
+= er32(MCC
);
4858 adapter
->stats
.latecol
+= er32(LATECOL
);
4859 adapter
->stats
.dc
+= er32(DC
);
4861 hw
->mac
.collision_delta
= er32(COLC
);
4863 if ((hw
->mac
.type
!= e1000_82574
) &&
4864 (hw
->mac
.type
!= e1000_82583
))
4865 adapter
->stats
.tncrs
+= er32(TNCRS
);
4867 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4870 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4871 adapter
->stats
.xontxc
+= er32(XONTXC
);
4872 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4873 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4874 adapter
->stats
.gptc
+= er32(GPTC
);
4875 adapter
->stats
.gotc
+= er32(GOTCL
);
4876 er32(GOTCH
); /* Clear gotc */
4877 adapter
->stats
.rnbc
+= er32(RNBC
);
4878 adapter
->stats
.ruc
+= er32(RUC
);
4880 adapter
->stats
.mptc
+= er32(MPTC
);
4881 adapter
->stats
.bptc
+= er32(BPTC
);
4883 /* used for adaptive IFS */
4885 hw
->mac
.tx_packet_delta
= er32(TPT
);
4886 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4888 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4889 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4890 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4891 adapter
->stats
.tsctc
+= er32(TSCTC
);
4892 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4894 /* Fill out the OS statistics structure */
4895 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4896 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4900 /* RLEC on some newer hardware can be incorrect so build
4901 * our own version based on RUC and ROC
4903 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4904 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4905 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
4906 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4908 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4909 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4910 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4913 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
4914 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4915 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4916 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4918 /* Tx Dropped needs to be maintained elsewhere */
4920 /* Management Stats */
4921 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4922 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4923 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4925 /* Correctable ECC Errors */
4926 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
4927 (hw
->mac
.type
== e1000_pch_spt
)) {
4928 u32 pbeccsts
= er32(PBECCSTS
);
4930 adapter
->corr_errors
+=
4931 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
4932 adapter
->uncorr_errors
+=
4933 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
4934 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
4939 * e1000_phy_read_status - Update the PHY register status snapshot
4940 * @adapter: board private structure
4942 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4944 struct e1000_hw
*hw
= &adapter
->hw
;
4945 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4947 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
4948 (er32(STATUS
) & E1000_STATUS_LU
) &&
4949 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4952 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
4953 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
4954 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
4955 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
4956 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
4957 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
4958 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
4959 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
4961 e_warn("Error reading PHY register\n");
4963 /* Do not read PHY registers if link is not up
4964 * Set values to typical power-on defaults
4966 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4967 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4968 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4970 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4971 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4973 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4974 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4976 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4980 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4982 struct e1000_hw
*hw
= &adapter
->hw
;
4983 u32 ctrl
= er32(CTRL
);
4985 /* Link status message must follow this format for user tools */
4986 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4987 adapter
->netdev
->name
, adapter
->link_speed
,
4988 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
4989 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
4990 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4991 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
4994 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4996 struct e1000_hw
*hw
= &adapter
->hw
;
4997 bool link_active
= false;
5000 /* get_link_status is set on LSC (link status) interrupt or
5001 * Rx sequence error interrupt. get_link_status will stay
5002 * false until the check_for_link establishes link
5003 * for copper adapters ONLY
5005 switch (hw
->phy
.media_type
) {
5006 case e1000_media_type_copper
:
5007 if (hw
->mac
.get_link_status
) {
5008 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5009 link_active
= !hw
->mac
.get_link_status
;
5014 case e1000_media_type_fiber
:
5015 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5016 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5018 case e1000_media_type_internal_serdes
:
5019 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5020 link_active
= adapter
->hw
.mac
.serdes_has_link
;
5023 case e1000_media_type_unknown
:
5027 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5028 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5029 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5030 e_info("Gigabit has been disabled, downgrading speed\n");
5036 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5038 /* make sure the receive unit is started */
5039 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5040 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5041 struct e1000_hw
*hw
= &adapter
->hw
;
5042 u32 rctl
= er32(RCTL
);
5044 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5045 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5049 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5051 struct e1000_hw
*hw
= &adapter
->hw
;
5053 /* With 82574 controllers, PHY needs to be checked periodically
5054 * for hung state and reset, if two calls return true
5056 if (e1000_check_phy_82574(hw
))
5057 adapter
->phy_hang_count
++;
5059 adapter
->phy_hang_count
= 0;
5061 if (adapter
->phy_hang_count
> 1) {
5062 adapter
->phy_hang_count
= 0;
5063 e_dbg("PHY appears hung - resetting\n");
5064 schedule_work(&adapter
->reset_task
);
5069 * e1000_watchdog - Timer Call-back
5070 * @data: pointer to adapter cast into an unsigned long
5072 static void e1000_watchdog(unsigned long data
)
5074 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
5076 /* Do the rest outside of interrupt context */
5077 schedule_work(&adapter
->watchdog_task
);
5079 /* TODO: make this use queue_delayed_work() */
5082 static void e1000_watchdog_task(struct work_struct
*work
)
5084 struct e1000_adapter
*adapter
= container_of(work
,
5085 struct e1000_adapter
,
5087 struct net_device
*netdev
= adapter
->netdev
;
5088 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5089 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5090 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5091 struct e1000_hw
*hw
= &adapter
->hw
;
5094 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5097 link
= e1000e_has_link(adapter
);
5098 if ((netif_carrier_ok(netdev
)) && link
) {
5099 /* Cancel scheduled suspend requests. */
5100 pm_runtime_resume(netdev
->dev
.parent
);
5102 e1000e_enable_receives(adapter
);
5106 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5107 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5108 e1000_update_mng_vlan(adapter
);
5111 if (!netif_carrier_ok(netdev
)) {
5114 /* Cancel scheduled suspend requests. */
5115 pm_runtime_resume(netdev
->dev
.parent
);
5117 /* update snapshot of PHY registers on LSC */
5118 e1000_phy_read_status(adapter
);
5119 mac
->ops
.get_link_up_info(&adapter
->hw
,
5120 &adapter
->link_speed
,
5121 &adapter
->link_duplex
);
5122 e1000_print_link_info(adapter
);
5124 /* check if SmartSpeed worked */
5125 e1000e_check_downshift(hw
);
5126 if (phy
->speed_downgraded
)
5128 "Link Speed was downgraded by SmartSpeed\n");
5130 /* On supported PHYs, check for duplex mismatch only
5131 * if link has autonegotiated at 10/100 half
5133 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5134 hw
->phy
.type
== e1000_phy_bm
) &&
5136 (adapter
->link_speed
== SPEED_10
||
5137 adapter
->link_speed
== SPEED_100
) &&
5138 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5141 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5143 if (!(autoneg_exp
& EXPANSION_NWAY
))
5144 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5147 /* adjust timeout factor according to speed/duplex */
5148 adapter
->tx_timeout_factor
= 1;
5149 switch (adapter
->link_speed
) {
5152 adapter
->tx_timeout_factor
= 16;
5156 adapter
->tx_timeout_factor
= 10;
5160 /* workaround: re-program speed mode bit after
5163 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5167 tarc0
= er32(TARC(0));
5168 tarc0
&= ~SPEED_MODE_BIT
;
5169 ew32(TARC(0), tarc0
);
5172 /* disable TSO for pcie and 10/100 speeds, to avoid
5173 * some hardware issues
5175 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
5176 switch (adapter
->link_speed
) {
5179 e_info("10/100 speed: disabling TSO\n");
5180 netdev
->features
&= ~NETIF_F_TSO
;
5181 netdev
->features
&= ~NETIF_F_TSO6
;
5184 netdev
->features
|= NETIF_F_TSO
;
5185 netdev
->features
|= NETIF_F_TSO6
;
5193 /* enable transmits in the hardware, need to do this
5194 * after setting TARC(0)
5197 tctl
|= E1000_TCTL_EN
;
5200 /* Perform any post-link-up configuration before
5201 * reporting link up.
