Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / net / ethernet / intel / igbvf / vf.c
bloba13baa90ae20298842e3aa6b5877be0f4ad7fe25
1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *******************************************************************************/
27 #include "vf.h"
29 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
30 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
31 u16 *duplex);
32 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
33 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
35 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
36 u32, u32, u32);
37 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
38 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
39 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
41 /**
42 * e1000_init_mac_params_vf - Inits MAC params
43 * @hw: pointer to the HW structure
44 **/
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
47 struct e1000_mac_info *mac = &hw->mac;
49 /* VF's have no MTA Registers - PF feature only */
50 mac->mta_reg_count = 128;
51 /* VF's have no access to RAR entries */
52 mac->rar_entry_count = 1;
54 /* Function pointers */
55 /* reset */
56 mac->ops.reset_hw = e1000_reset_hw_vf;
57 /* hw initialization */
58 mac->ops.init_hw = e1000_init_hw_vf;
59 /* check for link */
60 mac->ops.check_for_link = e1000_check_for_link_vf;
61 /* link info */
62 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
63 /* multicast address update */
64 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
65 /* set mac address */
66 mac->ops.rar_set = e1000_rar_set_vf;
67 /* read mac address */
68 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
69 /* set vlan filter table array */
70 mac->ops.set_vfta = e1000_set_vfta_vf;
72 return E1000_SUCCESS;
75 /**
76 * e1000_init_function_pointers_vf - Inits function pointers
77 * @hw: pointer to the HW structure
78 **/
79 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
81 hw->mac.ops.init_params = e1000_init_mac_params_vf;
82 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
85 /**
86 * e1000_get_link_up_info_vf - Gets link info.
87 * @hw: pointer to the HW structure
88 * @speed: pointer to 16 bit value to store link speed.
89 * @duplex: pointer to 16 bit value to store duplex.
91 * Since we cannot read the PHY and get accurate link info, we must rely upon
92 * the status register's data which is often stale and inaccurate.
93 **/
94 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
95 u16 *duplex)
97 s32 status;
99 status = er32(STATUS);
100 if (status & E1000_STATUS_SPEED_1000)
101 *speed = SPEED_1000;
102 else if (status & E1000_STATUS_SPEED_100)
103 *speed = SPEED_100;
104 else
105 *speed = SPEED_10;
107 if (status & E1000_STATUS_FD)
108 *duplex = FULL_DUPLEX;
109 else
110 *duplex = HALF_DUPLEX;
112 return E1000_SUCCESS;
116 * e1000_reset_hw_vf - Resets the HW
117 * @hw: pointer to the HW structure
119 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
120 * This is all the reset we can perform on a VF.
122 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
124 struct e1000_mbx_info *mbx = &hw->mbx;
125 u32 timeout = E1000_VF_INIT_TIMEOUT;
126 u32 ret_val = -E1000_ERR_MAC_INIT;
127 u32 msgbuf[3];
128 u8 *addr = (u8 *)(&msgbuf[1]);
129 u32 ctrl;
131 /* assert VF queue/interrupt reset */
132 ctrl = er32(CTRL);
133 ew32(CTRL, ctrl | E1000_CTRL_RST);
135 /* we cannot initialize while the RSTI / RSTD bits are asserted */
136 while (!mbx->ops.check_for_rst(hw) && timeout) {
137 timeout--;
138 udelay(5);
141 if (timeout) {
142 /* mailbox timeout can now become active */
143 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
145 /* notify PF of VF reset completion */
146 msgbuf[0] = E1000_VF_RESET;
147 mbx->ops.write_posted(hw, msgbuf, 1);
149 msleep(10);
151 /* set our "perm_addr" based on info provided by PF */
152 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
153 if (!ret_val) {
154 if (msgbuf[0] == (E1000_VF_RESET |
155 E1000_VT_MSGTYPE_ACK))
156 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
157 else
158 ret_val = -E1000_ERR_MAC_INIT;
162 return ret_val;
166 * e1000_init_hw_vf - Inits the HW
167 * @hw: pointer to the HW structure
169 * Not much to do here except clear the PF Reset indication if there is one.
171 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
173 /* attempt to set and restore our mac address */
174 e1000_rar_set_vf(hw, hw->mac.addr, 0);
176 return E1000_SUCCESS;
180 * e1000_hash_mc_addr_vf - Generate a multicast hash value
181 * @hw: pointer to the HW structure
182 * @mc_addr: pointer to a multicast address
184 * Generates a multicast address hash value which is used to determine
185 * the multicast filter table array address and new table value. See
186 * e1000_mta_set_generic()
188 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
190 u32 hash_value, hash_mask;
191 u8 bit_shift = 0;
193 /* Register count multiplied by bits per register */
194 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
196 /* The bit_shift is the number of left-shifts
197 * where 0xFF would still fall within the hash mask.
199 while (hash_mask >> bit_shift != 0xFF)
200 bit_shift++;
202 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
203 (((u16)mc_addr[5]) << bit_shift)));
205 return hash_value;
209 * e1000_update_mc_addr_list_vf - Update Multicast addresses
210 * @hw: pointer to the HW structure
211 * @mc_addr_list: array of multicast addresses to program
212 * @mc_addr_count: number of multicast addresses to program
213 * @rar_used_count: the first RAR register free to program
214 * @rar_count: total number of supported Receive Address Registers
216 * Updates the Receive Address Registers and Multicast Table Array.