5203 if (phy
->ops
.cfg_on_link_up
)
5204 phy
->ops
.cfg_on_link_up(hw
);
5206 netif_carrier_on(netdev
);
5208 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5209 mod_timer(&adapter
->phy_info_timer
,
5210 round_jiffies(jiffies
+ 2 * HZ
));
5213 if (netif_carrier_ok(netdev
)) {
5214 adapter
->link_speed
= 0;
5215 adapter
->link_duplex
= 0;
5216 /* Link status message must follow this format */
5217 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
5218 netif_carrier_off(netdev
);
5219 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5220 mod_timer(&adapter
->phy_info_timer
,
5221 round_jiffies(jiffies
+ 2 * HZ
));
5223 /* 8000ES2LAN requires a Rx packet buffer work-around
5224 * on link down event; reset the controller to flush
5225 * the Rx packet buffer.
5227 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5228 adapter
->flags
|= FLAG_RESTART_NOW
;
5230 pm_schedule_suspend(netdev
->dev
.parent
,
5236 spin_lock(&adapter
->stats64_lock
);
5237 e1000e_update_stats(adapter
);
5239 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5240 adapter
->tpt_old
= adapter
->stats
.tpt
;
5241 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5242 adapter
->colc_old
= adapter
->stats
.colc
;
5244 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5245 adapter
->gorc_old
= adapter
->stats
.gorc
;
5246 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5247 adapter
->gotc_old
= adapter
->stats
.gotc
;
5248 spin_unlock(&adapter
->stats64_lock
);
5250 /* If the link is lost the controller stops DMA, but
5251 * if there is queued Tx work it cannot be done. So
5252 * reset the controller to flush the Tx packet buffers.
5254 if (!netif_carrier_ok(netdev
) &&
5255 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5256 adapter
->flags
|= FLAG_RESTART_NOW
;
5258 /* If reset is necessary, do it outside of interrupt context. */
5259 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5260 schedule_work(&adapter
->reset_task
);
5261 /* return immediately since reset is imminent */
5265 e1000e_update_adaptive(&adapter
->hw
);
5267 /* Simple mode for Interrupt Throttle Rate (ITR) */
5268 if (adapter
->itr_setting
== 4) {
5269 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5270 * Total asymmetrical Tx or Rx gets ITR=8000;
5271 * everyone else is between 2000-8000.
5273 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5274 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5275 adapter
->gotc
- adapter
->gorc
:
5276 adapter
->gorc
- adapter
->gotc
) / 10000;
5277 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5279 e1000e_write_itr(adapter
, itr
);
5282 /* Cause software interrupt to ensure Rx ring is cleaned */
5283 if (adapter
->msix_entries
)
5284 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5286 ew32(ICS
, E1000_ICS_RXDMT0
);
5288 /* flush pending descriptors to memory before detecting Tx hang */
5289 e1000e_flush_descriptors(adapter
);
5291 /* Force detection of hung controller every watchdog period */
5292 adapter
->detect_tx_hung
= true;
5294 /* With 82571 controllers, LAA may be overwritten due to controller
5295 * reset from the other port. Set the appropriate LAA in RAR[0]
5297 if (e1000e_get_laa_state_82571(hw
))
5298 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5300 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5301 e1000e_check_82574_phy_workaround(adapter
);
5303 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5304 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5305 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5306 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5308 adapter
->rx_hwtstamp_cleared
++;
5310 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5314 /* Reset the timer */
5315 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5316 mod_timer(&adapter
->watchdog_timer
,
5317 round_jiffies(jiffies
+ 2 * HZ
));
5320 #define E1000_TX_FLAGS_CSUM 0x00000001
5321 #define E1000_TX_FLAGS_VLAN 0x00000002
5322 #define E1000_TX_FLAGS_TSO 0x00000004
5323 #define E1000_TX_FLAGS_IPV4 0x00000008
5324 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5325 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5326 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5327 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5329 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5332 struct e1000_context_desc
*context_desc
;
5333 struct e1000_buffer
*buffer_info
;
5337 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5340 if (!skb_is_gso(skb
))
5343 err
= skb_cow_head(skb
, 0);
5347 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5348 mss
= skb_shinfo(skb
)->gso_size
;
5349 if (protocol
== htons(ETH_P_IP
)) {
5350 struct iphdr
*iph
= ip_hdr(skb
);
5353 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5355 cmd_length
= E1000_TXD_CMD_IP
;
5356 ipcse
= skb_transport_offset(skb
) - 1;
5357 } else if (skb_is_gso_v6(skb
)) {
5358 ipv6_hdr(skb
)->payload_len
= 0;
5359 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5360 &ipv6_hdr(skb
)->daddr
,
5364 ipcss
= skb_network_offset(skb
);
5365 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5366 tucss
= skb_transport_offset(skb
);
5367 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5369 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5370 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5372 i
= tx_ring
->next_to_use
;
5373 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5374 buffer_info
= &tx_ring
->buffer_info
[i
];
5376 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5377 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5378 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5379 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5380 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5381 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5382 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5383 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5384 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5386 buffer_info
->time_stamp
= jiffies
;
5387 buffer_info
->next_to_watch
= i
;
5390 if (i
== tx_ring
->count
)
5392 tx_ring
->next_to_use
= i
;
5397 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5400 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5401 struct e1000_context_desc
*context_desc
;
5402 struct e1000_buffer
*buffer_info
;
5405 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5407 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5411 case cpu_to_be16(ETH_P_IP
):
5412 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5413 cmd_len
|= E1000_TXD_CMD_TCP
;
5415 case cpu_to_be16(ETH_P_IPV6
):
5416 /* XXX not handling all IPV6 headers */
5417 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5418 cmd_len
|= E1000_TXD_CMD_TCP
;
5421 if (unlikely(net_ratelimit()))
5422 e_warn("checksum_partial proto=%x!\n",
5423 be16_to_cpu(protocol
));
5427 css
= skb_checksum_start_offset(skb
);
5429 i
= tx_ring
->next_to_use
;
5430 buffer_info
= &tx_ring
->buffer_info
[i
];
5431 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5433 context_desc
->lower_setup
.ip_config
= 0;
5434 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5435 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5436 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5437 context_desc
->tcp_seg_setup
.data
= 0;
5438 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5440 buffer_info
->time_stamp
= jiffies
;
5441 buffer_info
->next_to_watch
= i
;
5444 if (i
== tx_ring
->count
)
5446 tx_ring
->next_to_use
= i
;
5451 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5452 unsigned int first
, unsigned int max_per_txd
,
5453 unsigned int nr_frags
)
5455 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5456 struct pci_dev
*pdev
= adapter
->pdev
;
5457 struct e1000_buffer
*buffer_info
;
5458 unsigned int len
= skb_headlen(skb
);
5459 unsigned int offset
= 0, size
, count
= 0, i
;
5460 unsigned int f
, bytecount
, segs
;
5462 i
= tx_ring
->next_to_use
;
5465 buffer_info
= &tx_ring
->buffer_info
[i
];
5466 size
= min(len
, max_per_txd
);
5468 buffer_info
->length
= size
;
5469 buffer_info
->time_stamp
= jiffies
;
5470 buffer_info
->next_to_watch
= i
;
5471 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5473 size
, DMA_TO_DEVICE
);
5474 buffer_info
->mapped_as_page
= false;
5475 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5484 if (i
== tx_ring
->count
)
5489 for (f
= 0; f
< nr_frags
; f
++) {
5490 const struct skb_frag_struct
*frag
;
5492 frag
= &skb_shinfo(skb
)->frags
[f
];
5493 len
= skb_frag_size(frag
);
5498 if (i
== tx_ring
->count
)
5501 buffer_info
= &tx_ring
->buffer_info
[i
];
5502 size
= min(len
, max_per_txd
);
5504 buffer_info
->length
= size
;
5505 buffer_info
->time_stamp
= jiffies
;
5506 buffer_info
->next_to_watch
= i
;
5507 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5510 buffer_info
->mapped_as_page
= true;
5511 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5520 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5521 /* multiply data chunks by size of headers */
5522 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5524 tx_ring
->buffer_info
[i
].skb
= skb
;
5525 tx_ring
->buffer_info
[i
].segs
= segs
;
5526 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5527 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5532 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5533 buffer_info
->dma
= 0;
5539 i
+= tx_ring
->count
;
5541 buffer_info
= &tx_ring
->buffer_info
[i
];
5542 e1000_put_txbuf(tx_ring
, buffer_info
);
5548 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5550 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5551 struct e1000_tx_desc
*tx_desc
= NULL
;
5552 struct e1000_buffer
*buffer_info
;
5553 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5556 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5557 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5559 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5561 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5562 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5565 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5566 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5567 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5570 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5571 txd_lower
|= E1000_TXD_CMD_VLE
;
5572 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5575 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5576 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5578 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5579 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5580 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5583 i
= tx_ring
->next_to_use
;
5586 buffer_info
= &tx_ring
->buffer_info
[i
];
5587 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5588 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5589 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5590 buffer_info
->length
);
5591 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5594 if (i
== tx_ring
->count
)
5596 } while (--count
> 0);
5598 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5600 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5601 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5602 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5604 /* Force memory writes to complete before letting h/w
5605 * know there are new descriptors to fetch. (Only
5606 * applicable for weak-ordered memory model archs,
5611 tx_ring
->next_to_use
= i
;
5614 #define MINIMUM_DHCP_PACKET_SIZE 282
5615 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5616 struct sk_buff
*skb
)
5618 struct e1000_hw
*hw
= &adapter
->hw
;
5621 if (skb_vlan_tag_present(skb
) &&
5622 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5623 (adapter
->hw
.mng_cookie
.status
&
5624 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5627 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5630 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5634 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5637 if (ip
->protocol
!= IPPROTO_UDP
)
5640 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5641 if (ntohs(udp
->dest
) != 67)
5644 offset
= (u8
*)udp
+ 8 - skb
->data
;
5645 length
= skb
->len
- offset
;
5646 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5652 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5654 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5656 netif_stop_queue(adapter
->netdev
);
5657 /* Herbert's original patch had:
5658 * smp_mb__after_netif_stop_queue();
5659 * but since that doesn't exist yet, just open code it.
5663 /* We need to check again in a case another CPU has just
5664 * made room available.
5666 if (e1000_desc_unused(tx_ring
) < size
)
5670 netif_start_queue(adapter
->netdev
);
5671 ++adapter
->restart_queue
;
5675 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5677 BUG_ON(size
> tx_ring
->count
);
5679 if (e1000_desc_unused(tx_ring
) >= size
)
5681 return __e1000_maybe_stop_tx(tx_ring
, size
);
5684 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5685 struct net_device
*netdev
)
5687 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5688 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5690 unsigned int tx_flags
= 0;
5691 unsigned int len
= skb_headlen(skb
);
5692 unsigned int nr_frags
;
5697 __be16 protocol
= vlan_get_protocol(skb
);
5699 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5700 dev_kfree_skb_any(skb
);
5701 return NETDEV_TX_OK
;
5704 if (skb
->len
<= 0) {
5705 dev_kfree_skb_any(skb
);
5706 return NETDEV_TX_OK
;
5709 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5710 * pad skb in order to meet this minimum size requirement
5712 if (skb_put_padto(skb
, 17))
5713 return NETDEV_TX_OK
;
5715 mss
= skb_shinfo(skb
)->gso_size
;
5719 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5720 * points to just header, pull a few bytes of payload from
5721 * frags into skb->data
5723 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5724 /* we do this workaround for ES2LAN, but it is un-necessary,
5725 * avoiding it could save a lot of cycles
5727 if (skb
->data_len
&& (hdr_len
== len
)) {
5728 unsigned int pull_size
;
5730 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5731 if (!__pskb_pull_tail(skb
, pull_size
)) {
5732 e_err("__pskb_pull_tail failed.\n");
5733 dev_kfree_skb_any(skb
);
5734 return NETDEV_TX_OK
;
5736 len
= skb_headlen(skb
);
5740 /* reserve a descriptor for the offload context */
5741 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5745 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5747 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5748 for (f
= 0; f
< nr_frags
; f
++)
5749 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5750 adapter
->tx_fifo_limit
);
5752 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5753 e1000_transfer_dhcp_info(adapter
, skb
);
5755 /* need: count + 2 desc gap to keep tail from touching
5756 * head, otherwise try next time
5758 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5759 return NETDEV_TX_BUSY
;
5761 if (skb_vlan_tag_present(skb
)) {
5762 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5763 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5764 E1000_TX_FLAGS_VLAN_SHIFT
);
5767 first
= tx_ring
->next_to_use
;
5769 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5771 dev_kfree_skb_any(skb
);
5772 return NETDEV_TX_OK
;
5776 tx_flags
|= E1000_TX_FLAGS_TSO
;
5777 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5778 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5780 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5781 * 82571 hardware supports TSO capabilities for IPv6 as well...
5782 * no longer assume, we must.
5784 if (protocol
== htons(ETH_P_IP
))
5785 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5787 if (unlikely(skb
->no_fcs
))
5788 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5790 /* if count is 0 then mapping error has occurred */
5791 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5794 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5795 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) &&
5796 !adapter
->tx_hwtstamp_skb
) {
5797 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5798 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5799 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5800 adapter
->tx_hwtstamp_start
= jiffies
;
5801 schedule_work(&adapter
->tx_hwtstamp_work
);
5803 skb_tx_timestamp(skb
);
5806 netdev_sent_queue(netdev
, skb
->len
);
5807 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5808 /* Make sure there is space in the ring for the next send. */
5809 e1000_maybe_stop_tx(tx_ring
,
5811 DIV_ROUND_UP(PAGE_SIZE
,
5812 adapter
->tx_fifo_limit
) + 2));
5814 if (!skb
->xmit_more
||
5815 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5816 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5817 e1000e_update_tdt_wa(tx_ring
,
5818 tx_ring
->next_to_use
);
5820 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5822 /* we need this if more than one processor can write
5823 * to our tail at a time, it synchronizes IO on
5829 dev_kfree_skb_any(skb
);
5830 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5831 tx_ring
->next_to_use
= first
;
5834 return NETDEV_TX_OK
;
5838 * e1000_tx_timeout - Respond to a Tx Hang
5839 * @netdev: network interface device structure
5841 static void e1000_tx_timeout(struct net_device
*netdev
)
5843 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5845 /* Do the reset outside of interrupt context */
5846 adapter
->tx_timeout_count
++;
5847 schedule_work(&adapter
->reset_task
);
5850 static void e1000_reset_task(struct work_struct
*work
)
5852 struct e1000_adapter
*adapter
;
5853 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5855 /* don't run the task if already down */
5856 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5859 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5860 e1000e_dump(adapter
);
5861 e_err("Reset adapter unexpectedly\n");
5863 e1000e_reinit_locked(adapter
);
5867 * e1000_get_stats64 - Get System Network Statistics
5868 * @netdev: network interface device structure
5869 * @stats: rtnl_link_stats64 pointer
5871 * Returns the address of the device statistics structure.