217 * The caller must have a packed mc_addr_list of multicast addresses.
218 * The parameter rar_count will usually be hw->mac.rar_entry_count
219 * unless there are workarounds that change this.
221 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
222 u8 *mc_addr_list, u32 mc_addr_count,
223 u32 rar_used_count, u32 rar_count)
225 struct e1000_mbx_info *mbx = &hw->mbx;
226 u32 msgbuf[E1000_VFMAILBOX_SIZE];
227 u16 *hash_list = (u16 *)&msgbuf[1];
228 u32 hash_value;
229 u32 cnt, i;
231 /* Each entry in the list uses 1 16 bit word. We have 30
232 * 16 bit words available in our HW msg buffer (minus 1 for the
233 * msg type). That's 30 hash values if we pack 'em right. If
234 * there are more than 30 MC addresses to add then punt the
235 * extras for now and then add code to handle more than 30 later.
236 * It would be unusual for a server to request that many multi-cast
237 * addresses except for in large enterprise network environments.
240 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
241 msgbuf[0] = E1000_VF_SET_MULTICAST;
242 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
244 for (i = 0; i < cnt; i++) {
245 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
246 hash_list[i] = hash_value & 0x0FFFF;
247 mc_addr_list += ETH_ALEN;
250 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
254 * e1000_set_vfta_vf - Set/Unset vlan filter table address
255 * @hw: pointer to the HW structure
256 * @vid: determines the vfta register and bit to set/unset
257 * @set: if true then set bit, else clear bit
259 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
261 struct e1000_mbx_info *mbx = &hw->mbx;
262 u32 msgbuf[2];
263 s32 err;
265 msgbuf[0] = E1000_VF_SET_VLAN;
266 msgbuf[1] = vid;
267 /* Setting the 8 bit field MSG INFO to true indicates "add" */
268 if (set)
269 msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
271 mbx->ops.write_posted(hw, msgbuf, 2);
273 err = mbx->ops.read_posted(hw, msgbuf, 2);
275 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
277 /* if nacked the vlan was rejected */
278 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
279 err = -E1000_ERR_MAC_INIT;
281 return err;
285 * e1000_rlpml_set_vf - Set the maximum receive packet length
286 * @hw: pointer to the HW structure
287 * @max_size: value to assign to max frame size
289 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
291 struct e1000_mbx_info *mbx = &hw->mbx;
292 u32 msgbuf[2];
294 msgbuf[0] = E1000_VF_SET_LPE;
295 msgbuf[1] = max_size;
297 mbx->ops.write_posted(hw, msgbuf, 2);
301 * e1000_rar_set_vf - set device MAC address
302 * @hw: pointer to the HW structure
303 * @addr: pointer to the receive address
304 * @index: receive address array register
306 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
308 struct e1000_mbx_info *mbx = &hw->mbx;
309 u32 msgbuf[3];
310 u8 *msg_addr = (u8 *)(&msgbuf[1]);
311 s32 ret_val;
313 memset(msgbuf, 0, 12);
314 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
315 memcpy(msg_addr, addr, ETH_ALEN);
316 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
318 if (!ret_val)
319 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
321 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
323 /* if nacked the address was rejected, use "perm_addr" */
324 if (!ret_val &&
325 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
326 e1000_read_mac_addr_vf(hw);
330 * e1000_read_mac_addr_vf - Read device MAC address
331 * @hw: pointer to the HW structure
333 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
335 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
337 return E1000_SUCCESS;
341 * e1000_check_for_link_vf - Check for link for a virtual interface
342 * @hw: pointer to the HW structure
344 * Checks to see if the underlying PF is still talking to the VF and
345 * if it is then it reports the link state to the hardware, otherwise
346 * it reports link down and returns an error.
348 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
350 struct e1000_mbx_info *mbx = &hw->mbx;
351 struct e1000_mac_info *mac = &hw->mac;
352 s32 ret_val = E1000_SUCCESS;
353 u32 in_msg = 0;
355 /* We only want to run this if there has been a rst asserted.
356 * in this case that could mean a link change, device reset,
357 * or a virtual function reset
360 /* If we were hit with a reset or timeout drop the link */
361 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
362 mac->get_link_status = true;
364 if (!mac->get_link_status)
365 goto out;
367 /* if link status is down no point in checking to see if PF is up */
368 if (!(er32(STATUS) & E1000_STATUS_LU))
369 goto out;
371 /* if the read failed it could just be a mailbox collision, best wait
372 * until we are called again and don't report an error
374 if (mbx->ops.read(hw, &in_msg, 1))
375 goto out;
377 /* if incoming message isn't clear to send we are waiting on response */
378 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
379 /* msg is not CTS and is NACK we must have lost CTS status */
380 if (in_msg & E1000_VT_MSGTYPE_NACK)
381 ret_val = -E1000_ERR_MAC_INIT;
382 goto out;
385 /* the PF is talking, if we timed out in the past we reinit */
386 if (!mbx->timeout) {
387 ret_val = -E1000_ERR_MAC_INIT;
388 goto out;
391 /* if we passed all the tests above then the link is up and we no
392 * longer need to check for link
394 mac->get_link_status = false;
396 out:
397 return ret_val;