5873 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5874 struct rtnl_link_stats64
*stats
)
5876 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5878 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5879 spin_lock(&adapter
->stats64_lock
);
5880 e1000e_update_stats(adapter
);
5881 /* Fill out the OS statistics structure */
5882 stats
->rx_bytes
= adapter
->stats
.gorc
;
5883 stats
->rx_packets
= adapter
->stats
.gprc
;
5884 stats
->tx_bytes
= adapter
->stats
.gotc
;
5885 stats
->tx_packets
= adapter
->stats
.gptc
;
5886 stats
->multicast
= adapter
->stats
.mprc
;
5887 stats
->collisions
= adapter
->stats
.colc
;
5891 /* RLEC on some newer hardware can be incorrect so build
5892 * our own version based on RUC and ROC
5894 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5895 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5896 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5897 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5898 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5899 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5900 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5903 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5904 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5905 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5906 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5908 /* Tx Dropped needs to be maintained elsewhere */
5910 spin_unlock(&adapter
->stats64_lock
);
5915 * e1000_change_mtu - Change the Maximum Transfer Unit
5916 * @netdev: network interface device structure
5917 * @new_mtu: new value for maximum frame size
5919 * Returns 0 on success, negative on failure
5921 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5924 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
5926 /* Jumbo frame support */
5927 if ((max_frame
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) &&
5928 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5929 e_err("Jumbo Frames not supported.\n");
5933 /* Supported frame sizes */
5934 if ((new_mtu
< (VLAN_ETH_ZLEN
+ ETH_FCS_LEN
)) ||
5935 (max_frame
> adapter
->max_hw_frame_size
)) {
5936 e_err("Unsupported MTU setting\n");
5940 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5941 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
5942 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5943 (new_mtu
> ETH_DATA_LEN
)) {
5944 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5948 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5949 usleep_range(1000, 2000);
5950 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5951 adapter
->max_frame_size
= max_frame
;
5952 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5953 netdev
->mtu
= new_mtu
;
5955 pm_runtime_get_sync(netdev
->dev
.parent
);
5957 if (netif_running(netdev
))
5958 e1000e_down(adapter
, true);
5960 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5961 * means we reserve 2 more, this pushes us to allocate from the next
5963 * i.e. RXBUFFER_2048 --> size-4096 slab
5964 * However with the new *_jumbo_rx* routines, jumbo receives will use
5968 if (max_frame
<= 2048)
5969 adapter
->rx_buffer_len
= 2048;
5971 adapter
->rx_buffer_len
= 4096;
5973 /* adjust allocation if LPE protects us, and we aren't using SBP */
5974 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
5975 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
5977 if (netif_running(netdev
))
5980 e1000e_reset(adapter
);
5982 pm_runtime_put_sync(netdev
->dev
.parent
);
5984 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5989 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5992 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5993 struct mii_ioctl_data
*data
= if_mii(ifr
);
5995 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6000 data
->phy_id
= adapter
->hw
.phy
.addr
;
6003 e1000_phy_read_status(adapter
);
6005 switch (data
->reg_num
& 0x1F) {
6007 data
->val_out
= adapter
->phy_regs
.bmcr
;
6010 data
->val_out
= adapter
->phy_regs
.bmsr
;
6013 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6016 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6019 data
->val_out
= adapter
->phy_regs
.advertise
;
6022 data
->val_out
= adapter
->phy_regs
.lpa
;
6025 data
->val_out
= adapter
->phy_regs
.expansion
;
6028 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6031 data
->val_out
= adapter
->phy_regs
.stat1000
;
6034 data
->val_out
= adapter
->phy_regs
.estatus
;
6048 * e1000e_hwtstamp_ioctl - control hardware time stamping
6049 * @netdev: network interface device structure
6050 * @ifreq: interface request
6052 * Outgoing time stamping can be enabled and disabled. Play nice and
6053 * disable it when requested, although it shouldn't cause any overhead
6054 * when no packet needs it. At most one packet in the queue may be
6055 * marked for time stamping, otherwise it would be impossible to tell
6056 * for sure to which packet the hardware time stamp belongs.
6058 * Incoming time stamping has to be configured via the hardware filters.
6059 * Not all combinations are supported, in particular event type has to be
6060 * specified. Matching the kind of event packet is not supported, with the
6061 * exception of "all V2 events regardless of level 2 or 4".
6063 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6065 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6066 struct hwtstamp_config config
;
6069 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6072 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6076 switch (config
.rx_filter
) {
6077 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6078 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6079 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6080 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6081 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6082 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6083 /* With V2 type filters which specify a Sync or Delay Request,
6084 * Path Delay Request/Response messages are also time stamped
6085 * by hardware so notify the caller the requested packets plus
6086 * some others are time stamped.
6088 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6094 return copy_to_user(ifr
->ifr_data
, &config
,
6095 sizeof(config
)) ? -EFAULT
: 0;
6098 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6100 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6102 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6103 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6106 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6112 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6114 return e1000e_hwtstamp_set(netdev
, ifr
);
6116 return e1000e_hwtstamp_get(netdev
, ifr
);
6122 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6124 struct e1000_hw
*hw
= &adapter
->hw
;
6125 u32 i
, mac_reg
, wuc
;
6126 u16 phy_reg
, wuc_enable
;
6129 /* copy MAC RARs to PHY RARs */
6130 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6132 retval
= hw
->phy
.ops
.acquire(hw
);
6134 e_err("Could not acquire PHY\n");
6138 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6139 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6143 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6144 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6145 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6146 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6147 (u16
)(mac_reg
& 0xFFFF));
6148 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6149 (u16
)((mac_reg
>> 16) & 0xFFFF));
6152 /* configure PHY Rx Control register */
6153 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6154 mac_reg
= er32(RCTL
);
6155 if (mac_reg
& E1000_RCTL_UPE
)
6156 phy_reg
|= BM_RCTL_UPE
;
6157 if (mac_reg
& E1000_RCTL_MPE
)
6158 phy_reg
|= BM_RCTL_MPE
;
6159 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6160 if (mac_reg
& E1000_RCTL_MO_3
)
6161 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
6162 << BM_RCTL_MO_SHIFT
);
6163 if (mac_reg
& E1000_RCTL_BAM
)
6164 phy_reg
|= BM_RCTL_BAM
;
6165 if (mac_reg
& E1000_RCTL_PMCF
)
6166 phy_reg
|= BM_RCTL_PMCF
;
6167 mac_reg
= er32(CTRL
);
6168 if (mac_reg
& E1000_CTRL_RFCE
)
6169 phy_reg
|= BM_RCTL_RFCE
;
6170 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6172 wuc
= E1000_WUC_PME_EN
;
6173 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6174 wuc
|= E1000_WUC_APME
;
6176 /* enable PHY wakeup in MAC register */
6178 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6179 E1000_WUC_PME_STATUS
| wuc
));
6181 /* configure and enable PHY wakeup in PHY registers */
6182 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6183 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6185 /* activate PHY wakeup */
6186 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6187 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6189 e_err("Could not set PHY Host Wakeup bit\n");
6191 hw
->phy
.ops
.release(hw
);
6196 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6198 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6199 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6200 struct e1000_hw
*hw
= &adapter
->hw
;
6203 pm_runtime_get_sync(netdev
->dev
.parent
);
6205 ret_val
= hw
->phy
.ops
.acquire(hw
);
6209 pr_info("EEE TX LPI TIMER: %08X\n",
6210 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6212 hw
->phy
.ops
.release(hw
);
6215 pm_runtime_put_sync(netdev
->dev
.parent
);
6218 static int e1000e_pm_freeze(struct device
*dev
)
6220 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6221 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6223 netif_device_detach(netdev
);
6225 if (netif_running(netdev
)) {
6226 int count
= E1000_CHECK_RESET_COUNT
;
6228 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6229 usleep_range(10000, 20000);
6231 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6233 /* Quiesce the device without resetting the hardware */
6234 e1000e_down(adapter
, false);
6235 e1000_free_irq(adapter
);
6237 e1000e_reset_interrupt_capability(adapter
);
6239 /* Allow time for pending master requests to run */
6240 e1000e_disable_pcie_master(&adapter
->hw
);
6245 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6247 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6248 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6249 struct e1000_hw
*hw
= &adapter
->hw
;
6250 u32 ctrl
, ctrl_ext
, rctl
, status
;
6251 /* Runtime suspend should only enable wakeup for link changes */
6252 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
6255 status
= er32(STATUS
);
6256 if (status
& E1000_STATUS_LU
)
6257 wufc
&= ~E1000_WUFC_LNKC
;
6260 e1000_setup_rctl(adapter
);
6261 e1000e_set_rx_mode(netdev
);
6263 /* turn on all-multi mode if wake on multicast is enabled */
6264 if (wufc
& E1000_WUFC_MC
) {
6266 rctl
|= E1000_RCTL_MPE
;
6271 ctrl
|= E1000_CTRL_ADVD3WUC
;
6272 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6273 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6276 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6277 adapter
->hw
.phy
.media_type
==
6278 e1000_media_type_internal_serdes
) {
6279 /* keep the laser running in D3 */
6280 ctrl_ext
= er32(CTRL_EXT
);
6281 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6282 ew32(CTRL_EXT
, ctrl_ext
);
6286 e1000e_power_up_phy(adapter
);
6288 if (adapter
->flags
& FLAG_IS_ICH
)
6289 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6291 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6292 /* enable wakeup by the PHY */
6293 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6297 /* enable wakeup by the MAC */
6299 ew32(WUC
, E1000_WUC_PME_EN
);
6305 e1000_power_down_phy(adapter
);
6308 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6309 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6310 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
6311 (hw
->mac
.type
== e1000_pch_spt
)) {
6312 if (!(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
)))
6313 /* ULP does not support wake from unicast, multicast
6316 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6322 /* Ensure that the appropriate bits are set in LPI_CTRL
6325 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6326 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6329 retval
= hw
->phy
.ops
.acquire(hw
);
6331 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6334 if (adapter
->eee_advert
&
6335 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6336 I82579_EEE_100_SUPPORTED
)
6337 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6338 if (adapter
->eee_advert
&
6339 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6340 I82579_EEE_1000_SUPPORTED
)
6341 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6343 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6347 hw
->phy
.ops
.release(hw
);
6350 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6351 * would have already happened in close and is redundant.
6353 e1000e_release_hw_control(adapter
);
6355 pci_clear_master(pdev
);
6357 /* The pci-e switch on some quad port adapters will report a
6358 * correctable error when the MAC transitions from D0 to D3. To
6359 * prevent this we need to mask off the correctable errors on the
6360 * downstream port of the pci-e switch.
6362 * We don't have the associated upstream bridge while assigning
6363 * the PCI device into guest. For example, the KVM on power is
6366 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6367 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6373 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6374 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6375 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6377 pci_save_state(pdev
);
6378 pci_prepare_to_sleep(pdev
);
6380 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6387 * __e1000e_disable_aspm - Disable ASPM states
6388 * @pdev: pointer to PCI device struct
6389 * @state: bit-mask of ASPM states to disable
6390 * @locked: indication if this context holds pci_bus_sem locked.
6392 * Some devices *must* have certain ASPM states disabled per hardware errata.
6394 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6396 struct pci_dev
*parent
= pdev
->bus
->self
;
6397 u16 aspm_dis_mask
= 0;
6398 u16 pdev_aspmc
, parent_aspmc
;
6401 case PCIE_LINK_STATE_L0S
:
6402 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6403 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6404 /* fall-through - can't have L1 without L0s */
6405 case PCIE_LINK_STATE_L1
:
6406 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6412 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6413 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6416 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6418 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6421 /* Nothing to do if the ASPM states to be disabled already are */
6422 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6423 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6426 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6427 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6429 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6432 #ifdef CONFIG_PCIEASPM
6434 pci_disable_link_state_locked(pdev
, state
);
6436 pci_disable_link_state(pdev
, state
);
6438 /* Double-check ASPM control. If not disabled by the above, the
6439 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6440 * not enabled); override by writing PCI config space directly.
6442 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6443 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6445 if (!(aspm_dis_mask
& pdev_aspmc
))
6449 /* Both device and parent should have the same ASPM setting.
6450 * Disable ASPM in downstream component first and then upstream.
6452 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6455 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6460 * e1000e_disable_aspm - Disable ASPM states.
6461 * @pdev: pointer to PCI device struct
6462 * @state: bit-mask of ASPM states to disable
6464 * This function acquires the pci_bus_sem!
6465 * Some devices *must* have certain ASPM states disabled per hardware errata.
6467 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6469 __e1000e_disable_aspm(pdev
, state
, 0);
6473 * e1000e_disable_aspm_locked Disable ASPM states.
6474 * @pdev: pointer to PCI device struct
6475 * @state: bit-mask of ASPM states to disable
6477 * This function must be called with pci_bus_sem acquired!
6478 * Some devices *must* have certain ASPM states disabled per hardware errata.
6480 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6482 __e1000e_disable_aspm(pdev
, state
, 1);
6486 static int __e1000_resume(struct pci_dev
*pdev
)
6488 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6489 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6490 struct e1000_hw
*hw
= &adapter
->hw
;
6491 u16 aspm_disable_flag
= 0;
6493 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6494 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6495 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6496 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6497 if (aspm_disable_flag
)
6498 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6500 pci_set_master(pdev
);
6502 if (hw
->mac
.type
>= e1000_pch2lan
)
6503 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6505 e1000e_power_up_phy(adapter
);
6507 /* report the system wakeup cause from S3/S4 */
6508 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6511 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6513 e_info("PHY Wakeup cause - %s\n",
6514 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6515 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6516 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6517 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6518 phy_data
& E1000_WUS_LNKC
?
6519 "Link Status Change" : "other");
6521 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6523 u32 wus
= er32(WUS
);
6526 e_info("MAC Wakeup cause - %s\n",
6527 wus
& E1000_WUS_EX
? "Unicast Packet" :
6528 wus
& E1000_WUS_MC
? "Multicast Packet" :
6529 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6530 wus
& E1000_WUS_MAG
? "Magic Packet" :
6531 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6537 e1000e_reset(adapter
);
6539 e1000_init_manageability_pt(adapter
);
6541 /* If the controller has AMT, do not set DRV_LOAD until the interface
6542 * is up. For all other cases, let the f/w know that the h/w is now
6543 * under the control of the driver.
6545 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6546 e1000e_get_hw_control(adapter
);
6551 #ifdef CONFIG_PM_SLEEP
6552 static int e1000e_pm_thaw(struct device
*dev
)
6554 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6555 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6557 e1000e_set_interrupt_capability(adapter
);
6558 if (netif_running(netdev
)) {
6559 u32 err
= e1000_request_irq(adapter
);
6567 netif_device_attach(netdev
);
6572 static int e1000e_pm_suspend(struct device
*dev
)
6574 struct pci_dev
*pdev
= to_pci_dev(dev
);
6576 e1000e_flush_lpic(pdev
);
6578 e1000e_pm_freeze(dev
);
6580 return __e1000_shutdown(pdev
, false);
6583 static int e1000e_pm_resume(struct device
*dev
)
6585 struct pci_dev
*pdev
= to_pci_dev(dev
);
6588 rc
= __e1000_resume(pdev
);
6592 return e1000e_pm_thaw(dev
);
6594 #endif /* CONFIG_PM_SLEEP */
6596 static int e1000e_pm_runtime_idle(struct device
*dev
)
6598 struct pci_dev
*pdev
= to_pci_dev(dev
);
6599 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6600 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6603 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
6605 if (!e1000e_has_link(adapter
)) {
6606 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
6607 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
6613 static int e1000e_pm_runtime_resume(struct device
*dev
)
6615 struct pci_dev
*pdev
= to_pci_dev(dev
);
6616 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6617 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6620 rc
= __e1000_resume(pdev
);
6624 if (netdev
->flags
& IFF_UP
)
6630 static int e1000e_pm_runtime_suspend(struct device
*dev
)
6632 struct pci_dev
*pdev
= to_pci_dev(dev
);
6633 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6636 if (netdev
->flags
& IFF_UP
) {
6637 int count
= E1000_CHECK_RESET_COUNT
;
6639 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6640 usleep_range(10000, 20000);
6642 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6644 /* Down the device without resetting the hardware */
6645 e1000e_down(adapter
, false);
6648 if (__e1000_shutdown(pdev
, true)) {
6649 e1000e_pm_runtime_resume(dev
);
6655 #endif /* CONFIG_PM */
6657 static void e1000_shutdown(struct pci_dev
*pdev
)
6659 e1000e_flush_lpic(pdev
);
6661 e1000e_pm_freeze(&pdev
->dev
);
6663 __e1000_shutdown(pdev
, false);
6666 #ifdef CONFIG_NET_POLL_CONTROLLER
6668 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6670 struct net_device
*netdev
= data
;
6671 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6673 if (adapter
->msix_entries
) {
6674 int vector
, msix_irq
;
6677 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6678 disable_irq(msix_irq
);
6679 e1000_intr_msix_rx(msix_irq
, netdev
);
6680 enable_irq(msix_irq
);
6683 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6684 disable_irq(msix_irq
);
6685 e1000_intr_msix_tx(msix_irq
, netdev
);
6686 enable_irq(msix_irq
);
6689 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6690 disable_irq(msix_irq
);
6691 e1000_msix_other(msix_irq
, netdev
);
6692 enable_irq(msix_irq
);
6700 * @netdev: network interface device structure
6702 * Polling 'interrupt' - used by things like netconsole to send skbs
6703 * without having to re-enable interrupts. It's not called while
6704 * the interrupt routine is executing.
6706 static void e1000_netpoll(struct net_device
*netdev
)
6708 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6710 switch (adapter
->int_mode
) {
6711 case E1000E_INT_MODE_MSIX
:
6712 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6714 case E1000E_INT_MODE_MSI
:
6715 disable_irq(adapter
->pdev
->irq
);
6716 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6717 enable_irq(adapter
->pdev
->irq
);
6719 default: /* E1000E_INT_MODE_LEGACY */
6720 disable_irq(adapter
->pdev
->irq
);
6721 e1000_intr(adapter
->pdev
->irq
, netdev
);
6722 enable_irq(adapter
->pdev
->irq
);
6729 * e1000_io_error_detected - called when PCI error is detected
6730 * @pdev: Pointer to PCI device
6731 * @state: The current pci connection state
6733 * This function is called after a PCI bus error affecting
6734 * this device has been detected.
6736 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6737 pci_channel_state_t state
)
6739 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6740 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6742 netif_device_detach(netdev
);
6744 if (state
== pci_channel_io_perm_failure
)
6745 return PCI_ERS_RESULT_DISCONNECT
;
6747 if (netif_running(netdev
))
6748 e1000e_down(adapter
, true);
6749 pci_disable_device(pdev
);
6751 /* Request a slot slot reset. */
6752 return PCI_ERS_RESULT_NEED_RESET
;
6756 * e1000_io_slot_reset - called after the pci bus has been reset.
6757 * @pdev: Pointer to PCI device
6759 * Restart the card from scratch, as if from a cold-boot. Implementation
6760 * resembles the first-half of the e1000e_pm_resume routine.
6762 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6764 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6765 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6766 struct e1000_hw
*hw
= &adapter
->hw
;
6767 u16 aspm_disable_flag
= 0;
6769 pci_ers_result_t result
;
6771 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6772 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6773 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6774 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6775 if (aspm_disable_flag
)
6776 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
6778 err
= pci_enable_device_mem(pdev
);
6781 "Cannot re-enable PCI device after reset.\n");
6782 result
= PCI_ERS_RESULT_DISCONNECT
;
6784 pdev
->state_saved
= true;
6785 pci_restore_state(pdev
);
6786 pci_set_master(pdev
);
6788 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6789 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6791 e1000e_reset(adapter
);
6793 result
= PCI_ERS_RESULT_RECOVERED
;
6796 pci_cleanup_aer_uncorrect_error_status(pdev
);
6802 * e1000_io_resume - called when traffic can start flowing again.
6803 * @pdev: Pointer to PCI device
6805 * This callback is called when the error recovery driver tells us that
6806 * its OK to resume normal operation. Implementation resembles the
6807 * second-half of the e1000e_pm_resume routine.
6809 static void e1000_io_resume(struct pci_dev
*pdev
)
6811 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6812 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6814 e1000_init_manageability_pt(adapter
);
6816 if (netif_running(netdev
))
6819 netif_device_attach(netdev
);
6821 /* If the controller has AMT, do not set DRV_LOAD until the interface
6822 * is up. For all other cases, let the f/w know that the h/w is now
6823 * under the control of the driver.
6825 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6826 e1000e_get_hw_control(adapter
);
6829 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6831 struct e1000_hw
*hw
= &adapter
->hw
;
6832 struct net_device
*netdev
= adapter
->netdev
;
6834 u8 pba_str
[E1000_PBANUM_LENGTH
];
6836 /* print bus type/speed/width info */
6837 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6839 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6843 e_info("Intel(R) PRO/%s Network Connection\n",
6844 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6845 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6846 E1000_PBANUM_LENGTH
);
6848 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6849 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6850 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6853 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6855 struct e1000_hw
*hw
= &adapter
->hw
;
6859 if (hw
->mac
.type
!= e1000_82573
)
6862 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6864 if (!ret_val
&& (!(buf
& (1 << 0)))) {
6865 /* Deep Smart Power Down (DSPD) */
6866 dev_warn(&adapter
->pdev
->dev
,
6867 "Warning: detected DSPD enabled in EEPROM\n");
6871 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
6872 netdev_features_t features
)
6874 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6875 struct e1000_hw
*hw
= &adapter
->hw
;
6877 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6878 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
6879 features
&= ~NETIF_F_RXFCS
;
6884 static int e1000_set_features(struct net_device
*netdev
,
6885 netdev_features_t features
)
6887 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6888 netdev_features_t changed
= features
^ netdev
->features
;
6890 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6891 adapter
->flags
|= FLAG_TSO_FORCE
;
6893 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
6894 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6898 if (changed
& NETIF_F_RXFCS
) {
6899 if (features
& NETIF_F_RXFCS
) {
6900 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6902 /* We need to take it back to defaults, which might mean
6903 * stripping is still disabled at the adapter level.
6905 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
6906 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
6908 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6912 netdev
->features
= features
;
6914 if (netif_running(netdev
))
6915 e1000e_reinit_locked(adapter
);
6917 e1000e_reset(adapter
);
6922 static const struct net_device_ops e1000e_netdev_ops
= {
6923 .ndo_open
= e1000_open
,
6924 .ndo_stop
= e1000_close
,
6925 .ndo_start_xmit
= e1000_xmit_frame
,
6926 .ndo_get_stats64
= e1000e_get_stats64
,
6927 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6928 .ndo_set_mac_address
= e1000_set_mac
,
6929 .ndo_change_mtu
= e1000_change_mtu
,
6930 .ndo_do_ioctl
= e1000_ioctl
,
6931 .ndo_tx_timeout
= e1000_tx_timeout
,
6932 .ndo_validate_addr
= eth_validate_addr
,
6934 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6935 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6936 #ifdef CONFIG_NET_POLL_CONTROLLER
6937 .ndo_poll_controller
= e1000_netpoll
,
6939 .ndo_set_features
= e1000_set_features
,
6940 .ndo_fix_features
= e1000_fix_features
,
6941 .ndo_features_check
= passthru_features_check
,
6945 * e1000_probe - Device Initialization Routine
6946 * @pdev: PCI device information struct
6947 * @ent: entry in e1000_pci_tbl
6949 * Returns 0 on success, negative on failure
6951 * e1000_probe initializes an adapter identified by a pci_dev structure.
6952 * The OS initialization, configuring of the adapter private structure,
6953 * and a hardware reset occur.
6955 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6957 struct net_device
*netdev
;
6958 struct e1000_adapter
*adapter
;
6959 struct e1000_hw
*hw
;
6960 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
6961 resource_size_t mmio_start
, mmio_len
;
6962 resource_size_t flash_start
, flash_len
;
6963 static int cards_found
;
6964 u16 aspm_disable_flag
= 0;
6965 int bars
, i
, err
, pci_using_dac
;
6966 u16 eeprom_data
= 0;
6967 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
6970 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6971 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6972 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6973 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6974 if (aspm_disable_flag
)
6975 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6977 err
= pci_enable_device_mem(pdev
);
6982 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
6986 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
6989 "No usable DMA configuration, aborting\n");
6994 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
6995 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
6996 e1000e_driver_name
);
7000 /* AER (Advanced Error Reporting) hooks */
7001 pci_enable_pcie_error_reporting(pdev
);
7003 pci_set_master(pdev
);
7004 /* PCI config space info */
7005 err
= pci_save_state(pdev
);
7007 goto err_alloc_etherdev
;
7010 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7012 goto err_alloc_etherdev
;
7014 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7016 netdev
->irq
= pdev
->irq
;
7018 pci_set_drvdata(pdev
, netdev
);
7019 adapter
= netdev_priv(netdev
);
7021 adapter
->netdev
= netdev
;
7022 adapter
->pdev
= pdev
;
7024 adapter
->pba
= ei
->pba
;
7025 adapter
->flags
= ei
->flags
;
7026 adapter
->flags2
= ei
->flags2
;
7027 adapter
->hw
.adapter
= adapter
;
7028 adapter
->hw
.mac
.type
= ei
->mac
;
7029 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7030 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7032 mmio_start
= pci_resource_start(pdev
, 0);
7033 mmio_len
= pci_resource_len(pdev
, 0);
7036 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7037 if (!adapter
->hw
.hw_addr
)
7040 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7041 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7042 (hw
->mac
.type
< e1000_pch_spt
)) {
7043 flash_start
= pci_resource_start(pdev
, 1);
7044 flash_len
= pci_resource_len(pdev
, 1);
7045 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7046 if (!adapter
->hw
.flash_address
)
7050 /* Set default EEE advertisement */
7051 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7052 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7054 /* construct the net_device struct */
7055 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7056 e1000e_set_ethtool_ops(netdev
);
7057 netdev
->watchdog_timeo
= 5 * HZ
;
7058 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
7059 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7061 netdev
->mem_start
= mmio_start
;
7062 netdev
->mem_end
= mmio_start
+ mmio_len
;
7064 adapter
->bd_number
= cards_found
++;
7066 e1000e_check_options(adapter
);
7068 /* setup adapter struct */
7069 err
= e1000_sw_init(adapter
);
7073 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7074 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7075 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7077 err
= ei
->get_variants(adapter
);
7081 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7082 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7083 (hw
->mac
.type
< e1000_pch_spt
))
7084 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7086 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7088 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7090 /* Copper options */
7091 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7092 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7093 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7094 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7097 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7098 dev_info(&pdev
->dev
,
7099 "PHY reset is blocked due to SOL/IDER session.\n");
7101 /* Set initial default active device features */
7102 netdev
->features
= (NETIF_F_SG
|
7103 NETIF_F_HW_VLAN_CTAG_RX
|
7104 NETIF_F_HW_VLAN_CTAG_TX
|
7111 /* Set user-changeable features (subset of all device features) */
7112 netdev
->hw_features
= netdev
->features
;
7113 netdev
->hw_features
|= NETIF_F_RXFCS
;
7114 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7115 netdev
->hw_features
|= NETIF_F_RXALL
;
7117 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7118 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7120 netdev
->vlan_features
|= (NETIF_F_SG
|
7125 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7127 if (pci_using_dac
) {
7128 netdev
->features
|= NETIF_F_HIGHDMA
;
7129 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7132 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7133 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7135 /* before reading the NVM, reset the controller to
7136 * put the device in a known good starting state
7138 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7140 /* systems with ASPM and others may see the checksum fail on the first
7141 * attempt. Let's give it a few tries
7144 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7147 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7153 e1000_eeprom_checks(adapter
);
7155 /* copy the MAC address */
7156 if (e1000e_read_mac_addr(&adapter
->hw
))
7158 "NVM Read Error while reading MAC address\n");
7160 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
7162 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7163 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7169 init_timer(&adapter
->watchdog_timer
);
7170 adapter
->watchdog_timer
.function
= e1000_watchdog
;
7171 adapter
->watchdog_timer
.data
= (unsigned long)adapter
;
7173 init_timer(&adapter
->phy_info_timer
);
7174 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
7175 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
7177 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7178 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7179 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7180 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7181 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7183 /* Initialize link parameters. User can change them with ethtool */
7184 adapter
->hw
.mac
.autoneg
= 1;
7185 adapter
->fc_autoneg
= true;
7186 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7187 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7188 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7190 /* Initial Wake on LAN setting - If APM wake is enabled in
7191 * the EEPROM, enable the ACPI Magic Packet filter
7193 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7194 /* APME bit in EEPROM is mapped to WUC.APME */
7195 eeprom_data
= er32(WUC
);
7196 eeprom_apme_mask
= E1000_WUC_APME
;
7197 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7198 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7199 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7200 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7201 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7202 (adapter
->hw
.bus
.func
== 1))
7203 rval
= e1000_read_nvm(&adapter
->hw
,
7204 NVM_INIT_CONTROL3_PORT_B
,
7207 rval
= e1000_read_nvm(&adapter
->hw
,
7208 NVM_INIT_CONTROL3_PORT_A
,
7212 /* fetch WoL from EEPROM */
7214 e_dbg("NVM read error getting WoL initial values: %d\n", rval
);
7215 else if (eeprom_data
& eeprom_apme_mask
)
7216 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7218 /* now that we have the eeprom settings, apply the special cases
7219 * where the eeprom may be wrong or the board simply won't support
7220 * wake on lan on a particular port
7222 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7223 adapter
->eeprom_wol
= 0;
7225 /* initialize the wol settings based on the eeprom settings */
7226 adapter
->wol
= adapter
->eeprom_wol
;
7228 /* make sure adapter isn't asleep if manageability is enabled */
7229 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7230 (hw
->mac
.ops
.check_mng_mode(hw
)))
7231 device_wakeup_enable(&pdev
->dev
);
7233 /* save off EEPROM version number */
7234 rval
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7237 e_dbg("NVM read error getting EEPROM version: %d\n", rval
);
7238 adapter
->eeprom_vers
= 0;
7241 /* reset the hardware with the new settings */
7242 e1000e_reset(adapter
);
7244 /* If the controller has AMT, do not set DRV_LOAD until the interface
7245 * is up. For all other cases, let the f/w know that the h/w is now
7246 * under the control of the driver.
7248 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7249 e1000e_get_hw_control(adapter
);
7251 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7252 err
= register_netdev(netdev
);
7256 /* carrier off reporting is important to ethtool even BEFORE open */
7257 netif_carrier_off(netdev
);
7259 /* init PTP hardware clock */
7260 e1000e_ptp_init(adapter
);
7262 e1000_print_device_info(adapter
);
7264 if (pci_dev_run_wake(pdev
))
7265 pm_runtime_put_noidle(&pdev
->dev
);
7270 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7271 e1000e_release_hw_control(adapter
);
7273 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7274 e1000_phy_hw_reset(&adapter
->hw
);
7276 kfree(adapter
->tx_ring
);
7277 kfree(adapter
->rx_ring
);
7279 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7280 iounmap(adapter
->hw
.flash_address
);
7281 e1000e_reset_interrupt_capability(adapter
);
7283 iounmap(adapter
->hw
.hw_addr
);
7285 free_netdev(netdev
);
7287 pci_release_selected_regions(pdev
,
7288 pci_select_bars(pdev
, IORESOURCE_MEM
));
7291 pci_disable_device(pdev
);
7296 * e1000_remove - Device Removal Routine
7297 * @pdev: PCI device information struct
7299 * e1000_remove is called by the PCI subsystem to alert the driver
7300 * that it should release a PCI device. The could be caused by a
7301 * Hot-Plug event, or because the driver is going to be removed from
7304 static void e1000_remove(struct pci_dev
*pdev
)
7306 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7307 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7308 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
7310 e1000e_ptp_remove(adapter
);
7312 /* The timers may be rescheduled, so explicitly disable them
7313 * from being rescheduled.
7316 set_bit(__E1000_DOWN
, &adapter
->state
);
7317 del_timer_sync(&adapter
->watchdog_timer
);
7318 del_timer_sync(&adapter
->phy_info_timer
);
7320 cancel_work_sync(&adapter
->reset_task
);
7321 cancel_work_sync(&adapter
->watchdog_task
);
7322 cancel_work_sync(&adapter
->downshift_task
);
7323 cancel_work_sync(&adapter
->update_phy_task
);
7324 cancel_work_sync(&adapter
->print_hang_task
);
7326 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7327 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7328 if (adapter
->tx_hwtstamp_skb
) {
7329 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
7330 adapter
->tx_hwtstamp_skb
= NULL
;
7334 /* Don't lie to e1000_close() down the road. */
7336 clear_bit(__E1000_DOWN
, &adapter
->state
);
7337 unregister_netdev(netdev
);
7339 if (pci_dev_run_wake(pdev
))
7340 pm_runtime_get_noresume(&pdev
->dev
);
7342 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7343 * would have already happened in close and is redundant.
7345 e1000e_release_hw_control(adapter
);
7347 e1000e_reset_interrupt_capability(adapter
);
7348 kfree(adapter
->tx_ring
);
7349 kfree(adapter
->rx_ring
);
7351 iounmap(adapter
->hw
.hw_addr
);
7352 if ((adapter
->hw
.flash_address
) &&
7353 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7354 iounmap(adapter
->hw
.flash_address
);
7355 pci_release_selected_regions(pdev
,
7356 pci_select_bars(pdev
, IORESOURCE_MEM
));
7358 free_netdev(netdev
);
7361 pci_disable_pcie_error_reporting(pdev
);
7363 pci_disable_device(pdev
);
7366 /* PCI Error Recovery (ERS) */
7367 static const struct pci_error_handlers e1000_err_handler
= {
7368 .error_detected
= e1000_io_error_detected
,
7369 .slot_reset
= e1000_io_slot_reset
,
7370 .resume
= e1000_io_resume
,
7373 static const struct pci_device_id e1000_pci_tbl
[] = {
7374 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7375 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7379 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7380 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7381 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7382 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7383 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7385 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7386 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7387 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7388 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7390 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7391 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7392 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7394 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7395 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7396 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7398 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7399 board_80003es2lan
},
7400 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7401 board_80003es2lan
},
7402 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7403 board_80003es2lan
},
7404 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7405 board_80003es2lan
},
7407 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7408 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7409 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7410 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7411 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7412 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7413 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7414 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7416 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7417 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7418 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7419 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7420 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7421 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7422 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7423 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7424 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7426 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7427 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7428 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7430 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7431 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7432 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7434 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7435 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7436 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7437 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7439 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7440 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7442 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7443 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7444 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7445 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7446 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7447 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7448 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7449 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7450 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7451 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7452 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7453 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7454 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LBG_I219_LM3
), board_pch_spt
},
7455 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM4
), board_pch_spt
},
7456 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V4
), board_pch_spt
},
7457 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM5
), board_pch_spt
},
7458 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V5
), board_pch_spt
},
7460 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7462 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7464 static const struct dev_pm_ops e1000_pm_ops
= {
7465 #ifdef CONFIG_PM_SLEEP
7466 .suspend
= e1000e_pm_suspend
,
7467 .resume
= e1000e_pm_resume
,
7468 .freeze
= e1000e_pm_freeze
,
7469 .thaw
= e1000e_pm_thaw
,
7470 .poweroff
= e1000e_pm_suspend
,
7471 .restore
= e1000e_pm_resume
,
7473 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7474 e1000e_pm_runtime_idle
)
7477 /* PCI Device API Driver */
7478 static struct pci_driver e1000_driver
= {
7479 .name
= e1000e_driver_name
,
7480 .id_table
= e1000_pci_tbl
,
7481 .probe
= e1000_probe
,
7482 .remove
= e1000_remove
,
7484 .pm
= &e1000_pm_ops
,
7486 .shutdown
= e1000_shutdown
,
7487 .err_handler
= &e1000_err_handler
7491 * e1000_init_module - Driver Registration Routine
7493 * e1000_init_module is the first routine called when the driver is
7494 * loaded. All it does is register with the PCI subsystem.
7496 static int __init
e1000_init_module(void)
7498 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7499 e1000e_driver_version
);
7500 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7502 return pci_register_driver(&e1000_driver
);
7504 module_init(e1000_init_module
);
7507 * e1000_exit_module - Driver Exit Cleanup Routine
7509 * e1000_exit_module is called just before the driver is removed
7512 static void __exit
e1000_exit_module(void)
7514 pci_unregister_driver(&e1000_driver
);
7516 module_exit(e1000_exit_module
);
7518 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7519 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7520 MODULE_LICENSE("GPL");
7521 MODULE_VERSION(DRV_VERSION
);